Measuring the Fifth Structure Function in $D(\vec{e}, e'p)n$

G.P. Gilfoyle, et al., *University of Richmond*

for the CLAS Collaboration

1. Introduction and Background.
2. Event Selection and Corrections.
3. Extracting the Fifth Structure Function.
4. Preliminary Comparison with Theory
5. Conclusions.

Supported by the US DOE Contract Number DE-FG02-96ER40980
Scientific Motivation

- Establish a baseline for the hadronic model to meet. The deuteron is an essential testing ground because it is the simplest nucleus. On the theory side see also Deuteron Benchmarking Project.

- Differing mix of relativistic corrections (RC), meson-exchange currents (MEC), final-state interactions (FSI), and isobar configurations (IC) depending on kinematics.

- Learn more about FSI in quasielastic kinematics.
 - The fifth structure function is zero in PWIA and is dominated by FSI.
 - Short-Range Correlations (SRC).
 - Deuteron as neutron target, $N^* N$ interaction ...

ahttp://hule.fi u.edu/highnp/deubenchmarking.htm
Introduction

- Goal: Measure the imaginary part of the LT interference term (the fifth structure function) of \(D(e', e'p)n \) at \(Q^2 \approx 1 \text{ (GeV/c)}^2 \).

- The cross section is

\[
\frac{d^3\sigma}{d\omega d\Omega_e d\Omega_p} = \sigma^{\pm} = \sigma_L + \sigma_T + \sigma_{LT} \cos(\phi_{pq}) + \sigma_{TT} \cos(2\phi_{pq}) + h\sigma'_{LT} \sin(\phi_{pq})
\]

where \(\pm \) refers to different beam helicities.

- Asymmetry requires polarized beam.

\[
A'_{LT} = \frac{\sigma^{+}_{90} - \sigma^{-}_{90}}{\sigma^{+}_{90} + \sigma^{-}_{90}} = \frac{\sigma'_{LT}}{\sigma_L + \sigma_T - \sigma_{TT}}
\]

\[
\phi_{pq}
\]

This asymmetry is for single angles only!
Existing Measurements of Structure Functions of the Deuteron

- Several results from Bates in the 1990’s for different structure functions and kinematics (i.e. quasielastic, ‘dip’ region) using the Out-Of-Plane Spectrometer. See S. Gilad, *et al.*, NP A631, 276c, (1998) and references therein.

- Existing efforts at JLab to measure deuteron structure functions in quasielastic kinematics.
 - W. Boeglin, Hall A experiment E01-020 - measure R_{LT}.
 - This report.
Data Collection with CLAS

- CEBAF is the 7/8-mile-long, racetrack-shaped electron accelerator at JLab that produces continuous electron beams up to 6 GeV.

- CLAS is a 45-ton, six-sector detector covering most of 4π, with drift chambers to measure trajectories, scintillators for TOF, Cerenkov counters to identify electrons, and calorimeters to measure energy. A toroidal magnetic field determines momentum.
The Data Set

- Analyze data from the E5 run period in Hall B.
- Two beam energies, 4.23 GeV and 2.56 GeV, with normal torus polarity (electrons inbending).
- One beam energy 2.56 GeV with reversed torus polarity (electron outbending) to reach lower Q^2.
- Recorded about 2.3 billion triggers, $Q^2 = 0.2 - 5.0(GeV/c)^2$.
- Dual target cell with liquid hydrogen and deuterium.
- Beam polarization: 0.736 ± 0.017
Event Selection and Corrections

- Select $e - p$ coincidences in quasi-elastic kinematics using a cut on the energy transfer so $\nu = \frac{Q^2}{2M_N} \pm 0.03$ GeV.

- Use missing mass to select neutrons $0.84 \text{ GeV}^2 \leq \text{MM}^2 \leq 0.92 \text{ GeV}^2$.

- Put fiducial cuts on electrons and protons.a

- Corrections: acceptance,b momentum, beam charge asymmetry.

aSee Poster 3A.00030 by Kristen Greenholt in CEU session this afternoon.

bSee Poster 3A.00012 by Rusty Burrell and Kuri Gill in CEU session this afternoon.
Method for Extracting A'_{LT}

To take full advantage of the nearly 4π coverage of CLAS we extract the ϕ_{pq}-dependent moments of the data in each bin in p_m. Let

$$
\langle \sin \phi_{pq} \rangle_\pm = \frac{\int_{-\pi}^{\pi} \sigma^\pm \sin \phi_{pq} d\phi_{pq}}{\int_{-\pi}^{\pi} \sigma^\pm d\phi_{pq}} = \pm \frac{\sigma'_{LT}}{2\sigma_L + \sigma_T} \approx \pm \frac{A'_{LT}}{2} .
$$

If there is a sinusoidally-varying component to the acceptance, then

$$
\langle \sin \phi_{pq} \rangle_\pm = \pm \frac{A'_{LT}}{2} + \alpha_{acc}
$$

and we can get rid of that background by subtracting the results for the different helicities.

$$
\langle \sin \phi_{pq} \rangle_+ - \langle \sin \phi_{pq} \rangle_- = A'_{LT}
$$
Preliminary A'_{LT} Results for $D(\vec{e}, e'p)n$
Some Consistency Checks

Effect of Fiducial Cuts

$ep \rightarrow e'p\pi^0$ Comparison

$D(\vec{e}, e'p)n$ (Preliminary)

- $E = 2.6$ GeV
 - Reversed torus polarity
 - LT A'
 - Normal torus polarity

Run Number:
- 24520
- 24530
- 24540
- 24550
- 24560
- 24570
- 24580

$Q_\pm \geq -0.0127$, $LT < A'$. $Q_\pm \geq -0.0158$, $LT < A'$. K. Joo and C. Smith
Some Consistency Checks

Effect of Fiducial Cuts

$e p \rightarrow e' p \pi^0$ Comparison

$D(\vec{e}, e'p)n$ (Preliminary)

E = 2.6 GeV

Reversed torus polarity

Normal torus polarity

Run Number

24520 24530 24540 24550 24560 24570 24580

LT A'

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

0

0.05

0.1

p_m (GeV/c)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Red - electron and proton fiducials on

Blue - fiducials off

K. Joo and C. Smith

This work
Some Consistency Checks

Effect of Fiducial Cuts

$D(\vec{e}, e'p)n$ (Preliminary)

$e_p \rightarrow e'p\pi^0$ Comparison

$<A'_{LT}> = -0.0158 \pm 0.0009, Q^2 = 0.4 - 0.7 \text{ GeV}^2$

$K. Joo and C. Smith$
Preliminary Comparison With Theory

- Hartmuth Arenhövel (black) - Starts with the non-relativistic Schrödinger Equation and adds RC, MEC, IC, and FSI. Averaged over the CLAS acceptance.

![Diagram showing preliminary results for different Q^2 values.](image-url)
Preliminary Comparison With Theory

- Hartmuth Arenhövel (black) - Starts with the non-relativistic Schrödinger Equation and adds RC, MEC, IC, and FSI. Averaged over the CLAS acceptance.

- Jean-Marc Laget (green) - Uses a diagrammatic approach. Calculation is for $Q^2 = 1.1$ GeV2 (lower panel) and $Q^2 = 0.7$ GeV2 (upper panel).

![Graph showing $D(\vec{e}, e'p)n$ Preliminary](image)
Preliminary Comparison With Theory

- Hartmuth Arenhövel (black) - Starts with the non-relativistic Schrödinger Equation and adds RC, MEC, IC, and FSI. Averaged over the CLAS acceptance.

- Jean-Marc Laget (green) - Uses a diagrammatic approach. Calculation is for $Q^2 = 1.1$ GeV2 (lower panel) and $Q^2 = 0.7$ GeV2 (upper panel).
Hartmuth Arenhövel (black) - Starts with the non-relativistic Schrödinger Equation and adds RC, MEC, IC, and FSI. Averaged over the CLAS acceptance.

Jean-Marc Laget (green) - Uses a diagrammatic approach. Calculation is for $Q^2 = 1.1$ GeV2 (lower panel) and $Q^2 = 0.7$ GeV2 (upper panel).

Sabine Jeschonnek (red) - Calculation is for $Q^2 = 1.1$ GeV2.

See Sabine’s talk!
Preliminary Comparison With Theory

- Hartmuth Arenhövel (black) - Starts with the non-relativistic Schrödinger Equation and adds RC, MEC, IC, and FSI. Averaged over the CLAS acceptance.

- Jean-Marc Laget (green) - Uses a diagrammatic approach. Calculation is for $Q^2 = 1.1$ GeV2 (lower panel) and $Q^2 = 0.7$ GeV2 (upper panel).

- Sabine Jeschonnek (red) - Calculation is for $Q^2 = 1.1$ GeV2.

See Sabine’s talk!
Conclusions

- We observe a 4% dip in A'_{LT} at $p_m \approx 220$ MeV/c in the low Q^2 data set and a 6% dip in A'_{LT} at the same p_m in the middle Q^2 range. The high-Q^2 data has poor statistics for A'_{LT}.

- The calculation by Jeschonnek reproduces the data in the middle Q^2 range!

- At low p_m, the calculations by Arenhövel reproduce the data, but diverge (they’re too negative) above $p_m = 250$ MeV/c.

- At low p_m, the Laget calculations reproduce the low-Q^2 data, but are too small in magnitude in the middle Q^2 range.

- The $\langle \sin \phi_{pq} \rangle$ technique works well including the subtraction of the two different beam helicities to eliminate sinusoidal components of the acceptance.
Asymmetry Background Results

\[d(\bar{e}, e'p)n (\text{Preliminary}) \]

- **E=2.6 GeV, \(Q^2=0.2-0.5 \text{ (GeV/c)}^2 \)**
 - Reversed torus polarity
 - Red - electron and proton fiducials on
 - Blue - fiducials off

- **E=2.6 GeV, \(Q^2=0.7-1.1 \text{ (GeV/c)}^2 \)**
 - Normal torus polarity

- **E=4.2 GeV, \(Q^2=1.4-2.3 \text{ (GeV/c)}^2 \)**
 - Normal torus polarity

\[d(\bar{e}, e'p)n \]

- **E=2.6 GeV, Reversed torus polarity**
 - red - efids, pfids on
 - blue - fiducials off

- **2.6 GeV, normal polarity**
 - red - efids, pfids on
 - blue - fiducials off

- **E=4.2 GeV, Normal torus polarity**

\[p_m \text{ (GeV/c)} \]
W dependence of A'_{LT} at the Quasi-elastic Peak