Extracting the Fifth Structure Function in ²H(e, e'p)n Liam Murray and Gerard Gilfoyle Department of Physics, University of Richmond ### Fifth Structure Function One of the goals of Jefferson Lab is to explore the underlying quark-gluon structure of atomic nuclei [1]. To accomplish that goal we need to first understand atomic nuclei as collections of protons and neutrons. We have to establish a baseline for the hadronic model to see where that model begins to fail at higher energies. Measuring the fifth structure function probes a seldom-measured part of the deuteron response where the proton-neutron force is expected to dominate. ## CEBAF The data were acquired with the Continuous Electron Beam Accelerator Facility (CEBAF) at the Thomas Jefferson National Accelerator Facility (JLab) in Newport News, Virginia. CEBAF can produce 6 GeV electron beams at velocities close to the speed of light around its 7/8-mile-long racetrack-like accelerator. Figure 1: Jefferson Laboratory in Newport News, Virginia ### CLAS 6 In this experiment, 2.6 GeV electron beams were aimed at a deuteron target in Hall B's CEBAF Large Acceptance Spectrometer (CLAS 6). CLAS is a 45-ton, three-story, spectrometer which is composed of six identical sectors covering almost all solid angles. CLAS also has two toroidal magnet polarity settings (normal/reversed) which bend charged particles in opposite directions. Figure 2: CLAS 6 ## **Probing the Fifth Structure Function** In order to study the fifth structure function, we use an asymmetry A'_{LT} . To extract A'_{LT} from our data, we start with the differential cross section for the quasielastic reaction ${}^{2}H(e,e'p)n$ with polarized beams. $$\frac{d^3\sigma}{dQ^2dp_m d\phi_{pq} d\Omega_e d\Omega_p} = \sigma^{\pm} = \sigma_L + \sigma_T + \sigma_{LT} \cos\phi_{pq} + \sigma_{TT} \cos 2\phi_{PQ} + h\sigma_{LT} \sin\phi_{pq}$$ (1) The symbol \pm refers to the beam helicity, Φ_{pq} is shown in Figure 3, p_m is the missing momentum defined as $\vec{p}_m = \vec{q} \cdot \vec{p}_p$, where \vec{q} is the 3-momentum transfer and \vec{p}_p is the ejected proton 3-momentum. The σ_i 's are the partial cross sections for each component. The helicity asymmetry is $$A_h(Q^2, p_m, \phi_{pq}) = \frac{\sigma^+ - \sigma^-}{\sigma^+ + \sigma^-}$$ (2) where Q^2 is the square of the 4-momentum transfer. The magnitude of p_m grows with increasing θ_{pq} where θ_{pq} is the angle between the 3-momentum transfer \vec{q} and the proton 3-momentum \vec{p}_p (see Figure 3). By substituting Equation 1 into Equation 2, we get the following. $$A_h(Q^2, p_m, \phi_{pq}) = \frac{\sigma_{LT} \sin \phi_{pq}}{\sigma_L + \sigma_T + \sigma_{LT} \cos \phi_{pq} + \sigma_{TT} \cos 2\phi_{pQ}}$$ (3) The numerator in the equation is proportional to $\sin \Phi_{pq}$ and the denominator is approximately constant (σ_{LT} and σ_{TT} are small and can be ignored). One obtains, $$A_h(Q^2, p_m, \Phi_{pq}) \approx \frac{\sigma_{LT} \sin \phi_{pq}}{\sigma_L + \sigma_T} = A'_{LT} \sin \phi_{pq}$$ (4) Therefore, the amplitude of a fit of A_h would be A'_{1T} . ## Extracting the Asymmetry A'_{LT} We analyzed the data using a C++ code based on the ROOT package from CERN. We generated ROOT 2D histograms for both beam helicities as a function of the missing momentum p_m and the out-of-plane angle \mathcal{O}_{pq} . We calculated the ratio of the difference of the opposite beam helicity histograms divided by their sum (see Equation 2) to create a new set of 2D histograms in p_m and \mathcal{O}_{pq} bins. Data for a given p_m bin were projected out and the \mathcal{O}_{pq} dependence was fitted to a sinusoidal curve (see Figure 4 and Figure 5 for examples) over the range p_m =0-0.7 GeV/c in nine bins. We completed these steps for both the normal and reversed magnetic polarities of the CLAS toroidal magnetic field. Figure 4: A_h, Normal Polarity, p_m=0.30 GeV/c Figure 5: A_h, Reversed Polarity, p_m=0.30 GeV/c ## Results In Figures 6 and 7, the asymmetry A'_{LT} is shown as a function of the missing momentum p_m for both the normal (Figure 6) and the reversed (Figure 7) magnetic polarities of the toroidal magnetic field. The red points are from a different method of measuring A'_{LT} using a $\sin \Phi_{pq}$ -weighted average [2]. The blue points are results of the fits to A_h from above. Both methods of extracting A'_{LT} are consistent. The average difference between the two methods was 0.0004 ± 0.0012 for the normal torus polarity and 0.0001 ± 0.0010 for the reversed torus polarity. p_p Figure 3: Kinematic quantities. Figure 6: Asymmetries A'_{LT} for normal torus polarity Figure 7: Asymmetries A'_{LT} for reversed torus polarity ## Conclusions We have developed a method to extract the asymmetry A'_{LT} from fits to the helicity asymmetry. We measured A'_{LT} for both torus polarities using this method and compared our results to the $\sin \Phi_{pq}$ -weighted method. The differences are consistent with zero within uncertainties for both torus polarities. Both methods of extracting A'_{LT} are equivalent. #### References ¹The Frontiers of Nuclear Science: A Long Range Plan; US Department of Energy/National Science Foundation, Washington, DC, 2007. ²G.P. Gilfoyle et al., Bull. Am. Phys. Soc. DF.00010 (2006).