Update on Neutron Magnetic Form Factor (G_M^n) Measurement at High Q^2 with CLAS12

Lamya Baashen, Jerry Gilfoyle, and Brian Raue

Outline:

- Some Background
- 2 Datasets
- 8 Ratio Method
- Selecting Quasi-elastic (QE) ${}^{2}H(e, e'p)$ and ${}^{2}H(e, e'n)$ reactions
- Orrections to the Ratio
- Preliminary Results
- Remaining work

- The elastic, electromagnetic form factors (G_M^n , G_E^n , G_M^p , and G_E^p) are fundamental quantities related to the distribution of charge and magnetization/currents in the neutron.
- Needed to extract the contribution of *u* and *d* quarks in the nucleon.
- Provide key constraints on generalized parton distribution (GPDs) and the structure of hadrons.
- Early test of lattice QCD because isovector form does not have disconnected diagrams.
- Broad, PAC-approved effort to measure all four form factors.

Exp. Detail	In-bending	Out-bending	In-bending
Run Period	Spring, 2019	Fall, 2019	Spring, 2020
Run Range	6156-6603	11093-11300	11323-11571
Beam	10.6 10.2	10.4	10.4
Number of Runs	117 106	97	171
Target	unpolarized LD_2	unpolarized LD_2	unpolarized LD_2
Current	35-50 nA	40 nA	35-50 nA
Torus Field	-1	+1/+1.008	-1
Solenoid Field	-1	-1	-1

- Liquid deuterium target.
- Each dataset analyzed separately.
- Originally used Pass 1 completed last November.
- Redoing analysis with Pass 2 data ratio extraction complete, neutron detection efficiency and some other corrections ongoing.

The Ratio Method to Measure G_M^n

The elastic
$$e - n$$
 or $e - p$ cross section in terms of the Sachs form factors is

$$R = \frac{\frac{d\sigma}{d\Omega} \left(^{2} \mathrm{H}(e, e'n)p\right)_{QE}}{\frac{d\sigma}{d\Omega} \left(^{2} \mathrm{H}(e, e'p)n\right)_{QE}} = a(Q^{2}) \frac{\sigma_{mott}^{n} \left(G_{E}^{n2} + \frac{\tau_{n}}{\epsilon_{n}}G_{M}^{n2}\right) \left(\frac{1}{1+\tau_{n}}\right)}{\sigma_{mott}^{p} \left(G_{E}^{p2} + \frac{\tau_{p}}{\epsilon_{p}}G_{M}^{p2}\right) \left(\frac{1}{1+\tau_{p}}\right)}$$
Nuclear correction
Nuclear correction
Well-known proton cross section.

where

$$\tau_N = \frac{Q^2}{4M_N^2} \quad \epsilon = \left[1 + 2(1 + \tau_N)\tan^2\frac{\theta}{2}\right]^{-1} \quad \sigma_{Mott} = \frac{\alpha^2 E'\cos^2\left(\frac{\theta}{2}\right)}{4E^3\sin^4\left(\frac{\theta}{2}\right)}$$

Solving for G_M^n

$$G_{M}^{n} = \sqrt{\left[\frac{R}{a(Q^{2})} \left(\frac{\sigma_{mott}^{p}}{\sigma_{mott}^{n}}\right) \left(\frac{1+\tau_{n}}{1+\tau_{p}}\right) \left(G_{E}^{p\,2} + \frac{\tau_{p}}{\epsilon_{p}}G_{M}^{p\,2}\right) - G_{E}^{n\,2}\right] \frac{\epsilon_{n}}{\tau_{n}}}$$

Requires knowledge of other elastic, electronmagnetic form factors

Data: Run Group B, Pass 2 Inbending energies: 10.2, 10.4, 10.6 GeV Outbending energies: 10.4 GeV

 θ_{pq} is the angle the 3-momentum transfer $\Delta \vec{p}$ and the detected nucleon momentum \vec{P}_N

Data: Run Group B, Pass2 Inbending energies: 10.2, 10.4, 10.6 GeV Outbending energies: 10.4 GeV Cuts Applied: 0.85 GeV < W < 1.05 GeV $1\sigma E_{beam}^{angles}$ cut

 $\Delta \phi$ cut $\Delta \phi = \phi_N - \phi_e$ where ϕ_N and ϕ_e are the azimuthal angles of the nucleon and electron.

Cuts Applied: Data: Run Group B, Pass2 0.85 GeV < W < 1.05 GeVInbending energies: 10.2, 10.4, 10.6 GeV $1\sigma E_{harm}^{angles}$ cut Outbending energies: 10.4 GeV $1\sigma \Delta \phi$ cut θ_{pq} cut on QE events Range of θ_{pq} distribution shrinks with increasing Q^2 . $Q^2 < f(\theta_{pa})$ $^{2}\mathrm{H}(e, e'p)$ $^{2}\mathrm{H}(e, e'n)$ Require FD electron and PCAL/ECAL neutral Require FD electron and PCAL/ECAL proton D(e.e'n): Inbending 10.4 GeV D(e,e`p): Inbending 10.2 GeV D(e.e'p): Inbending 10.4 GeV D(e.e'n): Inbending 10.2 GeV 14 12 12 Q² [GeV²] Q2 [GeV2] D² IGeV²I 10^{2}

Jerry Gilfoyle

Neutron Magnetic Form Factor Update

Comparing QE e - p and e - n Distributions

^{9 / 32}

Impact of Acceptance Matching

Data: Run Group B, Pass2 Inbending energies: 10.2, 10.4, 10.6 GeV Outbending energies: 10.4 GeV Cuts Applied: $1\sigma E_{beam}^{angles}$ cut $1\sigma \Delta\phi$ cut $Q^2 < f(\theta_{pq})$ Acceptance Matching

 2 H(e, e'p) 2 H(e, e'n) Require FD electron and PCAL/ECAL neutral Require FD electron and PCAL/ECAL proton D(e,e'n): Inbending 10.2 GeV D(e,e'n): Inbending 10.4 GeV D(e,e'p): Inbending 10.2 GeV D(e,e'p): Inbending 10.4 GeV 1600 1000 $u = 1.051 \pm 0.003$ $\mu = 1.045 \pm 0.003$ $\mu = 1.015 \pm 0.002$ $\mu = 1.015 \pm 0.002$ 800 1800 1400 $\sigma = 0.128 \pm 0.003$ $\sigma = 0.143 \pm 0.004$ $\sigma = 0.133 \pm 0.003$ $\sigma = 0.142 \pm 0.003$ 1600 700 800 1200 1400 7460.0 600 5863.0 13329.0 10241.0 1200 1000 Counts ounts 600 500 $\Delta \mu = +2.9\%$ $\Delta \mu = +2.1\%$ 1000 800 $\Delta u = \pm 0.3\%$ 400 $\Delta \sigma = -3.6\%$ 800 $\Delta u = \pm 0.6\%$ $\Delta \sigma = -6.5\%$ 400 600 $\Delta \sigma = -0.78\%$ 300 $\Delta \sigma = -3.4\%$ $\Delta N = -28.3\%$ 600 $\Delta N = -31.3\%$ 400 $\Delta N = -5.3\%$ $\Delta N = -6.5\%$ 200 400 200 200 100 200 0 0 0.5 1 1.5 2.5 0.5 1 1.5 2 2.5 0.5 1 15 2 25 0.5 1 1.5 2 2.5 6 W [GeV] W [GeV] W [GeV] W [GeV] D(e.e'n): Outbending 10.4 GeV D(e,e'p): Outbending 10.4 GeV D(e,e`n): Inbending 10.6 GeV D(e,e'p): Inbending 10.6 GeV 800 1400 450 $\mu = 1.038 \pm 0.005$ $\mu = 1.039 \pm 0.003$ $\mu = 1.051 \pm 0.003$ $\mu = 1.016 \pm 0.002$ 900 700 400 $\sigma = 0.160 \pm 0.007$ $\sigma = 0.129 \pm 0.004$ $\sigma = 0.154 \pm 0.005$ $\sigma = 0.141 \pm 0.003$ 1200 800 350 600 700 1000 3469.0 6292.0 300 0800.0 5995.0 600 500 ounts Counts $\Delta \mu = +2.3\%$ 250 $\Delta \mu = +0.6\%$ nts 800 Counts 500 $\Delta u = \pm 0.6\%$ 400 $\Delta u = +3.7\%$ $\Delta \sigma = -4.9\%$ 200 $\Delta \sigma = +2.6\%$ 400 600 $\Delta \sigma = -4.1\%$ $\Delta \sigma = +13.2\%$ 300 $\Delta N = -29.1\%$ $\Delta N = -24.0\%$ 150 300 $\Delta N = -6.3\%$ 400 $\Delta N = -58.4\%$ 200 100 200 200 100 50 100 0 0 0.5 2 2.5 1 0.5 1.5 2 2.5 0.5 1 1.5 2 2.5 0.5 1.5 2 2.5 'n W [GeV] W [GeV] W [GeV] W [GeV]

Changes due to acceptance matching.

Comparison with Simulation

Data: Run Group B, Pass2 Inbending energies: 10.2, 10.4, 10.6 GeV Outbending energies: 10.4 GeV Cuts Applied: $1\sigma E_{beam}^{angles}$ cut $1\sigma \Delta\phi$ cut $Q^2 < f(\theta_{pq})$ Acceptance Matching

Preliminary Ratio Result Uncorrected

$R_{Cor} = f_{NDE} f_{PDE} f_{nuc} f_{fermi} f_{rad} R$

- f_{NDE} : Neutron Detection Efficiency $\checkmark \checkmark$
- f_{PDE} : Proton Detection Efficiency \checkmark
- *f_{nuc}*: Nuclear correction in progress
- f_{fermi} : Fermi Correction $\checkmark \checkmark$
- f_{rad} : Radiative Correction $\checkmark \checkmark$
- \checkmark Done. \checkmark \checkmark Done and presented.

Neutron Detection Efficiency - Pass 1 vs Pass 2

- To measure Neutron Detection Efficiency (NDE) use the $ep \rightarrow e'\pi^+ n$ reaction from RGA as a source of tagged neutrons.
- Detect ep → e'π⁺, predict location of neutron if it strikes CLAS12 (expected neutrons) and then search for it. This is a detected neutron. Ratio of detected to expected is NDE.
- Results increase in number or expected and detected neutrons, ?? average residual.

Jerry Gilfoyle

Neutron Magnetic Form Factor Update

Proton Detection Efficiency

- Use the ${}^{2}H(e, e'p)n$ reaction in QE kinematics.
- Expected Proton
 - Select e' in FD and require proton hit FTOF.
 - Apply QE cuts.
 - $1\sigma E_{beam}^{angles}$ cut
 - $1\sigma \ \Delta \phi \ \text{cut}$ • $Q^2 < f(\theta_{pg})$
 - Use the e' information, assume elastic scattering and a stationary target, predict the proton 3-momentum. Swim it to PCAL/ECAL.
 If it strikes the front face it is an expected proton. Otherwise drop the event.

Detected Proton

- Electron in FD, proton in PCAL/ECAL.
- QE cuts: $E_{beam}^{angles}, \Delta \phi,$ $Q^2 < f(\theta_{pq})$
- Extract yields ratio of detected to expected is the PDE.

Proton Detection Efficiency Results

 Q^2 Dependence

Neutron Magnetic Form Factor Update

Fermi Corrections

- Fermi motion in the target causes scattered nucleons to migrate out of the CLAS12 acceptance.
- Effect was simulated using the QUEEG generator.
- Fraction of correction (f_{pro} , f_{neut}) is the ratio of the number of actual hits in the acceptance that satisfy the θ_{pq} cut to the number of expected hits calculated using the electron information and assuming no Fermi motion.

Preliminary Ratio Result corrected

Preliminary G_M^n Result - 1

Recall

$$G_{M}^{n} = \sqrt{\left[\frac{R}{a(Q^{2})}\left(\frac{\sigma_{mott}^{p}}{\sigma_{mott}^{n}}\right)\left(\frac{1+\tau_{n}}{1+\tau_{p}}\right)\left(G_{E}^{p\,2}+\frac{\tau_{p}}{\epsilon_{p}}G_{M}^{p\,2}\right)-G_{E}^{n\,2}\right]\frac{\epsilon_{n}}{\tau_{n}}}$$

Use Arrington et al. parameterization of form factors (Physics Letters B 777 (2018) 8-15)

Leads to

Jerry Gilfoyle

Preliminary G_M^n Result - 2

Recall

$$G_{M}^{n} = \sqrt{\left[\frac{R}{a(Q^{2})}\left(\frac{\sigma_{mott}^{p}}{\sigma_{mott}^{n}}\right)\left(\frac{1+\tau_{n}}{1+\tau_{p}}\right)\left(G_{E}^{p\,2}+\frac{\tau_{p}}{\epsilon_{p}}G_{M}^{p\,2}\right)-G_{E}^{n\,2}\right]\frac{\epsilon_{n}}{\tau_{n}}}$$

Use Arrington et al. parameterization of form factors (arXiv:1707.09063v2 [nucl-ex])

Leads to

Jerry Gilfoyle

- NDE for remaining data sets. Inbending, 10.6 GeV finished, others ongoing.
- Nuclear correction collaborating with two theorists .
- Systematic uncertainties for Pass 2 G_M^n results follow same procedure as Pass 1.
- Study differences between pass1 and pass 2 W distribution.
- Study luminosity effects.

Backup Slides

Acceptance Matching

To insure the e - n and e - p acceptances are equal (1) start with the electron information, (2) assume elastic scattering, (3) assume a stationary proton target, (4) calculate its momentum, and (5) swim the track through CLAS12.

If the track strikes the CLAS12 fiducial volume keep the event, otherwise drop it.

Repeat 1-5 for the neutron and if the track hits CLAS12 keep the event, otherwise drop it.

Jerry Gilfoyle

Electron Beam Energy Cut - Inbending, 10.2 GeV

Electron Beam Energy Cut - Inbending, 10.4 GeV

Electron Beam Energy Cut - Inbending, 10.6 GeV

Electron Beam Energy Cut - Outbending, 10.4 GeV

Corrections to the Ratio - NDE+PDE+Fermi

