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Abstract

We propose the measurement of the structure functions of the deuteron f;,, frr, and frr using
the reaction d(€,e'p)n with CLAS. The ‘standard model’ of nuclear physics is not well-developed in the
GeV region, and the relative importance of relativistic corrections, final-state interactions, meson-exchange
currents, and isobar configurations is unknown. These data will provide a baseline for conventional nuclear
physics, so deviations from the model at higher Q? can be attributed to quark-gluon effects with greater
confidence. The three structure functions will be extracted by measuring different moments of the out-of-
plane production in CLAS. Each of these moments is related to a different asymmetry which is, in turn,
proportional to a particular structure function. The structure function f}, is nonzero only in the out-
of-plane production. This analysis will be performed on the existing E5 data set that covers the range
Q?=0.2-5.0 (GeV/ c)2. We will study the reaction in quasi-elastic kinematics first and later investigate
higher energy transfers. Our preliminary results show we can observe small asymmetries with good precision
in quasi-elastic kinematics.
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1 Introduction

We propose to analyze existing CLAS data from the E5 running period to extract the structure functions
frr, frr, and frr of the deuteron using the proton azimuthal distribution from the d(€,e'p)n reaction.
Electron scattering from the deuteron is an essential testing ground for any model of the nucleon-nucleon
force. It is the simplest nucleus in nature and the electromagnetic interaction is well-known and weak (so
it can be treated in first-order perturbation theory). The structure functions describing the electromagnetic
response of nuclei are sensitive to a variety of phenomena depending on the choice of kinematics, i.e. the
energy transfer v and the 4-momentum transfer Q2. Using a polarized beam and the large acceptance of the
CLAS detector we will break new ground in the investigation of the structure function f; ;. which is non-zero
only for the out-of-plane production. This analysis will focus on the quasi-elastic regime first to study the
Q? evolution of the structure functions from the better-known, low-Q? region where data now exist up to
the GeV region where there are few measurements and our theoretical understanding is incomplete. The
quasi-elastic structure functions are also less sensitive to some of the non-nucleonic degrees-of-freedom so
they serve as a benchmark for other kinematic regions. We will later push this study beyond the quasi-elastic
region to higher energy transfers.

Understanding the deuteron tests the ‘standard’ or hadronic model of nuclear physics. The goal is to
construct a ‘consistent and exact description’ of few-body nuclei (2H, *H, *He, *He) [1]. For example, it is
an open question whether a single interaction or current operator can account for the attributes of all these
nuclei. Calculations using hadronic effects like meson-exchange currents (MEC), isobar configurations (IC),
and final-state interactions (FSI) are under development, but have yet to be fully challenged by data in the
GeV region [1, 2]. The influence of relativity is also being studied [1, 2, 3, 4, 5]. Previous results at lower @2
reveal the onset of many of these effects so a complete, modern calculation is needed to compare with data
across the full range of Q? to test and understand the hadronic model in this region. It is worth mentioning
these issues were raised as ‘Key Questions’ at the Jefferson Laboratory PAC14 Few-Body Workshop [1].

Of equal importance is finding where and how the ‘standard model’ of nuclear physics breaks down;
requiring quark-gluon or quark and flux-tube degrees-of-freedom. Studying this transition is an essential
goal of nuclear physics [1, 7]. The basic idea is that if we cannot describe observations with all of the pieces
mentioned above, then we would see genuine quark effects in the nucleus. Clearly, we cannot make that leap
without getting firm control of the calculations using the hadronic degrees-of-freedom. It is expected that
transition will occur in the GeV region [2, 7].

Out-of-plane measurements probe components of the electromagnetic response of the deuteron that
are difficult or impossible to investigate otherwise. The deuteron’s electromagnetic structure is studied via
electron scattering which is characterized by a set of response functions that connect model calculations and
measurements. Typically, (i.e., with unpolarized targets and detectors that all lie in the scattering plane),
there are four response functions determined by different combinations of the longitudinal and transverse
components of the electromagnetic current. However, with polarized electron beams and measurements of
the ejected proton out of the scattering plane of the electron, a new response function can be measured. This
fifth response function f;, is the imaginary part of the interference between the longitudinal and transverse
parts of the electromagnetic current. The same experimental capabilities can also separate the longitudinal-
transverse response function frr and the transverse-transverse response function frr [8]. The influence of
different phenomena (e.g., relativity, FSI, etc.) varies with the each of the structure functions and depends
on the choice of kinematics. For example, f;, is more sensitive to relativistic corrections than frr, but
this sensitivity declines in the dip region. Measuring the out-of-plane behavior is a tool for unraveling the
deuteron’s electromagnetic response. Progress in making these sorts of measurements has required rather
substantial efforts and, as a consequence, produced limited data sets. The CLAS detector is inherently
an out-of-plane detector and is ideally suited for studying the out-of-plane behavior of the electromagnetic
structure functions of the deuteron.

We propose here to analyze already-collected data of the d(€, e'p)n reaction from the CLAS E5 running
period. About 2.3 billion triggers were collected during this run period in the range Q2 = 0.2—5.0 (GeV/ 0)2
using a dual-cell target containing deuterium (as the primary target) and hydrogen (for in situ calibrations).
Three sets of run conditions were used: 4.23 GeV with a normal torus field polarity, 2.56 GeV with a normal
torus field polarity, and 2.56 GeV with a reversed torus field polarity to reach lower Q2. Cooking of the data
was completed in late 2002. We will extract three structure functions frr, frr, and f;r by studying the
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variation of the cross section on ¢,,, the angle between the scattering plane of the incoming and scattered
electron and the reaction plane of the ejected proton and neutron. The kinematic range of the measurements
will enable us to study the Q2 evolution from the upper limit of most previous studies of these structure
functions (Q2 ~ 0.2 (GeV/c)?) to a region where some models are expected to fail (at Q2 ~ 1.0 (GeV/c)?).
These measurements will be compared with several different theoretical calculations.

Below, we develop the formalism used to analyze the electromagnetic response functions and discuss
the current status of experiment and theory. We then show how CLAS will be used to make out-of-plane
measurements and demonstrate the feasibility of those measurements. We then summarize our results.

2 Formalism for d(e,e'p) X

For the case of a polarized electron beam incident on an unpolarized target, the three-fold differential cross
section can be written in the one-photon exchange approximation as

dBo
wandq, = Clerfoterfr+pirfircos (@)
+ prr frr cos (2¢pq) + hpr frrsin (dpg) } (1)
where .
(0%
T 6m°Q'E 2
67T2Q4E ’ ( )

o is the fine-structure constant, E and E' are the incoming and outgoing electron energies respectively, Q? is
the square of the 4-momentum transfer, h is the electron beam helicity (+1), the pax' are the virtual-photon
density matrix elements which depend only on the electron kinematics (see Reference [9]), and the fyx are
the response functions in the center of mass. The azimuthal angle ¢,, is the angle between the scattering
plane defined by the incoming and outgoing electrons and the reaction plane defined by the ejected proton
and neutron (see figure below). The response functions depend on the energy transfer v, the 3-momentum

Figure 1: Kinematic quantities for d(€, e’'p)n.

transfer ¢, and 6,7 where 67" is the angle between ¢ and the ejected proton momentum in the center-of-mass
frame. The missing momentum is often used to describe this reaction and is

ﬁm = q’_ﬁp (3)
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where P, is the ejected proton momentum. In the plane-wave impulse approximation this missing momentum
is the opposite of the initial momentum of the proton.

When using conventional, small-acceptance, spectrometers, one approaches the problem of extracting
the response functions by constructing asymmetries to isolate different components. Consider the following
asymmetries measured at azimuthal angle ¢,, around the ¢ vector.

App = O0° — 0180° _ prrfrr (4)
000 + 01800 prfr + prfr + prrfrr
+1 -1
Lo Us(am) _Uzgm) _ P fLr (5)
BT 60D 4 6D prfr + prfr — prrfrr

g0 + 0180 — 2090c _ prrfrT

T = = (6)
oge + 01800 + 20900  prfr +prifT
The subscripts refer to the value of ¢,, and the superscripts refer to the beam helicity. Note that in each
case one divides by the sum of the measurements so that systematic uncertainties will be reduced. Each
asymmetry is proportional to one of the response functions in Equation 1 so one can investigate the behavior
of these terms in the cross section. One can combine Equations 46 and rearrange to get expressions for
fLT7 fTT7 and fiT

= 7
frr Sepir (7)
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These results (Equations 7-9) show how these response functions are determined from out-of-plane measure-
ments with conventional spectrometers. Below we will discuss how to take advantage of the large acceptance
of CLAS in making similar measurements.

3 Current Status

In this section we describe the world data for each of the three structure functions f;r, frr, and frr. We
then show the relationship of this proposal to other Jefferson Lab experiments.

The measurements for f;, are sparse, but have given us a glimpse of the the physics to come. They
require out-of-plane spectrometers and polarized beams. For quasi-elastic kinematics they have only been
made at Q2 = 0.22 (GeV/c)” and Q2 = 0.13 (GeV/c)” at Bates [8, 10, 11]. The results are shown in Figure 2.
That work demonstrated the utility of out-of-plane measurements and the calculations presented show that
relativity already plays a significant role even at this low value of @? [5]. In the right-hand panel of Figure 2,
the solid curve includes relativistic corrections and is noticeably different from the other curves. The effect of
final-state interactions is dramatic and can be seen in the left-hand panel of Figure 2. The double-dot-dashed
line at f7, = 0 is from a Plane-Wave Born Approximation calculation which does not include FSI. In general,
f1.7 is non-zero only in the presence of final-state interactions. The other calculations do include FSI and they
are all significantly different from zero. Unfortunately, the large uncertainties of the data prevent one from
distinguishing among different effects like MEC, FSI, and IC or between different potentials. The calculations
in Reference [10] (left-hand panel of Figure 2) by Arenhdvel at Q2 = 0.13 (GeV/c)” employed four different
potentials and include effects from MEC, A-isobar contributions (IC), and relativistic corrections (RC). The
calculations were insensitive to MEC and IC, but relativistic corrections make a noticeable contribution;
about the same effect as the difference between different potentials. The calculations at Q2 = 0.22 (GeV /c)”
(right-hand panel of Figure 2) display a similar behavior. These studies have revealed the importance of
relativity and FSI in this region of Q2. The success of the Bates work at low )2 is an invitation to extend
the measurements with CLAS. CLAS is an out-of-plane detector by its very nature so the analysis of the E5
data will dramatically improve the state-of-the-art of these measurements.
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Figure 2: Measurements of frr and its associated cross section and asymmetry from Reference [10] at
Q? = 0.13 (GeV/c)® (left-hand panel) and A’ from Reference [8] at Q% = 0.22 (GeV/c)® (right-hand
panel). The observations in the left-hand panel are shown as a function of 02‘}1” in degrees and the ones in
the right-hand panel are shown as a function of ¢, in degrees. The open circle is for anticipated data.

The situation is little different for observations of the transverse-transverse interference term frr in
quasi-elastic kinematics. These experiments require out-of-plane measurements and unpolarized beam, but
this portion of the cross section must be separated from the larger contributions of fr, fr, and frr. Three
measurements have been made at Tohoku (Q2 = 0.013 (GeV/c)?), NIKHEF (Q2? = 0.21 (GeV/c)?), and
Bates (Q2 = 0.22 (GeV/c)?) [8, 12, 13]. The lowest Q2 measurements agree with a non-relativistic calculation
which uses the Paris potential and includes the effect of MEC and IC, but the data have large uncertainties.
The NIKHEF experiment could only put an upper limit on the structure function because it was combined
with the larger longitudinal structure function fr. The Bates results have smaller uncertainties than in the
f1.r case (see Figure 3 and compare with Figure 2), but one still cannot distinguish among MEC, FSI, RC,
and IC effects. There is a clear need here to reduce the uncertainties and extend the measurements out to
larger ;7 where the calculations diverge. Again, because of the considerable out-of-plane capabilities of
CLAS we expect to significantly improve the state-of-the-art of these measurements.

The longitudinal-transverse interference structure function frr has been measured several times and
with greater precision than the other two structure functions above. At the lowest Q2 = 0.013 (GeV/c)?
the data are reproduced by a non-relativistic calculation while at the highest (Q% = 1.2 (GeV/c)?) the
relativistic calculations of the asymmetry are preferred [12, 14]. Between these two extremes, the situation
is less clear. At Q2 = 0.15 (GeV/c)? data from NIKHEF were compared with calculations by Hummel and
Tjon which include RC and FSI and calculations by Arenhdvel that are non-relativistic but include MEC, IC,
and FSI [13, 15, 16, 17]. The results for the combined fr, and frr structure function could not discriminate
between the two calculations, but the results for frr favored the relativistic calculation of Hummel and
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Figure 3: Measurements of frr as a function of 6,7 for quasi-elastic kinematics from Reference [8]. The
filled circle is the data, the open circle shows expected future results

Tjon. Measurements of frr at similar Q2 at Bates and Saclay agree better with non-relativistic calculations
by Arenhovel than with the same relativistically corrected ones [18, 19]. The Arenhdvel calculations include
MEC in the Saclay work and MEC, FSI, and IC in the Bates experiment. In the Saclay work, there is a
‘disconcerting’ spread among the relativistic calculations suggesting the need to improve these calculations
by performing experiments at higher Q2 [19]. A nearby measurement at Q2 = 0.145 (GeV/ 0)2 clearly favors
the inclusion of relativity [20]. It is worth noting that a recent measurement of the cross section in the
middle of this region (Q* = 0.67 (GeV/c)?) was reproduced with a calculation by Arenhével that includes
relativistic effects, FSI, MEC, and IC [21, 22]. The E5 data spans the @ range of the observations discussed
here so this analysis project holds the promise of connecting the picture of the deuteron at low Q2 to high
Q2. In addition, the E5 data have considerable overlaps and consistency checks among the three sets of run
conditions.

As one moves away from the quasi-elastic region the mixture of physics effects changes. The data show
an increased sensitivity to MEC and IC effects for frr in the dip and A regions and are not influenced by RC
or FSI [8, 23]. The other structure functions frr and f;, are the opposite; sensitive to RC and FSI effects
and independent of MEC and IC. Unfortunately, the data are sparse and often have large uncertainties.

In summary, several points can be made about our current understanding of the deuteron structure
functions. First, different structure functions are influenced by different physics. The frr and f}; structure
functions are sensitive to relativistic effects and f} ;- is especially sensitive to final state interactions. The
other structure function in our study, frr, is more sensitive to non-nucleonic degrees of freedom (MEC and
IC). Second, the different kinematic regimes probe different physics. On the quasi-elastic ridge, MEC and
IC contribute little, but their effect increases as one moves into the dip and A regions while the impact of
RC and FSI declines. Finally, there is little data in the range Q® = 0.2 — 1.0 (GeV/c)? where it is needed to
unravel all of the competing effects mentioned above.

This analysis project will complement other experiments at Jefferson Lab. Experiment E02-101 (K.
Wang spokesperson and contact) is designed to extract all the structure functions fr, fr, frr, frr, and
fio at threshold for Q2 = 0.47 (GeV/c)” using the HRS and BigBite spectrometers in Hall A. Threshold
kinematics have been chosen to minimize the contribution of nucleonic effects to study the effects of RC,
MEC, and IC. Our study of quasi-elastic effects reduces the influence of non-nucleonic degrees of freedom
(MEC and IC) so we are exploring different physics. In addition, E02-101 will take data at a single Q2 while
the CLAS data cover a larger kinematic region. Figure 4 displays a comparison of the kinematic coverage of
E01-020 and this analysis. The red, green, and blue areas show the kinematic coverage for the three sets of
run conditions for the E5 run period. The square is the proposed kinematics for E02-101. The quasi-elastic
ridge can be clearly seen along the low-v edge of the E5 kinematics. There is also a large amount of data at
higher v or W that will be analyzed.

Experiment E01-020 has two parts made up of two previous proposals: PR-01-007 (formerly E94-004,
W.Boeglin spokesperson and contact) and PR-01-008 (P.Ulmer spokesperson and contact). Data collection
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Figure 4: Energy loss of the electron versus Q2. The red, green, and blues areas represent the kinematic
coverage for the three running conditions during the E5 run period. The triangles are the kinematics for the
measurement of o for E01-020. The square is the anticipated kinematics for E02-101.

for this experiment was completed in fall, 2002 in Hall A. In the first part (the former E94-004) parallel
and anti-parallel kinematics will be used to study the short-range structure of the deuteron. Perpendicular
kinematics at the quasi-elastic peak will be used to extract frr at Q% = 0.8, 2.1, and 3.5 (GeV/c)®. The
measurement of frr in this experiment overlaps with our proposed analysis project. However, we will be
able to extract frr and f;; using our out-of-plane measurements. The CLAS detector has lower resolution,
but greater kinematic coverage so the two experiments will provide a cross-check for each other. See Figure
4 for a comparison of the kinematics of E01-020 with this analysis.

In the second part of E01-020, the angular distribution of the quasi-elastic peak will be measured at
the same values of % and with recoil momenta between 0.2 GeV/c and 0.5 GeV/c. The goal is to study FSI
and non-nucleonic degrees of freedom (MEC and IC). The measurements will be entirely in the scattering
plane. The kinematic region overlaps with the CLAS data of this proposed analysis, but no effort will be
made to extract the structure functions.

To summarize, the analysis of the E5 data to extract the structure functions in the range Q2 =
0.2 — 5.0 (GeV/c)? from the out-of-plane data will explore new territory. The world’s data for f;, and
frr are sparse and few exist in the Q? range covered here. There are more measurements of frr, but
the interpretation of the results is inconsistent which may mean that our understanding of the deuteron is
incomplete. The new measurements proposed here are in a 2 region where the onset of relativistic effects
is increasingly important and contradictory results exist from past work. A systematic study of the out-of-
plane structure functions across a wide range in Q% will shed light on this problem. The precision of the
data may also permit the study of other effects like MEC and IC. The analysis will also complement other
experiments at Jefferson Lab to study the deuteron.

4 Measuring Response Functions with CLAS

4.1 Introduction

In this section we discuss our preliminary results and show that the proposed analysis project is feasible. We
have measured A} on a subset of the E5 data and demonstrated that we can extract this small deuteron
structure function with adequate precision to evaluate the success of different theoretical models. The
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analysis here is restricted to the quasi-elastic peak so we can compare our results to previous measurements
at Bates at lower Q2. The theoretical description of the deuteron structure functions is simpler for quasi-
elastic kinematics because contributions from meson-exchange currents (MEC) and isobar configurations
(IC) are expected to be smaller [10]. In this section we will discuss data selection and corrections, extracting
A% with different methods, and present some preliminary results.

4.2 Data Selection and Corrections

We are investigating the d(€, e'p)n reaction by detecting the scattered electron and the ejected proton with
CLAS and using missing mass to identify the neutron. The data were collected during the E5 run period
(Spring, 2000) and consist of runs 24020-24588. About 2.3 billion triggers were collected under three sets
of run conditions: (1) Epeam = 4.23 GeV, Liorys = 3375 A, normal polarity (inbending electrons), (2)
Epeam = 2.56 GeV, Iprys = 2250 A, normal polarity, and (3) Epeqm = 2.56 GeV, Liorys = 2250 A, reversed
polarity (outbending electrons) to reach lower Q2. Electrons were identified as negative tracks from the
EVNT bank (produced by SEB) in coincidence with hits in the Cerenkov counters, the TOF scintillators,
and the electromagnetic calorimeter. A cut on the number of photo-electrons of greater than 2.5 from
the Cerenkov counters was imposed to reduce the number of negative pions misidentified as electrons [24].
Protons were taken from the EVNT bank. Figure 4 above shows the two-dimensional distribution of the
energy loss of the electron versus Q2. The large kinematic coverage can be seen as well as the extensive
overlaps between the different data sets. These overlaps will provide cross checks on the analysis. The
acceptance of CLAS for ep coincidences is, on average, 20-30%. Figure 5 shows the missing mass versus 057
for the 2.6 GeV, reversed field (left panel) and 4.2 GeV, normal field (right panel) running conditions. The

w
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Figure 5: Missing mass versus 6,7 for ed — e'pX for 2.6 GeV, reversed field (left panel) and 4.2 GeV (right
panel).

ridge at the missing mass of the neutron (0.94 GeV) is clearly visible, well separated, and extends to large
angle especially for the 2.6 GeV, reversed field data. We will be able to identify the missing neutron across
the full kinematic range.

Momentum corrections have not yet been applied to the events analyzed here because we have found
those corrections to have little effect on the results [25, 26]. In Reference [25] the neutron mass determined
from the missing mass technique for the reaction p(e, e'm)X was 0.93490 + 0.00003 GeV /c” before applying
corrections and only increased to 0.93570+0.00003 GeV/ ¢? after corrections. We will apply these corrections
later. The method used is described in CLAS-NOTE 2001-18.
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Vertex cuts were imposed on the electron and proton tracks so only events coming from the central part
of the deuterium or proton target would be analyzed. Figure 6 shows the distribution of the z component
of the electron vertex for a single data file from run 24029. The red lines are at the limits of the vertex cut
for the deuteron target and the proton target.

vz {id == 11 && vz >-15 && vz < 10}

A 1
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2500 | deuterium-target
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1000 IJJQ\F\HL
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NI
510 3’ o 5
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Figure 6: Distribution of the z component of the electron vertex. Red lines represent cuts imposed on all
good events.

To account for any difference in the amount of beam striking the target for the two helicities we
determined the beam charge asymmetry for each set of running conditions and then corrected our data for
it. The beam charge asymmetry (BCA) is defined as the ratio of the normalized beam intensities for the
two different beam helicities. We calculated the beam charge asymmetry using the inclusive (e, e’) electron
yields for positive (V,) and negative (N_) helicities with the following expression.

_ M

Ao =7

(10)
The inclusive cross section has no helicity dependence and is more reliable than the Faraday cup readings [27].
Some of our results are shown below in Figure 7 for the 2.56-GeV, normal-torus-polarity running conditions.
The average for these run conditions is Ag = 0.9952 & 0.0007. The half-wave plate which determines the
beam helicity was fixed during the E5 run period. This means we should see not shifts in the BCA, which
is consistent with Figure 7.

The measurements of the d(&,e'p)n reaction in this proposed analysis are subject to radiative correc-
tions. We are using a modified version of the program EXCLURAD written by Afanasev, et al. to perform
those calculations [28]. This code applies a more sophisticated method than the usual approach of Mo and
Tsai or Schwinger and takes into account the exclusive nature of our measurements [29, 30]. We have not yet
applied those corrections to our data, but we have revised EXCLURAD so that it can be applied to these
data. The code was originally written for the p(e,e'nmT)X reaction and we have modified it for the d(€,e'p)n
reaction. Some of this work is described in the Appendix.

4.3 Extracting Asymmetries

In this section we discuss several methods for extracting the asymmetries A}, Arr, and Agpr as defined
in Equations 4-6. The first uses small angle bins to directly apply Equations 4-6 to the data and calculate
all three asymmetries. The second method is based on calculating different moments of the data and takes
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Figure 7: Beam charge asymmetry (BCA) for the 2.56-GeV, normal-torus-field-polarity running conditions.

advantage of the full angular coverage of CLAS to extract the three asymmetries. The third technique fits
the out-of-plane angular distribution of the asymmetry and should yield the same results as the previous
method for A’ ., but does not apply to Apr and Ary.

The results from applying Equations 4-6 using small (+4°) angle bins around ¢,, = 90° and ¢,, = 180°
are shown in the Figure 8 below. The results for Arr show a large, negative asymmetry for 6,7 < 30° which
decreases at larger angles where the uncertainties become significant. For A, there is a small (~ 20)
excursion from zero in the range 6,7 = 20° — 30° and the results are consistent with zero elsewhere. Note
that the uncertainties are large on A’ which is expected to be small. The results for Ayp show a small,
but significant asymmetry (about 4 — 50) in the range 5 = 0° — 10° which declines at larger angles.

We now develop the method to extract the asymmetries using the moments of the full ¢,, distribution
measured with CLAS. The triply differential cross section for d(€, e'p)n can be written as

dBo

- =T = clprfr + prfr + prrfrr cos(épg) + prrfrr cos(2¢,4) + hprfrr sin(¢pg)] (11)
dvdQ.dS,

=07, + 0T + OLT COS Ppg + OTT COS 20y + ho'lp Sin ¢p, (12)

where the superscript on o refers to the helicity, ¢pq is the angle between the plane defined by the incoming
and outgoing electron momenta and plane defined by the ejected proton and neutron, the p’s depend only
on the kinematics, f are the structure functions, ¢ is proportional to the Mott cross section (see Equation
2), the o’s are the partial cross sections for each component, and b is the helicity of the electron beam (+1).
To extract A, consider the asymmetry

ot —o~
ot +o~

A(¢pq) = (13)

where the superscripts refer to the helicity of the electron beam. Substituting Equation 12 into Equation 13

one obtains N ' sing
o —o o sin
A — — LT Pq 14
(¢pq) ot +o— 0L+UT+0'LTCOS¢pq +orT 0052¢pq ( )

so for ¢p, = 90° the asymmetry becomes

+ — ! !

o — O, g ag
A —90°) = A", — 790 " %0 _ LT ~ _ LT 15
(d)pq ) LT 036%-0'&) or +or —orr or +or ( )
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The last approximation above will hold if o7 is small compared to o, or or as has been observed [8, 12, 13].
Now consider taking the sin ¢,, moment of the distribution for the two different choices of helicity.

2w .
i = IS
2w
f 0 otdppg

2m . .
_Jo (oL + o1 + o7 €08 ¢pg + a1 COS 2 + ho 7 SIn Bpy) SiN Py depyg

2m .
Jo (oL + 01 4+ 0LT €08 Ppg + 0T COS 2¢pq + hol 1 SIN Py )dibpq

(16)

(17)

By the orthogonality of sines and cosines all of the terms disappear except for the o term in the numerator
and the ¢p,-independent terms in the denominator. The result is

torr %iAILT
2(0'L+UT) 2

(Sin ¢pg)+ = (18)
where we have used Equation 6, h = +1, and again neglected the contribution of opp. To determine
(sin ¢pq)+ for a given bin in Q2 and 57" or py, from the data one uses

1 X
(sin dpq)x = N_i izzlsin o (19)

where the sum is over the ¢,, distribution of the data, ¢’s refer to individual events, and Ny refers to the
number of events of each helicity.

In Equation 18, 07,1 depends on 677", Q?, pm or g > but as a function of one of those variables, say

t,q > one expects to see behavior like that shown in Figure 9 below. The curve for one helicity is the opposite
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Figure 8: Asymmetries as a function of 6,7 extracted using small angle bins.
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Figure 9: Schematic drawing showing the expected results for (sin ¢,,)*.

of the curve for the other helicity. However, acceptance effects can distort the expected distributions of
Equation 18 if the CLAS acceptance has a component that varies as sin ¢p,. In such a case this component
will survive the integration in Equation 17 when it is multiplying the constant portion of the cross section
(o1 and o7 terms in Equation 17). Such an acceptance effect is additive and shifts (sin ¢p4)+ up or down,
S0
H meas UILT (20)

sin =+—= _+a

( ¢pq);t 2(0L +UT)
where « is the additive acceptance correction. See the Appendix for more details. If one has measured this
sin ¢,, moment for each helicity then the results can be combined so

. . U}JT
(sin Bpg) 1°*° — (sin gpy) " = s Ay (21)

and
(sin ¢pg) 0% + (sin gpg)"e**
2

The asymmetry A}, is extracted with reduced sensitivity to acceptance corrections and the acceptance
corrections have been measured from the data. This technique has been used by others for the p(€,e'nt)n
and p(€, e'p)7° reactions [32, 33].

We have applied this analysis to our data and some preliminary results are shown in Figure 10.
The two top panels show (sin ¢,q)7*** and (sin ¢p,)™°**. The two distributions are not opposites of each
other, implying there is a significant modification due to acceptance effects. The lower left panel shows the
acceptance correction as a function of 67" extracted by applying Equation 22. The acceptance correction
a varies smoothly with 57 and is in the range 4-12%. The lower right panel shows the asymmetry A7
determined by the difference between the two, helicity-dependent, sin ¢, distributions (see Equation 21). It
reveals a significant, negative asymmetry at 6,7 = 20 — 30° that is 2-3 standard deviations away from zero.
The asymmetry is consistent with zero in other 6;7* bins within the measured uncertainty.

The two other asymmetries A7 and App can be extracted in a similar way. One can show that for
Art

=« . (22)

(cos gpg) = = fozﬂ Z:E 05 Gp 46 (23)
fo otdgy,
_ fozw(gL + o1 + 0LT COS Ppg + TTT COS 2Ppg + ho' 1 Sin Ppg) COS Ppgddpg (24)
JZT (o1, + o1 + OLT €08 Ppg + TTT COS 2pq + K0l SN G ) dbipg
S (25)

2(0’L =+ UT)

Combining the definition of A7 (recall Equation 4) with Equation 12 for the cross section and neglecting
the small transverse-transverse (T'T) piece one obtains

ALT

(cos ppy) m ——

. (26)
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Figure 10: Preliminary results for (sin ¢,,) moments analysis for 2.56 GeV, normal field, not acceptance
corrected, 0.8 < Q2 < 1.0 (GeV/c)?, 0.95 < zp < 1.05. The notation is h = 0 for positive helicity and h = 1
for negative helicity.

Notice there is no dependence on helicity here. For Apr one follows a similar procedure to show

2m
Jo o cos 2¢,,de __orr Arr (27)

2 =
<COS ¢pq> f027r O'id¢pq 2(0'L + U'T) 2

The figure below shows the asymmetries Arr and Arr extracted using the moments analysis and
compared with the results using finite angle bins. The upper-left panel shows Arr from the moments
analysis and it reveals a large, negative asymmetry at 67" = 0° — 30°. This result is consistent with the
finite-angle-bin measurement (lower-left panel), but has much better precision especially at large 657*. The
upper-right panel shows the results of the moment analysis for Apr. There is a statistically significant
positive asymmetry across the full angular range (657 = 0° — 60°) for (cos 2¢,,). There is good agreement
with the finite-angle-bin analysis for the 0° — 10° bin and for ;7" = 30° — 50°. In the intermediate angle
bins the results differ, but the uncertainties on the finite-angle-bin results are large. It is worth noting here
that we expect, based on previous results, that orr and opr will be small relative to o, and or. The large
asymmetries shown in Figure 11 include acceptance effects which have not yet been calculated so we can
draw no conclusions yet about the true size of the acceptance-corrected asymmetries.

We investigated a third method for extracting A}, that takes advantage of the large acceptance of
CLAS. Recall the expression for A(¢,q) (see Equation 14). The numerator in Equation 14 is proportional
to sin(¢pe) and the denominator is constant as long as orr and orr are small. If one forms the ratio of
different helicities

A(¢pq) =

ot —¢~ Nt-N— 1 _ o Sin ¢pg (28)
c++4+0- Nt+N- Ag oL 4or+ OLTCOSPpq + T COS 2¢p,

where Ag is the beam charge asymmetry, then the distribution should have a sinusoidal dependence on ¢ if
orr and o7 are small relative to o and or,. We have calculated this ratio and some preliminary results are
shown in Figure 12 for four different angle bins in the range Q? = 0.8 — 1.0 (GeV/c)®. The distributions were
fitted with a sine curve and the results are shown on the figure. The fits all have acceptable reduced y2. We
also tried fitting a more complex function that included the cos ¢, and cos2¢,, terms in the denominator
of Equation 28. We found the contributions from o7 and o7 were consistent with zero and there was no
significant improvement to the fit.
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Figure 11: Comparison of Ap7 and A7 determined from an analysis of the ¢ moments of the distribution
(upper panel) compared with the results from using small angle bins.
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We compared the three different methods for measuring A} and show the results in Figure 13. The
top panel shows the angular distribution in 857" measured using the sin ¢, moments of the distribution, the
middle panel is from the fits to A(¢p,), and the bottom panel is from differences between small angle bins.
It is worth noting again the first two methods take advantage of the large acceptance of CLAS while the
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Figure 13: Comparison of A’ ;- extracted using different analysis techniques. The calculation is not corrected
for the CLAS acceptance.

last method ignores much of the data. The results in Figure 13 are for the range Q% = 0.8 — 1.0 (GeV/c)z.
The top two panels are very consistent with each other. The values of A’ ;. in each angle bin agree for both
methods as well as the size of the uncertainties in each angle bin. It is worth noting how A}, goes from
small and positive for 57" = 0° — 10° to large and negative for 8;,, = 20° — 30°. This is clearly seen in the
shapes of the ¢,, distributions in Figure 12 in the upper-left and lower-left panels. We expect the sin ¢,
moments and the A(¢,,) methods to be consistent; they represent the same quantity extracted from the
same data set. The results in the bottom panel are consistent with the others within the uncertainties. We
do not expect the results in the bottom panel to match as well since we are using a subset of the data which
also means the uncertainties will be larger. We conclude that these methods are self-consistent and the
sin ¢,,, moments analysis and the fit to A(¢,,) are equivalent methods. It is worth noting that the angular
distribution shown here for Q2 = 0.8 — 1.0 (GeV/c)? is a small fraction of the E5 data that covers the range
Q? =0.2-5.0 (GeV/c)2.

There are other methods for checking our analysis. During the E5 run period the data were collected
simultaneously from the proton target and will be compared with other CLAS analyses [32, 34]. The
kinematic regions probed by the different E5 run conditions overlap each other so our results can be compared
with different beam energies and/or torus magnet settings. As a final test of the quality of the analysis we
make a preliminary comparison of our results with theory. In Figure 14 below we show A’ as function of
05 calculated from the sin ¢, moments analysis along with a calculation from H. Arenhdvel that includes
relativistic effects, meson-exchange currents, isobar configurations, and final-state interactions [35]. The
magnitude and sign of the asymmetry are reproduced by the calculation. However, the shape of the data is
different; it is narrower and shifted to smaller angles. Note, this comparison is at Q? = 0.8 — 1.0 (GeV/ c)2
which is near the limit of validity of the Arenhdvel calculation. These differences hint at the need for
improvements to the hadronic model of nuclear physics.

We have begun to address the sources of uncertainty in our investigation. The CLAS has a finite
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Figure 14: Comparison of results for A} at 2.56 GeV, normal field, 0.8 < Q% < 1.0 (GeV/c)z, 095 < zp <
1.05 (not acceptance corrected). The measured asymmetry is corrected for the beam polarization. The blue
curve is a calculation by Arenhdvel.

angular resolution which becomes more important for small 6777, i.e. when the emitted proton is moving
nearly parallel to the 3-momentum transfer. In the limit of 6,7 = 0, the azimuthal angle, ¢, is undefined.
At small ;7" our determination of ¢,, will become unreliable because of this angular resolution. We have
examined this ‘pointing’ error using the elastic scattering off the proton with the hydrogen target. We
extracted the difference between the measured proton momentum and the 3-momentum transfer determined
by incoming and outgoing electron momenta. The width of the distribution is about ¢ = 0.6° and is
symmetric about the origin. We will address this question along with other sources of uncertainty including
the acceptance calculations as the project progresses.

Much work remains. We are not yet applying the corrections to remove the distortions of the data
caused by CLAS such as momentum corrections, energy loss, corrections, etc. We are also improving data
selection. Fiducial cuts on the electron and proton to define the active volume of the CLAS are being
developed. Calculation of the acceptance of CLAS is just beginning. This step is critical for understanding
the frr and frr results. It is less important for the f;, analysis because using the ratio of different
helicities to calculate A7 reduces many of the systematic uncertainties. We have only begun investigating
the sources of uncertainty in our analysis. The ‘pointing’ error described above and radiative corrections are
two examples.

5 Conclusions

We propose to extract the structure functions frr, frr, and fi; of the deuteron in the region Q? =
0.2—5.0 (GeV/c)? using out-of-plane measurements recorded during the E5 running period. These data will
challenge the existing ‘standard model’ of nuclear physics in a transition region in @2 where many expect
the model to begin to break down and quark and gluon degrees of freedom to manifest themselves. More
specifically, these data will test our understanding of relativistic corrections, meson-exchange currents, isobar
configurations, and final-state interactions.

Our preliminary analysis of the data from the E5 running period shows that we can extract the structure
functions with good to excellent precision. We have found this can be done using the different azimuthal
moments of the data: (cos ¢,q) for frr, (cos2¢,,) for frr, and (sin ¢,,) for f;r. The fifth structure function
S can be extracted from the moment analysis and also from fitting the A4 asymmetry. Both methods give
equivalent results. This last structure function is small and likely the most difficult to measure so it provides
a stringent test of our techniques. Our preliminary results show that asymmetries as large as 0.15 can be
expected for f;,. The statistical uncertainties range in size from 0.01 at small 677" to 0.04 at 657" ~ 30°.
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The results shown here for f;, represent only a small fraction of the total data set.
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A Appendix

A.1 Radiative Corrections

To test our modifications to EXCLURAD we will compare them with the more traditional approaches.
Below we describe how to relate the parameters of the Schwinger-style calculation with the approach used
in EXCLURAD. In the Schwinger method one calculates the radiative correction for the scattering of an
electron in a Coulomb field. This corresponds to inclusive electron scattering. An essential step in the
calculation is to integrate over the radiative tail of the energy of a scattered electron to arrive at a correction
factor for the yield lost to the emission of photons. The parameters of that integration are defined in
Figure 15 [31]. The parameter AFE is the energy range over which the integral is performed (starting at the

one-half AE w
E o= intrinsic - >
resolution N
choose radiative Ere

Region of integration
fromE | to E;

E isthe beam energy E E
E’ isthe peak energy of - -
the scattered electron Es =

Figure 15: Energy spectrum of scattered electron showing definitions of quantities used in Schwinger radiative
correction calculation.

unradiated energy of the electron) to estimate the yield lost to radiated photons.
Afanasev, at al. follow an analogous procedure in their more sophisticated approach [28]. They
integrate over the radiative tail of the scattered electron, but they perform the integration in terms of the

covariant ‘inelasticity’ v defined as
v=A?—m? (29)

where m,, is the mass of the undetected hadron and A is the four-momentum of the missing or undetected

particles. The quantity v describes the missing mass due to the emission of a bremsstrahlung photon and

can be rewritten as
v=W?+mi —m2 - 2WEj, (30)



July 10, 2003 19

where W is the mass of the system recoiling against the electron, my is the mass of the detected hadron,
and E}, is the center-of-mass energy of the detected hadron. To determine the relationship between AE and
v consider the usual expression for W2

W?=M?+2M(E-E') - Q? (31)

where 9
Q* ~ 4EFE' sin® 3 (32)

M is the target mass, and 6 is the electron scattering angle. However, for an event with a radiated photon,
the measured energy of the scattered electron is not E', but some lower energy

E,=FE —AE (33)
so W for this event will not be ‘correct’. The new value of W is
0
W2,=M?+2M(E - E;,) — AEE), sin® 3 (34)

Using Equations 33 and 34 in the expression for v in Equation 30 one obtains the following function of AE.

v=M?+2M(E - E' + AE) — 4E(E' + AE) sin g

+mi —m2 — th\/ M? 4+ 2M(E — E' + AE) — 4E(E' + AE)sin® g (35)

This expression can be re-arranged so

v=W§ +mi —m2 +2AE(M + 2Esin? g) - 2Eh\/WO2 + 2AE(M + 2E sin? g) (36)

where 0
W2 = M? +2M(E — E') — AEE' sin® 3 (37)

and the quantities E, E', and 6 are determined by the electron kinematics. The hadron energy E} is
determined by the choice of the angle of the outgoing hadron relative to ¢, the three-vector of the momentum
transfer. The masses M, my, and m,, are all known.

As an example of applying Equation 35 consider the following kinematics. The results of the calculation

E =2.558 GeV | E' =2.345 GeV 0 =14.84°

mp, = 0.938 GeV | m, = 0.940 GeV 05m = 45°

M =1.876 GeV | Q? =0.52 (GeV/c)? | W =1.93 GeV

Table 1: Kinematics for calculating v(AE).

are shown in Figure 6. The dependence of v on AE is almost linear implying the importance of that term
in Equation 36 over the sum of all the other terms.

A.2 Acceptance Effects in (sin ¢,,)+

To more clearly understand Equation 20 which relates (sin ¢pq)+ to A}, and the acceptance recall again the
expression for the differential cross section for d(&,e'p)n.
d*o .
dvd.d. o = clprfr + prfr + prrfrr cos(dpq) + prrfrr cos(2¢pq) + hppr frr sin(dpg)] (38)
€ /4

= 0p + 07 + LT €08 Ppg + OTT COS 2¢pg + hopp Sin Ppg (39)
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Figure 16: Dependence of v on AE for the kinematics listed in Table 1.

The sin ¢, moment of the data at a given @ and 057" or py, is defined by the following expression.

) f027r ot sin ¢,,dop
(sin ¢pq)+ f027r do (40)
Now let
ot = ’“(‘ﬁpq)“ j:(¢pq) (41)

where N+ is the number of counts for each helicity, € is the CLAS acceptance and may vary with ¢,,, and
k contains all the other helicity-independent, kinematic factors needed to determine cross sections. In turn,
N#* is composed of different, longitudinal and transverse components so

NE(¢pg) = Nf + NI + Ny cos dpg + Ny cos26p + ANy sing,, (42)

Hereafter, we will suppress the & superscript for clarity and it will be assumed that all N's depend on the
helicity. Finally, the CLAS acceptance as a function of ¢,, at a given Q% and 057" or pm can be expressed as

e(¢pg) = Ao + Z (am sin My, + by, cOSMPp,) (43)

m=1

where we have taken advantage of the completeness of the sines and cosines. We expect any ¢,, dependence
in the CLAS acceptance to vary slowly so we approximate it by taking the sum in Equation 43 up to m = 2
SO

€(dpg) = Ao + a1 5in Ppg + b1 O Ppg + a2 Sin 20,4 + ba cOS 20, . (44)

Substituting Equations 41, 42, and 44 into Equation 40 one obtains (after doing some algebra and some
integrals) the following expression

(N + Np — Mz2)qy 4+ Nezez 4 N A,
(Nr + N1)Ao + Nprbi + Nr7be + Nppay

(sin ¢pq>i = B (45)

where we have used h = £1. In the numerator, N7t and Npr are both much less than Ny + N7 so we can
neglect their contribution. We retain the Ny, term since since it will survive when we take the difference
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between the moments for the positive and negative helicities (the Ny and Npp terms will cancel in the
difference). In the denominator, we can apply the same reasoning and neglect the N and Npg terms.
Here we can also neglect the N term because it will have a small effect on the final difference. The result

is

which is the form of Equation 20.
«a to be consistent with the text.

(NL + NT)a1 + N},TAO

. = _
(SIn ¢:DQ) - 2(NL + NT)AO (46)
_ ai NI
24, " 2(N + Nr) “)
oLr
— 4
ot 2(or +o7) (48)

We have used Equation 41 to eliminate the N’s and labeled the first term



