CLAS Approved Analysis Proposal

Out-of-plane Measurements of the Structure Functions of the Deuteron

G.P.Gilfoyle University of Richmond W.K.Brooks, B.A.Mecking Jefferson Lab S.Kuhn, L.Weinstein Old Dominion University M.F.Vineyard

Union College

- Physics Motivation
- Formalism
- Current Status
- Extracting Structure Functions with CLAS
- Preliminary Results
- Conclusions

Physics Motivation

- 1. Can the deuteron be understood with the coherent hadronic model of nuclear physics?
 - Can we properly incorporate relativistic effects into our description of the deuteron and few-body nuclei?
 - Can we account for final-state interactions (FSI)?
 - What other effects are needed (meson-exchange currents, isobar configurations, *etc.*)?
 - These were raised as 'Key Questions' in the PAC Few-Body Workshop.
- 2. How do we distinguish between quark-gluons effects and the less-well-understood effects of 'conventional nuclear physics' in the 1 GeV energy region?
- 3. The fifth structure function (the imaginary part of the longitudinal-transverse interference) can be investigated only with out-of-plane measurements and is largely un-explored territory.

Kinematics and Formalism

- Kinematics: $d(\vec{e}, e'p)n$ • Cross section: $\frac{d^{3}\sigma}{d\omega d\Omega_{e} d\Omega_{p}} = \sigma^{\pm} = \sigma_{L} + \sigma_{LT} \cos(\phi_{pq}) + \sigma_{TT} \cos(2\phi_{pq}) + h\sigma'_{LT} \sin(\phi_{pq})$
- Missing momentum: $\vec{p}_m = \vec{q} \vec{p}_p$.
- Conventional asymmetries are proportional to the corresponding structure function:

$$A_{LT} = \frac{\sigma_0 - \sigma_{180}}{\sigma_0 + \sigma_{180}} = \frac{\rho_{LT} f_{LT}}{\rho_L f_L + \rho_T f_T + \rho_{TT} f_{TT}}$$
$$A_{TT} = \frac{\sigma_0 + \sigma_{180} - 2\sigma_{90}}{\sigma_0 + \sigma_{180} + 2\sigma_{90}} = \frac{\rho_{TT} f_{TT}}{\rho_L f_L + \rho_T f_T}$$
$$A'_{LT} = \frac{\sigma_{90}^+ - \sigma_{90}^-}{\sigma_{90}^+ + \sigma_{90}^-} = \frac{\rho' f'_{LT}}{\rho_L f_L + \rho_T f_T - \rho_{TT} f_{TT}}$$

Subscripts - ϕ_{pq} . Superscripts - beam helicity.

Current Status

- Some measurements have ALT x40% already been made for 0 $Q^2 \approx 0.1 - 0.3 \; (GeV/c)^2$, -0.02but suffer from limited statistics or angular range. -0.04The plot is from S.Gilad, et al., NP A631, 276c, 1998. -0.0620 40 60 80 θ_{pq}^{cm}
- Hall A experiment E01-020 will determine cross sections and σ_{LT} at $Q^2 = 0.8, 2.1, 3.5 \ (GeV/c)^2$.
- Hall A experiment E02-101 will measure all five structure functions near threshold at $Q^2 = 0.47 \ (GeV/c)^2$.
- This project will analyze data from the E5 run period.

Physics Program

- Measure A'_{LT} from $\vec{ed} \rightarrow e'p(n)$ in quasi-elastic kinematics in the region $Q^2 = 0.2 5.0 \ (GeV/c)^2$.
 - Quasielastic kinematics are better understood.
 - Use missing mass to identify the neutron.
- Fifth structure (A'_{LT}) function analysis.
 - Use $\langle \sin \phi \rangle_{\pm}$ and/or fits to the helicity asymmetry to extract A'_{LT} .
 - $ep \rightarrow e'\pi^+ n$ and $ep \rightarrow e'p\pi^0$ reactions to test algorithms.
 - Cross checks with different running conditions.
 - Comparison with theoretical calculations.
 - Corrections, uncertainties, *etc.*.
- Measure the fifth structure function at higher W, *i.e.*, the 'dip' region.
- Do other structure functions A_{LT} and A_{TT} .

- More vulnerable to acceptance effects.

Extracting Structure Functions with CLAS Measuring $\vec{e}p \rightarrow e'p(n)$

• Use missing mass technique to isolate neutrons.

• Neutrons are clearly visible (2.6 GeV, normal polarity).

Extracting Structure Functions with CLAS

Data Selection and Corrections

• For electrons.

Good CC, EC, SC status	cc > 0, ec > 0, sc > 0
Energy-momentum match	$0.325 p_e - 0.13 < E_{total} < 0.325 p_e + 0.06$
Reject pions	$ec_ei \geq 0.100$ and $nphe \geq 25$
EC fi ducial	No tracks within 10 cm of the end of a strip
Electron fi ducial	Modifi ed e1 cut, Gegham Asryan fi ts
Quasi-elastic scattering	$0.91~GeV \leq W \leq 0.97~GeV$

• For protons.

Proton fi ducial cut	Modifi ed e1 cut
ep vertex cut	$ v_z(e) - v_z(proton) \leq 1.5~cm$

• For neutrons.

Missing mass cut $0.90 \ GeV^2 \le MM^2 \le 0.98 \ GeV^2$

- Electron momentum corrections are small.
- Beam charge asymmetry.

2.6 GeV, reversed fi eld:	0.9934 ± 0.0007
2.6 GeV, normal fi eld:	0.9952 ± 0.0007

• Beam polarization.

How high in θ_{pq} can we go?

Missing mass spectrum for $d(\vec{e}, e'p)n$, 2.558 GeV, normal field, not acceptance corrected.

How high in p_m can we go?

Missing mass spectrum for $d(\vec{e}, e'p)n$, 2.558 GeV, normal field, not acceptance corrected.

$\langle \sin \phi_{pq} \rangle_{\pm}$ Moments Analysis For A'_{LT}

• Recall

$$\sigma^{\pm} = \sigma_L + \sigma_T + \sigma_{LT} \cos(\phi_{pq}) + \sigma_{TT} \cos(2\phi_{pq}) + h \sigma'_{LT} \sin(\phi_{pq})$$

• Let

$$\langle \sin \phi_{pq} \rangle_{\pm} = \frac{\int_{-\pi}^{\pi} \sigma^{\pm} \sin \phi_{pq} d\phi}{\int_{-\pi}^{\pi} \sigma^{\pm} d\phi} = \frac{\sum_{\pm}^{\phi} \sin \phi_i}{N^{\pm}} = \pm \frac{\sigma'_{LT}}{2(\sigma_L + \sigma_T)} \approx \pm \frac{A'_{LT}}{2}$$

For a sinusoidally-varying component to the acceptance

$$\langle \sin \phi_{pq} \rangle_{\pm} = \pm \frac{A'_{LT}}{2} + \alpha_{acc}$$
 so

 $\langle \sin \phi_{pq} \rangle_{+} - \langle \sin \phi_{pq} \rangle_{-} = A'_{LT}$ and $\langle \sin \phi_{pq} \rangle_{+} + \langle \sin \phi_{pq} \rangle_{-} = 2\alpha_{acc}$

Preliminary results for 2.56 GeV, normal field, not acceptance corrected, 0.8 < Q² < 1.0 (GeV/c)², 0.95 < x_B < 1.05.

Other Moments for A_{LT} **and** A_{TT}

Recall

 $\sigma^{\pm} = \sigma_L + \sigma_T + \sigma_{LT} \cos(\phi_{pq}) + \sigma_{TT} \cos(2\phi_{pq}) + h\sigma'_{LT} \sin(\phi_{pq})$

• In a way similar to relating $\langle \sin \phi_{pq} \rangle$ and A'_{LT}

$$\langle \cos \phi_{pq} \rangle = \frac{\sigma_{LT}}{2(\sigma_L + \sigma_T)} \approx \frac{A_{LT}}{2}$$

and

$$\langle \cos 2\phi_{pq} \rangle = \frac{\sigma_{TT}}{2(\sigma_L + \sigma_T)} = \frac{A_{TT}}{2}$$

Preliminary results for 2.56 GeV, normal field, not acceptance corrected, 0.8 < Q² < 1.0 (GeV/c)², 0.95 < x_B < 1.05.

• These asymmetries are large, but are not corrected for acceptance.

Helicity Asymmetry Analysis for A'_{LT}

Recall

 $\sigma^{\pm} = \sigma_L + \sigma_T + \sigma_{LT} \cos(\phi_{pq}) + \sigma_{TT} \cos(2\phi_{pq}) + h\sigma'_{LT} \sin(\phi_{pq})$

• Define A_{LT} in a more general way.

$$\frac{N^+ - N^-}{N^+ + N^-} = \frac{\sigma'_{LT} \sin \phi_{pq}}{\sigma_L + \sigma_T + \sigma_{LT} \cos(\phi_{pq}) + \sigma_{TT} \cos(2\phi_{pq})}$$
$$\approx A'_{LT} \sin \phi_{pq}$$

Preliminary results for 2.56 GeV, normal field, not acceptance corrected, 0.8 < Q² < 1.0 (GeV/c)², 0.95 < x_B < 1.05.

Comparison of Different Analysis Methods for A'_{LT}

- The shapes and uncertainties are consistent. We can measure small A'_{LT} .
- 2.56 GeV, normal field, not acceptance corrected, 0.8 < $Q^2 < 1.0 \; (GeV/c)^2$, 0.95 < $x_B < 1.05$.

$ep \rightarrow e'p\pi^0$ Analysis

- Comparison with analysis of K. Joo and C. Smith to measure A'_{LT} in the resonance region at 1.52 GeV.
- Bethe-Heitler events overlap with missing mass of π^0 .

 Use kinematic constraints to identify Bethe-Heitler events and remove them.

Results of Bethe-Heitler suppression for $ep \rightarrow e'p\pi^0$.

• K. Joo and C. Smith results.

• This analysis for 2.6 GeV, reversed field.

Comparison of Asymmetries Run By Run for $ep \rightarrow e'p\pi^0$.

 K. Joo and C. Smith for ∆ resonance at 1.52 GeV, CLAS Analysis 01-008.

• Our results for A'_{LT} here are consistent with K. Joo and C. Smith in sign (the two experiments use different ϵ and Q^2 ranges) and with helicity sign recorded in the elog.

 This analysis for 2.6 GeV, reversed field.

Preliminary Results (not for distribution)

• For 2.6 GeV, reversed field.

• For 2.6 GeV, normal field.

Preliminary Results for A'_{LT} from $d(\vec{e}, e'p)n$ (not for distribution)

Conclusions

- Strong physics motivation to test the nuclear 'coherent hadronic model' in a new energy range.
- Two methods of measuring A'_{LT} using $\langle \sin \phi_{pq} \rangle$ and a fit to the helicity asymmetry are consistent with each other.
- Our analysis of A'_{LT} from the hydrogen target is consistent with an earlier study by Joo and Smith.
- Preliminary results for A'_{LT} reveal a significant structure dip at $Q^2 \approx 0.9 \ (GeV/c)^2$ and $p_m \approx 0.25 \ GeV/c$.
- There is significant structure in A_{LT} and A_{TT} (and σ_{LT} and σ_{TT}).

A written version can be found in the E5 portion of the Hall B secure website.

www.jlab.org/Hall-B/secure/e5/gilfoyle/deuteron_electrodisintegration.ps