
Investigating the Use of the Intel Xeon Phi for Event Reconstruction	

Keegan H. Sherman and G.P. Gilfoyle 	

Physics Department, University of Richmond

Jefferson Lab
Intel Xeon Phi

The Kalman Filter

 Writing the Filter for the Phi

References

One of the most CPU-time-consuming steps in the data
reconstruction is the Kalman Filter used to determine the
particle trajectory from the drift chamber data (see Figure
1). It is a linear algebra algorithm designed to extract
signals from noisy data [3]. It is summarized below.
• Take an initial point xn-1 (a five dimensional state

vector) and covariance matrix Pn-1 and use the state
transition matrix A, control matrix B, control vector un,
and process error covariance matrix Q to predict the
next point xnp and covariance matrix Pnp.

!
!

• Calculate the comparison values y and S using the
predicted values with the actual values zn and R and
observation matrix H.

!
!
!
• Next compute the Kalman Gain K.

!
!• Use the Kalman Gain to correct predictions.

!
!
• Use the results to go to the next data point.

Conclusion

We are exploring the use of the Xeon Phi, shown in
Figure 2. The Phi is a chip designed to run highly
parallel computations quickly. Its specifications are
shown in the Table 1 [2].The goal of Jefferson Lab (JLab) is to understand how

quarks and gluons combine to form nucleons and
nuclei. The laboratory is undergoing an upgrade that
will double the beam energy to 12 GeV and build a
new detector in Hall B, CLAS12. CLAS12 will collect
data at a prodigious rate. Here we describe our
investigation of new hardware (the Intel Xeon Phi) to
speed up reconstruction, simulation, and analysis of
the data.

Figure 2. The Intel
Xeon Phi.

We tested the Kalman Filter in two ways, accuracy of
the results, and the time it took to run on the Phi vs.
the host machine. We simulated the motion of a
charged particle in a magnetic field at 4 GeV, 7 GeV,
and 10 GeV.

Cores used Threads per
Core RAM size

Xeon Phi 60 3 8 GB

Host 12 1 64 GB

[1] D.P. Weygand and V. Ziegler, editors, ‘CLAS12 Software’, Jefferson Lab, 2012.
 http://clasweb.jlab.org/clas12/software/clas12_software_tdr_2012.05.pdf
!
[2] Intel (2014). Intel Newsroom http://newsroom.intel.com/docs/DOC-3126
!
[3] Czerniak, G. (2014). Kalman Filter http://greg.czerniak.info/guides/kalman1/

The CLAS12 Detector

• CLAS12 (Figure 1) is a large acceptance spectrometer
that takes data over a large solid angle.

• Data will be collected for eight detector subsystems for
the base equipment with more than 60,000 channels.

• CLAS12 will have an event rate of 10 kHz and each
event is 10 kB. It will take 5-10 TB of data per day. We
expect to need 12,000 cores to keep up with the
reconstruction, simulation, and analysis of the data [1].

• In this work we are studying a new technology to
speed the processing of the data.

Number
of Cores

Threads
per Core

Register
Width

Number
of

Registers

Number
of Mask

Registers
Compatible
Languages

60 4 512 bits 32 8 C, C++,
Fortran

Table 1. Hardware\software specifications for the Xeon Phi.

The Phi has its own unique instruction set called the
Many Integrated Cores (MIC) architecture which
requires Intel’s compiler Composer XE.

Figure 1. Computer designed image of CLAS12.

We have written a simplified Kalman Filter algorithm in
C++ to test the Phi using a five-dimensional state
vector. Each file has been optimized to make full use
of the extra wide registers the Phi provides as well as
the threads it can support.

Testing the Phi

Table 2. Configuration of the Xeon Phi and Xeon host
processor for testing.

Time Test
We tested the algorithm with 500 events for ten
separate runs at each energy. Table 2 shows how we
configured the Phi and the host for each test. For the
host, we ran the algorithm in Mathematica. Table 3
shows our results in time per 500 events. Overall the
Phi ran much faster. The uncertainties of our data
come from overhead of running multiple threads and
background processes on the processors.

Accuracy Test
For this test we ran the 4 GeV set of data through the
filter once on both the Phi and the host to check that
both were calculating reasonable answers. Figure 4
shows the input function, simulated data, and
reconstructed results from the Phi and the host.

Time per 500
events 4 GeV 7 Gev 10 GeV

Xeon Phi 0.66 ± 0.24 sec. 0.78 ± 0.25 sec. 0.75 ± 0.26 sec.

Host 342.71 ± 2.31 sec. 343.41 ± 1.32 sec. 342.77 ± 1.96 sec.

Figure 4. Path of an electron in a constant magnetic
field.

Table 3. Results of the time test between the Phi and the host.

We have compared a Kalman Filter algorithm on the
Xeon Phi coprocessor and its host CPU. The Xeon
Phi was significantly faster. We also tested the
accuracy of our filter and found that the host and Phi
results largely agree.

DVector.h - Code to store multiple pieces of data in
the ultra wide registers but also access each
individual element if needed.

KalmanFilter.h/.cpp - This code defines the actual
steps of the Kalman Filter. It takes in matrices and
data and then runs the filter.

Future Work
We are working on implementing the algorithm in C++
on the host. We also observe some differences
between the Kalman filter reconstruction and the
thrown data that we will investigate. Finally, we are
studying other ways to compare the Phi with other
processes.

Matrix2x2.h/.cpp
Matrix2x3.h/.cpp
Matrix3x2.h/.cpp
Matrix3x3.h/.cpp
Matrix5x1.h/.cpp
Matrix5x5.h/.cpp
}

Matrix classes to define
matrix addition, subtraction,
multiplication, and
transposition. The square
matrices also define how to
find the determinant and the
inverse.

˜

xnp = Axn�1 +Bun

Pnp = APn�1A
T +Q

ỹ = zn �Hxnp

S = HPnpH
T +R

K = PnpH
TS�1

xne = xnp +Kỹ

Pne = (I �KH)Pnp

http://clasweb.jlab.org/clas12/software/clas12_software_tdr_2012.05.pdf
http://newsroom.intel.com/docs/DOC-3126
http://greg.czerniak.info/guides/kalman1/

