

Measurement of the Neutron Magnetic Form Factor G_M^n at High Q^2 Using the Ratio Method on the Deuteron

Lamya Baashen

Brian Raue – FIU Jerry Gilfoyle – University of Richmond Cole Smith – University of Virginia

- **Definition and Meaning of the Elastic Nucleon Form Factor**
- Scientific Motivation
- The Ratio Method
- CLAS12 Detector
- Analysis tools and Preliminary Neutron detection efficiency (NDE) results
- Summary

Definition of the Electromagnetic Elastic Nucleon Form Factors (EEFFs)

Why we need to measure Form Factors

- I. Elastic form factors, particularly at high Q^2 , have fundamentally changed our QUALITATIVE picture of the nucleon.
- **II.** The form factors provide important constraints for GPDs:

$$\int_{-1}^{1} dx H^{q}(x,\xi,Q^{2}) = F_{1}^{q}(Q^{2}) \text{ and } \int_{-1}^{1} dx E^{q}(x,\xi,Q^{2}) = F_{2}^{q}(Q^{2})$$

form factors thus play an important role in the entire GPD program

Listing of approved experiments for measuring EEFFs at Jefferson Lab

Quantity	Method	Target	$Q^2(GeV^2)$	Hall	Beam Days
$G_M^{p *}$	Elastic scattering	LH_2	7 - 15.5	А	24
G_F^p/G_M^p	Polarization transfer	LH_2	5 - 12	А	45
G_M^n	E - p/e - n ratio	LD_2, LH_2	3.5 - 13.0	В	30
G_M^n	E - p/e - n ratio	LD_2, LH_2	3.5 - 13.5	А	25
G_E^n/G_M^n	Double polarization	polarized ${}^{3}\mathrm{He}$	5 - 8	А	50
	asymmetry				
G_E^n/G_M^n	Polarization transfer	LD_2	4 - 7	С	50
G_E^n/G_M^n	Polarization transfer	LD_2	4.5	А	5

How Do We Measure G_M^n on a Neutron? Ratio Method

The ratio of the free nucleon e-n to e-p cross sections in terms of the free nucleon form factors:

Lamya Baashen

10/30/2020

10/30/2020

10/30/2020

Extracting Neutron Detection Efficiency

Determine the neutron detection efficiency (NDE) by using:

 $e \ p \
ightarrow e' \ \pi^+(n)$

- Select e' π⁺ final state with no other charged particles p(e, e' π⁺)X_n.
 Assume the missing particle is a neutron, calculate the missing momentum of the neutron and its trajectory through CLAS12 from the e' π⁺ vertex
- **3.** Check if the neutron's path intersects with the front face of PCAL/ECAL.

skip the event

→ count as expected neutron

Lachniet et al., PRL 102, 192001(2009)

Yes

NO

Extracting Neutron Detection Efficiency

- 4. Loop over neutral PCAL/ECAL hits:
 - Get intersection of ray with the PCAL/ECAL face by drawing a line from the e' π^+ vertex to the actual neutral PCAL/ECAL hit.
 - ✓ Calculate ∆R for each actual neutral PCAL/ECAL hits, which is the distance between the intersection of the PCAL/ECAL hit and the intersection of the expected neutron trajectory.
 - Select hit with the smallest ΔR .
- 5. Applied some kinematics cuts to identify neutrons.

$$NDE = \frac{N_{detected (n)}}{N_{expected (n)}}$$

Missing Mass of Expected Neutron PCAL/ECAL

Intersection point of expected neutron with front face of PCAL/ECAL

Neutral Particles Measured in PCAL/ECAL

Identifying Neutron in PCAL/ECAL

To identify neutron hits:

Required the direction cosine of the expected neutron C_{exp} to coincide with the direction of the measured neutral particles C_{meas}

$$\Delta C = C_{exp} - C_{mea}$$

 $-0.1 < \Delta Cx < 0.1 \&\& -0.1 < \Delta Cy < 0.1$

0.40 0.30 0.20 10^{2} 0.10 ACy -0.10 -0.20 -0.30 -0.40 10-1 0.20 -0.40 -0.20 -0.00 0.40 ΔCx G.Asryan et al., MIN A959(2020) 163425

mass² distribution of the neutral particles vs missing momentum

Neutral Particles Measured in PCAL/ECAL

10/30/2020

Cuts Applied:

Preliminary Results of NDE

Lamya Baashen

Summary

- \blacktriangleright The neutron magnetic form factor G_M^n is a fundamental quantity related to the transverse distribution of magnetization in the nucleon.
- The upgraded CEBAF provides the opportunities to measure the neutron magnetic G_M^n form factor to high Q².
- Ratio method on deuteron will be used to reduce the systematic uncertainty and extract a precise G_M^n measurement with systematic uncertainty to less than 3%.
- Precise measurement of NDE is a major challenge in this analysis.
- More statistics will be coming from the data processing of the Spring run.
- Data analysis in progress for deuteron-target data:
 - ✓ Select quasi-elastic e-p and e-n events

