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Foreword

The study of the fundamental structure of nuclear matter is a central thrust of physics
research in the United States. As indicated in Frontiers of Nuclear Science, the 2007 Nu-
clear Science Advisory Committee long range plan, consideration of a future Electron-Ion
Collider (EIC) is a priority and will likely be a significant focus of discussion at the next long
range plan. We are therefore pleased to have supported the ten week program in fall 2010 at
the Institute of Nuclear Theory which examined at length the science case for the EIC. This
program was a major effort; it attracted the maximum allowable attendance over ten weeks.

This report summarizes the current understanding of the physics and articulates important
open questions that can be addressed by an EIC. It converges towards a set of “golden”
experiments that illustrate both the science reach and the technical demands on such a
facility, and thereby establishes a firm ground from which to launch the next phase in
preparation for the upcoming long range plan discussions. We thank all the participants in
this productive program. In particular, we would like to acknowledge the leadership and
dedication of the five co-organizers of the program who are also the co-editors of this report.

David Kaplan, Director, National Institute for Nuclear Theory

Hugh Montgomery, Director, Thomas Jefferson National Accelerator Facility
Steven Vigdor, Associate Lab Director, Brookhaven National Laboratory
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Preface

This volume is based on a ten-week program on “Gluons and the quark sea at high ener-
gies”, which took place at the Institute for Nuclear Theory (INT) in Seattle from September
13 to November 19, 2010. The principal aim of the program was to develop and sharpen
the science case for an Electron-Ion Collider (EIC), a facility that will be able to collide
electrons and positrons with polarized protons and with light to heavy nuclei at high ener-
gies, offering unprecedented possibilities for in-depth studies of quantum chromodynamics.
Guiding questions were

e What are the crucial science issues?

e How do they fit within the overall goals for nuclear physics?

e Why can’t they be addressed adequately at existing facilities?

e Will they still be interesting in the 2020’s, when a suitable facility might be realized?

The program started with a five-day workshop on “Perturbative and Non-Perturbative
Aspects of QCD at Collider Energies”, which was followed by eight weeks of regular program
and a concluding four-day workshop on “The Science Case for an EIC”.

More than 120 theorists and experimentalists took part in the program over ten weeks.
It was only possible to smoothly accommodate such a large number of participants because
of the extraordinary efforts of the INT staff, to whom we extend our warm thanks and
appreciation. We thank the INT Director, David Kaplan, for his strong support of the
program and for covering a significant portion of the costs for printing this volume. We
gratefully acknowledge additional financial support provided by BNL and JLab.

The program was structured along several subtopics, which roughly correspond to the
chapters in this report. For each topic, convenors were appointed, who played an important
role in the scientific organization of the program weeks and in editing the corresponding
chapters. We gratefully thank them for their work. Special thanks are due to Matt Lamont
and Marco Stratmann, who took on the lion’s share in the painstaking task of merging the
different chapters and making final edits.

Last but not least, we thank all participants of the INT program and all authors of
this report for the work and enthusiasm they put into their contributions. Thanks to their
efforts, much progress has been achieved, and we hope that the community will keep this
momentum going in the continuing effort to build a compelling case for an Electron-Ion
Collider.

August 2011
The program organizers

Daniél Boer
Markus Diehl
Richard Milner
Raju Venugopalan
Werner Vogelsang
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Executive summary

Daniél Boer, Markus Diehl, Richard Milner, Raju Venugopalan, Werner Vogelsang

Introduction

Understanding the fundamental structure of the matter in the physical universe is one
of the central goals of scientific research. Strongly bound atomic nuclei predominantly con-
stitute the matter from which humans and the observable physical world around us are
formed. In the closing decades of the twentieth century, physicists developed a beautiful
theory, Quantum Chromodynamics (QCD), which explains all of strongly interacting mat-
ter in terms of point-like quarks interacting by the exchange of gauge bosons, known as
gluons. Experiments have verified QCD quantitatively in processes involving a very large
momentum exchange between the sub-atomic participants. Further confidence is obtained
from significant progress in numerical computations of the static properties of the theory,
in particular the excellent agreement of theory with the mass spectrum of low lying hadron
resonances.

However, more than thirty years after QCD was first proposed as the fundamental theory
of the strong force, and despite impressive theoretical and experimental progress made in the
intervening decades, the understanding how QCD works in detail remains an outstanding
problem in physics. Very little is known about the dynamical basis of hadron structure in
terms of the fundamental quark and gluon fields of the theory. How do these fundamental
degrees of freedom dynamically generate the mass, spin, motion, and spatial distribution of
color charges inside hadrons with varying momentum resolution and energy scales? Deeply
Inelastic Scattering (DIS) experiments at the HERA collider revealed clearly that at high
momentum resolution and energy scales, the proton is a complex, many-body system of
gluons and sea quarks, a picture very different from a more familiar view of the proton as
a few point-like partons (a term that collectively refers to both quarks and gluons), each
carrying a large fraction of its momentum. This picture, which is confirmed at hadron
colliders, raises more questions than it answers about the dynamical structure of matter.
For instance, how is the spin-1/2 of the proton distributed in this many-body system of sea
quarks and gluons 7 In the early universe, how did the many-body plasma of quarks and
gluons cool into hadrons with several simple structural properties 7 Recreating key features
of this quark-hadron transition in heavy ion collisions has been a major activity in nuclear
physics, with several surprising findings including the realization that this matter flows
with very little resistance as a nearly perfect fluid. A deep understanding of the two cited
examples, among many others, ultimately requires detailed knowledge of the quark-gluon
structure of hadrons and nuclei.

This report on the science case for an Electron-Ton Collider (EIC) is the result of a



ten-week program at the Institute for Nuclear Theory (INT) in Seattle (from September
13-November 19, 2010), motivated by the need to develop a strong case for the continued
study of the QCD description of hadron structure in the coming decades. Hadron structure
in the valence quark region will be studied intensively with the Jefferson Lab 12 GeV science
program, the subject of an INT program the previous year. The focus of the INT program
was on understanding the role of gluons and sea quarks, the important dynamical degrees
of freedom describing hadron structure at high energies. Experimentally, the most direct
and precise way to access the dynamical structure of hadrons and nuclei at high energies
is with a high luminosity lepton probe in collider mode. An EIC with optimized detectors
offers enormous potential as the next generation accelerator to address many of the most
important, open questions about the fundamental structure of matter. The goal of the INT
program, as captured in the writeups in this report, was to articulate these questions and
to identify golden experiments that have the greatest potential to provide definitive answers
to these questions.

At resolution scales where quarks and gluons become manifest as degrees of freedom,
the structure of the nucleon and of nuclei is intimately connected with unique features of
QCD dynamics, such as confinement and the self-coupling of gluons. Information on hadron
sub-structure in DIS is obtained in the form of “snapshots” by the “lepton microscope” of
the dynamical many-body hadron system, over different momentum resolution and energy
scales. These femtoscopic snapshots, at the simplest level, provide distribution functions
which are extracted over the largest accessible kinematic range to assemble fundamental
dynamical insight into hadron and nuclear sub-structure. For the proton, the EIC would be
the brightest femtoscope lepton collider ever, exceeding the intensity of the HERA collider
thousand fold. HERA, with its center-of-mass (CM) energy of 320 GeV, was built to search
for quark substructure. EIC, with its scientific focus on studying QCD in the regime where
the sea quarks and gluons dominate, would have a lower CM energy. In a staged EIC design,
the CM energy will range from 50-70 GeV in stage I to approximately twice that for the
full design. In addition to being the first lepton collider exploring the structure of polarized
protons, EIC will also be the first electron-nucleus collider, probing the gluon and sea quark
structure of nuclei for the first time.

Following the same structure as the scientific discussions at the INT, this report is
organized around the following four major themes:

e The spin and flavor structure of the proton

e Three dimensional structure of nucleons and nuclei in momentum and configuration
space

e QCD matter in nuclei
e Electroweak physics and the search for physics beyond the Standard Model

In this executive summary, we will briefly outline the outstanding physics questions in these
areas, and the suite of measurements that are available with an EIC to address these. The
status of EIC accelerator and detector designs is addressed at the end of the summary.
Tables of golden measurements for each of the key science areas outlined are presented on
page In addition, each chapter in the report contains a comprehensive overview of the
science topic addressed. Interested readers are encouraged to read these and the individual
contributions for more details on the present status of EIC science.



The spin and flavor structure of the proton

To understand how the constituents of the proton carry the proton’s spin has been a
defining question in hadron structure for several decades now. The proton spin problem
presents the formidable challenge of understanding an essential feature of how a complex
strongly-interacting many-body system organizes itself to produce a simple result. It goes
directly to the heart of exploring and understanding the QCD dynamics of matter. From
the surprising finding by the European Muon Collaboration that very little of the proton
spin is provided by the spins of quarks and anti-quarks combined, the exploration of nucleon
spin structure has by now developed into a world-wide quest central to nuclear and particle
physics. To provide definitive answers in this area will be among the key tasks of an EIC.

Significant progress can be expected from the unique capability of the EIC to reach
small momentum fractions  and large momentum resolution scales ), with high precision.
A suite of measurements will be available. A golden measurement of nucleon spin structure
at the EIC will be precision study of the proton’s spin structure function ¢ (z, Q?) and its
scaling violations, over wide ranges in « and Q2. As studies in this report will demonstrate,
global analysis of spin-dependent parton distributions will determine the gluon helicity
distribution Ag and the quark singlet AY down to values of = of about 10~4. This vastly
extended reach should allow for the determination of the gluon and quark/anti-quark spin
contributions to the proton spin to about 10% accuracy or better. The accuracy to which
processes such as deeply-virtual Compton scattering can independently provide information
on the remaining orbital angular momentum contributions will be addressed further in the
section on spatial imaging.

The EIC will provide unprecedented insight into the flavor structure of the nucleon, a
key element in mapping the “landscape” of hadron structure. There are two powerful golden
measurements available at the EIC to achieve this. One of these methods, Semi-Inclusive
Deep-Inelastic Scattering (SIDIS) has been used in previous fixed-target lepton scatter-
ing experiments HERMES and COMPASS. (Polarized proton-proton collisions at RHIC
employ W-boson production for flavor identification.) At the EIC, semi-inclusive measure-
ments would extend to much higher Q2 than in fixed-target scattering, where the reaction
becomes significantly cleaner, less contaminated with higher-twist effects (a technical term
for contributions power suppressed in 1/Q?), and therefore more tractable theoretically.
Kinematic coverage for SIDIS in  and @ will overall be similar to what can be achieved in
inclusive DIS. With EIC’s high luminosity, extractions of the light-flavor helicity distribu-
tions Au, Ad and their anti-quark distributions from SIDIS will be possible with exquisite
precision. With dedicated studies of kaon production, also the strange and anti-strange
distributions will be accessible. All this will likely give insights into the question why it is
that the combined quark and anti-quark spin contribution to the proton spin turns out to
be so small.

The other independent method for accessing the quark and antiquark helicity distribu-
tions at the EIC is electroweak DIS. At high @2, the DIS process also proceeds significantly
via exchange of Z and W+ bosons. This gives rise to novel structure functions that are
sensitive to various different combinations of the proton’s helicity distributions. Studies
show that both neutral current and charged current interactions would be observable at the
EIC. To fully exploit the potential of the EIC for such measurements, positron beams are
required, albeit not necessarily polarized. Besides the new insights into nucleon structure
this would provide, studies of spin-dependent electroweak scattering at short distances with
an EIC would be interesting physics in and of itself, much in the line of past and ongoing



electroweak measurements at HERA, Jefferson Lab, and RHIC.

Polarized electron-proton physics can be expected to take center stage at the EIC be-
cause these would be the first such collider measurements. However, as studies in this
report show, there is a large potential for unpolarized physics at the EIC. Thanks to its
high luminosity and the more flexible energy scan feasible, the EIC would vastly improve
over HERA data on measurements of the longitudinal structure function F7. This quan-
tity is a key observable for studies of gluon structure and the possible transition to a high
parton density or saturation regime in the proton. At EIC, several SIDIS measurements
of flavor distributions and multi-particle correlations will be posssible for the first time. In
particular, pinning down the strange quark and antiquark content of the proton would close
one of the last notable gaps in our knowledge of unpolarized parton densities. Extended
rapidity coverage will also allow for detailed studies of the rapidity gap structure of hard
diffractive final states. In addition, the very high luminosities will bring a vast improvement
in precision of measurements of the charm and beauty contributions to nucleon structure.

Three dimensional structure of hadrons and nuclei: Trans-
verse momentum distributions

Partons can have a momentum component transverse to the direction of their parent
nucleon and there exists experimental evidence to support an average transverse momen-
tum of a few hundred MeV/c. However, much of our understanding of nucleon structure
is in terms of integrated parton distributions that are only sensitive to the momentum res-
olution of the probe. A rigorous theoretical framework for parton transverse momentum
distributions (TMDs) has been developed recently which allows for a description of specific
scattering cross sections in terms of these distributions. TMDs are an essential step toward
a more comprehensive understanding of the parton structure of the nucleon in QCD. An
EIC will enable precise and detailed measurements of TMDs over a broad kinematic range.

For the scattering processes of interest, the large scale Q? justifies, in leading twist ap-
proximation, the factorized description of the cross section in terms of several calculable
or measurable factors, yielding a predictive framework. TMDs are examples of such mea-
surable factors. In such descriptions not only does the magnitude of the parton transverse
momentum enter, but also the transverse momentum direction, yielding strikingly asym-
metric distributions. Several recently observed angular asymmetries are most naturally
described by asymmetric, spin direction dependent TMDs.

A golden measurement at EIC will be the Sivers asymmetry, a particular angular corre-
lation between the target polarization and the direction of a produced final state hadron in
polarized SIDIS. At the parton level, the Sivers effect is a spin-orbit coupling effect in QCD
and is described by a TMD that quantifies how strongly the transverse momentum from
orbital motion is coupled to spin. The Sivers effect is especially interesting because it is a
consequence of phase interference peculiar to the gauge structure of QCD. The gauge in-
variant Sivers TMD is non-zero only if gluon initial or final state interactions are taken into
account. There is a calculable process dependence, most strikingly evident in SIDIS and
Drell-Yan lepton pair production where the polarized Sivers function in the former is equal
in magnitude but opposite in sign to the latter. Factorization breaking is also expected
in more complicated processes, such as hadron-hadron collisions with hadronic final states.
This process dependence has not yet been demonstrated but several such experiments, in
particular at RHIC, will study the Sivers and other TMD effects. The comparison of these



results with complementary information from EIC will allow a detailed understanding of
the nature and extent of factorization breaking for TMDs.

A goal at EIC is to obtain a flavor-separated extraction of the Sivers TMD in an en-
ergy regime where its theoretical interpretation is unambiguous. Percent level azimuthal
asymmetries measured by HERMES, COMPASS and Jefferson Lab at rather modest Q2
have enabled rough first estimates of the magnitude of the Sivers effect. With the 12 GeV
upgrade program at Jefferson Lab, the valence (large x) region will be explored in detail,
whereas sea quark and gluon contributions at small x (down to 10~%) mapped out with
the EIC. The large Q? reach of EIC will allow for extensive study of evolution effects in
TMDs, and at large z (x ~ 0.2) will have overlap with preceding experiments. High ener-
gies and high precision will enable a good understanding of the x dependence of the Sivers
functions for each quark flavor, including antiquarks and gluons. In addition, the larger
transverse momentum range of final state particles at EIC allows for studies of so-called
weighted asymmetries that are cleaner to interpret theoretically but are beyond the reach of
fixed target experiments. The extensive transverse momentum range will for the first time
in polarized SIDIS allow studies of the transition region between the TMD description at
low transverse momentum and the description in terms of collinear quark-gluon-quark cor-
relation functions (known as the Qiu-Sterman mechanism) at high transverse momentum.
Finally, with respect to previous SIDIS experiments and future Jefferson Lab experiments,
a larger variety of final states can be considered at EIC, such as (multiple) jets or D-mesons,
all of great interest in isolating quark and gluon contributions to the various TMD effects.

Now that angular asymmetries consistent with the TMD framework have been observed,
the road towards full-fledged experimental studies of TMDs can be mapped out and the
essential role of EIC identified. Besides the Sivers effect, essential information on the un-
polarized TMD f; is obtained from unpolarized scattering cross sections. For reasons we
shall outline, this extraction of f; can be classified as another golden measurement. This
TMD determines the Q? dependence of the unpolarized cross section, which has been pre-
dicted but not yet verified. Predictions of its x, transverse momentum, scale and flavor
dependence of fi allow for non-trivial checks of the fundamental TMD formalism corrob-
orating and complementing what one learns from the Sivers and other spin TMD effects.
The unpolarized SIDIS measurements at EIC will give detailed information on the differ-
ence between sea and valence quark contributions, and on the role of gluons. Extracting
unpolarized gluon TMD at small x is especially interesting because of recently discovered
agreement between predictions in the TMD framework and previous computations of the
same in the Color Glass Condensate formalism we shall discuss later.

The proposed silver experiments are 1) the distribution of transversely polarized quarks
inside transversely polarized hadrons, 2) spin-orbit correlations inside unpolarized hadrons
(the Boer-Mulders TMD), and 3) the Collins TMD fragmentation function, which describes
a similar spin effect in the fragmentation of quarks into unpolarized hadrons. All three
quantities involve transverse quark spin, which distinguishes them from the Sivers effect
which deals with unpolarized partons inside a transversely polarized proton. EIC will be able
to provide multi-dimensional representations of all these quantities and the observables they
give rise to. The TMD chapter illustrates by means of concrete examples and calculations
how much further TMD studies can be pushed with an EIC compared with the present
status. A prime example is shown in figure 21Tl on page



Three dimensional structure of nucleons and nuclei: Spatial
imaging

The high luminosity and large kinematic reach of an EIC offers unique possibilities for
exploring the spatial distribution of sea quarks and gluons in the nucleon and in nuclei. The
“imaging” of partons is possible in suitable exclusive reactions. The transverse position of
the quark or gluon on which the scattering took place is obtained by a Fourier transform
from the transverse momentum of the scattered nucleon or nucleus. At the same time, the
longitudinal momentum loss of the target is correlated with the longitudinal momentum
fraction = of the parton. By choosing particular final states, measurements at EIC will be
able to selectively probe the spatial distribution of sea quarks and gluons in a wide range
of z. Such 'tomographic images’ will provide essential insight into QCD dynamics inside
hadrons, such as the interplay between sea quarks and gluons, the role of pion degrees of
freedom at large transverse distances and, from a more general perspective, the mechanism
for confinement in QCD.

The quantities that encode this tomographic information are generalized parton distri-
butions (GPDs). The formalism of GPDs is applicable in the full range of z. An alternative
description at small x is the dipole formalism, which is expressed in terms of the ampli-
tude for small color dipoles to scatter off gluons in the hadron target. GPDs allow direct
comparison of tomographic images for sea quarks and gluons with their counterparts in the
valence quark region, where the 12 GeV program at Jefferson Lab will obtain information
of unprecedented accuracy.

Potential golden measurements for parton imaging at EIC are deeply virtual Compton
scattering and photo- or electroproduction of .J/1¢ mesons. For Compton scattering there are
a large number of observables that can be calculated with high precision, whereas a unique
advantage of .J/1¢ production is its selectivity to gluons. A suite of further reaction channels
play the role of “silver measurements”, which will provide complementary information and
in particular help separate different quark flavors. Among those exclusive channels whose
cross sections grow with energy, deeply virtual Compton scattering demands the highest
luminosity. Simulations performed during the INT program indicate that precise and multi-
differential measurements of this process can be envisaged with the projected EIC luminosity
(see figures B.34] and [3.37] on pages [203] and 207). Detailed studies including
detector effects will be required to establish the achievable experimental accuracy.

The envisaged configuration of the EIC interaction region and detector will provide data
in a wide enough range of transverse momentum transfer to permit a Fourier analysis of
observables. With this, exclusive cross sections and angular or polarization asymmetries will
give direct quantitative information about the spatial distribution of partons in a specified
range of x. Estimates indicate that transverse distances ranging from about 0.1 fm to 2
fm or higher will be accessible, provided that a good enough momentum resolution can be
achieved experimentally. Such data will provide the basis for reconstructing generalized
parton distributions and, ultimately, the joint distribution of partons in transverse position
b and longitudinal momentum fraction x. For this second step, EIC’s large lever arm in
photon virtuality @Q? at given photon energy will be essential, since it is the scale evolution
in Q2 that carries the most detailed information about the longitudinal parton momentum.

Our current knowledge about the helicity distributions of quarks and gluons indeed sug-
gests that the orbital angular momentum of partons plays a prominent role in the nucleon.
Exclusive scattering on a transversely polarized target gives access to this degree of freedom



in parton tomography and allows one to study spin-orbit correlations at the parton level.
An especially interesting aspect is the relation between a polarization induced asymmetry
in transverse parton position and the Sivers asymmetry in transverse parton momentum.
Such a relation is profoundly dynamical, and its quantitative exploration in the sea quark
and gluon domain will be a highlight of exploring hadron structure and dynamics at an EIC.
Deeply virtual Compton scattering will again play an essential role in this context, along
with vector meson production channels. Quantitative estimates of the achievable statistical
and systematic accuracy were not made during the INT program, but the necessary tools
are now in place and results should be available soon.

Ji’s angular momentum sum rule condenses the connection between generalized parton
distributions and parton angular momentum into a single number for each quark flavor and
for the gluon. To evaluate this sum rule from exclusive measurements is truly challenging
for several reasons. The most serious among them is that one needs to reconstruct the
full « dependence of GPDs from observed scaling violations in Q2. As already mentioned,
the large kinematic coverage of an EIC provides a good starting point for such a program,
but it remains to be seen which accuracy can be attained for the angular momentum. We
regard this as a long-term endeavor, which will profit from the progress one can expect in
the coming years from the 12 GeV program at Jefferson Lab.

Physics opportunities in electron-nucleus collisions

The EIC will be the world’s first e+A collider. It will significantly extend parton studies
of nuclear structure into the regime dominated by sea quarks and gluons. Prior fixed target
DIS measurements on nuclei revealed that the ratio of nuclear to nucleon cross sections
is significantly less than unity (normalized by the atomic mass number) both at large =
(the EMC effect) and at small z (shadowing). These interesting nuclear phenomena were
however only observed for valence and (to a lesser extent) sea quarks. The nuclear gluon
distribution is very poorly constrained at all x values, especially at x < 0.01 where it is
completely unknown. EIC could reveal surprises in our fundamental understanding of the
parton structure of nuclei in this terra incognita.

A fundamental feature of QCD is gluon saturation, which arises as a consequence of the
fact that gluon distributions at a fixed Q% cannot grow rapidly indefinitely with decreasing
x. The properties of matter in this novel saturation regime of strong color fields in QCD
is described by a saturation scale which grows both with decreasing x and with increasing
nuclear size. Model estimates of this nuclear “oomph” give a saturation scale in a large
nucleus at EIC energies to be of the same magnitude as the saturation scale in a proton at a
TeV scale electron-proton collider; electron-nucleus collisions therefore provide an efficient
method to explore saturation in QCD.

As a consequence of asymptotic freedom, the large saturation scale (relative to the intrin-
sic QCD scale Agcp) accessible at an electron-nucleus collider implies that the properties
of saturated gluon matter at small z can be computed systematically using weak coupling
techniques and compared to experiment. One such weak coupling approach is the Color
Glass Condensate (CGC). Renormalization group (RG) methods in the CGC are used to
compute observables in electron-nucleus collisions that are sensitive to the energy evolu-
tion of particular many-body gluon correlators. These correlators, classified as “dipole”,
“quadrupole” and “multipole” effective degrees of freedom from their color structure, are
universal. Final states in proton-nucleus and nucleus-nucleus collisions can also be expressed



in terms of these objects. Properties of multipole degrees of freedom can be inferred from
measurements of cross-sections for specific final states in one of these reactions and used
as an input in computations of cross-sections for other final states, thereby providing an
important test of the validity and limits of the CGC effective theory. A further interesting
possibility is that multipole correlators at very high energies become independent of the
initial conditions specific to a particular nucleus that are inputs at a given x scale to the
RG evolution equations. While it appears unlikely that an EIC would have sufficient energy
to access this asymptotic regime, DIS off different nuclei can provide important constraints
on pre-asymptotic trends in that direction.

At large x in nuclei, DIS corresponds to the virtual photon scattering off quarks, with the
nucleus acting as an extended colored medium that interacts with the hard colored probe.
Because the energy and momentum resolution of the probe can be accurately controlled
in DIS, one can quantitatively address, with a precision unmatched at hadron colliders,
interesting questions about the nature of multiple scattering and p, broadening, energy
loss and fragmentation, and the propagation of heavy quarks and jets in colored media.
Perturbatively calculable short distance physics can be isolated from the hadronization
mechanism by tuning the energy and momentum resolution of the virtual photon probe to
shed new light on the latter both in medium and in the vacuum. While some such studies
have been performed previously at fixed target DIS facilities and in proton-nucleus collisions,
the extended kinematic reach, collider geometry and precision probes will vastly add to their
scope, allowing for definitive answers to enduring questions about in-medium properties of
QCD. For instance, the propagation of heavy charm and beauty quarks in medium will be
quantitatively studied in DIS for the first time. In addition to being interesting in their own
right, DIS studies of parton propagation in ”cold” QCD media are an important benchmark
for a quantitative understanding of their role in the hot QCD medium produced at RHIC
and the LHC.

An important opportunity to understand the role of gluons in the structure of short
range nuclear forces is made possible by exclusive measurements with EIC of open heavy
flavor and quarkonium in DIS off light nuclei. Other interesting studies at large x where
the kinematic reach of EIC will complement the Jefferson Lab 12 GeV program include the
EMC effect and generalized parton distributions for nuclei.

A number of experimental observables have been identified that can shed light on the
compelling physics issues outlined. One set of golden measurements include the inclusive
structure functions F5 and F7, for light and heavy nuclei. They will provide the first ever
unambiguous measurements of nuclear gluon distributions. Studies of the evolution of quark
singlet and gluon distributions with = and Q2 for light and heavy nuclei can systematically
uncover the breakdown of leading twist evolution, the onset and development of non-linear
saturation dynamics and enable extraction of the corresponding saturation scale. Another
set of golden measurements are provided by semi-inclusive DIS (SIDIS) off nuclei. Di-
hadron correlations in particular, are very sensitive to non-linear QCD evolution, and allow
for clean extraction of the saturation scale. They will corroborate (or invalidate) claims of
saturation seen in di-hadron correlations in deuteron-gold collisions; more generally, they
enable the previously discussed tests of universality of multipole correlators at small .
Golden measurements at large = are semi-inclusive production of light and heavy flavors
and jets. These provide unique insight into energy loss and parton shower development in
an extended colored medium, as well as into the dynamics of hadronization in this many-
body environment. The heavy flavor and jet measurements will be the first of their kind in
nuclear DIS; we note that feasibility studies for them are still in a preliminary stage.



In addition to these golden measurements, there are several important measurements
classified as “silver” instead of gold only in a relative sense. The most important among
these are the diffractive structure functions F» p and Fy, p which will be extracted for nuclei
for the very first time. At HERA, these structure functions, for protons, constituted more
than 15% of the cross-section; the predictions of saturation models is that this fraction will
be significantly larger in nuclei. Exclusive production of vector mesons and deeply virtual
Compton scattering probe the spatial distribution of partons in nuclei; at small z, they can
help clarify the interplay between saturation and the effects of chiral symmetry breaking
and confinement.

Finally, a frequently posed question is whether proton/deuteron-nucleus scattering can
provide the same information content as electron-nucleus collisions. In the former, the
computation of final states, in leading twist kinematics, contains convolutions over par-
ton distributions in the nucleon projectile as well as that in the target. In addition, for
a number of final states, a large number of parton scattering reactions are likely to con-
tribute. This significantly compromises the accuracy to which one determines the parton
structure of the target. For fundamental questions regarding the spatial distribution of
partons and color singlet structures exchanged in hard diffractive scattering, there are es-
sential qualitative differences in hadron-hadron and lepton-hadron processes arising from
the lack of universality in key aspects of the dynamical structure of nucleons and nuclei.
Thus while proton/deuteron-nucleus scattering at high energies has the strong potential to
be a discovery machine for new QCD physics, uncovering the origins of such physics and
its implications for our fundamental understanding of the parton structure of nuclei, will
require an EIC.

Electroweak interactions and physics beyond the Standard
Model

While the EIC is discussed primarily for the study of the strong interactions, its physics
case is strengthened by its potential to contribute to electroweak studies as well. Experi-
ence has shown that a new accelerator that pushes the frontiers either in energy, and/or
luminosity and intensity, is of interest for studies of electroweak physics. We have already
mentioned that precision studies of (parity-violating) electroweak spin structure functions
would be possible at the EIC, giving new insights into nucleon spin structure. However,
the electroweak physics case for the EIC is broader as it would also allow measurements of
parameters of the electroweak theory. Studies presented in detail in the INT report suggest
that for high energy and luminosity there would be excellent prospects for extractions of
the Weinberg angle, which should even be possible over a fairly wide range in Q? so that
its running can be further studied in detail. In this way, the EIC would complement the
precise LEP and SLD measurements on the Z-pole, atomic parity-violation measurements,
the SLAC E158 Mgller scattering data, and the NuTeV data whose final value is in fact
around three standard deviations above the SM prediction. Comparison of the EIC results
for sin? @y with those on the Z-pole in particular can be used to search for new physics
effects. Some of the experimental systematics involved at the EIC are broadly understood,
byt may still need further work to clarify. A full “global survey” of electroweak parameters
from EIC data — much in the spirit of the approach also taken at HERA — is still outstand-
ing but planned. In addition, the EIC might possibly be able to open a direct window on
beyond-Standard Model physics, assuming that conditions are favorable. Studies indicate



that the EIC might be able to perform a sensitive search for a third generation leptoquark in
electron-tau conversion ep — 7.X, with potential reach well beyond that in previous studies
at HERA.

EIC Accelerator Design

Two substantial, focused efforts at developing a design for the electron-ion collider in
the U.S. based on existing accelerators are underway at Brookhaven National Laboratory
and Thomas Jefferson National Accelerator Facility. At BNL, the eRHIC design utilizes a
new linear electron accelerator to collide with the existing polarized proton and ion beams
of the operating Relativistic Heavy Ion Collider (RHIC). At JLab, the ELIC design employs
new electron and ion storage rings together with the 12 GeV upgraded existing CEBAF.
Although based on two different, existing accelerators, because they are driven by the same
science objectives, the two U.S. EIC design efforts have similar characteristics. The most
important include:

e highly polarized (> 70%) electron and nucleon beams
e jon beams from deuterium to the heaviest nuclei - uranium or lead

e center of mass energies: from about 20 GeV to about 150 GeV

e maximum collision luminosity ~ 1034 cm=2 s~}

e non-zero crossing angle of colliding beams without loss of luminosity (so-called crab

crossing)

e cooling of the proton and ion beams to obtain high luminosity

e staged designs where the first stage would reach CM energies of about 70 GeV

e possibility to have multiple interaction regions

It is clear from the EIC physics studies that with a luminosity of ~ 1033 cm™2 s7!
operating for about a decade ground breaking new experiments to probe our understanding
of QCD will become feasible. This would require delivery of order 50 fb~! with polarized
nucleon and heavy ion beams to experiments in about a decade. This would be 100 times
more integrated luminosity than recorded over a decade at the only previous electron-proton
collider, HERA at DESY. With a luminosity of ~ 10* cm=2 s~!, precision imaging and
electroweak experiments become feasible at EIC.

The EIC accelerator designs being considered will require significant R&D for realization.
The cooling of the hadron beam is essential to attain the luminosities demanded by the
science. Development of a new technique, coherent electron cooling, is underway at BNL
while conventional electron cooling is being pushed to high RF power at JLab. Energy
recovery linear accelerators at high energy and intensity are a key technology for EIC.
Further, the eRHIC design demands an increase in the intensity produced by polarized
electron sources of over an order of magnitude beyond what is available at present. The
ELIC design utilizes novel figure-8 storage rings for both electrons and ions.

In Europe, two electron-ion collider accelerators are under consideration. At the Large
Hadron Collider at CERN, physicists are considering colliding an electron beam (either a
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linac or ring) with energy of about 70 GeV with the existing unpolarized proton and heavy
ion beams. The present LHeC design can reach a CM energy of about 1.4 TeV with a
luminosity of 103 em™2 s~!'. At GSI in Germany, an Electron-Nucleon Collider (ENC)
would be realized by colliding electrons in a 3 GeV storage ring with 15 GeV protons in
the High Energy Storage Ring of the planned Facility for Antiproton and Ion Research
(FAIR). The CM energy at ENC is about 14 GeV and the expected luminosity is about
1032 cm~2 s~!. Thus, the two European colliders differ in CM energy by about two orders of
magnitude, in colliding luminosity by about one order of magnitude, and have very different
scientific objectives.

EIC Detectors

Optimized detectors are essential to carry out the ground breaking experiments planned
at EIC. The design of EIC detectors is intimately connected to the design of the EIC accel-
erator interaction regions (IR) through the location of magnets, configuration of crossing
angles, and available space. A particular challenge is to detect forward-going scattered
protons from exclusive reactions, as well as decay neutrons from the break-up of ions in
incoherent diffraction. Past experience at colliders with lepton beams has shown that syn-
chrotron radiation generated by bending the electron beam close to the IR can produce
challenging backgrounds for detectors.

Detector concepts for EIC are being developed and are guided both by the demands
of the scientific program and by the experience with ZEUS and H1 at HERA. The EIC
detector will certainly include a large central detector likely containing a solenoidal mag-
netic field (of order 4 T); trackers for momentum and angular resolution; electromagnetic
and hadronic calorimetry; particle identification involving Cerenkov detectors, and vertex
detectors. Further, detectors in the forward and backward directions will be required to
augment the large central detector. These are necessary to detect hadrons from low x pro-
cesses and will require particle identification, calorimetry (both electron and hadron) and
possibly magnetic field. With multiple interaction regions, it may be more advantageous
to consider different detectors (e.g. forward/backward vs. central, high luminosity vs. low
luminosity) for different IRs.

Minimizing the effects of systematic uncertainties is an important aspect of detector
design. Absolute and relative luminosity determination is a key to extracting important
observables, for instance the longitudinal structure function or small polarization asymme-
tries. Measurement of the polarization of electron and hadron beams has a high priority.
As with the EIC accelerator, R&D for EIC detectors will be essential.
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Tables of golden measurements

Deliverables

Spin and flavor structure of the nucleon

polarized gluon

Observables |

scaling violations

What we learn |

Requirements

distribution Ag

polarized quark and

in inclusive DIS

semi-incl. DIS for

gluon contribution

to proton spin

coverage down to z ~ 107%;

L of about 10 fb~!

antiquark densities

novel electroweak

pions and kaons

inclusive DIS

quark contr. to proton spin;

asym. like Ad — Ad; As

similar to DIS;
good particle ID

spin structure functions

at high Q2

flavor separation

at medium z and large Q?

V5 >100GeV; £ >10fb~!

positrons; polarized *He beam

di-hadron (di-jet)

spin-orbit

Three-dimensional structure of the nucleon and nuclei: transverse momentum dependence
Deliverables Observables | What we learn Phase I | Phase II
Sivers and SIDIS with transv. | quantum interference valence+sea 3D Imaging of
unpolarized polarization/ions; multi-parton and quarks, overlap
TMDs for

quarks and gluon;

quarks and gluon

with fixed target

heavy flavors

correlations

experiments

Q? (PL) range

QCD dynamics

Three-dimensional structure of the nucleon and nuclei: spatial imaging

jets

shower evolution;

energy loss mech.

Deliverables Observables | What we learn Requirements
sea quark and | DVCS and J/, p, ¢ transverse images of £>10* em™%s7 !,
gluon GPDs production cross sect. sea quarks and gluons Roman Pots
and asymmetries in nucleon and nuclei; wide range of x5 and Q?
total angular momentum; | polarized e~ and p beams
onset of saturation et beam for DVCS
QCD matter in nuclei
Deliverables Observables | What we learn | Phase [ Phase 11
integrated gluon o p nuclear wave function; gluons at explore sat.
distributions saturation, Qs 103%<z<1 regime
kr-dep. gluons; di-hadron non-linear QCD onset of RG evolution
gluon correlations correlations evolution/universality saturation; Qs
transp. coefficients | large-z SIDIS; parton energy loss,
in cold matter

light flavors, charm

bottom; jets

precision rare

probes;

large-z gluons

Deliverables Observables

Electroweak interactions and physics beyond the Standard Model

Weak mixing | Parity violating

What we learn

Phase 1

Phase 11

angle asymmetries in

ep- and ed-DIS

e-T conversion

physics behind electroweak

symmetry breaking
and BSM physics

over limited

good precision

range of scales

high precision

over wide range

ep — 1, X

flavour violation

induced by BSM physics

challenging

of scales

very promising
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1.1 Introduction and Chapter Overview
Marco Stratmann

Two weeks of the INT program on “Gluons and the Quark Sea at High Energies”
were devoted to the physics of unpolarized and polarized parton distribution functions.
A compelling set of physics opportunities at an EIC has emerged from lively discussions
among the participants and subsequent interactions with the hadron structure community.
This Chapter outlines the identified open fundamental questions in hadronic physics and
the “golden measurements” and experimental requirements to thoroughly address them at
a future EIC. The anticipated results will have a profound influence on our understanding
of the spin and flavor structure of nucleons.

Sixteen years of operations at DESY-HERA had a transformational impact on the way
we view the internal partonic content of nucleons and have led to various new developments
in the field of Quantum Chromodynamics. The experiments have left a rich legacy of results,
the most prominent ones being the strong rise of the gluon density at small momentum
fractions z, the large portion of diffractive events, and the transition from high to low
momentum transfer () for various processes. Likewise, vigorous experimental programs
with polarized beams and targets in the past twenty-five years at all major laboratories
have brought us closer to pinpoint the various contributions to the proton’s spin. They also
revealed novel, often puzzling phenomena which initiated new directions of research in spin
physics such as transverse-momentum dependent parton densities; see Chapter 2.

In each case, the experimental progress was matched by considerable theoretical efforts in
Quantum Chromodynamics. Most notable in this context are the level of precision reached
in higher-order calculations in perturbative QCD and the much refined global analysis
tools to reliably extract information on parton densities from data and to determine their
uncertainties. Yet, there is still a significant lack of understanding on quite a few outstanding
issues. An EIC will prove crucial in addressing them by making use of the anticipated high
luminosities and the variability of beam energies.

Of course, due to the lower center-of-mass system energies of an EIC as compared to
HERA one cannot extend the kinematic reach towards smaller values of x for unpolarized
electron-proton collisions. Also, over the next couple of years the CERN-LHC will provide
a great deal of information on helicity-averaged parton densities in a broad range of z from
various different hard scattering processes up to very large resolution scales (). The 12
GeV upgrade of the CEBAF facility at Jefferson Laboratory is designed to map parton
distributions up to very large values of x at scales @ of a few GeV to test how well, for
instance, counting rules apply. Therefore, we expect that most aspects of unpolarized parton
densities will be sufficiently well known by the time an EIC is expected to turn on, with
some important exceptions to be discussed below.

The situation is rather different for spin physics where the bulk of experimental informa-
tion stems from fixed-target lepton-nucleon scattering experiments at rather low energies.
Ideas to turn HERA into a polarized electron-proton collider never materialized. Exist-
ing experiments studying the helicity structure of the nucleon, like PHENIX and STAR
at RHIC, will continue to add data in the next couple of years. In particular, measure-
ments of double-spin asymmetries for di-jets in pp collisions at 500 GeV should improve the
current constraints on the polarized gluon density Ag(x) and extend the covered x range
towards somewhat smaller values. Parity-violating, single-spin asymmetries for W boson
production should reach a level where they help to constrain the spin-dependent u and d
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quark and antiquark densities at medium-to-large x. At JLab-12 the focus is again on the
large x frontier at moderate values of ) to address to what extent quarks obey helicity
retention which predicts that in the limit * — 1 quark and nucleon spins become fully
aligned. Ultimately, all these efforts are limited by their kinematic coverage both in z and
in Q. Since the most fundamental open questions in spin physics concern the polarization
of wee partons, see below, there are many opportunities for a high-energy polarized EIC to
contribute significantly due to its unique capabilities to access values of x down to about
10~4. This is central to finally determine and understand the role of quarks and gluons in
the spin decomposition of the nucleon.

Factorization of experimental observables into non-perturbative parton densities and
calculable hard scattering cross sections is the cornerstone for the theoretical application of
QCD at high energies within perturbative methods. Available QCD calculations for inclu-
sive and semi-inclusive deep-inelastic scattering processes will allow us to confront future
high-statistics EIC data with theory at the necessary very high level of precision. A brief
account of the status of perturbative QCD calculations for most of the key measurements
at an EIC is given in Sec.

Since the EIC is a natural extension of the physics program carried out at HERA
both in terms of the anticipated significant increase in luminosity and the possibility to
have polarized beams, we summarize the latest status of HERA data based on the recent
combination of results from the H1 and ZEUS experiments in Sec. [[.3l This discussion also
helps to expose the open questions about the structure of unpolarized nucleons an EIC can
elucidate and which cannot be answered solely by measurements at the LHC. The most
compelling ones comprise

e the longitudinal structure function Fp,
e the elusive strangeness and anti-strangeness densities,
e and heavy flavor contributions to deep-inelastic scattering.

A detailed account, including other second tier opportunities is given in Sec. [[4l

An EIC could make the first precise measurement of F7 in a kinematic range that
overlaps both previous fixed-target and HERA data, none of which very precise. Fp, is
particularly sensitive to the gluon distribution and QCD dynamics at small  which makes
it a promising candidate to study the transition to the high parton density regime, i.e.,
the phenomenon of saturation, with an inclusive observable. While one does not expect
non-linear effects to be of significant relevance in electron-proton collisions at an EIC, a
measurement of F7, provides the baseline for similar studies in electron-heavy ion collisions.
Here, the onset of saturation effects is expected already at x ~ 1072 which elevates FJ,
to one of the golden measurements to be performed at the EIC; see Chapter 5 on QCD
matter under extreme conditions for details. The determination of F}, relies on an accurate
measurement of the variation of the so-called reduced cross section for fixed values of x and
Q at different c.m.s. energies /s. The large variability of beam energies at sustained large
luminosities is a particular strength of an EIC and proves critical for this measurement. A
first feasibility study for electron-proton collisions can be found in Sec.

Semi-inclusive deep-inelastic production of identified pions and kaons is expected to
be the most viable and promising way to determine differences among parton distribution
functions for different quark flavors or between quarks and anti-quarks. Such measurements
make use of the different probabilities for producing a certain hadron species from a given
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quark flavor or gluon and have been successfully performed at fixed-target experiments such
as HERMES. The EIC offers unprecedented opportunities to extend the kinematic reach
toward small z or large ). In particular, the elusive strangeness density and a possible
asymmetry between strangeness and anti-strangeness distributions can be deduced from
charged kaon production yields. Prerequisites are an excellent particle identification in most
of the phase space and a thorough theoretical understanding of the hadronization of quarks
and gluons into the observed hadrons. In collinear factorization, the latter information is
encoded in non-perturbative fragmentation functions which are constrained by a wealth of
available experimental data on single-inclusive hadron yields. Further significant progress
on the quality of such fits is expected once upcoming data from B factories and the LHC
are included. In Sec. we present a first feasibility study for charged kaon production at
the EIC.

Heavy flavors, in particular charm quarks, can give a sizable contribution to deep-
inelastic scattering structure functions. Within the foreseen EIC kinematics charm yields
up to 10 =+ 15% of the inclusive cross section. The theoretical framework for heavy quark
production is much more complex than for light (massless) quarks due to the presence
of multiple scales. The mass of the heavy quarks prevents them from having a partonic
interpretation, and they can be only produced externally, for instance, by photon-gluon
fusion. This framework yields a very good description of all available HERA data within
the present uncertainties and is expected to be relevant also in the entire kinematic regime
of an EIC. Nonetheless, one may introduce heavy quark densities for asymptotically large
scales, i.e., () > m, and smooth interpolation schemes have been devised which incorporate
the correct threshold and asymptotic behavior. The relevant theoretical framework and
recent progress on higher order calculations is briefly reviewed in Sec. [L7

The charm contribution to the longitudinal structure function F7, is expected to be
particularly sensitive to mass effects and has never been measured before. A first feasibility
study within the kinematics of an EIC can be found in Sec.[I.8l An EIC is also well suited to
address the long-standing question of a possible relevance of a non-perturbative “intrinsic”
charm contribution in the nucleon wave-function, mainly concentrated at large momentum
fractions. Quantitative estimates based on models for an intrinsic charm contribution are
promising and can be found in Sec.

The physics opportunities with polarized lepton and proton beams are even more multi-
faceted and will address some of the most fundamental open questions in hadronic physics
for which one has been seeking answers for more the two decades now. Thus, the anticipated
results will have far-reaching impact on our understanding of the nucleon’s spin structure.
The unique capability of the EIC to reach small momentum fractions x or large scales Q
in longitudinally polarized electron-proton collisions with high luminosity will enable us to
explore in detail

e the polarized gluon distribution and its contribution to the proton’s spin,

e the individual light quark helicity distributions in a broad kinematic range,
e novel electroweak structure functions,

e and the strangeness and anti-strangeness polarizations.

The latest status of global QCD fits to helicity dependent parton densities, which is not
expected to improve much by the time the EIC would turn on, and the set of questions we
want to address at the EIC are laid out in some detail in Sec. [L.10
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Precise measurements of the polarized structure function ¢g; in a wide kinematic range
will be a flagship measurement for the EIC. The gluon helicity distribution Ag is strongly
correlated with QCD scaling violations, i.e., the () dependence of g1 at a given x. This
will allow for a determination of Ag down to unprecedented small values of x of about
10~%. This in turn will eventually pinpoint the elusive gluon contribution to the spin of the
proton, given by the integral of Ag over all momentum fractions z, to about 10% accuracy
or better. The striking quantitative impact on extractions of Ag based on projected EIC
data is demonstrated in Sec. [LTIl The same set of inclusive measurements will also provide
a significantly better determination of the total quark contribution AY both as function of
x and the integral relevant for the nucleon spin sum.

Like in the unpolarized case, see Sec. [[Lh] the best strategy to achieve a full flavor and
quark-antiquark separation of polarized helicity densities is based again on semi-inclusive
deep-inelastic hadron production. The kinematic coverage in  and @) is similar to what
can be achieved in inclusive DIS, with the extra theoretical complication of the need for
fragmentation functions to model hadronization. At medium-to-large values of x one can
address with precision certain interesting asymmetries in the polarized quark sea like Au —
Ad (from charged pion yields) and perhaps even As — A3 (from charged kaon yields). The
first quantity is predicted to be sizable in several model calculations of the nucleon but the
precision of current experiments only gives a first hint of a possible non-zero asymmetry; the
latter quantity may help to understand why the sum As + AS appears to be much smaller
in current experiments than expected. If As and AS have their spins anti-aligned their
sum could be small but the asymmetry would be sizable. Constraints from hyperon decay
matrix elements and arguments based on SU(3) symmetry predict a significant negative
total (z integrated) strange quark polarization. To address the validity of this constraint
and to access to what extent SU(3) symmetry is broken one needs to determine As down
to small values of x to obtain a reliable estimate of its x integral. This is another unique
measurement to be performed at the EIC.

First simulations of electroweak neutral and charged current deep-inelastic scattering at
the EIC in Sec. show that such measurements become feasible already with relatively
modest integrated luminosities. The corresponding structure functions for polarized pro-
tons have never been measured before and probe combinations of quark flavors other than
in one-photon-exchange dominating at low Q. To fully exploit the potential of the EIC
for such measurements positron beams are required, albeit not necessarily polarized. An
effective source of polarized neutrons such as a Helium-3 beam would be highly desirable.
When combined, these measurements will greatly aid the flavor decomposition of polarized
parton densities at medium-to-large x, free of any hadronization ambiguities. At the highest
c.m.s. energies and luminosities also photon-Z boson interference contributions to structure
functions should be accessible at the EIC. The production of charmed mesons in charged
current DIS events is an alternative probe for the strange and anti-strange densities both
unpolarized and polarized. This is discussed in Sec.

Table [LT] summarizes the identified golden measurements, science deliverables, and ex-
perimental requirements in spin-dependent lepton-proton collisions at an EIC. Other, second
tier measurements with polarization involve the currently unknown charm contribution to
the deep-inelastic structure function g; which offers sensitivity to Ag through photon-gluon
fusion. Some expectations can be found in Sec. [LTIl If an effective neutron beam is avail-
able one can also attempt to determine the fundamental Bjorken sum rule at a few percent
level. The Bjorken sum is probably one of the most precisely calculated quantities in per-
turbative QCD and provides an interesting link to the Adler D function in electron-positron
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Deliverables Observables What we learn Requirements

polarized gluon scaling violations gluon contribution coverage down to z ~ 107%;
distribution Ag in inclusive DIS to proton spin L of about 10fb™!
polarized quark and semi-incl. DIS for | quark contr. to proton spin; similar to DIS;
antiquark densities pions and kaons asym. like A — Ad; As good particle ID
novel electroweak inclusive DIS flavor separation V5> 100GeV; £ > 10fb~!
spin structure functions at high Q2 at medium z and large Q? positrons; polarized *He beam

Table 1.1. Golden measurements in polarized ep collisions at an EIC.

annihilation through the so-called Crewther relation.

Finally, the production of hadronic final states in electron-proton collisions is dominated
by the exchange of photons of almost zero virtuality. Photoproduction measurements and,
in particular, the exploration of kinematic regimes where so-called “resolved photon” con-
tributions dominate was one of the great successes of the HERA physics program. Resolved
processes, where the photon interacts with the proton through its non-perturbative source
of partons, offer a fresh look at these densities which are so far mainly determined from
not very precise LEP data. Given the anticipated high luminosity, an EIC can elevate
these studies to a level of unprecedented precision, and, thanks to the polarized beams,
allows one to investigate for the first time also the non-perturbative structure of circularly
polarized photons. A good knowledge of the partonic structure of photons is essential for
part of the physics program of a possible future linear collider. The general framework for
photoproduction and two examples of physics studies are presented in Secs.

To summarize, the physics goals of the EIC should be ambitious and must offer detailed
answers to all the open fundamental questions concerning the spin and flavor structure
of nucleons laid out above. The following Sections will outline the path to achieve these
goals. The program bears significant experimental challenges which all need to be carefully
addressed to reach the desired unprecedented level of precision. With the exception of
some of the electroweak structure function measurements, most observables will be quickly
limited by systematic uncertainties, intrinsic ambiguities of the extraction method like, for
instance, the Rosenbluth separation for Fj, and the way how well we can control QED
radiative corrections to unfold the information one is actually interested in. Experimental
aspects will be discussed in Chapter 7.
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1.2 Status of Perturbative QCD Calculations

Sven-Olaf Moch

1.2.1 Introduction

Deep-inelastic scattering (DIS) and the observed scaling violations are at the very center
of the formulation of QCD as the gauge theory of the strong interactions [II 2].

Over the decades the experiments using lepton and neutrino scattering off fixed targets
at CERN, FNAL, SLAC, and JLAB as well as electron-proton collisions at the HERA
collider at DESY have provided unique insight into the nucleon structure with the available
high precision experimental data spanning a large kinematical range. Dramatic further
improvements can be expected from the planned electron-ion collider EIC.

The key observables are either inclusive structure functions or differential cross sections
in the semi-inclusive case, which parametrize the hard hadronic interaction in the QCD
improved parton model. The particle data group (PDG) [3] provides a very readable account
of DIS, including the definitions of kinematic variables, etc.

£

[ e
IAVAVAVAVAVR

\

Figure 1.1. QCD factorization of the cross section for the scattering of a deeply virtual boson with
(space-like) momentum ¢ (—¢? = Q% > 0) off a proton with momentum P in their center-of-mass

frame, see Eq. ().
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Precision predictions in perturbative QCD rest on the fact that we can separate the
sensitivity to dynamics from different scales, i.e., the physics at scale of the proton mass from
hard, high-energy scattering at a large scale Q2. For lepton-proton DIS in the one-boson
exchange approximation this is depicted in Fig. [[LTl For unpolarized DIS, this factorization
at a scale p allows to express the structure functions Fj (k = 2,3, L) as convolutions of
parton distributions (PDFs) f; (i = ¢,q,g) and short-distance Wilson coefficient functions
Ch,is

1
Fi(z,Q% = Z / dz f; (%,f) Ch,i (z,Q2,a5(,u),,u2) , (1.1)
i=q,4,9 * "

up to corrections of higher twist O(1/Q?). The coefficient functions Ck, are calculable
perturbatively in QCD in powers of the strong coupling constant g,

C = CO4a,0W+a20® 20+, (1.2)
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with the expansion coefficients C'©) denoted as the leading order (LO), CY) the next-to-
leading order (NLO) and so on. The PDFs f; describe the fraction z = Q?/(2P - q) of
the nucleon momentum carried by the quark or gluon. PDFs are non-perturbative objects
and have to be obtained from global fits to experimental data or determined, e.g., by
lattice computations. Perturbation theory, however, provides information about their scale
dependence, i.e., the well-known evolution equations,

1
d fqz‘(mnuz) _ Z / d_Z PQin(Z) qu'g(z) fQj(x/Znuz) ] (1‘3)
dln p? fg($aﬂ2) i z qu]‘(z) Pyy(2) fg(iE/Z,,uZ)
The splitting functions P;; are universal quantities in QCD and describe the different pos-

sible parton splittings in the collinear limit. Like the C} ; also the P;; can be computed in
a power series in ag,

P = a,PO1+a2P0 1a3pPp® 4 (1.4)

Analogous formulae hold for the polarized DIS structure functions. In particular, for
g1 one may apply the obvious replacements f; — Af;, Cp; — ACy, ;, and Pj; — AP;
in Egs. (LI)-(T4). QCD factorization has also been established for (semi-)inclusive deep-
inelastic scattering (SIDIS), where the cross section d?c/dxd@? is subject to a decompo-
sition similar to Eq. (II). Although, in that case, the process dependent hard parton
scattering cross sections need to be augmented by an additional prescription for the final
state parton, e.g., a jet algorithm or fragmentation functions.

1.2.2 Current status

QCD predictions for DIS observables have reached over the years an unprecedented
level of precision. All quantities in Eqs. (ILI)—(T4)) have been computed to higher orders in
perturbation theory so that the effect of radiative corrections on those observables is well
understood and largely under control. In the case of unpolarized DIS, the splitting functions
P;; are known to NNLO [ [5] and, likewise, the coefficient functions Cy; [0 [7, 8 ©]. For
photon and charged current W*-boson exchange, even the hard corrections at order O(a?2)
are available [I0] [II]. In the case of polarized DIS, the spin dependent splitting functions
AP;; at two loop order have been obtained some time ago [12, 13]. At NNLO, the polarized
splitting functions AP, and AP,, have been reported [I4], and the coefficient functions
ACy, ; are available from [I5]. For semi-inclusive observables, the QCD corrections are
typically known to NLO. This corresponds to O(a?) since the underlying Born cross section
behaves as d?0(?) /dzdQ? ~ O(as) due to the additional final state parton. Processes
considered include, for instance, the electro-production of hadrons with high transverse
momentum [16], [I7] or single inclusive DIS jet cross sections [1§].

The currently available QCD predictions for inclusive DIS and SIDIS put us in comfort-
able position to confront experimental data with theory at a very high level of precision.
In these comparisons, we no longer test QCD. Rather we use perturbative QCD as an es-
sential and established part of our theory toolkit to deduce important information about
PDFs or the value of the strong coupling constant as(Myz). Of course, this is a situa-
tion that, generally, needs to be addressed also beyond DIS, since experimental data from
the unpolarized (anti-)proton-proton colliders Tevatron at FNAL and the LHC at CERN
as well as from the polarized proton-proton collider RHIC at BNL help to further con-
strain the non-perturbative input to QCD precision predictions. See, e.g., the analyses of
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unpolarized PDFs to NNLO in Refs. [19, 20, 21} 22] or recent studies of polarized PDF's
in [23] 24} 25| 26 27, 28].

Given the current status of perturbative QCD, experimental data from a future program
of electron-ion collisions, EIC, can help to address and clarify a number of still open and
yet very relevant questions; see also Secs. [[.4] and [[LTIl For the case of unpolarized PDF's
improvements can be made with respect to the flavor asymmetry of sea quarks at low x
and the valence quarks at large x, by studying, e.g., electron-deuteron collisions. Much of
the physics case here had already been investigated in an assessment of the experimental
prospects of electron-deuteron scattering at HERA some time ago [29]. More generally, the
high luminosity of an EIC would further constrain PDFs, especially the gluon at low x and
Q2. In this context, a precision measurements of the longitudinal structure function FJ,
which is an observable predominantly driven by the gluon PDF is of high interest as it would
complement and, eventually even supersede, existing experimental data, see, e.g., [30]. New
high statistics DIS experiments can also improve the current precision of strong coupling
constant «; measurements in space-like kinematics.

For polarized DIS, a very fundamental question still remains the understanding of the
proton spin, in particular, whether the polarized gluon PDF Af, provides a significant
contribution. To that end, an extension of the kinematical coverage in = and Q?, as it could
be achieved by an electron-ion collider, is of paramount importance. This would help to
access higher scales in ? in order to test the perturbative evolution Eq. (I3). Likewise,
access to an extended xz-range allows for a better determination of moments of the Af;.
They also enter, e.g., in the Bjorken sum rule for polarized electro-production, which is
again an observable very well-known in perturbative QCD [31}, [32]. Other issues of interest
for polarized DIS in electron-ion collisions concern a reliable extraction of flavor structure
as well as a study of strangeness PDFs, A f;.

1.2.3 Summary

We have briefly summarized the current status of perturbative QCD predictions for DIS
experiments. To date, we can build on a very mature understanding of the theory, which
could be confronted with experimental data from a future electron-ion collider in order
to improve our knowledge about the fundamental structure of matter and the important
dynamics of quarks and gluons in nucleons.
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1.3 Unpolarized Proton Structure - HERA’s Legacy

Amanda Cooper-Sarkar (for the H1 and ZEUS Collaborations)

1.3.1 Introduction

HERA data provide the most insight into the behaviour of unpolarized parton distribu-
tion functions (PDFs) at present and as such represent an integral part of all global QCD
analyses. The H1 and ZEUS experiments are combining their various sub-sets of data so as
to provide a legacy of HERA results. The combination of inclusive cross section data from
HERA-I and the PDF fit based on these data are already published [20]. In 2010 further
data have been combined and PDF fits to the augmented data sets have been made available
in preliminary form. In Sec. results from the published combination are reviewed. In
Sec. results from a combination of F5¢ data are presented and their sensitivity to the
mass of the charm quark and the choice of the heavy flavor scheme adopted in the global
PDF fit is discussed. In Sec. L34 results from the combination of inclusive cross section
data taken at lower proton beam energies are discussed. Finally, in Sec. an updated
combination of all inclusive data from HERA-I and HERA-II running is shown and a PDF
fit to these data is presented.

1.3.2 Inclusive data from HERA-I running (1992-2001)

The inclusive cross section data, from the HERA-I running period, for Neutral Current
(NC) and Charged Current (NC), e™p and e~ p scattering have been combined [20]. The
combination procedure pays particular attention to the correlated systematic uncertainties
of the data sets such that resulting combined data benefits from the best features of each
detector. The combined data set has systematic uncertainties which are smaller than its
statistical errors and the total uncertainties are small (1 — 2%) over a large part of the
kinematic plane. The combined data is compared to the separate input data sets of ZEUS
and H1 in Fig.

These data are used as the sole input to a PDF fit called the HERAPDF1.0 [20]. The
motivations for performing a HERA-only fit are firstly, that the combination of the HERA
data yields a very accurate and consistent data set such that the experimental uncertainties
on the PDFs may be estimated from the conventional y? criterion Ay? = 1. Global fits
which include dats sets from many different experiments often use inflated x? tolerances
in order to account for marginal consistency of the input data sets. Secondly, the HERA
data are proton target data so that there is no uncertainty from heavy target corrections
or deuterium corrections and there is no need to assume that d in the proton is the same as
u in the neutron since the d-quark PDF may be extracted from e*p CC data. Thirdly, the
HERA inclusive data give information on the gluon, the Sea and the u- and d-valence PDFs
over a wide kinematic region: the low-Q? NC etp cross-section data are closely related to
the low-z Sea PDF and the low-z gluon PDF is derived from its scaling violations; the high-
x u— and d-valence PDFs are closely related to the high-Q? NC e*p, CC e p, and CC etp
cross sections, respectively; the difference between the high-Q? e~p and e'p cross-sections
gives the valence shapes down to low z,  ~ 1072,

HERAPDF provides model and parametrisation uncertainties on the PDFs as well as
experimental uncertainties; for details, see Ref. [20]. A major contribution to the total
uncertainties in the HERAPDF1.0 set comes from the model uncertainty on the charm
mass value. This can be improved using information from data on F§°.
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Figure 1.2. HERA combined data points for the NC e*p cross section as a function of Q? in selected
bins of z, compared to the separate ZEUS and H1 data sets input to the combination.

1.3.3 Charm data from HERA-I and II running

H1 and ZEUS have also combined their data on F§¢ [20]. In Fig. the combined data
are compared to the separate data sets which go into the combination. These data are input
to the HERAPDF fit together with the inclusive data which were used for HERAPDF1.0.
The x? of this fit is sensitive to the value of the charm quark mass. Fig. [[4] compares
the 2, as a function of this mass, for a fit which includes these data (left) to that for the
HERAPDF1.0 fit (middle). However, it would be premature to conclude that the data can
be used to determine the charm pole-mass. The HERAPDF formalism uses the Thorne-
Roberts (RT) variable-flavour-number (VFN) scheme for heavy quarks. This scheme is not
unique, specific choices are made for threshold behaviour. In Fig. [l (right) the x? profiles
for the standard and the optimized versions of this scheme are compared to two alternative
ACOT VFN schemes and the Zero-Mass VFN scheme. Each of these schemes favours a
different value for the charm quark mass, and the fit to the data is equally good for all
the heavy quark mass schemes; see Fig. (right). However, the Zero-Mass scheme is x?
disfavoured; see Ref. [20] for further details.

1.3.4 Low energy proton beam data from 2007

In 2007 NC et p data were taken at two lower values of the proton beam energy in order
to determine the longitudinal strucure function Fr. Some of the H1 and ZEUS data sets
from these runs have now been combined [20] and the results for the NC e*p cross section
are shown in Fig. These data have been input to the HERAPDF fit together with the
inclusive data from HERA-I. The resulting PDF's are compared with those of HERAPDF1.0
in Fig. The low energy data are sensitive to the choice of minimum Q2 (standard cut
Q? > 3.5 GeV?) for data entering the fit. If a somewhat harder cut, Q? > 5 GeV?2, is made, a
steeper gluon distribution results, see Fig. [[L5l whereas for the HERAPDF1.0 this variation
of cuts results in PDFs which lie within the PDF uncertainty bands. This sensitivity is also
present if an x cut, x > 5 x 1074, or a “saturation inspired” cut, Q% > 0.5 z793, is made.
This sensitivity may indicate the breakdown of the DGLAP formalism at low x [33].
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Figure 1.3. Left: HERA combined data points for F§¢ compared to the separate ZEUS and H1 data
sets. Right: HERA combined data points for F§¢ compared to HERAPDF fits to these plus the
inclusive DIS data, for various different heavy-quark-mass schemes.
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Figure 1.4. The x? of the HERAPDF fit as a function of the charm mass m™°%. Left and Middle:
using the RT-standard scheme, when F5§¢ data are not included and included in the fit, respectively.
Right: results for using various mass schemes in the fit to F5° data.
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Figure 1.5. Left: HERA combined data points for the NC eTp cross-section for three different
proton beam energies. Right: PDFSs, zu,, xd,, S = 22(U + D), and xg at Q> = 10 GeV?, for
HERAPDF1.0 and for a HERAPDF fit which also includes the low-energy proton beam data, with
the standard Q? cut, Q? > 3.5 GeV?, and for Q% > 5.0 GeV?,

1.3.5 High-Q? data from HERA-II running

Preliminary H1 data on NC and CC e'p and e~ p inclusive cross-sections and published
ZEUS data on NC and CC e p and CC eTp data, from HERA-II running, have been
combined with the HERA-I data to yield an inclusive data set with improved accuracy at
high Q2 and high 2 [34]. The HERA-I data set and the new HERA I+II data sets are
compared for CC e™p data in Fig. This new data set is used as the sole input to
a new PDF fit called the HERAPDF1.5 which uses the same formalism and assumptions
as the HERAPDF1.0 fit [35]. These fits are superimposed on the corresponding data sets
in the figure. Fig. [T (left) shows the combined data for NC e*p cross-sections with the
HERAPDF1.5 fit superimposed. The PDFs from HERAPDF1.0 and HERAPDF1.5 are
compared in Fig. [T (right). The improvement in precision at high z is clearly visible.

1.3.6 Summary

The status of the combinations of H1 and ZEUS data has been discussed. HERA leaves
rich legacy of results which are the basis for all present QCD analyses of unpolarized PDFs
and define the goals for any future DIS experiment.
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HERAPDF1.5 on the right hand plot.
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Figure 1.7. Left: HERA combined data points for the NC e®p cross-sections for data from the
HERA-I and IT run periods. The HERAPDF1.5 fit to these data is also shown on the plot. Right:
Parton distribution functions from HERAPDF1.0 and HERAPDF1.5; zu,, xd,,zS = 2x(U + D)
and zg at Q% = 10 GeV2.
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1.4 Unpolarized Parton Distribution Functions:
Questions to be Addressed at an EIC

Marco Guzzi, Pavel Nadolsky, Fredrick Olness

1.4.1 Introduction

The Electron-Ion Collider (EIC) will operate at a time when the Large Hadron Col-
lider (LHC) has established a new “gold standard” for perturbative QCD by measuring a
variety of hard-scattering processes. High-luminosity EIC measurements will be very com-
plementary to those at the LHC, as they will accurately probe various aspects of hadronic
structure using independent experimental techniques. In the next few years, when next-to-
next-to-leading order (NNLO) accuracy of QCD calculations becomes the norm, a variety
of perturbative and nonperturbative effects need to be taken into account to match the
precision of multi-loop radiative contributions. Some of these effects can be constrained
solely by the LHC data; others need independent measurements, not affected by systemat-
ical uncertainties present at the LHC. With an integrated luminosity of 10 fb~! or more,
the EIC will disentangle many such effects, including modifications of the nucleon structure
within heavy-nuclei targets, flavor dependence of parton distribution functions (PDFs), and
QCD dynamics at very large or small x.

As compared with previous lepton—nucleus experiments, the EIC will probe to smaller
x values with high precision. In contrast to the HERA ep collider, which explores the same
{x,Q?} region, heavy-ion scattering will achieve much higher partonic densities that are
a prerequisite for the onset of saturation. It will help delineate the kinematical boundary
between the DGLAP factorization and saturated dynamics in the nuclear medium.

The Q? range of the EIC will cover the transition region from the perturbative to the
non-perturbative regime. Here, we wish to learn how the perturbative parton-scattering pic-
ture valid at large momentum transfers matches on nonperturbative models describing the
strongly-coupled resonance region. Understanding of this region is important for hadronic
experiments at the intensity frontier.

1.4.2 Open Questions

Several questions about PDFs will likely remain open at the time of the EIC operation.
Figure shows the kinematic domains in z and Q? probed by current experiment and the
PDFs that are most strongly constrained in these reqions.

Nuclear PDFs. Several groups extract nuclear PDFs and their uncertainties by ana-
lyzing the global data on nuclear targets [36], 37, B8], B9 [40]. In their studies, they find that
the nuclear corrections depend on the type of the nucleus (its atomic number A), flavor
of the probed parton, and even the type of the probing boson. For example, it was found
recently [41}, B7] that the nuclear correction factors preferred by the vFe DIS data by NuTeV
[42] are surprisingly different from predictions based on the /*Fe charged-lepton results.

By performing deep inelastic scattering (DIS) both on proton and heavy-nuclei targets,
the EIC can distinguish between intrinsic properties of the proton and those of the extended
nuclear medium. A high-intensity EIC could use a variety of nuclear beams to precisely
map the A-dependent nuclear correction factors in the {z, @?} kinematic plane and clarify
the behavior of nuclear corrections to NC DIS. Such information is of importance for deter-
mining the proton PDFs, in particular, the strange quark PDF that is constrained largely
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Figure 1.8. Kinematic domains in  and Q? probed by fixed-target and collider experiments, shown
together with the PDFs that are most strongly constrained by the indicated regions [3]. DIS data
off nuclear targets exist only in the fixed-target region.

from the NuTeV data . The nuclear correction affects the uncertainty in s(x, @), which
is large at present and may limit the precision of electroweak studies in W and Z boson
production at the LHC [43].

The topics of nuclear PDFs and saturation will be extensively discussed in the Chapter
5 devoted to eA physics at an EIC.

Better constraints on the strangeness PDF'. Despite extensive investigation, there
remain large uncertainties in flavor differentiation of sea-quark PDFs both in the proton
and nuclei. In particular, the strange quark+antiquark distribution in the proton, s;(z) =
s(z)+3(x), and its asymmetry, s_(z) = s(x)—§(x), are still poorly known [44] 45] [46], 22] [47],
despite their significance for understanding of the nucleon structure. Existing constraints
on the strangeness come predominantly from neutrino (semi-)inclusive DIS [48] [42]. At the
EIC, both sy (x) and s_(x) can be probed in semi-inclusive DIS production of kaons; see
Sec. for some quantitative studies. This measurement will rely on a good understanding
of fragmentation functions, which will be known much better by the time an EIC turns on.

The d/u ratio at large x. Because of its intermediate energy and high beam intensity,
the EIC is ideal for studying parton distributions at large Bjorken x (x > 0.1), where
separation of parton flavors is not fully understood despite many years of experiments.
For example, even the ratio d(x,Q)/u(z, Q) of the dominant up and down quark proton
PDFs at z > 0.3 has been recently put in doubt by contradicting constraints from DIS on
deuteron targets [49] [50] and charged lepton asymmetry at the Tevatron [51] [52]. While the
PDF analysis groups labor to understand these differences [22] [46] 53] (and new clean LHC
measurements of the d/u ratio in proton scattering are in the queue), the EIC will help to
resolve this controversy by extracting the ratio Fj'(x, Q)/F¥ (z, Q) from DIS data on various
nuclear targets. Such measurement will help to separate several types of kinematical and
nuclear corrections ([54], and references therein) that influence the FJ'/F¥ ratio derived
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from nuclear-target DIS.

Gluon PDF in the proton and charm production at large x. Even more uncer-
tainty exists in the gluon PDF g(z, Q) at large x, where it can be larger than the down-quark
d(xz,Q) at z > 0.5 in some recent parametrizations for proton PDFs [55]. This ambiguity
will be reduced by upcoming high-pr jet production at the LHC, but significant systematic
limitations of both experimental and theoretical nature may persistent at the largest x,
where the EIC could independently contribute. Production of heavy-quark (¢, b) pairs or
heavy mesons (J/1, T) in deep-inelastic scattering could accurately probe the large-z gluon
PDF. The EIC detectors will have excellent charm tagging efficiency, in a relatively clean
scattering environment as compared to the LHC.

Inclusive charm production is interesting in its own right, given that large radiative
contributions are known to exist near the heavy-quark production threshold, i.e., at Q
comparable to the charm quark mass; see Sec. [[7 for a detailed account of heavy quark
contributions to DIS structure functions. The rate for charm production at large =, z 2 0.1,
can be increased by up to an order of magnitude by nonperturbative intrinsic charm
production suggested by light-cone models [56] [57]. An EIC will be a unique opportunity
to cleanly test for the presence of intrinsic charm contributions; see Sec. for some
quantitative studies.

Transition to the high-density regime. There is a long-standing question of par-
tonic saturation and recombination in the small-x region. As a related phenomenon, BFKL
[58, 59, [60] effects from large In[1/z] contributions may supersede the usual DGLAP evo-
lution in the small-z regime. The EIC should be capable of probing the transition from
DGLAP factorization to BFKL /saturation dynamics, particularly using heavy nuclei beams
in order to produce large partonic densities; see Chapter 5 for details on eA physics.

Perturbative-nonperturbative QCD boundary. The general kinematic parame-
ters of an EIC would span across both the perturbative (large ) region and the non-
perturbative (small Q?) region. The theoretical description of the physics in these two
regions is very different, and precise EIC data might enable us to better connect these two
disparate theoretical descriptions.

The longitudinal structure function. The longitudinal structure function F7 =
F, — 2z Fy is of special interest, in view that its leading O(1) term vanishes according to
the Callan-Gross relation. The first non-vanishing, leading order contribution is of O(ay)
and dominated by photon-gluon fusion. Hence, F7, is particularly sensitive to the gluon
distribution g(x, Q?). Corrections up to O(a?) are known [10], allowing for a consistent
analysis of Fr, at NNLO accuracy. An EIC could make the first precise measurements of Ff,
in a kinematic range that overlaps both the fixed-target and HERA collider data [30] which
have large statistical uncertainties; see Sec. for more details on such a measurement at
an EIC.

Electroweak contributions to proton PDFs. Some, if not all, NLO electroweak
effects will be included in future PDF analyses, as their magnitude is comparable to the
size of NNLO QCD radiative contributions that will be routinely included. The QCD+EW
PDF's require additional experimental input to constrain nonperturbative parametrizations
for photon PDFs, as well as charge asymmetry effects (isospin violation) between PDF's
for up-type quarks and down-type quarks at the initial scale @ ~ 1 GeV. An EIC has the
potential to contribute toward improving limits on electroweak PDF terms either directly
or in combination with neutrino DIS measurements.

When extracting information about the proton PDFs from scattering on nuclear targets,
we generally make use of isospin symmetry to relate the proton and neutron PDFs via a

29



u <> d interchange. While the isospin symmetry is elegant, it is nonetheless approximate and
can be violated at the level of a few percent [611 [62] 63], (64 [65] [66], (67, (411 [68]. Violation of the
exact p > n isospin symmetry, or charge symmetry violation (CSV), invalidates the parton
model relations that reduce the number of independent nonperturbative distributions; e.g.,
u(x) # dP(z) and wP(x) #Z d"(x). It is important to be aware of the potential magnitude
of isospin symmetry violation and its consequences for flavor separation of proton PDFs.

It is noteworthy that isospin symmetry is automatically violated both perturbatively and
nonperturbatively. This is because the photon couples to the up quark distribution u?(z)
differently than to the down quark distribution d"(x). These terms can be comparable to
the NNLO DGLAP evolution effects [69] [70] [71].

Some combinations of structure functions, such as AFy = % ch(x, Q%) — FyY (x,Q?)
and AxF3 = xF?YV T :EF3VV ~, can be particularly sensitive to isospin violations, and an
EIC can contribute to their measurement. For example, the EIC is capable of measuring
precisely the structure function F2N ¢ mediated by the neutral-current v/Z exchange pro-
cesses. Measurement of FQC ¢ mediated by the charged-current W+ exchange, would rely
on compensating the MV2V /Q? suppression of the W boson propagator with high intensity
of the beams; see Sec. for more details on electroweak structure function measurements
at an EIC.

In separate experiments, Az F3 can be measured precisely via the neutrino-nucleon DIS
process; as these measurements are performed with heavy nuclear targets, the nuclear cor-
rection factors can be the limiting factor as to the derived CSV constraint. Since an EIC
will use a variety of nuclear targets, it can obtain very precise nuclear correction factors;
this information could, in principle, be used together with the neutrino-nucleon DIS data
to extract improved CSV limits.

The structure functions AF, and AxzFj5 receive contributions from both heavy flavors
as well as CSV contributions; improved understanding of the heavy-quark components
(discussed previously) can indirectly contribute to better CSV limits [68].

The combination of high-statistics EIC measurements and constraints could thus yield
important information on the fundamental charge symmetry.
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1.5 Flavor Separation from Semi-Inclusive DIS

Elke-Caroline Aschenauer, Marco Stratmann

1.5.1 Motivation and Method

The strangeness distribution and a possible asymmetry between strangeness and anti-
strangeness densities have been identified as two of the most compelling open questions in
hadronic physics which are difficult to address without an EIC; see Sec. [L4l

Existing constraints in global fits come predominantly from neutrino (semi-)inclusive
DIS [48], 42] but both si(z) = s(z) + 5(z) and s_(x) = s(z) — 3(x) are still only poorly
known [46, 22] [72]. Figure summarizes recent uncertainty estimates for s1 from three
global QCD fits.
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Figure 1.9. Uncertainty bands for s1 at Q2 = 2 GeV? for recent fits. Figure taken from [72].

Semi-inclusive DIS with identified charged kaons is expected to be a viable method to
determine the elusive strange quark density and perhaps a possible asymmetry s_ exper-
imentally. One can access basically the same a broad kinematic range in = and Q? as in
inclusive DIS. The HERMES collaboration has successfully performed such a measurement
in the range 0.02 < x < 0.6 at an average Q* of about 2.5GeV [73]. Compared to s(x)
from most global PDF fits, they find a softer strangeness distribution in their LO analysis.
Clearly, more data in a larger range of x and Q2 are necessary to clarify this issue.

The SIDIS measurement relies, however, on a good understanding of the hadronization
mechanism which is encoded in non-perturbative, collinear parton-to-hadron fragmentation
functions (FFs) D/ if factorization is assumed in a pQCD calculation. Like PDFs, FFs
are extracted from global QCD analyses. One can resort to a wealth of single-inclusive
hadron production data obtained at different c.m.s. energies in ete™ annihilation and in
ep and pp (pp) scattering. Pion FFs are currently known best with uncertainties of about
5+ 10% depending on the flavor of the fragmenting parton [74]. Ambiguities for kaon FFs
are about twice as large [74]. Significant progress on the quality of fits to FFs is expected
once data from B factories and the LHC become available. Also, NNLO evolution kernels
are expected to become available in the near future [75], which will help to reduce theoretical
scale ambiguities further.

All relevant SIDIS cross sections are known at least to NLO accuracy [76], [77, [78] [79],
and the analytical expressions are relatively simple and easy to implement into global fits of
PDFs, see, e.g., [R0]. Schematically the unpolarized SIDIS cross section for the production
of a hadron H in the current fragmentation region reads

dofl  2ma® [1+(1—y)
dedydz Q2

O (5,2, Q) + WD ppiengn|
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with z and y denoting the usual DIS variables, —¢? = Q% = Szy, and z = py - p/p - q the
momentum fraction taken by the hadron H. Assuming factorization, the structure functions
F{IL at a factorization scale p ~ @ can be expressed as convolutions of non-perturbative

PDFs f;(z, ) and FFs DH (z, ) with short-distance Wilson coefficients C’Z-IJYL(x, Z, 1h).

1.5.2 Expectations for Charged Kaon Production at an EIC

Figures [LI0 and [LIT show expectations for the K™ and K~ production cross section
(C3) at NLO accuracy, respectively, as a function of = in bins of Q?, using 0.01 <y < 0.95
and VS = 70.7GeV (i.e., 5 x 250 GeV collisions at an EIC). To reduce uncertainties from
kaon FFs, z is integrated in the range 0.2 < z < 0.8. The DSS set [74] is used. The solid
lines are the statistical average over 100 replicas in the NNPDF2.0 neural network analysis
[47] and the dashed lines reflect the corresponding PDF uncertainties.

Also shown in Figs. and [[LT] are simulations based on the PYTHIA [81] event
generator in the same kinematic range. Here, the CTEQG6L set of PDFs [82] has been used.
The hadronic final state was simulated using JETSET based on LEP fragmentation settings
and a suppression of s§ pair production from the vacuum of 0.3 [PARJ (2)] compared to
wii or dd creation. The results turn out to be remarkably similar to the NLO calculations
based on collinear factorization despite the very different way hadronization is implemented
in PYTHIA and the fact that only LO matrix elements are used, albeit matched with a
parton shower. This gives us quite some confidence that the PYTHIA generator can be used
to provide very reasonable estimates of yields for DIS-type processes at an EIC. In addition,
it also tells us that the current DSS kaon FFs are doing a good job and include a realistic
amount of “strangeness suppression”. Already after one month of operation, corresponding
to an integrated luminosity of about 20fb~! the measurement will be limited by systematic
uncertainties which need to be carefully studied. The statistical accuracy is significantly
better than indicated by size of the points shown in the figures.

If one compares the results for K™ and K~ in Figs. [LI0 and [L.1T] one finds hardly any
difference at the smallest = values in each Q? bin. At larger = values, where s_ is largest,
see Fig. [l the yields for K~ are significantly lower than the ones for K. An EIC should
be able to provide accurate measurements of both s, and s_ in a broad kinematic range
up to Q2 values of a few hundred GeV.

Within the neural network approach it is in principle fairly straightforward to quantify
by how much a new data set will reduce present PDF uncertainties. The original ensemble of
replicas is constructed in such a way that all have the same weight. Information contained
in new data sets can be incorporated without the need for refitting by reweighting each
PDF in the ensemble by the probability that it agrees with the new data [47, [53]. Sets with
small weights will become largely irrelevant in statistical averages. If too many sets receive
small weights the accuracy of results from the new PDF ensemble will deteriorate, and the
reweighting procedure becomes unreliable, necessitating a full refit. One reason for this to
happen is, that the new data set contains significant new information which leads to much
smaller uncertainties in certain kinematic regions. This is exactly what happens when one
applies the reweighting method to the SIDIS data shown in Figs. and [L11] even if one
assigns a fictitious O(5%) systematic uncertainty to each data point.

There are many other things which can be studied in SIDIS at an EIC. For instance,
one can also bin in z which makes the measurement more sensitive to the shape of the
kaon FFs. This will provide a more stringent check whether FFs are universal functions
in ete™, ep, and pp scattering. Pion yields will allow one to study other interesting and
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relevant PDF combinations such as @(z) — d(z).
with longitudinally polarized beams which will give access to the helicity-dependent quark
and antiquark densities, see Sec. [LIIl Detailed quantitative studies including more time-
consuming global QCD analyses with simulated SIDIS data for various c.m.s. energies are
planned to quantify the impact of such measurements on our understanding of the spin
and flavor structure of the nucleon. These studies should include also some estimates of
the various sources of systematic uncertainties, like detector resolution, uncertainties in the
particle identification, luminosity, and polarization measurements, details on these can be

found in Sec. [T.3]

Similar measurements can be also done
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Figure 1.10. SIDIS cross section for K production at NLO accuracy using NNPDF2.0 PDFs [47].
The dashed lines denote the PDF uncertainties. Also shown (points) are the results from a PYTHIA

simulation (see text).

. = oy oy
10 . i _
E K E
E do E
5 [pb/GeVz] ]
- X dQ 1F
106L -
N\ Q=139 Gev? 3
5 N ° N\ E
10°E -
Q?=2.47 GeV? L
. NLO
10"F NNPDF20 , .3
F DSSFF02<z<08 Q =439Gev” 4
vl vl | n
0% 10% 10? 10' x w0° 102

Figure 1.11. Same as in Fig. [[.T0 but now for K~ production.
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1.6 The Longitudinal Structure Function F; at an EIC

Elke C. Aschenauer, Ramiro Debbe, Marco Stratmann

1.6.1 Motivation and Current Status of F; Results

The DIS reduced cross section o, for one-photon-exchange can be represented as the
sum of two independent structure functions F» and Fj, as follows
Q*x d’o

2
= - 2y _ y_F 2 1.

where Y, =1 + (1 — y)? depends on the inelasticity y = Q?/(sx) of the process.

F7, is proportional to the cross section for probing the proton with a longitudinally
polarized virtual photon and vanishes in the naive Quark Parton Model due to helicity
conservation. Starting from O(ay), the longitudinal structure function differs from zero,
receiving contributions from both quarks and gluons.

At low x, the gluon contribution due to photon-gluon fusion greatly exceeds the quark
contribution. Therefore, measuring Fr, provides a rather direct way of studying the gluon
density and QCD dynamics at small z, i.e., the transition to the high parton density regime.
Measurements can be used to test several phenomenological and QCD models describing
the low x behavior of the DIS cross section, including color dipole models [83] 84 [85] and
expectations from DGLAP fits performed at NLO and NNLO accuracy of QCD. Possible
deviations from the DGLAP behavior in the small z, low Q? region can be studied by
varying kinematic cuts to the data used in the fits.

The longitudinal structure function, or the equivalent cross section ratio R = o /op =
F1/(Fy, — Fr), was first measured in fixed target experiments and found to be small at
large z, x > 0.01, see, e.g., Ref. [86]. H1 [30] and ZEUS [87] have recently combined their
measurements of o, for three different proton beam energies [20], E, = 920,575, and 460
GeV, see Fig[[Hlin Sec. .3l The extracted Fr, shown in Fig. [[T2] covers a wide kinematic
range, spanning 2.5 < Q2 < 800GeV? and 0.0006 < = < 0.0036. As can be seen, FJ,
is clearly non-zero, and there is some mild tension with the HERAPDF1.0 fit based on
DGLAP evolution [20] at the lowest values of 2 and Q? where one expects non-linear effects
to be relevant; see Chapter 5 on eA physics. In this regime, predictions from the dipole
model provide a better description of the data. However, the achieved statistical precision
of the combined H1 and ZEUS measurement is too limited to be conclusive.

1.6.2 Measurement Strategy and Experimental Challenges

The measurement of Fj relies on an accurate determination of the variation of the
reduced cross section (CH) for common values of the (z,Q?) bin centers at different beam
energies, i.e., c.m.s. energies y/s. Relative normalizations and systematic uncertainties of
the different data sets for o, have to be well under control.

Fr, and F5 can be extracted simultaneously from o, by plotting o, for fixed values of
(r,Q?) as a function of y?/Yy. Fy, is then determined as the slope of the line fitted to the
measurements of o, for different values of v/s: Fp(z,Q?) = —00,(z,Q?,y)/0(y?/Yy). Like-
wise, Fy is the intercept of the fitted line with the y axis: Fy(z, Q%) = o.(z, Q% y =0). All
measurements at HERA are observed to be consistent with the expected linear dependence
[30, 87, 20]. At any given value of @2, the lowest possible x values are only accessed by
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Figure 1.12. Combined H1 and ZEUS extraction of Fy, [20] as a function of Q? averaged over x
compared to the HERAPDF1.0 fit and predictions from dipole models.

the highest /s, and the slope related to F, cannot be determined. Hence, the Rosenbluth
separation limits the kinematic coverage of I at small z. At larger values of x, measure-
ments of o, for various different /s are available and the slopes can be straightforwardly
extracted.

The contribution of Fy, to the reduced cross section (L0 can be sizable only at large
values of y. For low values of y, o, is very well approximated by the structure function Fb
[30L 87, 20]. Low y data can be used to normalize data sets taken at different c.m.s. energies
relative to each other. For measurements at high y the reconstruction of the DIS kinematics
using the scattered lepton, the so called “electron method”, has the best resolution and was
used at HERA.

In the large y region, y = 0.5, and low = the electron method is prone to large QED
radiative corrections which can reach a level of more than 50% of the Born cross section.
Studies based on the DJANGO [88] and HECTOR [89] programs for HERA kinematics
show that the largest radiative contributions arise because of hard initial-state radiation
(ISR) from the incoming lepton [30]. The radiated photon usually escapes in the beam pipe
and the E — P, of the event is reduced. Therefore, hard ISR can be efficiently suppressed
to a level of about 10% at HERA with only a slight residual dependence on y by requiring
E — P, close to the nominal value of twice the electron beam energy implied by energy-
momentum conservation [30]. E — P, can be reconstructed from the measured final-state
particles. At the highest y, y = 0.7, corrections increase due to QED Compton events which
can be rejected by certain topological cuts. All cross section measurements at HERA are
corrected for QED radiation up to O(aem,) using HERACLES [90] which is included in the
DJANGOH package; further details can be found in Sec. [.3]

Kinematically, for low Q?, large values of y correspond to low energies of the scattered
lepton. Selecting high y events is thus further complicated due to a possibly large back-
ground from energy deposits of hadronic final state particles leading to fake electron signals.
However, the cut on E — P, also suppresses such type of backgrounds. In addition, electron
tracking, which is foreseen for an EIC detector, will largely eliminate fake electron signals
as an additional cut on F/p ~ 1 can be placed to identify the lepton.

Extractions of F7, are certainly the most demanding inclusive structure function mea-
surements but an EIC will have many advantages compared to HERA, in particular, the
possibility to vary /s in a wide range for high luminosity collisions. Also, much better
detector capabilities, for instance, concerning the electron, are foreseen. One can also take
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based on the ABKMO09 set of PDFs [19] (see text).

advantage of all the analysis techniques and Monte Carlo codes developed for HERA to
deal with QED radiative corrections.

1.6.3 Expectations for the EIC

Pseudo-data for the reduced cross section (LG) have been generated using the Monte
Carlo generator LEPTO [91] for the first stage of an EIC (5 GeV electrons on 100, 250,
and 325 GeV protons). The CTEQG6L set of PDFs [82] has been used in the simulations.
The hadronic final state was simulated using JETSET [81]. We note that the current
pseudo-data do not include any simulations of QED radiative effects and reflect statistical
uncertainties which could be achieved by running one month at each of the beam energy
settings with the projected luminosities for eRHIC. In addition, a 1% systematic uncertainty
is added.

Figure shows the structure functions F;, and Fy extracted from the pseudo-data
of the reduced cross section by means of a Rosenbluth separation, requiring a minimum
scattered lepton momentum of 0.5 GeV, Q% > 1GeV?, 0.01 < y < 0.90, and 0.5° < 6 <
179.5°. To guide the eye, the expected uncertainties are placed on theoretical expectations
for Fy 1 at NNLO accuracy using the ABKMO09 set of PDFs [19]. One should note that
these PDFs use only data with Q% > 2.5 GeV? in their fit and, hence, the behavior of Fyp
in the lowest @2 bin must be taken with a grain of salt and are only for illustration. The
extracted uncertainties take detector smearing of the scattered electron momentum into
account. The momentum resolution was taken from ZEUS, i.e., dp/p = 0.85% + 0.25% X p.
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1.6.4 Summary and To-Do Items

Like for most inclusive and semi-inclusive measurements at the EIC, an extraction of
Fr, will be dominated by systematic uncertainties which need to be thoroughly addressed.
This is work in progress. It is planned to study the unfolding of Fp in great detail both
in ep and eA scattering, including QED radiative corrections and a full simulation of the
detector. This will elucidate to what extent the methods developed and used at HERA
[30L BT, 20] are suited for high precision measurements of Fy, aimed at the EIC. In any case,
it will be crucial to design the relevant detector components very carefully to optimize

e the luminosity measurement and its relative calibration for running at different c.m.s.
energies,

e the lowest lepton momentum we can detect (0.5 GeV would be desirable),

e the identification of the scattered lepton to suppress potential background from misiden-
tified hadrons,

e the resolution in momentum and scattering angle of the scattered lepton, and

e the acceptance for the hadronic final state to suppress events which have a photon
radiated from the incoming or outgoing lepton as well as quasi real photo-production
events.

Details on the design of the detector are given in Sec. Also, it will be possible to
extract Fy, from the EIC data alone, but the combination of the EIC reduced cross section
measurements with the ones from HERA may provide an even better lever arm in a larger
x, Q2 range. This needs to be investigated.

Finally, we note that even for statistically very precise measurements of o,., the Rosen-
bluth separation of FJ, i.e., the determination of the slope with respect to y?/Y,, can lead
to significantly larger uncertainties if the measured values of o, have very similar y%/Y, .
This source of uncertainties needs be minimized by optimizing the binning in y and the set
of different c.m.s. energies /s. Studies is this direction are ongoing as well.
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1.7 Theoretical Status of Inclusive Heavy Quark Production
in Deep-Inelastic Scattering

Sergey Alekhin, Johannes Bliimlein, Sven-Olaf Moch

1.7.1 Introduction

Heavy quark production gives a sizable contribution to the unpolarized DIS structure
functions at small z, see, e.g., [92] 03] [04], O5]. For the foreseen EIC kinematics of DIS it
yields up to 10% of the inclusive cross section. Therefore in order to employ the full potential
of the small-z EIC data for phenomenology one has to provide an accurate theoretical
description of heavy-quark electro-production within perturbative QCD.

For the light-parton contributions to DIS structure functions a theoretical accuracy of
O(few %) is achieved, with the complete QCD corrections up to 3-loops being available,
see also Sec. In the case of the fixed-flavor-number scheme (FFNS) the heavy fla-
vor corrections are available only to O(a?). This can be a bottleneck for the analysis of
high-precision data. Therefore, progress in the higher-order calculations of heavy-quark-
production coefficient functions is quite important for the EIC phenomenology. For the
variable-flavor-number scheme (VFNS) the massive quarks are considered on the same foot-
ing as the massless ones. Furthermore, the heavy-quark PDFs appearing in the VENS are
derived from the light-parton PDFs and the appropriate massive operator-matrix elements
(OMEs). The VFNS coefficient functions are known up to 3-loop accuracy due but the mas-
sive OMEs are only available to the NLO corrections. This limits the theoretical accuracy
of the VFNS as well.

In the following we summarize the state-of-art in calculations of the NNLO corrections
to the unpolarized heavy-quark coefficient functions and to the massive OMEs. The FFNS
and VENS are compared to the available HERA data and to each other. We also discuss
the implementation of the running-mass scheme for the NLO and NNLO heavy-quark coef-
ficient functions and the resulting improvement in the perturbative stability related to this
definition.

1.7.2 General framework

The heavy flavor corrections to deep-inelastic structure functions emerge in the Wilson
coefficients for the respective processes, i.e., they contribute in terms of virtual and final
state effects. Heavy quarks have no strict partonic interpretation since partons are massless,
and by virtue of this, infinitely long lived, with the possibility to move collinear to each
other. Adopting this picture, heavy quarks can be singly or pair produced from massless
partons and the gauge bosons of the Standard Model as final states. This description is
called FFNS, which is the genuine scheme in any quantum-field theoretic calculation. The
DIS structure functions Fj(x, Q?) obey the representation

E($7Q2): Z [Cflight(x7Q2/M2)+Cik,heavy(x7Q2/M27m%L/:u'2) ®fk(:u'2) (LZ'), (17)

k=q;,9

where ¢; and g label the massless quarks and gluons, f*(u?) are the PDFs, Cf“ght(heavy)
the massless (massive) Wilson coefficients, h = ¢, b the charm and bottom quarks, and ®

denotes the Mellin convolution. Other approaches derive from this description.
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In case of unpolarized DIS the LO contributions were given in [96] @7, [98] [99] and the
NLO corrections were calculated in semi-analytic form in [I00] [I01]. For asymptotic values
Q? > m% one may obtain the massive Wilson coefficients in analytic form. This is due to
a factorization theorem [I02] relating the massive Wilson coefficients Czk,heavy to universal
massive OMEs and the massless Wilson coefficients [77, [6l, 103] 10]. As comparisons up to
NLO showed [102], these representations are valid for the structure function Fy(z,Q?) if
Q?%/m? 210. To O(a?) the Wilson coefficients were obtained in [102} 104}, [105] at general
values of the Mellin variable N. A first contribution to the 3-loop corrections was given in
[106] by the O(a2e) terms which contribute to the logarithmic terms O(In*(Q?/m3)), k =
1,2,3, in O(a?). A large number of even Mellin-moments for all unpolarized 3-loop massive
OMES have been calculated in [I07] up to N = 10. .. 14 depending on the respective channel.
For the structure function Fr(z, Qz) the asymptotic 3-loop corrections were given in [108]
for general values of N. However, they are valid at 1% accuracy at much higher scales of
Q?%/m? 2800 only. All logarithmic terms at O(a?) for the heavy flavor Wilson coefficients
contributing to the structure function Fy(x,Q?) are known [109, [I10]. More than this,
all the contributions to the constant terms emerging from lower order contributions by
renormalization have been calculated, cf. [107] for details. Due to the size of the constant
contributions phenomenological applications for the kinematic range available at HERA
and the EIC cannot be based on only the logarithmic contributions. QCD corrections to
charged current heavy flavor production have been considered in [I11], 112} [113].

1.7.3 FFNS and VFNS

The logarithmic contributions in the heavy flavor Wilson coefficients oc In*(Q?/m3)
never become large enough in the kinematic region of HERA or the EIC that their resum-
mation would be required [IT4]. Nonetheless one may introduce a description changing the
number of light flavors effectively, which refers to the universal contributions to the heavy
flavor Wilson coefficients, consisting of the twist-2 parton densities and the massive OMEs
[115] 107, 116, 117]. This requires the knowledge of also the gluonic OMEs to 3-loop order
[107].

By matching at typical scales p1y one performs the transition from ny to ny+ 1 massless
flavors using the asymptotic relations. In this way one may introduce a heavy quark density.
The corresponding representation, which is obtained in terms of a reformulation of the
FENS, is called zero mass variable flavor number scheme (ZMVFNS). It is unique up to
the choice of the matching point(s). An important issue is the choice of the scale s, for
which very often ps ~ my, is used. In Ref. [118] it was shown, however, comparing exact
and flavor number matched calculations that this scale is process dependent and often very
different scales have to be chosen. In this context various problems arise. Because of the
value of the charm to bottom mass ratio, m?/m? ~ 1/9, power corrections due to m? usually
cannot be neglected at scales p? ~ mg. Therefore, sequential decoupling of both charm and
bottom quarks is problematic. Furthermore, starting at O(a?), Feynman diagrams with
both bottom and charm quarks contribute, which cannot be attributed to either the charm
or the bottom quark PDF [I19]. The description of the FFNS, on the other hand, is still
possible. Therefore, representations based on the ZMVFENS remain approximations to which
one may refer for specific applications. Furthermore, it applies only for the asymptotic case
Q%> m3.

For the description of data one would like to have a smooth description of the structure
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Figure 1.14. Comparison of Fy computed in different schemes to H1 and ZEUS data: GMVFNS in
the BMSN prescription (solid lines), 3-flavor scheme (dot-dashed lines), and 4-flavor scheme (dashed
lines). The vertical dotted line denotes the position of m, = 1.43 GeV. Taken from Ref. [19].

functions at both large and low values of @2, which is called the general mass variable
flavor number scheme (GMVFENS). Here, a smooth interpolation is provided by the BMSN

scheme [116], 19] given by
F2h,BMSN(nf 1) = th,exact(nf) i FZh,ZMVFNs(nf 1) - th,asymp(nf) 7 (1.8)

where exact corresponds to [I00} [T0T], asymp to its asymptotic form for Q2 > mi, and
ZMVENS to the value in the zero mass variable flavor scheme. In Fig. [[.14] the transition is
shown for values of x between 0.00018 and 0.03 for the kinematics at HERA according to
(T3] (see Ref. [120] for phenomenological variants of the GMVFEFNS).

1.7.4 The massive NNLO corrections and the running mass

The radiative corrections to the massive Wilson coefficients are known to be sizable. In
particular, near the production threshold s ~ 4m%, where large Sudakov double logarithms
o In?k (1 — 4m3 /s) dominate at each order, one may wish to apply resummations; see
Refs. [1211 [122] 123] for details.

Another aspect at higher orders concerns the definition of the heavy quark mass, since
it is a scheme dependent quantity. It is of particular interest to investigate which choice
of scheme leads to the best convergence of the perturbative series. Upon conversion of the
conventionally used on-shell (pole) mass for heavy quark DIS to the running mass my,(u) in
the MS-scheme, one observes a considerable improvement of scale stability and convergence
of the perturbative expansion. The latter aspect is demonstrated in Fig. Here one uses
the Wilson coefficients to NLO and refers to the approximate result valid in the threshold
region [121], 122} [123] to give an estimate for the NNLO value, see Ref. [124].
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The phenomenological impact of the mass scheme re-definition was checked for the
ABKM fit of Ref. [I9]. In a variant of this fit [124] the heavy-quark electro-production
was considered in the running mass scheme and with the approximate NNLO corrections
taken into account. m,. was fitted to the DIS data simultaneously with the PDG world
average [3] added to the fit as an additional constraint. In this way the value of m.(m.) =
1.1840.06 GeV was obtained. The corresponding predictions for the semi-inclusive structure
function F5© are in good agreement with the preliminary HERA data in a wide kinematical
region, cf. Fig. This result gives an additional justification of the validity of the FFNS
up to Q% ~ 1000 GeV?, i.e., in the entire kinematic range relevant for an EIC.

1.7.5 Heavy-flavor PDF's

For applications at high-energy hadron colliders, schemes with 4- and 5-light flavors need
to be considered. The necessary charm- and bottom PDFs are generated perturbatively.
In Fig. [LT17 the results for the s, ¢, and b quark flavors are shown at NNLO accuracy as
determined in two global fits to the world data [19], 22]. The 1-0 error bands correspond
to the analysis of [19]. The central values of the MSTWO08 distributions turn out to lie
below those found in the ABKMO09 analysis for the ¢ and b quark distributions in the
whole kinematic range of HERA due to the smaller gluon density [22]. The strange quark
distribution still exhibits large errors; see also Sec. Measurements at the EIC are
expected to considerably improve both the strange and charm quark densities thanks to the
much higher luminosities than at HERA.
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1.8 F,r(charm) at an EIC

Elke C. Aschenauer, Marco Stratmann

Section [[L7] gave an outline of the theoretical status of heavy flavor contributions to DIS
structure function and a comparison to HERA data. The mass my of the heavy quark
introduces extra theoretical complications including the need for a smooth prescription to
cover both the threshold (Q ~ my,) and the asymptotic (Q > my,) region, the scheme used
for my, (on-shell or MS), and the actual value of my, used in the calculations.

Detailed experimental results from the EIC, in particular, for the so far unmeasured
charm contribution to Fp, will help to refine the current theoretical understanding. In
the entire kinematic domain of the EIC one expects the FENS to be applicable for Fy;
see Sec. [L7l Differences between the exact, massive FFNS results, and the ZMVFENS are
expected to be much more pronounced for Ff, see, e.g., Fig. 7 in [I14], than for F§ shown
in Fig. [L14

The extraction of F} requires a Rosenbluth separation and should proceed along very
similar lines as discussed already in Sec. The extra experimental complication is the
requirement to detect a charm quark in the final state. A quantitative feasibility study is
still ongoing. We note that the detection of charmed mesons is important also for other
physics topics. Therefore the design of the detector foresees to have particle identification
for pions and kaons to fully reconstruct charmed mesons via their K7 decay channel. In
addition, a micro-vertex detector is expected to provide a vertex resolution of 5pum to
separate charmed mesons from B- and other mesons by measuring a displaced decay vertex.
Using such techniques for a measurement of F7 requires to detect a second decay lepton
with a displaced vertex in addition to the scattered lepton. This, together with good lepton
identification, should provide a high charmed meson detection efficiency. The required
luminosities for a precise measurement of cm ;, will scale with the achieved charm detection
efficiency of the EIC detectors and the smaller reduced cross section for charm as compared
to the fully inclusive o, studied in Sec. To illustrate the relative size of F} and Fy we
present in Fig. [[LI8] some theoretical expectations at NLO accuracy based on the ABKM
set of PDFs [19]; see Sec. [L7 for details.
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1.9 Probing Intrinsic Charm at the EIC

Marco Guzzi, Pavel Nadolsky, Fredrick Olness

In the variable flavor number (VEN) factorization scheme [126, 127, 68], heavy quark
flavors are actively included in the PDF evolution via gluon splitting to a heavy quark pair
g — QQ. While the heavy quark PDF fg(z, ) is often taken to vanish below the mass
threshold (pu < mg), there is the possibility that the proton contains non-vanishing heavy
quark constituents even for scales below mg; this component of the heavy quark PDF is
identified as the intrinsic parton distribution [56] 57, 128, [129], in contrast to the extrinsic
distribution generated by gluon splitting g — QQ.

While we can introduce intrinsic parton distributions for both charm and bottom quarks,
we will focus here on the intrinsic charm (IC). Operationally, the total charm PDF is then
composed as fo(x,p) = f&(x, u) + fi"(x, p). For the extrinsic component, we generally
take the boundary condition f&(z,u) = 0 for p < me, i.e., we do not need to assume an
initial functional form for f¢! as it is determined purely by the gluon evolution.

Conversely, for the IC component fi we do need to assume a functional form. Here,
we consider two typical shapes of fi"f at the initial scale u = m,, assuming m. = 1.3 GeV.

e In the BHPS model [56] 57, [130], the intrinsic charm is concentrated at large x.
e In sea-like models [129], the intrinsic charm is spread over all x values.

Sample distributions of IC PDFs were obtained in a global QCD fit of hadronic data [129].
We display them in Fig. In these models, the momentum fraction carried by the charm
can be varied in some range. Roughly, an intrinsic momentum fraction of 2% or 3% is at
the outer limit of what is allowed in the context of a global fit.

-3 1072 10-1 100

Figure 1.19. Left, middle: charm PDFs for the BHPS model, at © = 2 and 100 GeV. The upper
dashed curve is for a momentum fraction of 2%, and the lower for 0.57%. The shaded band is the
CTEQG6.5 PDF uncertainty. Right: charm PDFs for the sea-like model. The upper curve is for a
momentum fraction of 2.4%, and the lower for 1.1%. Figs. are taken from [129)].

For heavy quark production in the threshold region (4 ~ mg), the magnitude of the
intrinsic component will be large on the relative scale compared to the extrinsic contribution.
At higher p scales, the DGLAP evolution will increase the extrinsic component via g — QQ
splitting. However, the distinctive shape of the BHPS distribution, with its characteristic
large-x enhancement, remains clearly evident even at much higher scales p > m..

We now consider two different c.m.s. energies for an EIC [I3I] and investigate the
degree to which one can distinguish the IC component based on measurements of the charm
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Figure 1.20. Charm contribution to the reduced NC e~ p DIS cross section at 1/s = 45 and 105 GeV.
For each IC model, curves for charm momentum fractions of 1% and 3.5% are shown. For comparison
we display the number of events dN./dx for 10 fb~!, assuming perfect charm tagging efficiency.

contribution to the DIS cross section. Alternatively, the IC can be searched for by measuring
the longitudinal structure function Ff, or angular distributions [132]. In Fig. .20l we display
the reduced cross section o, . for semi-inclusive DIS charm production at an EIC. The
reduced charm cross section is defined as in Eq. (I6]). The probed ranges of y are displayed
in the figures.

The number of events for a conservative integrated luminosity £ = 10 fb~! has been
computed as dN./dx = L{do./dz) where (do./dx) is the average cross section in a ) bin
of size 0.15 GeV, evaluated at NLO accuracy. The shaded band represents the error on the
cross section induced by the CTEQ6.6 PDF uncertainty [43].

For both BHPS and sea-like IC, we observe that the cross sections significantly exceed the
nominal CTEQ6.6 values. While a momentum fraction of 3.5% is easily distinguished, even
the intrinsic charm models with 1% can be resolved with moderate integrated luminosities.
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1.10 Status of Helicity-Dependent PDF's and
Open Questions to be Addressed at an EIC

Rodolfo Sassot, Marco Stratmann

1.10.1 Introduction

Helicity-dependent or polarized PDFs (pPDFs) tell us precisely how much quarks and
gluons with a given momentum fraction = tend to have their spins aligned with the spin
direction of a nucleon in a helicity eigenstate. Their knowledge is essential in the quest
to answer one of the most basic and fundamental questions in hadronic physics, namely
how the spin of a nucleon is composed of the spins and orbital angular momenta of its
constituents.

The nucleon spin structure can be best understood in high-energy scattering experiments
where quarks and gluons behave as almost free particles at scales p1 > Agcp. The relevance
of pPDF's or research in spin physics in general is reflected in more than a dozen vigorous
experimental programs in the wake of the unexpected finding that only very little of the
proton spin is actually carried by its three valence quarks almost twenty-five years ago.
The experiments have measured with increasing precision various observables sensitive to
different combinations of quark and gluon polarizations in the nucleon. This progress was
matched by advancements in corresponding theoretical higher order calculations in the
framework of pQCD and phenomenological analyses of available data. Potentially large
sea quark and/or gluon polarizations were initially thought to be ways to account for the
“missing” proton spin, but at the same time, both turned out to be challenging to access
experimentally.

The most comprehensive global fits include all available data taken in spin-dependent
DIS, semi-inclusive DIS (SIDIS) with identified pions and kaons, and proton-proton colli-
sions. They allow for extracting sets of pPDFs consistently at NLO accuracy along with
estimates of their uncertainties [25, 26]. Contributions from the orbital angular momenta of
quarks and gluons completely decouple from such type of experimental probes and need to
be quantified by other means. Here, transverse momentum-dependent PDF's or generalized
PDFs appear to be the most promising approaches which will be discussed elsewhere in
Chapters 2 and 3, respectively.

Despite the impressive progress made in the past couple of years both experimentally
and theoretically many fundamental questions related to the proton’s helicity structure still
remain unanswered and shall be summarized below; addressing them and providing answers
is a prime target for an EIC.

Present fixed-target experiments suffer from their very limited kinematic coverage in x
and 2, which is insufficient to precisely study, for instance, QCD scaling violations for the
polarized DIS structure function g (z, @?) which in turn can be linked to the = dependence
of the polarized gluon density Ag(x). There are numerous other opportunities for an EIC
to further our understanding of the nucleon spin structure which will be listed below and
discussed in some details in Secs. [Tl [LT2] and

1.10.2 Current status of global pPDF fits - baseline for EIC projections

Unlike unpolarized PDF fits, where a separation of different quark flavors is obtained
from inclusive DIS data taken with neutrino beams, differences in polarized quark and
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Figure 1.21. COMPASS results [133] [134] for SIDIS spin asymmetries on a deuteron (left) and
proton target (right) compared to DSSV and DSSV+ fits (see text).

antiquark densities are at present determined exclusively from SIDIS data and hence require
knowledge of fragmentation functions. Recently published SIDIS data from the COMPASS
collaboration [I33] 134] extend the coverage in x down to about x ~ 5 x 1073, almost an
order of magnitude lower than the kinematic reach of the HERMES data used in the DSSV
global analysis of 2008 [25] [26]. For the first time, the new results comprise measurements
of identified pions and kaons in the final state taken with a longitudinally polarized proton
target. Clearly, these data can have a significant impact on fits of pPDFs and estimates of
their uncertainties.

In particular, the COMPASS kaon data will serve as an important check of the validity
of the strangeness density obtained in the DSSV analysis, which instead of favoring a
negative polarization as in most fits based exclusively on DIS data, prefers a vanishing
or perhaps even slightly positive As in the measured range of . One reason for concern is
the dependence on fragmentation functions. Even though pion fragmentation functions are
rather well constrained [74] by data, kaon fragmentation functions suffer from much larger
uncertainties, and this could explain the unexpected result for As obtained in the DSSV
analysis.

Figure [[L2T] shows a comparison between the new SIDIS spin asymmetries from COM-
PASS [133] 134] and the DSSV fit of 2008 [25], 26]. Also shown is the result of re-analysis
at NLO accuracy based on the updated data set. This fit, henceforth called “DSSV+",
will serve as baseline pPDFs when quantifying the potential impact of projected EIC data
on our knowledge of the nucleon spin structure in Sec. [[TIl The differences between the
original and the updated fit are hard to notice for both identified pions and kaons. In terms
of x? values, the original DSSV analysis amounts to 392 units for the original set of 467
data points used in the fit [74]. Adding both deuteron and proton data from COMPASS (88
points) it goes up to 456 and drops by about 4 units upon refitting (DSSV+), which is not
really a significant improvement for a PDF analysis in view of non-Gaussian theoretical un-
certainties. Recall that in the DSSV analysis a Ax? ~ 9 (corresponding to Ax2?/x? = 2%)
was tolerated as a faithful, albeit conservative estimate of PDF uncertainties.

In Fig. we compare the individual sea quark densities obtained in the original and
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Figure 1.22. DSSV and DSSV+ sea quark pPDFs and uncertainty bands at Q2 = 10 GeV?2. Also
shown is Ag. The vertical lines indicate the = region constrained by RHIC pp data.

updated DSSV analyses. As can be seen, except for As, the new central fits fall well within
the Ax? = 1 uncertainty bands of DSSV. The gluon distribution is hardly affected by
the new SIDIS data. For DSSV+ we only give the new uncertainty bands (dashed lines)
referring to the Ax?/x? = 2% tolerance criterion.

Although it may seem that the new SIDIS data have little impact on the fit, this is not the
case if one studies individual x? profiles in more detail. Figure shows the contributions
to Ax? from various data sets against variations of the truncated first moments for Az and
Ad in the range 0.001 < z < 1. Compared to the original DSSV fit one notices a trend
towards smaller net polarization as the best fit values shift towards zero. This is induced
by the new COMPASS SIDIS data. Both pions and kaons pull in the same direction and
to a common smaller best fit value. There is, however, some mild tension with older SIDIS
sets, but this is well within the tolerance of the fit and most likely caused by the different
x ranges covered by the different data sets. In addition, one finds a significant reduction in
the uncertainties, as determined by the width of the y? profiles at a given Ay?2.

A much debated feature of the strangeness pPDF obtained in the DSSV fit is its unex-
pected small value at medium-to-large x which, when combined with a node at intermediate
x, still allows for acquiring a significant negative first moment at small z, in accordance
with expectations from SU(3) symmetry (hyperon decay constants F' and D) and fits to
DIS data only (see, e.g., Ref. [23]). To investigate the possibility of a node in As(z) further
we present in Fig. the x? profiles for two different intervals in z: 0.001 < 2 < 0.02
and 0.02 < z < 1. Again, the new COMPASS SIDIS data have quite some impact on the
profiles but the central value for the combined range, 0.001 < x < 1, does not shift from its
original DSSV value.

The profiles in Fig. clearly show that for 0.001 < x < 0.02 the result for As is
a compromise between DIS and SIDIS data, the latter favoring much less negative values.
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Figure 1.24. x? profiles for the truncated first moment of As in two different o intervals.

For 0.02 < x < 1 everything is determined by SIDIS data and all sets consistently ask for
a small, slightly positive strange quark polarization. There is no hint of a tension with DIS
data as they do not provide a useful constraint at medium-to-large . We note that at low
x, most SIDIS sets give indifferent results except the new COMPASS data which extend
towards the smallest x values so far and actually do show some preference for a slightly
negative value for As. This exemplifies the need for measurements at small z. Clearly,
all current extractions of As from SIDIS data show a significant dependence on kaon FFs,
see, e.g., Ref. [133] 134]. Better determinations of D (z) are highly desirable, but should
be possible with forthcoming data from B-factories, DIS multiplicities, and LHC data. We
also notice that in the range x 2 0.001 the hyperon decay constants, the so-called F' and
D values, do not play a significant role in constraining As as can be deduced from their
relative contribution to Ay? in Fig. Computations of SU(3) breaking effects in axial
current matrix elements [135] [136], and, more recently, also first lattice results for the first
moment of As+ As [137] point towards a sizable breaking of SU(3) symmetry. To study
its validity of one needs to probe As(x) at smaller values of x at an EIC.
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An interesting recent development is that the LSS group produced an update of their
pPDF fit using for the first time DIS and SIDIS data simultaneously [2§]. As in the DSSV
analysis they also utilize DSS fragmentation functions [74]. Their functional form is also
very similar to the one used in DSSV and DSSV+. As in their previous analyses they
carefully include target mass corrections and phenomenological higher twist corrections for
inclusive DIS data. Nevertheless, their obtained pPDFs are very similar to the best fit
of DSSV shown in Fig. Their strange quark polarization also changes sign as in
DSSV but is overall slightly smaller in magnitude. LSS finds non negligible higher twist
corrections to inclusive DIS data, however, these conclusions are not fully shared by another
recent analysis of polarized DIS data [23]. Ref. [23] also provides an extraction of a; from
polarized DIS data. There are also interesting first attempts to perform a pPDF analysis
based on neural networks [138], [139] similar to successful global fits of unpolarized data [47].
This would provide independent estimates of pPDF uncertainties not biased by the choice
of a particular functional form.

1.10.3 Open Questions

The status of pPDF's outlined above will likely not change much until the time of EIC
operations. Most of the remaining, compelling open questions in spin physics related to
pPDFs will be still with us and can be only addressed by extending the kinematic coverage
to smaller values of x; see the items listed below.

Existing experiments, like PHENIX and STAR at RHIC, will continue to add data in
the next couple of years. Parity-violating, single-spin asymmetries for W boson produc-
tion should reach a level where they help to constrain Au, A%, Ad, and Ad at large z,
0.07 < z < 0.4 at scales @ ~ My much larger than typically probed in SIDIS [140]. Mea-
surements of double spin asymmetries for di-jets in pp collisions at 500 GeV should improve
the current constraints on Ag(x) and extend them towards somewhat smaller values of x.
The strangeness polarization is, however, very hard to access in polarized pp collisions. In
the future, JLab12 will add very precise DIS data at large . They will allow us to chal-
lenge ideas like helicity retention [I41] [142] which predict that Af(z)/f(x) — 1 as x — 1.
Currently, only Au/u exhibits this trend, while Ad/d remains negative up to x ~ 0.6.

We expect an EIC to make significant contributions on the following topics:

Polarized gluon density Ag(x): precise data for the DIS structure function F, in a
broad kinematic range in = and Q? from HERA provide the world’s best and theoretically
cleanest constraint on the unpolarized gluon density; see Sec. One of the most important
results of HERA was to establish the strong rise of the gluon density at small x which could
not be anticipated from previous fixed-target results.

Figure [[.L25] summarizes the current situation for polarized DIS. The kinematic coverage
is limited to the fixed-target regime. There are no data below x ~ 0.005, and the lever-arm
in Q2 is very limited, in particular, for the smallest x values. As a consequence, Ag(z) is
basically unconstrained at small = as is reflected in the large uncertainty band shown in
Fig. There are theoretical arguments that Ag(xz) ~ zg(z) at small = [I41] but they
cannot be verified experimentally due to the lack of data

The fact that current RHIC data favor a very small gluon density in 0.05 < = < 0.2
[25], perhaps with a node, also greatly complicates the determination of the first moment,
fol Ag(z, Q*)dz, which enters in the fundamental proton spin sum rule in its light-cone gauge
formulation [143], [I44]. Since contributions to the moment largely cancel in the measured
x range, the unmeasured small z region may contribute significantly even up to one unit of
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Figure 1.25. Scaling violations for the structure function zg¢? in bins of z. Experimental data are
compared to various fits at NLO accuracy. Figure taken from [23].

h.

Precise measurements of the structure function g (z, Q?) in a wide kinematic range will
be a flagship measurement for an EIC. The polarized gluon density is strongly correlated
with QCD scaling violations, dgi(z, Q?)/dIn Q* ~ —Ag(z,Q?), i.e., a large positive Ag at
small z is expected to drive g towards large negative values for z ~ 10~3+% A precise DIS
measurement will also constrain the quark singlet density AY(x, @?) and its first moment,
i.e., the total quark spin contribution to the proton spin, much better.

Complete flavor separation: given the significant impact present SIDIS data already
have in global analyses of pPDFs, it is easy to imagine that an EIC with its extended
kinematic coverage can turn SIDIS measurements into a precision tool for detailed studies
of Au, Aw, Ad, Ad, As, and A5. For instance, a precise determination of a possible
asymmetry in the light quark sea, At(x) — Ad(z) will challenge expectations from model
calculations. Again, current QCD fits have revealed rather complicated functional forms
with possible nodes for the quark densities which need to be studied more precisely.

Prerequisites are a detector with excellent particle ID in an as large as possible portion
of phase space and an improved theoretical knowledge of FFs, in particular, for kaons. For
the latter, significant progress will be made by the time the EIC turns on. In any case,
there will be also plenty of opportunities to further constrain them at an EIC if necessary.

Novel electroweak probes in DIS: At large enough Q? and with the envisioned
luminosities of up to 10%* cm™2s~! an EIC has the unique opportunity to access polarized
electroweak structure functions via charged and neutral current DIS measurements. These
novel probes depend on various combinations of polarized quark PDFs and provide an
alternative way of separating different quark flavors for x > 1072, Prerequisites are both
electron and positron beams to fully exploit charged current (CC) DIS, i.e., the pPDF
combinations probed in the exchange of W~ and W™ bosons. Also, one needs to be able
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to reconstruct z and Q? from the final state hadrons in the absence of a scattered lepton
in CC DIS.

Strangeness polarization, As — AS, and SU(3) symmetry: As mentioned already,
the surprisingly small strangeness density determined from SIDIS data has triggered a lot
of discussions recently. It is certainly of outmost importance to precisely map As(z) and
A3(z) down to sufficiently small values of x to reliably determine their first moments. If
SU(3) symmetry is approximately valid, one expects a significantly negative first moment
for strangeness; if, on the other hand, SU(3) symmetry is badly broken at a 20 <+ 30% level,
As(z) can remain small and perhaps even slightly positive down to small z. Ideas have been
put forward that As(x) and As(z) may have opposite polarizations which could explain
the smallness of As+ A3 in DIS but would result in a potentially sizable As — As.

At an EIC there are different strategies to determine As and As. The most promising
one is through SIDIS production of charged kaons. Once K and K~ yields are known
with high precision and uncertainties for kaon FFs are well understood one can attempt an
extraction of As(x) and As(z) in a large range of x. Alternatively, one can study charm
production in CC DIS with a polarized proton target. If one has electron and positron
beams available, the yields of D and D mesons should be related to As(z) and A3(z),
respectively.

Heavy flavor contributions to gi: for presently available data, any contribution
from heavy quarks, i.e., charm and bottom, can be safely ignored. From HERA we know,
however, that at sufficiently small values of 2 and large enough Q?, charm quarks can
contribute as much as 20 + 25% to a measurement of Fy. It is important to determine the
charm contribution to ¢g; at small x experimentally and to properly include it in future
global analyses. Since ¢{ is mainly driven by photon-gluon-fusion it can be also a viable
probe of Ag in the small x region.

Bjorken sum rule: the Bjorken sum rule is certainly one of the best known quantities
in perturbative QCD. Corrections up to O(a?) have been calculated [32]. There is also a
nontrivial connection to Adler’s D(Q?) function defined in ete™ annihilation through the
generalized Crewther relation [145] [32] involving the QCD f function which incorporates
the deviation from the limit of exact conformal invariance. It is certainly important and
legitimate to ask to what level of precision an EIC can verify this fundamental sum rule.

Since the Bjorken sum rule relates the moments of the g; structure functions for protons
and neutrons, it first of all requires an “effective neutron target” such as Helium-3. Perhaps
the biggest challenge is then to develop a polarimeter to control its polarization with high
accuracy. Most likely this will be the limited factor for a measurement of the Bjorken sum.

In addition, the sum rule involves the first moments of gq, i.e., one has to worry about
possible extrapolation uncertainties for x — 0. However, since the Bjorken sum is a non-
singlet quantity, contributions from the small x region should be under control up to a
1+ 2% once a measurement down to & ~ 10~% can be performed. At this level of accuracy
one may also expect contributions to matter which break isospin symmetry.
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1.11 Opportunities in Spin Physics at an EIC

Elke C. Aschenauer, Rodolfo Sassot, Marco Stratmann

Here, we demonstrate how an EIC can address the fundamental open questions concern-
ing the proton’s helicity structure raised in the previous Section. A detailed, quantitative
discussion of novel electroweak effects in polarized DIS can be found in Secs. [L12] and [L.13]

1.11.1 Scaling violations in inclusive DIS and their impact on Ag(x)

A precise determination of the polarized gluon distribution Ag(z,Q?) in a broad kine-
matic regime is a primary goal for the EIC. Current determinations of Ag suffer from both
a limited x coverage and fairly large theoretical scale ambiguities in polarized pp collisions
for inclusive (di)jet [146] [147] and pion production [148] [149]. Several channels are sensitive
to Ag in ep scattering at collider energies such as DIS jet [150} [151] or charm [152] 53], [154]
production but QCD scaling violations in inclusive polarized DIS have been identified as
the golden measurement.

The inclusive structure function gi(x,Q?) is the most straightforward probe in spin
physics and has been determined in various fixed-target experiments at medium-to-large
values of x in the last two decades. It is also the best understood quantity from a theoret-
ical point of view. Unlike for most other processes, full NNLO corrections of the relevant
hard scattering coefficient functions are available [15], and partial results for the polarized
splitting functions at NNLO have been reported in [14] recently. A consistent framework
up to NNLO accuracy will be in place by the time of first EIC operations and is required in
order to limit the size of residual theoretical scale uncertainties to the anticipated unprece-
dented level of precision for a polarized DIS experiment. To achieve the latter, systematic
uncertainties need to be controlled extremely well which imposes stringent requirements
on the detector performance, acceptance, and the design of the interaction region. Neces-
sary, on-going studies comprise the detection of scattered electrons down to small momenta
of 0(0.5GeV) to access small x, the required resolution in momentum and angle of the
scattered lepton, and the unfolding of QED radiative corrections, see Sec. [.3l

For studying scaling violations dgi(z, Q?)/dlog Q?* efficiently, it is not only essential
to have good precision but also to cover the largest possible range in Q2 for any given
fixed value of x. The accessible range in Q? is again linked (via the inelasticity y) to the
capabilities of detecting electrons in an as wide as possible range of momenta and scattering
angles. For a detailed discussion of the kinematic coverage at the EIC see Sec.

Figure highlights the main motivation for a measurement of ¢g; at the EIC. The
significant uncertainty in Ag(z, Q?) at = < 0.01 shown in Fig. translates into a large
spread of predictions for the behavior of g1 at small . The spin-dependent scale evolution is
such that dgi (z, Q?)/dlog Q? at low x is strongly correlated with the negative of Ag(x, @Q?),
i.e., a positive gluon distribution drives g; at small x to more and more negative values
as Q% increases, and vice versa. Hence, a precision measurement of ¢g; and its logarithmic
scale dependence will determine Ag(z,Q?) at small x, hereby dramatically reducing the
extrapolation uncertainties of the integral fol Ag(x,Q?)dz entering the proton spin sum
rule. Depending on the shape of Ag(x,@?) in the unmeasured region, it is currently still
possible to accommodate up to one unit of +4 at small x [25] 26], i.e., twice the proton
spin! Having determined the functional form of Ag(x, Q%) down to about 10~%, even extreme
extrapolations to x — 0 are not expected to contribute anymore significantly to the integral
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Figure 1.26. Spread of predictions for g;(x) induced by the current uncertainty in Ag(z).
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To quantify the impact of polarized DIS measurements on our knowledge of the gluon
density we have performed a series of global QCD analyses based on realistic pseudo-data
for various c.m.s. energies at a first stage of eRHIC: 5 GeV electrons on 50, 100, 250, and 325
GeV protons. The simulations are based on the PEPSI Monte Carlo [I55] using the GRSV
“std” set of polarised PDFs [24]. The statistical precision of the data sets for 100 — 325
GeV protons corresponds to about two months of running at the anticipated luminosities
for eRHIC with an assumed operations efficiency of 50%. For 5 x 50 GeV an integrated
luminosity of 5fb~! was assumed. Demanding a minimum Q? of 1GeVZ, W2 > 10 GeV?,
the depolarization factor of the virtual photon to be D(y) > 0.1, and 0.1 < y < 0.95, the
highest /s ~ 70 = 80 GeV allows one to access = values down to about 2 x 1074, As can
be seen from the kinematic plots in Sec. [Z.3}, the lever-arm in Q2 more and more diminishes
if smaller x values are probed. For instance, choosing Q?min = 2GeV? would limit the z
range to x > 4 x 1074 at the first stage of eRHIC. Clearly, one wants to utilize Q? values
as low as possible in a QCD analysis but once actual EIC data become available one needs
to systematically study how far down anin can be pushed before the pQCD framework
breaks down. We plan to investigate the impact of the Qfmn cut on constraining Ag based
on analyses with the pseudo-data. At small enough = one may observe also deviations from
standard DGLAP evolution as we will discuss briefly below. A full eRHIC with up energies
of up to 30 GeV electrons on 325 GeV protons is certainly desirable as it would cover the
most interesting kinematic region around z = 10™* at larger values of Q2.

The Lh.s. of Fig. shows the = and Q? coverage for one of the simulated data sets
for the spin asymmetry A;. The statistical uncertainties are in general way too small to be
visible. For the smallest 2 and Q? values, the expected size of the asymmetries is of the
order of a few times 1073, which sets the scale for the required experimental precision. On
the r.h.s. of Fig. we show the @Q? dependence of the structure function g; for various
bins in x. As can be seen, combining the data sets for the different c.m.s. energies extends
the coverage in x and Q2. We note that present fixed-target data, cf. Fig. [[25] all fall in
the lower right corner of the plot but have some overlap with the projected EIC data.

The pseudo-data for the spin asymmetry A; have been added to a global QCD fit
of helicity-dependent PDFs based on the DSSV framework [25] 26]. We have used the

projected uncertainties to randomize the pseudo-data by one sigma around their central
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Figure 1.27. left: generated pseudo-data for A, in bins of Q2 for 5 x 250 GeV collisions; right: ¢,
as a function of Q? for fixed x for 5 GeV electrons on three different proton energies.
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Figure 1.28. x? profiles for the truncated x integral of Ag (L.h.s.) and uncertainty bands for xAg
referring to Ax?/x? = 2% (r.h.s.) with and without including the generated EIC pseudo-data in
the fit.

values determined by the DSSV set of PDFs. To demonstrate the impact of the generated
EIC data on Ag, we show on the Lh.s. of Fig. the x? profile for the first moment of Ag
truncated to the range 10~* < x < 1 where EIC DIS data with Q% > 1 GeV? can potentially
constrain its value. As can be inferred from the plot, the fit based on all presently available
DIS, SIDIS, and RHIC pp data set (labeled as “DSSV+”" and described in the previous
Section) only very marginally constrains the integral. Adding in the projected data for
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5 x 250 GeV, shown in Fig. [[27 already greatly improves the x? profile. Including all
four EIC data sets determines the integral very well; recall that the width of the profile
determines the uncertainty for a given, tolerated increase Ax?. To achieve such a level of
accuracy, the data sets with the highest /s ~ 70 = 80 GeV are most critical in the fit as
they probe the smallest x values.

Even more impressive is the reduction of the ambiguities on the x shape of Ag(x, Q?)
shown on the r.h.s. of Fig. The currently completely undetermined shape for z < 0.01
can be mapped precisely to an accuracy of about +10% (or better) for > 10~%. Below ~
2x107* the shown Ag(x, Q?) and its uncertainties are not constrained by the projected EIC
data and merely result from an extrapolation of the used functional form. We note that since
one needs to control all sources of uncertainties extremely well it might be advantageous
to measure and analyze polarized cross sections instead of spin asymmetries traditionally
used so far. This should greatly simplify the theoretical analysis as one does not need any
information on unpolarized PDFs or the ratio of o /o anymore. There are also first,
very interesting attempts to analyze polarized DIS data within the methodology of neural
networks [I38], [139], which provides a less biased way to estimate PDF uncertainties than
standard approaches based on pre-defined functional forms.

As was mentioned above, one expects to find deviations from DGLAP evolution at
sufficiently small values of . In contrast to the unpolarized case, the dominant contribution
of gluons mixes with quarks also at + < 1. From DGLAP evolution one expects for the
small & behavior of gluons and quarks

Aq(z,Q?), Ag(z, Q%) ~ exp [const x In(Q?/u?) In(1/z)] 1/2 (1.9)

assuming for simplicity a fixed coupling a,. In [I56, I57] it was demonstrated that this
simple behavior can strongly underestimate the rise at small x due to other potentially
large double logarithmic contributions of the type agIn?(1/z)" in the n-th order of oy
which are beyond the standard DGLAP framework. This gives rise to a power-like behavior
of g1 at small z of the form g;(x, Q%) ~ (1/2)°(®s). There are qualitative arguments that
in the polarized case the relevance of these logarithms in 1/z is larger than the difference
between DGLAP and BFKL evolution in the unpolarized case [156] 157]. However, more
detailed quantitative studies are still lacking, and it remains to be seen if the kinematic
reach of an EIC is large enough to actually observe deviations from DGLAP in polarized
DIS. Clearly, any such estimate will strongly depend upon the initial input distributions,
and eventually one needs data to clarify the relevance of small x enhancements. Finally,
we note that in Ref. [I58] the leading small = logarithms were combined with DGLAP
evolution, and some effects of running coupling were addressed in [159].

1.11.2 Charm Contribution to g

As discussed in Sec. [L7 in the context of unpolarized DIS structure functions, the
contributions from heavy flavors require a special theoretical framework. For the kinematic
regime covered at the EIC it is expected that effects of the finite heavy quark mass play
an important role and should not be neglected. This is, of course, particularly relevant not
too far from threshold, i.e., for Q2 less than a few times m%

For all presently available DIS data, the charm contribution to g; can be safely neglected
and, hence, is usually not included in any of the QCD analyses except for the fit presented
in Ref. [23]. The relevant coefficient functions for v*g — ¢¢X have been calculated only to
LO accuracy [I52] so far which is not sufficient for the anticipated experimental precision.
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Figure 1.29. LO expectations for ¢¢ (Lh.s.) and A$ (r.h.s) for the Q% = 10 GeV?, m, = 1.35 GeV, and
using the DSSV and GRSV “std” sets of PDFs. The shaded band corresponds to the Ax?/x? = 2%
uncertainty estimate of DSSV.

The computation of the NLO corrections is, however, work in progress and results should
become available for more detailed quantitative studies soon.

For spin dependent DIS the heavy quark contributions are expected to be smaller than
in the helicity-averaged case but, of course, will very much depend on the currently unknown
size of Ag(x,@?) at small 2. There is also an interesting constraint on the gluonic Wilson
coefficient for heavy quark production, demanding a vanishing first moment when regulated
dimensionally or with a quark mass [I60L [I61]. This leads to a non-trivial oscillating pattern
for g{ depending on the sign of Ag which will look rather different in the case that Ag itself
changes sign within the x range probed.

Figure shows some expectations for the spin asymmetry A{ for DIS charm produc-
tion (r.h.s.) and the charm contribution to the structure function ¢g; (L.h.s.) both computed
at LO accuracy with two different polarized gluon distributions. For a small Ag with a node,
as in the best fit of DSSV, the charm contribution turns out to be at most at the percent
level even at collider kinematics, and the corresponding spin asymmetry is most likely too
small, O(few x 107%), to be measured directly. For a larger gluon distribution at small z, as
in the GRSV fit, or for a gluon within the current uncertainty band of DSSV, asymmetries
can be significantly larger, reaching O(few x 1073), and at 2 = 1072 and Q? ~ 10 GeV?
charm quarks can contribute about 10 + 15% to the inclusive g;. The experimental aspects
for detecting charmed mesons have beed discussed already in Sec. and apply also here.

1.11.3 Remark on the Bjorken sum rule

The Bjorken sum rule

1
| o (6060, = 670 @3] = §C [0(@)] (1.10)

is not only one of the most fundamental relations in QCD but presumably also one of the
best known quantities in pQCD. Corrections up to O(a?) have been calculated [162} [3T] 32].
Given the anticipated precision of DIS measurements at the EIC, it is natural to ask what
can be achieved concerning the Bjorken sum. The major obstacle is, of course, the need for
an effective, longitudinally polarized neutron beam. One conceivable option would be to run
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with 3He but developing a method to measure its polarization to the required percent level
is certainly an extremely challenging R&D task requiring novel ideas. From the theoretical
side it might be advantageous to analyze the data not in terms of PDFs but directly on the
structure function level with the help of so called “physical anomalous dimensions” [163].
This reduces not only the number of parameters but also theoretical scale uncertainties.

i Aqs(x,Qz) dx W\
07 J 804(Q) '
ol Lol Lol

10°  10*  10% 107y

Figure 1.30. The truncated (“running”) x integral for the non-singlet combination Ags related to
the Bjorken sum normalized to the full first moment for two values of Q2.

From present fixed target experiments the sum rule is currently verified to about 10%,
which sets the target for any future measurement to the 1+ 2 percent level. One of the cur-
rent limitations is the extrapolation uncertainty from the unmeasured small x region. Since
the Bjorken sum probes a non-singlet (NS) quark combination, the small x uncertainties
are considerably less severe than for Ag(z, @?), but to reduce them to a level of about 2%,
measurements of ¢gi"" down to x ~ 10™* are required. This is illustrated in Fig. [L30 where
we show the “running” z integral for the relevant NS quark combination Ags normalized to
its full first moment, assuming the functional form from the DSSV analysis. At the required
1+ 2% level of accuracy one might start to see deviations from (LI0) due to isospin and
charge symmetry violations. Very little is known about these effects, and, if experimentally
feasible, measurements could reveal genuine new insights into the hadronic structure.

The fundamental relation (LI0) between a high-energy measurement of DIS structure
functions and a low-energy quantity like the axial charge g4 by itself warrants an experi-
mental exploration at the EIC. From a more theoretical perspective one might argue that
since O(a?) corrections are available, a precision measurement of the Bjorken sum can be
turned into one of the most accurate determinations of a;. One can easily convince oneself,
however, that this does not work out. Changing a; by about one percent, translates only in
a 0.1% change of the Bjorken sum, which is impossible to resolve experimentally. Perhaps
more interesting is the non-trivial connection of the Bjorken sum rule to the Adler D(Q?)
function which naturally appears, for instance, in the eTe™ annihilation into hadrons [164].
These two, seemingly unrelated quantities are connected through the generalized Crewther
relation [145, [32]. For large enough Q?, the Adler function can be expanded as a power
series in a, like C; [os(Q?)] in (TI0), and results are available up to O(at) as well [I65].
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Figure 1.31. Projected spin asymmetries for pion and kaon production in SIDIS for beam energies
of 5 x 250 GeV and various bins in Q2.

The Crewther relation then states for the NS part of the D function that

Dl (@)] Cslan(@)] = 3|1+ T2 kepa, (@2 (L.11)

S
where (8 denotes the QCD beta function, and the first four terms in the expansion of
Klas(Q?)] are known. The term proportional to 8 in (ILII) describes the deviation from
the limit of exact conformal invariance of QCD [I45] [I66]. We also note that since the
Bjorken sum rule can be measured down to small values of Q? it provides a way to define
an effective strong coupling constant [167, [I68] which is by construction gauge and scheme
invariant and approaches the standard running of a; in the perturbative domain.

1.11.4 Opportunities in semi-inclusive DIS

As has been mentioned in Sec. [[.I0] the flavor separation of polarized PDF's in current
fits is largely based on pion and kaon yields in SIDIS. An EIC can easily extend the existing
kinematic coverage in the same way as for inclusive DIS. Prerequisites for exploiting SIDIS
as a precision tool at the EIC, such as good particle identification and well constrained
fragmentation functions, have been already discussed in Sec. for the unpolarized case.

Figure [[.37] shows projected data for the longitudinal spin asymmetry in SIDIS with
identified pions and kaons in the same Q? bins as used for inclusive DIS studies in Fig.
The simulation is based on the PEPSI Monte Carlo [I55] using the GRSV “std” set of
polarised PDFs [24]. The following cuts have been applied to model some detector and
acceptance effects: Q2 > 1GeV?, 0.1 < y < 0.95, photon depolarization factor D(y) > 0.1,
W2 > 10GeV?, 02 < z < 0.8, pg > 1.5GeV, and 1° < 0 < 179°. The momentum cut
on the detected hadron H is placed to ensure to be above the PID Cherenkov threshold.
The statistical precision reflects one month of running at the luminosities anticipated for
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the first stage of eRHIC. Again, these measurements will be limited by systematic uncer-
tainties, which have to be addressed in detail. In addition to the sources of systematic
uncertainties present for inclusive DIS, the detector performance for the identification of
different produced hadron species is most critical for SIDIS. Additional sets of data have
been generated for other combinations of electron and proton beam energies. They are
currently being implemented into the same global QCD analysis framework used to analyze
the projected inclusive DIS data above. Plots similar to those for the y? profile of the
truncated z integral and the 2 dependent uncertainty bands for Ag(z, @?) in Fig. will
be prepared to quantify the impact of SIDIS data on our knowledge of helicity-dependent
quark densities. We expect that all light quark and anti-quark flavors, i.e., Au, Au, Ad,
Ad, As, and A5, can be determined with a precision close to the one obtained for Ag(x, Q?)
in Fig.

Although knowledge of individual quark and anti-quark flavors is in principle not re-
quired for an understanding of the proton spin sum rule, where only the total quark singlet
AY enters, it would provide deeper insight into the question why the observed total quark
polarization is considerably smaller than in naive quark models. Here, it is essential to
understand in detail how sea quarks are polarized, i.e., whether they have a preference for
spinning “against” the direction of the proton spin thereby diluting the total quark polar-
ization. Current QCD fits [25] 26] start to reveal rather complicated patters of polarization
at medium-to-large = with possible sign changes but the statistical precision and kinematic
reach of the fixed-target data is not sufficient for any definitive conclusions.
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Figure 1.32. z(Au — Ad) at Q% = 10 GeV? along with the uncertainty bands from DSSV, results
from earlier global fits, and predictions from the chiral quark soliton model [169] [170].

To give an example, Fig. [[L32] shows the current significance of a possible asymmetry

in the light quark sea, Au(x) — Ad(x). Given the well-established pronounced difference
between % and d in the spin-averaged case, a precise determination of Atu(z) — Ad(x) is of
of particular interest. Different patterns of symmetry breaking in the light anti-quark sea
polarizations have been predicted qualitatively by a number of models of nucleon structure.
For instance, within the large- N, limit of QCD as incorporated in the chiral quark soliton
model [169], 170, 71, 172] one expects |Au — Ad| > | — d|. In addition, charged kaon
data should help to clarify issues related to SU(3) symmetry and the polarized strangeness

density As(x, Q?) by providing sufficient input to determine its first moment reliably.
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1.12 Electroweak Structure Functions at the EIC

Abhay Deshpande, Krishna Kumar, Felix Ringer, Seamus Riordan, Swadhin Taneja,
Werner Vogelsang

1.12.1 Motivation and Introduction

The use of charged leptons to probe the structure of nucleons through electroweak
interactions has proven to be an invaluable tool in our exploration of the strong force.
Experiments on deep inelastic scattering (DIS) ep — eX, which dominantly proceeds via
the exchange of a virtual photon between the electron and the nucleon, have established the
existence of quarks and provided detailed studies of the short range aspects of the strong
coupling.

It is well known that neutral current (NC) interactions can also be mediated by the
Z-bosons of the weak interactions, and their interference with the photon. This gives rise
to parity violating effects, which offer complementary access to nucleon structure. This
has been a theme at parity violating electron scattering experiments, both at fixed target
facilities [I73L[3] and at HERA [174] [I75]. For an unpolarized target, the NC parity violating
asymmetry is given by

OR—OF
Abeam = m s (112)
where o (0r) denotes the cross section for right- (left-) handed electrons. For fixed-target
experiments, where the virtuality @ of the exchanged boson is typically much smaller than
the Z-boson mass My, only «vZ-interference is relevant, and one obtains

GrpM;  Q? N 42 2

e P+ 2 e 107°Q%[GeV7] (1.13)
with the Fermi constant Gr and the fine structure constant «. At modern fixed target
facilities, measured asymmetries were typically of the order of 107 or less [173]. At HERA,
on the other hand, with its enormous kinematic reach in Q?, also contributions by pure
Z-exchange play a role [174].

Charged current (CC) interactions in DIS lepton scattering measurements have been per-
formed at HERA in e*p collisions [I74] and at various neutrino scattering experiments [I76].
They are inaccessible at fixed target charged lepton beam facilities where Q2 < MI%V

An EIC provides a number of advantages in the study of structure functions through
electroweak interactions over previous and existing facilities. As the asymmetries and rel-
ative likelihood of Z° and W exchange monotonically increase with @2, larger c.m.s.
energies are more favorable for such measurements. Additionally, advances in accelerator
and source technologies should provide luminosities on the order of ~ 10%* ecm™2 s™!, two
orders of magnitude higher than what was available at HERA. A new feature will be the
ability for bunch-by-bunch variation of the sign of the longitudinal polarization of both the
electron and hadron beams. A broader Q? and y acceptance than at fixed target facilities,
and variable beam energy, also allow for separation of the various structure functions. High
precision is possible over a broad range in Bjorken-z, 0.01 < x < 0.4, whereas fixed target
facilities typically are sensitive only to = > 0.1.

Aboam ~

Polarized Hadrons

Arguably the most important feature at the EIC is the availability of polarized 'H,
and potentially ?H and 3He, beams with rapid polarization flips, which offers access to
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electroweak spin structure functions that may provide additional constraints on polarized
PDFs. The counterpart of Apeam in (LI2) with polarized protons has never been measured
before, and neither have spin asymmetries in CC interactions. Both would in principle be
accessible at the EIC.

The theoretical study of electroweak spin-dependent structure functions dates back to
the seventies [177) 178, 179] 180} 18T 182] 183] 184] 185]. Renewed interest arose in the
nineties in the context of a possible polarized ep program at HERA [I86] [187, 188 189,
(190, 1911, 192, (193], 194}, 195], 196, 197, [198], and later in terms of studies for a neutrino fac-
tory [199]. Parity-violating spin structure functions were shown to contain rich information
on polarized PDFs. For example, as we shall discuss in more detail in the next section, for
CC interactions via W~ exchange in the parton model, two structure functions g} and
g%~ contribute to the spin asymmetry [196], 197]:

- 2bgl"" +agl”

A" =
aF1W7 —I—ng/IF

, (1.14)

where a = 2(y? — 2y +2), b= y(2 — y), and
gV (z) = Au(z)+Ad(x)+Act+A5(z) , gy (z) = —Au(z)+Ad(z)—Act+A5(z) . (1.15)

In Eq. (CI), V" and F}"" are the corresponding unpolarized CC structure functions.
Extraction of g]'~ and ¢! hence offers new and independent constraints on the quark and
anti-quark helicity distributions, with glw ~ measuring singlet contributions, while ggv isa
flavor non-singlet. If additionally positrons and polarized neutrons are available, which is
possible at the EIC, one could obtain a full flavor decomposition of the nucleon polarized
quark and anti-quark sector. For instance, for proton scattering ¢!V + g}“ﬁ provides the
full quark singlet distribution A, whose first moment gives the quark and anti-quark
spin contribution to the proton’s spin. Likewise, gi¥ + ggﬁ determines the “valence”

+ +
distributions Ag — Ag. Adding neutrons, one has, for example, ggf; P ggf; M= Au+

At — (Ad + Ad), which satisfies a sum rule equally fundamental as the Bjorken sum rule:

1 2
de |ghV P —gWVin] = (1 - 22 1.1
/0 X |:g5 95 ] 3 ga , ( 6)

where we have included the first-order QCD correction [193]. NC structure functions offer
independent insights into nucleon structure. For example, for the y-Z interference contri-
bution, the structure function g; becomes to good approximation gIYZ x Au + An + Ad +
Ad + As + A5 and thus again probes the full quark and anti-quark singlet. The structure
function g5, on the other hand, probes the valence densities: ggZ x 2Au, + Ad,.

We present a few first studies of the prospects for measurements of electroweak spin
structure functions in CC and NC scattering at an EIC. These are not meant to present an
exhaustive assessment of all the opportunities the EIC would provide in this area.

1.12.2 Electroweak Deep Inelastic Scattering
Structure Functions and Parton Model Expressions

In the determination of cross sections and asymmetries, we follow closely the PDG review [3].
The spin-averaged DIS cross section for Q? > M?, where M is the mass of the nucleon, is
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given by
d%o? B 2ra’
dedy ny2n

YL Fy FY_aFi —y*Fp |, (1.17)

where i is for NC or CC and Y3 = 14 (1 — y)?. We have introduced the longitudinal
structure function F} = F — 2z F}, which vanishes to lowest order according to the Callan-
Gross relation. The NC structure functions for et N scattering can be represented as the
sums of the photon, Z°, and interference contributions:

z
FC = F) — (97 £ M) 2F 7 + (957 + 95° £ 2090 902 F (1.18)
and
z
2P = — (g% + Agi )y ze 37 + 2695 + Mgi” + 957 Inza Y. (1.19)
Here and above, the sign 4 is commensurate to the lepton charge. We have
i) (@)
77«/ THZ <2\/§7ra Q2 n M% Nz T,’yZ ( )
and g7, = —% + 25sin? Oy, 95 = —%. A = =1 is the electron/positron helicity.
The spin-averaged structure functions can be written as
z _
[FQ, 7, Fﬂ =z e, 2e49%, 9i7 + 9%7] (4 + @),
q
z _
[FQ, 7, ng} = > [0, 2e49%, 29795 (a0, (1.21)

q

where e, is the fractional electric charge of the quark, gg, = :l:% —2eq sin? Oy, and g = :l:%,
with the 4 sign for up-type quarks and the — sign for down-type quarks.
For Q% < M%, the pure Z contribution can be neglected, and one finds in this limit

A _ Gp@?
beam 2\/571_@

For the case of a polarized target, there are similar spin dependent structure functions.
The difference Ao of cross sections for the two nucleon helicity states is

vz
eFl

Y. g

2Y, F/

+ g . (1.22)

d? Ao’ 8ra?

dedy nyQn

7

Yixgy +Y_xg — y2gi] : (1.23)

where again 7 is for NC or CC and where gi =gt — 2zgt. We note that, like Ff, the latter
quantity vanishes to O(a?) [I78]. The NC spin dependent structure functions are

Z
g5 = —(gv £ AgD)mzgd” + (957 + 947 £ 2095 9 )nz97

Z
gNC = Ag] — (9% £ G )n29]7 + (29595 £ Mgo? + 95>)nzgy - (1.24)

Their components can be written as

|

A _

[917, 97, glz] = 52 [e 2eq0h o2 + 947] (Mg + Ag),
q

[93, 937, 952] = > [0, eqq’, gl gl (Ag— Ag). (1.25)
q
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The spin asymmetry for scattering an unpolarized lepton off a polarized nucleon is then
given by

Yo g/
Ay — 7 | ge, 95 7 1 1.26
L n gV F*y + Y+ 1 ( )
In the CC case, we have
1+ N2 (GpMy Q2 \°
=1+ N2y = ( . 1.2
nee = (LX) mw 2 < ira Q2+ MZ, (1.27)

For W~ exchange (electron scattering), the structure functions (assuming four active fla-
vors) are in the parton model:

EYV ™ =2z(u+d+5+c), FV= =2(u+d+35+¢),
VT = Au+ Ad+ A5+ Ac, 9" = —Au+ Ad+ A5 — Ac. (1.28)

For W exchange, one replaces u <+ d and s <+ ¢. The spin asymmetries for electron and
positron scattering then take the simple parton model forms

Au+ Ac — (1 —y)*(Ad + A3)
u+c+ (1 —y)2(d+3)

— )2 — Al — Aé
aAW+:(1 y)*(Ad+ As) — Au Ac. (1.29)

A =
W (1—y)2(d+s)+u+c

By measuring over a range in y, one can perform a separation of the Au + Ac, Ad + As
quark or anti-quark combinations.

Next-to-leading Order QCD Corrections

The NLO QCD corrections to the spin-dependent structure functions have been computed
in Refs. [192] 193]. To NLO, the expression for a given structure function can be cast into
the generic form [199]

gi\ILO(gx Q2) = AC’q,l ® glLO + fX) ACg ® Ag R
NLO(m Q2) g[[fo
T C ACwe® [%} :
95" 0(2,Q%) = AC;®g°, (1.30)

where the symbol ® denotes a convolution, and g-© is the LO (parton model) expression for
the respective structure function. The coefficient functions to NLO in the MS scheme can be
found in [192] 193]. The factor f5, in Eq. (I30) is the sum over the coefficient of each quark
or anti-quark distribution in the LO expression for g;. For example, for the electromagnetic
g with four flavors, fs = 10/9, while for g]'~ one has fs; = 4. Needless to say that when
including the NLO corrections in the calculation of the structure functions, one also has to
perform the evolution of the polarized PDFs to NLO [12] 200, [13]. For the most part of our
study, we will only use the LO expressions for the structure functions, which are expected
to be entirely sufficient for estimating the sensitivities at an EIC We will, however, briefly
investigate the typical size of the NLO corrections in Figs. [[.36] and [L40] below.
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Figure 1.33. Total NC and CC cross sections for Q% > 1 GeV? as functions of the ep \/s.

1.12.3 Measurements of Parton Distribution Functions

In the following, we will present estimates for rates and spin asymmetries for electroweak
DIS at an EIC. For the spin-averaged case, we use the CTEQ6.5 [201] unpolarized PDFs.
For the helicity PDFs we use the ones of [25]. We note that the latter do not contain a
charm quark distribution.

Basic kinematics and machine considerations

Proposed EIC parameters allow for electron energies of 5 — 30 GeV and ion energies
of 50 — 325 GeV. Figure [[.33] shows the spin-averaged NC and CC total cross sections for
electron and positron scattering, as functions of the ep c.m.s. energy /s. We have integrated
over all Q% > 1 GeV?, based on a simple theoretical LO calculation. One can see that the
cross section of course rises with energy, but relatively mildly so. Therefore, measurements
of electroweak structure functions may well be feasible in collisions at energies significantly
lower than those at HERA.

The upper two plots in Figure [L34]show distributions of the CC cross section in log(Q?)
and log(x), respectively, at three different c.m.s. energies. One can see that the largest
statistical weight would be at  ~ 0.1 and Q? ~ 1000 GeV?, which is a consequence of
the W-propagator factor in Eq. (L27). Binning in # and Q? of course allows to investigate
more detailed distributions, see below. For NC interactions, the v-exchange contribution
dominates the spin-averaged cross section and strongly pushes the Q? distribution towards
Q? — 0 (see center row of the figure). Taking the parity-violating electron beam-helicity
difference of cross sections, however, essentially singles out the vZ-interference contribution.
For this piece, which of course is much smaller than the full spin-averaged cross section,
the Q? distribution levels off towards @2 — 0, as follows from the expressions in Sec.
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of 10 fb~!. Right: Binned NC event rate as function of the electron scattering angle, for 20 x 325
e~ p collisions at £ =1 x 1033 /s/cm?.

and as shown in the bottom row of Fig. [L34]

In CC electron scattering, e”p — v X, the neutrino remains undetected. To identify a
CC event and to reconstruct « and Q?, the final-state hadrons must then be reconstructed
instead. The detectors must hence be optimized to detect resulting hadronic jet formation.
There will likely be some additional detection and reconstruction efficiency associated with
this type of analysis. The discussion of the specific requirements is beyond the scope of this
study, and we will assume that this reconstruction is possible. In practice, CC measurements
could be performed simultaneously with the NC ones, though at a reduced duty factor if
the electron helicity is flipped, as the interaction is purely V' — A. We also assume that
polarized positron beams would be available at an EIC.

For the following analysis, we will consider configurations of E.[GeV] x Ejo,[GeV] with
20 x 325 and 20 x 250. For each of these, a luminosity of about ~ 1 x 103" /s/cm? was
considered, with estimates for machine availabilities, detector acceptance and efficiency, and
beam polarization. Based on an expected five year run time, we consider a realistic effective
integrated luminosity of 100 fb~! for NC processes and 10 fb~! for CC. For the studies below,
a Monte Carlo simulation framework was developed to evaluate rates and asymmetries of
both the NC and CC processes. No detector responses have yet been included, and a
full azimuthal acceptance was assumed. In all analyses we consider a minimum scattered
electron energy of 2 GeV within 3° < 6 < 177° scattering angle. The smaller integrated
luminosity for CC studies is because of a factor of 2 loss due to helicity flips and also because
efficiency of hadron jet and kinematic reconstruction has not yet been studied.

Of practical importance is to evaluate how well a separation of the structure functions
can be done at individual points in z, though it remains for a future Monte Carlo study to
evaluate the x resolution after reconstruction. We bin all data in 20 x bins logarithmically
spaced from 1075 to 1. When binned in Q2, we use 20 bins from 2 to 5 x 10* GeV?2. These
Q? bins were also used in determining any y dependence. Figure (left) shows the total
number of events expected for CC interactions in e p scattering at /s = 141 GeV and
£ =10 fb~!, binned in .

Typical rates in NC scattering are up to 1 kHz, as shown in the right part of Fig. for
/s = 161 GeV. The highest rate occurs in the forward direction of the electron beam. Here,
pipeline electronics will likely be necessary in order to avoid significant deadtime effects.
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Figure 1.36. CC spin dependent structure functions g}" , g%, and g}~ /2z, at Q% = 100 GeVZ.
The dashed lines show the LO results (the one for g}V /2x is not shown in this case, since it

coincides with that for g ), while the solid curves are NLO. For comparison, we also show the
electromagnetic g7 .

Polarized Parton Distributions from CC Interactions

As follows from Eq. ([[.29]), CC processes in electron scattering off polarized targets offer
a unique method to extract combinations of Au + Ac and Ad + A5. With positron beams,
one could also extract Ad + As and Au + Ac¢. For the present analysis, we have assumed
a 100% polarized electron/positron source. As mentioned before, we have assumed only
10 fb~! integrated luminosity, making our estimates somewhat conservative.

In Fig. we show the spin structure functions g{" , g, and g}V /2z, at Q? =
100 GeV?, using the PDFs of [25]. Results are shown both at LO (dashed) and at NLO
(solid). One observes that the NLO corrections are well under control. To guide the eye,
also the ordinary electromagnetic structure function g{ is shown. Figure [37 (left) displays
the asymmetry Ay, for CC e p scattering, as function of x. Different data points at same
x correspond to different bins in Q?. As mentioned above, we have chosen here 20 bins in
Q?, spaced logarithmically from 2 GeV? to 5000 GeV?. The lower asymmetries correspond
to the lower bins in Q2. Thanks to the simple structure of the LO expressions for the cross
sections, the asymmetries in CC interactions become very large in the valence region, much
larger than those in the NC case to be discussed below. On the other hand, as we saw in
Figs. [L34] and [[.35] event rates are much more suppressed at lower Q? and therefore z. The
right part of Fig. [[37 gives the resulting values for the relative uncertainty 0 Ay, — /Ay -
of the asymmetry. Here we have summed over all Q? bins. The results shown look very
promising, with better than 10% measurements appearing feasible all the way down to
x ~ 1072, It is worth keeping in mind that relative polarimetry uncertainties at an EIC
are also expected to be at the 0.5 — 1% level for electrons and 2 — 3% level for hadrons,
so that these might become the dominant sources of uncertainty in the regions where the
statistical 0 Ay, — /Ay - is very small, especially at high x.

Using Eq. (L29)), the asymmetries give direct access to the polarized quark and anti-
quark distributions. As we discussed, higher-order QCD corrections (and also Cabibbo-
suppressed contributions) will somewhat modify the expressions in Eq. (L29). However, for
a first estimate use of Eq. (L29) as a means to gauge the sensitivity to the distributions
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Figure 1.37. Left: spin asymmetry for CC e~ scattering, as function of = for various bins in Q2.
Right: resulting relative uncertainties of the asymmetry.

is justified. The additional contributions will not make a qualitative difference and can be
systematically included in future studies. If furthermore full knowledge of the unpolarized
parton distributions is assumed, then extraction of the sums of the two up-type quarks and
down-type anti-quarks can be performed by a linear fit in (1 — y)2. The results of such fits
are shown for electron and positron running in Figs. and [[.39] respectively. We note
that if a polarized deuterium or 3He beam were available, additional opportunities would
arise; el scattering would probe the combinations Au + Ad + 2Ac¢ and Ad + Aw + 2AS3.
At larger = where the sea quarks are suppressed relative to the valence quarks, e”p and
e~ 1 scattering could be used to separate the valence polarizations.

Structure Functions and Polarized PDFs from NC Interactions

Again we first show the spin-dependent structure functions; see Figure [L40l As the
contributions from pure Z-exchange are small, we only consider the electromagnetic g, and
the v-Z interference contributions gI’Z and gz’g, whose expressions were given in Eq. (L.23).

The left part of Fig. [[41] shows the parity-violating spin asymmetry in Eq. ([22I),
obtained for a polarized lepton beam scattering off an unpolarized proton beam, as function
of x in various different Q? bins. The lower (upper) asymmetries correspond to Q? ~ 2 GeV?
(Q? ~ 4000 GeV?). As one can see, typical asymmetries range from 10™% to 0.1. The right
part of the figure gives the resulting values for the relative uncertainty d Apeam /Abeam Of the
asymmetry. Here we have summed over all Q2 bins and assumed an integrated luminosity of
£ =100 fb~!. The relative uncertainty is found to be near 2% over a relatively wide range
in x; the relative electron polarization uncertainty achievable with modern polarimetry
techniques should be better than this.

According to Eq. (I222]), measurement of the asymmetry Apeam gives access to F} Z and
F) Z. Figure presents the expected relative uncertainties for these structure functions,
corresponding to the results shown in Fig. [L41l Figure [[.43] shows the corresponding result
for the case of €~ D scattering, for the structure function Fy' Z_ Due to the suppression
by the electron vector coupling, the uncertainty of F Z is about an order of magnitude
worse than that of I} 7. The sensitivity is maximized in the region of  ~ 0.01 — 0.4. The
approved PVDIS experiment using the SoLID spectrometer in Hall A at Jefferson Lab [202]
anticipates achieving an extraction of Apeam With relative accuracy =~ 0.5 — 1% over several
bins in x in the range of 0.2 < x < 0.7, both from proton and deuterium targets. The
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Figure 1.40. NC spin-dependent structure functions for 4-Z interference, at Q2 = 100 GeV?, calcu-
lated at LO (dashed) and NLO (solid), using the polarized PDFs of [25].
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Figure 1.41. Left: Parity violating NC spin asymmetries for polarized electrons on unpolarized pro-
tons, binned logarithmically in = and Q2. Right: Resulting relative uncertainties of the asymmetry.
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Figure 1.44. Same as Fig. [[41] but for unpolarized electrons on polarized protons.

products of the quarks’ electric charges and their vector charges are approximately equal
for up-type and down-type quarks, e,g;; ~ edg{‘l/ ~ 0.1. Therefore, one has from Eq. (L2I])
that Ff’Z X u+U+d+d+ s+ 35, both for proton and deuterium. On the other hand, for the
corresponding products of the charges and axial charges one finds e, g% ~ Qedg%, and hence
in the valence region F Z x 2uy, + d,, for protons and o u, + d, for deuterium. While Fy/ Z
could thus give a clean separation of the u and d valence distributions, its contribution to
the beam asymmetry is unfortunately suppressed.

Of significant interest are measurements of gIYZ and ggZ, which contain complementary
information on the polarized PDFs. Similarly to what we discussed for the case of F} Z,
one finds that to a good approximation gIYZ x Au + A+ Ad + Ad + As + A5, which
would in principle make this structure function an complementary probe of the quark and
anti-quark singlet and spin contribution to the proton spin. Furthermore, ggZ offers probes
of the valence regime. According to Eq. (L.23)), gIYZ and ggZ may be accessed by flipping the
proton helicity while leaving the electron polarization unchanged. The corresponding spin
asymmetries, obtained after summing over the electron helicities, are unfortunately overall
much smaller than their counterparts with polarized electron and unpolarized proton. They
are shown in Fig. [[.44], along with the their expected relative uncertainties, computed again
for £ = 100 fb~!. The best sensitivity is in the valence quark region, > 0.1. Even
here, it remains at the 10% level. This directly translates into similar uncertainties for the
structure functions gIYZ and ggZ, which are shown in Fig. In the valence region, where
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Figure 1.45. Structure functions giYZ and ggz (top) and their relative uncertainties resulting from
Fig. 44l (bottom).

sea quarks are irrelevant, we have giyZ x Au, + Ad, and ggZ x 2Au, + Ad,, which may
provide a separation of Au and Ad.

Finally, assuming perfect knowledge of Au and Ad and their anti-quark distributions
from other sources, one might ask if an extraction of As + A3 from gI’Z and ggZ could be
possible. This quantity, and in particular its integral, is a key ingredient to nucleon spin
structure and for understanding why quarks and anti-quarks combined appear to carry little
of the proton spin. Constraints on As+ A5 are presently available from an SU(3) symmetry
analysis of hyperon f-decays, and from kaon production in semi-inclusive DIS, which are
both inflicted with sizable uncertainties and in fact show some tension (for discussion,
see [20]). The result for the extraction of As+ A5 from electroweak DIS at the EIC is shown
in Fig. As can be seen, a non-zero measurement would be challenging for the assumed
100 fb~! integrated luminosity. Nevertheless, this measurement might become interesting
if independent methods of extracting As + A3 were to provide surprising results. If this
measurement is deemed sufficiently interesting and important, larger integrated luminosities
will indeed help, since the measurement will continue to remain statistics limited, provided
relative hadron polarization errors can be kept at the 3% level or better.

1.12.4 Summary

We have performed a basic analysis of the potential of an EIC in terms of measurements
of structure functions in electroweak NC and CC scattering. Precise measurements of the
CC functions F}V, FJV, g}V, and g% become feasible with a relatively modest integrated
luminosity. These measurements will greatly aid the flavor decomposition of polarized and
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Figure 1.46. Results for the 2(As + A3) distribution extracted from the Aj, spin asymmetry under
the assumption that all other helicity distributions are known.

unpolarized PDF's in the region z = 0.01. NC structure functions become accessible with
good precision at high integrated luminosities. Measurements of F Z and FJ 7 seem to be
of limited use in improving present or approved measurements. At the highest luminosities
and center of mass energies, g?Z and ggZ become accessible; these structure functions have
never before been measured. The combined analysis of the new CC and NC structure
functions with electrons and positrons as well as with polarized protons and neutrons at
these highest luminosities could potentially open a new window into precision QCD tests of
the spin structure of the nucleon; this will be the focus of future experimental and theoretical
investigations.
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1.13 Charged Current Charm Production and the Strange
Sea

Marco Stratmann

1.13.1 Basic idea

The leading order contribution to CC charm production in e™p DIS is given by the
O(a?) parton model process W+s' — ¢, where s’ denotes the Cabibbo-Kobayashi-Maskawa
(CKM) “rotated” combination s’ = |V,4|? s+ [Veq|* d. Due to the smallness of |V,q4|* [3] the
process is expected to be essentially sensitive to the strange sea content. Only at large =z,
where quark sea contributions are less relevant, the |Vcd|2 suppression is balanced by the
valence enhancement of the well-known d(z) density. Likewise, in e~ p DIS, the process
W~5 — ¢ predominantly probes the anti-strange density 5(x). With a polarized proton
beam one can access also As(z) and As(x).

Current determinations of s(z) rely mainly on fixed-target neutrino scattering off nuclear
targets with potentially large uncertainties, see Fig. in Sec. Much less is known
about the longitudinally polarized As(z) so far, see Sec. Due to the limited luminosity
and charm detection efficiency, charm production in CC DIS could not be studied at HERA.
CC DIS would provide an independent way to extract the unpolarized and polarized strange
sea distributions at much larger scales, typically @ ~ My, than probed in semi-inclusive
kaon production, cf. Sec. On the downside, such a measurement requires also a positron
beam, though not polarized.

Next-to-leading order QCD corrections also complicate the simple picture for CC charm
production and may deteriorate the sensitivity to strangeness. Apart from the O(ay) correc-
tions to the LO process WTs’ — ¢, the genuine NLO, gluon induced subprocess W*g — ¢35’
has to be taken into account as well. It contributes significantly to the charm production
cross section in certain regions of phase space and hence dilutes the sensitivity to the strange
sea. In addition, a proper theoretical calculation also needs to take into account the mass of
the produced heavy (charm) quark, as was also discussed in the context of F5, in Sec. [[11
In order to make contact with experiment, a fully inclusive calculation [203] I11] is not
entirely sufficient, and one should compute also the momentum z spectrum of the detected
charmed D mesons. In the unpolarized case this was achieved in [204]. The corresponding
polarized results can be found in Ref. [205]. Imposing a lower cut zyi, on the D meson
momentum fraction was shown to considerably reduce gluon-initiated NLO contributions
and enhance the sensitivity to the strange sea.

Concerning the mass m, of the charm quark, it turns out that the naive “rescaling
prescription” [206], i.e., s(x) — s(¢) where & = 2(1+m?/Q?), applies also at NLO accuracy
as it allows for a consistent factorization of all initial-state collinear singularities.

1.13.2 Sensitivity to the Strange Sea

So far, detailed phenomenological studies have been provided only for HERA kinematics
[205], and they still need to be updated for EIC kinematics. However, these projections
are sufficient to demonstrate the idea of the measurement and give a rough estimate of the
size of cross sections and spin asymmetries. From the studies of inclusive CC electroweak
DIS structure functions in Sec. [L12] we already know that such measurements appear to be
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Figure 1.47. The z integrated polarized cross section for CC charm production in e~ p and etp
collisions and the corresponding spin asymmetry A” for (a,b): 0 < z < 1, (c,d): 0.2 < z < 1, using
the GRSV “std” and “val” sets of PDFs. Projected uncertainties are for 70% polarization, 100%
charm detection efficiency, and an integrated luminosity of 5fb~".

feasible at an EIC despite its lower c.m.s. energy than HERA even with moderate integrated
luminosities of about 10fb~!.

As an example, Fig. [[47] shows the sensitivity of CC charm (D meson) production in
e~p and etp collisions at V'S = 300GeV, Q% > 500GeV?, and 0.01 < y < 0.9, to the
choice of As. The momentum fraction of the detected D meson has been integrated using
Zmin = 0 (upper row) and 0.2 (lower row). The GRSV valence set [24] has a very small
positive As(z) in the relevant region = 2> 0.01, roughly comparable to what is nowadays
obtained from fixed target SIDIS data, e.g., in the DSSV analysis [25] 26]; see Sec.
On the contrary, the GRSV standard set has a sizable negative strangeness polarization as
favored by fits including only inclusive DIS data [23]. Other PDFs, in particular the gluon
density, are very similar in both GRSV sets. Note that As(z) = As(z) is assumed in all
current polarized PDF analyses due to the lack of data constraining them separately.

The solid and dashed lines in Fig. [[47] show the results for e”p scattering for GRSV
standard and valence PDFs, respectively. Within the projected statistical uncertainties,
obtained for 70% proton polarization, 100% charm detection efficiency, and an integrated
luminosity of 5fb~!, differences in A5(x) can be easily resolved. The dot-dashed and dotted
lines show the results for a corresponding measurement with positron beams. Having results
for both W~ and W exchange, one should be able to study a possible asymmetry in As(z)—
AS3(x). The results presented here need to be backed up with more detailed simulations of
CC charm production for EIC kinematics.
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1.14 Photoproduction Processes at an EIC

Hubert Spiesberger, Marco Stratmann

The production of hadronic final states in ep collisions is dominated by photoproduction
where the electron is scattered by a small angle producing photons of almost zero virtuality
(Q? ~ 0). At LO of pQCD, the dominant process for the production of high-py hadrons,
jets, or heavy quarks is often photon-gluon fusion, vg — ¢g. Here, the photon interacts
directly with a gluon from the nucleon. Besides this so-called “direct” photoproduction
channel, the scattering can proceed also via “resolved” processes. In this case, the photon
acts as a source of partons which interact with the partons in the nucleon through any of
the standard 2 — 2 LO QCD hard scattering processes such as gg — gg or q¢ — qq. The
large number of possible subprocesses can make the resolved contribution sizable in certain
regions of phase space. Examples for a direct and a resolved process are shown in Fig. [[48]

At LO, the two interaction mechanisms in Fig. both contribute at O(aemas) but
otherwise appear to be independent. Starting from NLO, however, the separation into
direct and resolved contributions becomes factorization scheme dependent. This is due to
soft and collinear singularities appearing in a perturbative approach. These singularities
have to be identified and consistently factorized into non-perturbative PDF's of the nucleon
and the photon. This procedure is not unique, and it is therefore important that the direct
and resolved parts are treated together consistently. Only their sum is an experimentally
meaningful and measurable cross section. For a theoretical review on photoproduction, see,
e.g., Ref. [208].

The differential cross section for electron-nucleon scattering, do.y, at a c.m.s. energy
/s is related to the photoproduction cross section do,y through

doon(v5) = [ dy f () dory (5. (131)

Here, fc is the energy spectrum of the exchanged photon which in the Weizsacker-Williams
approximation is given by

. 2 _ 2 m2
Jot = 52 [SHE g ) (- )] 0

The photon flux f., depends y = E,/E.. Qmax and the range ymin < ¥ < Ymax are
determined by cuts in the experimental analysis. Typically, a lower cut ymin = O(0.1) is

Figure 1.48. Example of a gluon-initiated direct and resolved contributions to photoproduction at
LO (taken from Ref. [207]).
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applied in order to exclude low-mass hadronic final states, and an upper limit on y, e.g.,
Ymax = 0.7 =+ 0.9, is used to reduce the kinematic range where radiative corrections are
expected to be large.

The photoproduction cross section is then obtained as the sum of its direct and resolved
parts, do,n = daﬁ'yli]{, + dafﬁ%, as convolutions ® of the appropriate partonic hard scatter-
ing cross sections do, with the PDFs f,/,(z,) and f;/n(2n) of the photon and nucleon,
respectively, at a factorization scale py, i.e.,

doyy = Z fajy(@ys 10p) @ foyn (TN, ) @ doap(, 2N, piy) - (1.33)
a,b

dag}{, can be obtained from ([33]) by replacing the photon PDFs by a d-function and
considering only photon-parton scattering processes do. in the sum.

The resolved process is accompanied by a hadronic remnant of the photon which carries
the fraction 1 — x,, of the photon energy. At LO, the presence of a hadronic remnant could
be used to distinguish different event topologies for the two mechanisms. In addition, for
two-jet final states x, can be reconstructed experimentally from the measured transverse
momenta and rapidities of the jets. It is customary to define

x?Ybs = (Eéfetle_"jetl + E%:Me_njetz) / (2yE.) . (1.34)

However, at higher orders of pQCD, initial- and final-state radiation of additional partons
will also give rise to hadrons emitted in the direction of the incoming photon. Moreover,
non-perturbative hadronization may contribute to the appearance of hadrons in the same
kinematic region. Both effects lead to a reduction of the experimentally determined value of
2. Therefore a unique separation of the direct and resolved parts is not possible anymore.
Nevertheless, the variable z, can still be used to define kinematic regimes where direct
(large x-) or resolved (small x,) contributions dominate.

At HERA, photoproduction has been used to test pQCD and the presence of both direct
and resolved photon processes for final-states comprising hadrons, jets, prompt photons,
and heavy quarks. Generally, the data are well described by NLO calculations in regimes
expected to be dominated by the direct process. Kinematic regions where resolved processes
are sizable are somewhat less well described; for a review see, e.g., [209]. This is mainly due
to the fact that the photon PDFs needed for the calculation of the resolved contribution
are significantly less well constrained by data than the partonic structure of protons. Only
data for inclusive DIS off a quasi-real photon target, i.e., v*(Q?)y scattering in e*e™ [210],
have been used in fits of photon PDFs so far, see, e.g., [211]. No attempts have been made
to perform global analyses or to quantify uncertainties at a level similar to current fits of
proton PDFs. Any additional, more precise data are therefore of vital importance for an
improved understanding of the theoretical description of photoproduction processes and a
reliable determination of photon PDFs. The latter are of great phenomenological relevance
at a possible future linear e*e™ collider to describe processes involving quasi-real photons.

The next two sections show some examples how an EIC can contribute to further our
knowledge of photoproduction processes both in unpolarized and in polarized electron-
proton scattering.
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1.15 Expectations for Charm Quark Photoproduction

Hubert Spiesberger

The description of heavy quark production in the framework of perturbative QCD is
complicated due to the presence of several large scales, like the transverse momentum pp
of the produced charmed meson, the momentum transfer ) in DIS, or the mass of the
produced heavy hadron. Depending on the kinematic range considered, the mass m,. of
the charm quark may have to be taken into account. Different calculational schemes (see,
e.g. [212] 213], and references therein) have been developed to obtain predictions from
pQCD, depending on the specific kinematical region and the relative importance of the
different scales.

In the case of relatively small transverse momentum, pr < mg, the fixed-flavor number
scheme (FFNS) is usually applied. Here one assumes that the light quarks and the gluon
are the only active flavors and the charm quark appears only in the final state. The charm
quark mass can explicitly be taken into account together with the pp of the produced heavy
meson; this approach is therefore expected to be reliable when pr and m are of the same
order of magnitude.

In the complementary kinematical region where pp > m., calculations are usually based
on the zero-mass variable-flavor-number scheme (ZM-VFENS) where m. = 0 and the charm
quark acts as an active parton with its own PDF; see also Sec. [[.7l The charmed meson is
produced not only by fragmentation from the charm quark but also from the light quarks
and the gluon. The fragmentation process is described with the help of scale-dependent
fragmentation functions (FFs), D(z, 1), which determine the probability that the produced
heavy meson carries the fraction z of the momentum of the parton it is produced from. The
predictions obtained in this scheme are expected to be reliable only in the region of large
pr since all terms of the order m?2/p2. are neglected in the hard scattering cross section.

A unified scheme that combines the virtues of the FFNS and the ZM-VFNS is the
so-called general-mass variable-flavour-number scheme (GM-VFENS) [212] 213]. In this ap-
proach the large logarithms In(p%/m?) are factorized into the PDFs and FFs and summed
to all orders by the well-known DGLAP evolution equations. At the same time, mass-
dependent power corrections are retained in the hard-scattering cross sections, as in the
FFNS. In order to conform with standard MS factorization, finite subtraction terms must
be supplemented to the results of the FFNS. As in the ZM-VFNS, one has to take into ac-
count processes with incoming charm quarks, as well as light quarks and gluons in the final
state which fragment into the heavy meson. It is expected that this scheme is valid not only
in the region p?p > m2, but also in the kinematic region where pr is only a few times larger
than m.. The basic features of the GM-VFNS are described in Ref. [214]. Analytic results
for the required hard scattering cross sections can be found in Refs. [213] 215] 216, 217].

Next, we present theoretical predictions [214] for the photoproduction of D*-mesons
in ep scattering at the EIC. We assume an experimental analysis with Qna.x = 1GeV in
Eq. (L32). Since the cross section is dominated by low Q?, our results should not depend too
strongly on the precise value of Qumax. The relevant direct and resolved hard scattering cross
sections are calculated at NLO accuracy. For the photon PDF's we use the parametrization
of Ref. [2I8] with the standard set of parameter values, and for the proton PDF we have
chosen the CTEQ6.5 set [20I]. For the FFs we use the Global-GM set of Ref. [219] based
on a fit to the combined Belle [220], CLEO [221], ALEPH [222], and OPAL [223] 224] data.

We choose the renormalization and factorization scales to be equal and use p, = puy = mrp,
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Figure 1.49. do/dn for the production of D* mesons at the EIC for two settings of beam energies
integrated over transverse momenta 3 GeV < pr < 5 GeV. The different curves are explained in
the text.

where mp = y/m2 + p% is the transverse mass and m. = 1.5 GeV. In Ref. [214] we studied
scale uncertainties for photoproduction at HERA, as well as ambiguities due to various
possible choices for input variables, such as the proton and photon PDFs, the D* FFs, and
the dependence on m..

In our calculation of the differential cross section do/dn (where 7 is the rapidity of the
observed heavy meson, D*¥) we use E, = 325 GeV and consider two choices for the energy
of the electron beam: E, =5 GeV (left panel of Fig. [[[49) and E. = 30 GeV (right panel).
The transverse momentum pr is integrated over the range 3 < pr < 5 GeV. The results
show that the higher electron beam energy would lead to an increase of the cross section
by roughly a factor of three and the rapidity distribution is shifted towards the backwards
region, as expected.

The figure shows a split-up of the total cross section into contributions from different
subprocesses. From top to bottom, the curves correspond to the total cross section (full line),
the direct contribution (long dashed), the total resolved part (dotted), the contribution due
to charm in the photon (dash-dot-dotted) and charm in the proton (long double-dashed),
and, finally, the part due to resolved subprocesses with light partons in the initial state.
The direct contribution, which is sensitive mainly to the gluon distribution in the proton,
is dominating throughout the shown range of pr and 7. The resolved part is mainly due
to the charm content of the photon, in particular, at negative rapidities. Here one may
hope that measurements at an EIC, in particular, for the option with the highest /s, will
contribute to a better determination of the photon PDFs.

The total cross sections for charm production at an EIC are not very different from those
measured at HERA; however, an increase in the precision of corresponding measurements
can be expected due to the higher luminosity. Apart from providing a better testing-ground
for pQCD, one may expect that the experimental information will contribute to an improved
determination of the charm content of the proton and, perhaps, the charm FFs.
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1.16 Polarized Photoproduction at an EIC

Barbara Jager, Marco Stratmann

The framework for photoproduction outlined in Sec.[[.T4] can be readily extended to lon-
gitudinally polarized ep collisions by replacing all unpolarized hard scattering cross sections
and PDFs with their helicity-dependent counterparts. The energy spectrum of circularly
polarized photons is given by [225]

Qem |1 — (1 —y)? 2 (1=
Afey(y) = L2 ), Dl y)+2m§y2< 5

1 1—y
o |y my? o) ] -0

The polarized beams available at an EIC offer unique opportunities for studying the spin
structure of circularly polarized photons in photoproduction processes. Such measurements
could yield also valuable, complementary information on the gluon helicity density of the
proton as we shall demonstrate below.

To study the sensitivity of an EIC to the parton content of polarized photons, which is
completely unmeasured so far, we consider two extreme models [226] based on the current
knowledge of the unpolarized f7(z,uo) [211] and the positivity constraint |Af7(x, ug)| <
f(x, po). In the “minimal” scenario we assume Af7(z, ug) = 0 at a scale pg ~ 1 GeV and
we saturate the bound in the “maximal” scenario, i.e., Af7(x, ug) = f7(x, po).

We present results of NLO calculations for single-inclusive jet photoproduction at a
c.m.s. energy of /s = 100GeV. In order to compute the cross section for jet production,
an algorithm has to be specified describing the formation of jets by the final-state partons
produced in the hard scattering. A frequently adopted choice is to define a jet as the
deposition of the total transverse energy of all final-state partons that fulfill (n — n')? +
(¢ — ¢")? < R?, where ' and ¢’ denote the pseudo-rapidities and azimuthal angles of the
particles and R the jet cone aperture. We work in the so-called “small-cone approximation”
[227], 228, [229] 230, 231] which can be considered as an expansion of the jet cross section
in terms of R of the form Alog R + B + O(R?). Neglecting O(R?) pieces, the evaluation
and phase-space integration of the partonic cross sections can be performed analytically.
This approximation has been shown [231], 232] 233] [147] to account extremely well for jet
observables up to cone sizes of about R ~ 0.7 in related pp-scattering reactions by explicit
comparison to calculations that take R fully into account. '

Figure presents our results [234] for the expected NLO double-spin asymmetry AJLeLt
for single-inclusive jet photoproduction at v/S = 100 GeV for two different choices of proton
helicity densities [24], 25] and the two extreme sets of polarized photon densities introduced
above. In (L35 we chose Q2,, = 1 GeV? and the range of photon energies is limited to
0.2 < y < 0.85; see also Sec. [LT4l The jet transverse momentum is integrated over for
pr > 4 GeV, and the factorization and renormalization scales are chosen to be pp.

For single-inclusive observables, the rapidity-differential cross sections and the spin
asymmetry are particularly interesting, since the relevant ranges of momentum fractions
of the partons in the photon and the proton are related to the rapidity of the observed jet.
As explained, e.g., in Ref. [235], if counting positive rapidity in the forward direction of
the proton, large momentum fractions x, ~ 1 are probed at large negative values of 7. In
this region, the direct contribution is expected to be largest and the photon structure is
dominated by the purely perturbative “pointlike” QED part [226] which does not depend

L. ; . et
on the unknown non-perturbative input. As can be seen in Fig. [L50] measurements of A}7
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Figure 1.50. Pseudo-rapidity dependence of the NLO QCD spin asymmetry for single-inclusive jet
photoproduction at v/S = 100 GeV integrated over pp > 4 GeV for two different choices of proton
helicity PDFs and two extreme sets of polarized photon densities. Taken from Ref. [234].

for negative n can provide valuable information on the proton’s spin structure, in particular,
the gluon helicity density due to the dominance of gluon-induced processes. On the other

hand, at large positive rapidities, AJL@Lt is particularly sensitive to the parton content of the

resolved photon, x, < 1, as is also exemplified in the figure. The size of Ajfz increases if

the lower cut for the jet transverse momentum is raised to larger values. The range in pp
where jets can be reliably reconstructed at an EIC still needs to be investigated in detail.

If one has determined the proton helicity PDFs from elsewhere, see Sec. [LT1I] the
prospects for learning about the parton content of polarized photons are excellent. We
note that the latter may become relevant in estimates of photon induced cross sections at a
future linear collider if the lepton beams will be longitudinally polarized. Resolved photon
contributions also complicate current extractions of Ag(z,u) in polarized-lepton nucleon
scattering experiments at fixed-target energies [2306, 237]. We have estimated the expected
size of statistical uncertainties in case of the related single-inclusive pion photoproduction
at an EIC in Ref. [238]. Measurements appear to be feasible already with very moderate
integrated luminosities of a few fb~! thanks to the sizable cross sections for small Q2.

We note that other promising observables, like di-jet production where one has a better
control of the range of =, probed, see Sec. [[.L14] or heavy quark production still need to be
studied. Some theoretical results and simulations, mainly for HERA energies, can be found

in Refs. [235] 239, 225].
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2.1 Introduction and Chapter Summary

Mauro Anselmino, Andreas Metz, Peter Schweitzer

The exploration of the internal structure of the nucleon in terms of quarks and gluons,
the fundamental degrees of freedom of Quantum Chromodynamics (QCD), has been and
still is at the frontier of hadronic high energy physics research. After four decades of Deep
Inelastic Scattering (DIS) experiments of high energy leptons off nucleons, our knowledge of
the nucleon structure has made impressive progress. To leading order in the electromagnetic
coupling constant agep ~ %7 the lepton with initial momentum [ interacts via one photon
exchange with the quarks inside the nucleon. By observing the momentum !’ of the lepton
in the final state one obtains information about the quark and gluon content of the nucleon.

This information is encoded in the Parton Distribution Function (PDF) f{(x, Q%) where
r = Q?/(2P - q) is the fraction of the nucleon momentum P which is carried by the parton
with Q% = —¢? and ¢ = [—1". This PDF can be interpreted as the number density of partons
of type ¢ inside the nucleon, carrying a momentum fraction x. Similar information has been
obtained about the number density of longitudinally polarized partons inside longitudinally
polarized nucleons, the helicity distribution ¢ (z, Q?). The successful prediction of the scale
(Q?) dependence of the PDFs is one of the great triumphs of QCD.

However consolidated our understanding of the nucleon structure from DIS experiments
is, it is basically one-dimensional. From DIS we ‘only’ learn about the longitudinal motion
of partons in a fast moving nucleon or, which is equivalent, about their momentum distribu-
tions along the light-cone direction singled out by the hard momentum flow in the process
(i.e., in DIS, of the virtual photon). In DIS the nucleon is seen as a bunch of fast-moving
quarks, antiquarks and gluons, whose transverse momenta are not resolved. A fast moving
nucleon is Lorentz-contracted but its transverse size is still about 1 fm, which is a large
distance on the strong interaction scale.

It makes therefore sense to ask questions like: how are quarks spatially distributed inside
the nucleon? How do they move in the transverse plane? Do they orbit, and carry orbital
angular momentum? Is there a correlation between orbital motion of quarks, their spin and
the spin of the nucleon? How can we access information on such spin-orbit correlations, and
what will this tell us about the nucleon? Recent theoretical progress has put many of these
questions on a firm field-theoretical basis. We do not know all answers, yet, but we have now
a much better idea on how to get them. The past decade has also witnessed tremendous
experimental achievements which lead to fascinating new phenomenological insights into
the structure of the nucleon.

The above questions address two complementary aspects of the nucleon structure: the
description of quarks in the transverse plane in momentum space and in coordinate space.
The field-theoretical tools adequate to describe the former are the Transverse Momentum
Dependent Parton Distribution Functions (TMD PDFs, or, shortly, TMDs). The field-
theoretical objects tailored to describe the spatial distributions of quarks in the transverse
plane are the Generalized Parton Distributions (GPDs), which are discussed in chapter Bl
The focus of this chapter is on the TMDs, their theoretical properties and phenomenological
implications.

Several fascinating topics are related to the study of TMDs:

e 3D-imaging. The TMDs depend on the intrinsic motion of partons inside the nucleon
and allow the reconstruction of the nucleon structure in momentum space. Such an
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information, when combined with the analogous information on the parton spatial
distribution from GPDs, leads to a complete 3-dimensional imaging of the nucleon.

e Orbital motion. Most TMDs would vanish in the absence of parton orbital angular
momentum. The possibility of learning about the orbital motion of quarks inside a
nucleon emerges from the study of TMDs.

e Spin-orbit correlations. Most TMDs and related, observable, azimuthal asymmetries,
are due to couplings of the transverse momentum of quarks with the nucleon (or the
quark) spin. Spin-orbit correlations, similar to those in hydrogen atoms, can therefore
be studied.

e QQCD gauge invariance and universality. The origin of some TMDs and the related
spin asymmetries, when considered at partonic level, reveal fundamental properties
of QCD, mainly its color gauge invariance. This interpretation leads to expect some
clear differences, between TMDs, in different processes (universality breaking). A test
of such ideas is crucial for our understanding of QCD at work.

2.1.1 What are TMDs?

The ‘simplest’” TMD is the unpolarized function f{(x,k;) which describes, in a fast
moving nucleon, the probability to find a quark carrying the longitudinal momentum frac-
tion z of the nucleon momentum, and a transverse momentum k; = |k |. It is formally
related to the collinear (‘integrated’) PDF by [d?k, f{(z,k.) = f{(z) (notice that, for
brevity, the dependence of TMDs and PDF's on auxiliary scales is often not indicated).

This and other quark TMDs are defined in terms of the unintegrated quark-quark cor-

relator [240), 241]

dz—d?z, il — .
—amp P SIHOW0. () IPS)| L 2D

z+=0
in which the gauge link operator W, (0, z) ensures the color gauge invariance of the matrix
element. W; (0, z) depends on a path. Factorization theorems give the prescription along
which path the positions 0 and z of the quark fields have to be connected, and the index
n indicates that strictly speaking W, (0,z2) depends on the process, as it will be further
discussed. The light-cone coordinates are defined as a* = (a~,a™,a ) with a® = %(ao +
a®) and a, = (a',a?).

The power and rich possibilities of the TMD approach arise from the simple fact that k|
is a vector, which allows various correlations with the other vectors involved: the nucleon
momentum P and the nucleon spin S. A systematic description of the information content
of the correlator was initiated in [242] 243, 244]. Of particular importance are ‘leading-twist’
TMDs, i.e. TMDs which enter in observables without power suppression. In this context, a
TMD or observable is said to be twist-t if its contribution to a cross section is suppressed by
the factor (M/Q)'~2 [245] in addition to kinematic overall factors (M represents a generic
hadronic scale including the transverse momentum.).

The leading-twist TMDs are associated with the large + component of the nucleon
momentum (in a frame where the nucleon moves fast). For a spin % particle like the
nucleon there are 8 leading-twist TMDs, namely (we suppress the n process dependence

(I)gj(xv ki, S)U = /
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Dirac structures other than those above yield higher twist TMDs [246] 247]. TMDs of
antiquarks and gluons are defined similarly in terms of correlators analogous to (2.I)). The
notation used in Eqs. (22)—(24]) follows [243] 244, 245], where the common subscript 1 is
used to indicate twist-2 TMDs. (Notice that in the TMD literature also a different notation
is often used, in which, for instance, Aqu/pT(x, k1)=—(2k, /M) #(m, k1 ). We refer to
[248] for an overview.)

The leading twist TMDs (2.2H2.4]) have partonic interpretations. The gamma-structures
signal the quark polarizations. 7+ describes unpolarized quarks, thus Eq. [22) gives the
number density of unpolarized quarks inside an unpolarized (first term) or transversely
polarized (second term) proton. y*+s5, which appears in Eq. ([Z.3]), singles out longitudinally
polarized quarks, either in a longitudinally (first term) or transversely polarized (second
term) proton. Finally, in Eq. (Z4]), the gamma-factor i 0775 selects transversely polarized
quarks inside transversely polarized (first and third terms), longitudinally polarized (second
term) or unpolarized (fourth term) protons.

1 ,
5 tr [ic? s ®9(2, ko, 9)]

+

2.1.2 Partonic interpretation and properties of the TMDs

As they are the central focus of interest in this Chapter, let us further elaborate on the
leading order TMDs and their partonic interpretation. We also introduce the Transverse
Momentum Dependent Fragmentation Functions (TMD FFs). The TMDs contain informa-
tion on the longitudinal and transverse (or intrinsic) motion of quarks and gluons inside a
fast moving nucleon. When adding the spin degree of freedom they link the parton spin
(say a quark, s;) to the parent proton spin (S) and to the intrinsic motion (k). The
correlator (2.I) restricted to leading twist defines the most general spin dependent TMD,
which we denote by f{(x,k,;s,,S), and may depend on all possible combinations of the
pseudo-vectors s,, S and the vectors k|, P which are allowed by parity invariance. At
leading order in 1/@Q), there are eight such combinations, leading to the eight independent
TMDs in Eqs. (22H24).

A similar correlation between spin and transverse motion can occur in the fragmentation
process of a transversely polarized quark, with spin vector s, and three-momentum k,, into a
hadron with longitudinal momentum fraction z and transverse momentum P (with respect
to the quark direction); such a mechanism is called the Collins effect [249] and appears in
the fragmentation function via a s, - (kg X P) term. For a quark fragmentation into a
spinless hadron there are two independent leading-twist transverse momentum dependent
fragmentation functions.

We briefly list here the eight leading-twist Transverse Momentum Dependent Partonic
Distributions of a proton and the two Fragmentation Functions (for a final spinless hadron),
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which are the main objects in our investigation of the nucleon momentum structure.

o f(z,k,) is the unpolarized, k; dependent distribution of parton a inside a proton.
Its integrated version is the usual PDF measured in DIS. Common notations are
q(z) = [d®ky fi(z,k1), and g(x) = [d*k, f{(z, k) for quarks of flavor ¢ and gluons
respectively.

Most experimental and theoretical efforts have so far been dedicated to ¢(z, @) and
g(z,Q?); these are by now the best known partonic distributions, and the comparison
of the predicted Q? dependence with data has been a great success for perturbative

QCD.

g7 (x, k1) (or simply gf) is the unintegrated helicity distribution: the difference
between the number density of partons a with the same and opposite helicity of
the parent proton. Common notations for the integrated helicity distributions are
Aq(z) = [d®k, ¢!, (x, k) for quarks and similarly Ag(z) for gluons. See the relevant
discussions in section [LT0}

The Aq(x)’s are not so well known as the corresponding ¢(z), as they require polarized
DIS, but have been measured by several experiments. The least known of the helicity
distributions is the gluon one, Ag(x), despite some attempts to measure it.

h{(z, k) is the analogue of the helicity distribution, for transverse nucleon spin, i.e.
the transversity distribution. The integrated version has several notations in the
literature A g(z) = hi(z) = [d*ky h{(z,k,) for quarks of flavor g. There is no
transversity distribution for gluons in a spin % hadron.

The unpolarized, the helicity and the transversity distributions are the only three
independent PDFs which survive in the collinear limit, k; = 0. The transversity
distribution is chiral-odd and needs to be coupled to another chiral-odd quantity to
be observed. So far only one extraction of the u and d quark transversities is available
in the literature [250], obtained by a combined fit of SIDIS and ete™ data.

A good knowledge of the transversity distributions for quarks and antiquarks would
allow computation of the tensor charge, given by folda: [h{(z) — h{(z)], a non pertur-
bative quantity for which lattice and model computations exist.

ﬁ?(m, k) is the Sivers function [25]I], appearing in the distribution of unpolarized

partons a inside a polarized proton. It links the parton intrinsic motion to the proton
spin:

Fia ki 8) = FiGe k) — b k) S - (P x ka). (2.5)

The Sivers function offers new information and plays a crucial role in our understand-
ing of the nucleon structure. Its observation, already confirmed, is a clear indication
of parton orbital motion; the opposite values for u and d quarks is argued to be linked
to the nucleons’ anomalous magnetic moments; its very origin and expected process
dependence are related to fundamental QCD effects. Due to its importance the Sivers
TMD for quarks will be discussed at length in Sec. and for gluons in Sec.
Theoretical issues concerning f#”, its origin and relation with basic QCD properties
like the color gauge links and color gauge invariance will be treated in Sec. 2.1
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° hqu(a;, k) is the Boer-Mulders function [244], appearing in the distribution of polar-
ized quarks ¢ inside an unpolarized proton:

~ A~

1 k
i kiisg) = 5 fla k) - ﬁ hil(z ki) sy (P xky). (2.6)

This function has the striking peculiarity that it might give unexpected spin effects
even in unpolarized processes, as it singles out polarized quarks from unpolarized
protons and neutrons. It will be discussed in Sec.

e The remaining three TMDs, g{(z, k1), hlqu(:E, k1) and hllfﬁ(:n, k) are related to dou-
ble spin correlations in the PDFs; respectively, the amount of longitudinally polarized
partons in a transversely polarized proton, of transversely polarized quarks in a lon-
gitudinally polarized proton, and of transversely polarized quarks in a transversely
(but in a different direction) polarized proton. Neglecting higher-twist terms, some
approximate relationships with the other TMDs can be obtained [252]. They will
briefly be discussed in Sec.

e Di(z, Py ) (also denoted as D, ,) is the unpolarized, P, dependent, parton a fragmen-
tation function (into a hadron h). Its integrated version D¢, (z) = [d*P ) D$(z, P)
is the usual FF.

o H 1l %(z,P1) is the Collins function [249], describing the fragmentation of a polarized
quark into a spinless (or unpolarized) hadron:

Py

Di(z,Py;sq) = Di(z,PL)+ I,

H{"%(2,P1) 84 (byx P1). (2.7)

The Collins effect has been observed by several experiments and is well established. It
is considered as a universal property of the quark hadronization process and it plays
a crucial role in many spin effects. Its chiral-odd nature makes it the ideal partner
to access chiral-odd TMDs like the transversity distribution and the Boer-Mulders
function. All these will be discussed in Sec.

2.1.3 How do we obtain information on TMDs?

Our guiding experiments involve again lepton-nucleon scattering at high energy, with
the difference, with respect to the usual DIS, that one observes in the final state a hadron
in addition to the scattered lepton, £(1) + N(P) — ¢(I') + h(Py) + X, the so-called Semi-
Inclusive Deep-Inelastic Scattering (SIDIS). In this case the hadron, which results from the
fragmentation of a scattered quark, ‘remembers’ the original motion of the quark, including
the transverse one, and offers new information.

In general, SIDIS depends on six kinematic variables. In addition to the variables for
inclusive DIS, z, y = (P-q)/(P-1), and the azimuthal angle ¢ describing the orientation of
the target spin vector for transverse polarization, one has three variables for the final state
hadron, which we denote by z = (P - P,)/(P - q) (longitudinal hadron momentum), Pj,p
(magnitude of transverse hadron momentum), and the angle ¢y, for the orientation of P
(see also Fig. [ZT]). In the one-photon exchange approximation, the SIDIS cross section can
be decomposed in terms of structure functions [242] 247, 254], 255] where, largely following

88



HADRON PRODUCTION PLANE

|
LEPTON SCATTERING PLANE

Figure 2.1. Tllustration of the kinematics, especially the azimuthal angles, for SIDIS in the target
rest frame [253]. Pjr and St are the transverse parts of Pj; and S with respect to the virtual
photon momentum q =1 — 1.

the notation of [247], one has

do
dxp dy dos dzp, doy, dP}%T

{FUUT + € cos(2¢p) Fiy; 20n

+ S| € sin(2¢p) Iy, Sm2¢” + S| A \/QFLL

S| |sin(én — o) Fiipig" ) + e sin(@n + 6s) Fig 0
+ ¢ sin(3¢p, — ¢s) F[SJI;(?’%_%)]

4181 Ae V1 — 22 cos(oy — pg) FL ™ >+...}. (2.8)

In Eq. ([28]), € is the degree of longitudinal polarization of the virtual photon which can be
expressed through y [247], S|, denotes longitudinal target polarization, and A is the lepton
helicity. The structure functions Fxy (X and Y refer to the lepton and the nucleon, respec-
tively: U = unpolarized; L,T = longitudinally, transversely polarized) merely depend on
x, z, and Pp. The third subscript Fxy,r specifies the polarization of the virtual photon.
By choosing specific polarization states and weighting with the appropriate azimuthal de-
pendence, one can extract each structure function in (28] as pioneering experiments have
already unambiguously shown.
For TMD studies one is interested in the kinematic region defined by

Pyr ~ Aqep < Q, (2.9)

for which the structure functions can be written as certain convolutions of TMDs. In this
region, the components in Eq. (2.8]) appear at leading order when expanding the cross section
in powers of 1/@Q), while additional ones show up at sub-leading order [242] [247| 254] [255].
Measuring the structure functions in Eq. (28] allows one to obtain information on all eight
leading quark TMDs. To be specific, one has (for a spinless final state hadron) [247, 255],

Fyu ~ Z eg fi ® DY COS(¢_¢S) ~ Z € gip ® Di (2.10)
q

FLLNZeg ggL®Dg sm¢ bs) Nze ‘1®D‘11 (2.11)
q

TR STV L Ze MpoHt (21

q
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sm(2¢ Ze th J_q Flsji;(3¢—¢s Ze th iqj (2.13)

where e, is the charge of the struck quark in units of the elementary charge. Notice that
the four chiral-even TMDs couple to the well known unpolarized fragmentation function
Dy, while the chiral-odd TMDs couple to the (chiral-odd) Collins function Hi-. In the

subsequent sections the major focus will be on Fy; sm(¢ ¢s) containing the Sivers function.

The factorized expressions for the structure functions in Egs. (2I0)-2I3) hold in this
form in the parton model approximation. If loop corrections are included, one not only
obtains a nontrivial higher order term describing the hard scattering part of the process but
also a leading-twist contribution arising from soft gluon emission (soft factor) [240] 256, 257,
258] 259], 260]. In the case of inclusive DIS such soft gluon effects cancel between real and
virtual radiative corrections, but they survive in the SIDIS cross section for P, ~ Agcp.
While the hard coefficient enters the structure functions in a simple multiplicative way, the
soft factor gets convoluted with the parton distributions and the fragmentation functions.
The presence of uncanceled soft gluon emission also requires to somewhat generalize the
field-theoretical definition of TMDs given above. More details about this point will be
presented in Sec. 2.4

Almost all existing analyses of TMD-observables are based on the parton model ap-
proximation. This is sufficient for getting a good first idea about the general features of
the TMDs and also at the present stage of the data, which often are plagued by consider-
able uncertainties. However, precision studies will be necessary to reveal features of QCD
dynamics. The parton model approach will then be no longer appropriate, and one will
have to deal with soft gluon effects, especially when high quality data from the EIC become
available that will cover a large kinematic range.

2.1.4 Gauge invariance, universality, and beyond

Local gauge invariance is the underlying principle of the Standard Model of Particle
Physics. In the case of QCD it is the SU(3) gauge invariance associated with the color degree
of freedom of the quarks which matters. This color gauge invariance plays a particularly
crucial role for TMDs. Here a brief introduction to this topic is given, while especially in
Sec. 2.4 more details about this very active and fascinating field can be found.

As discussed in Sec. 211l in order to have a gauge invariant definition of TMDs a
gauge link (Wilson line) has to be inserted between the two quark fields showing up in the
correlator in Eq. (21)). This is not specific for TMDs but applies also to, e.g., ordinary
PDFs. However, two features are unique in the case of TMDs: first, certain TMDs are
non-zero only if the Wilson line is taken into account [261] 262, 263, 264]. Second, the
Wilson line depends on the process, which leads to a nontrivial universality behavior of
TMDs [262].

The mere existence of two TMDs depends on the presence of the Wilson line — the
Sivers function fi5 and the Boer-Mulders function hi-. They are also denoted as naive time-
reversal odd (T-odd) functions. (This term is not related to real violation of T-invariance
but, roughly speaking, is associated with a nontrivial phase at the amplitude level of a
process. )

The Wilson line is automatically generated when carrying out factorization. In the
case of SIDIS, it arises due to the exchange of (infinitely many) gluons between the active
struck quark and the remnants of the target. Since in DIS these exchanges happen after the
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virtual photon strikes the quark one also talks about final state interactions (FSI). On the
other hand, for the Drell-Yan process, there exist corresponding gluon exchanges before the
photon-quark interaction, which we call initial state interactions (ISI). As a consequence,
the Wilson-lines for the two processes are running along different paths. This in turn
endangers the universality (process-independence) of TMDs, which is a crucial prerequisite
for factorization being of any practical use.

Although the paths of the Wilson lines are different, the TMDs for both processes can
be related by using the parity and time-reversal transformation [262]. One finds that the six
T-even TMDs are actually universal, while the T-odd TMDs are non-universal. However,
this non-universality is well under control and ‘merely’ consists of a sign change [262],

flJ;f‘DY = _flj;f‘DIS’ hlL‘DY = _h%‘DIS’ (2.14)

In other words, the predictive power of factorization is maintained. The experimental check
of this sign change is currently one of the outstanding topics in hadronic physics.

We are now in a position to further motivate why the study of the Sivers effect should
play a central role in the EIC science case. First, the Sivers function not only tells us
something about the three-dimensional structure of the nucleon, a particular spin-orbit cor-
relation, etc. Its physics is also intimately related to the gauge invariance of QCD. Second,
existing data for non-zero transverse single-spin asymmetries in SIDIS and in proton-proton
collisions can be explained on the basis of the Sivers effect. In other words, the physics of
FSI/ISI is the key to describing these asymmetries (which can be as large as 40%) in QCD.
Third, according to our present knowledge, in SIDIS the Sivers function is easier to measure
than the Boer-Mulders function. Fourth, the check of the predicted sign reversal in (2.14]),
strictly speaking, is more direct for flLT than for the chiral-odd hf. In the latter case input
from models is required.

Quite some progress was made in recent years to further elucidate this physics associated
with the underlying gauge structure of QCD. In particular, for hadron-hadron collisions with
hadronic final states the presence of both ISI and FSI may unable any kind of (standard)
TMD-factorization [265], 266], 267] 268, 269] 270, 271, 272]. The consequences of a breakdown
of TMD-factorization are far-reaching. For instance, in such a case also the so-called QCD
resummation technique [273], which is widely used whenever there is more than one physical
momentum scale in a process, becomes questionable. Moreover, if the sign reversal of the
Sivers function in Eq. (ZI4]) is not confirmed by experiment, the general procedure of
applying QCD to hard scattering processes may have to be revisited. Further striking
developments in this rather new field can be expected, and only the close interplay between
lepton-nucleon scattering and hadronic collisions will allow us to fully explore this physics,
as is also obvious from the relations ([2.14]).

2.1.5 TMDs and orbital angular momentum

The helicity PDFs ¢§(x) are still not well known, especially in the sea quark and gluon
sector, but by now one fact seems clear: the spin of quarks and gluons accounts only for a
part of the nucleon spin. A substantial fraction of the nucleon spin must be due to orbital
angular momentum (OAM). It is important to keep in mind that in gauge theories there is
no unique decomposition of the nucleon spin into contributions due to the spin and OAM of
quarks and gluons [143], 274]. Nevertheless it is possible [274] 275] to learn about OAM from
GPDs which describe the dynamics of partons in the transverse plane in position space.
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TMDs provide complementary information on the dynamics of partons in the transverse
plane in momentum space, and one naturally expects TMDs to teach us about parton OAM.
That the OAM of partons plays an important role is well known: in the light-cone wave
function of the nucleon components with OAM L, # 0 must be present in order to have
a non-zero anomalous magnetic moment [276, 277], and the situation is similar for several
other quantities [278]. Model calculations have also shown that the leading twist TMDs

1%,? , g‘fT, hfq, hlqu , hlL:,q and many sub-leading twist TMDs would vanish without different
components in the nucleon wave function with AL, # 0. But although OAM seems to
play a crucial role also for many TMDs, so far no rigorous connection between the OAM

contribution of partons and the nucleon spin could be established.

2.1.6 Further important topics

In this subsection some further important aspects about TMDs are briefly discussed;
more details will be presented in the other Sections of this TMD Chapter.

Models and lattice QCD

Model calculations have had a particularly strong impact on the TMD field. It suffices
to recall the calculations in the quark-diquark model [261] which helped to establish the
existence of the Sivers effect within QCD and the TMD factorization framework [262].
Models may allow to see more clearly the relevant aspects of TMDs which are obscured
in the much more complicated QCD dynamics. We encountered one promising instance
of that above, in Sec. Model results have, however, also very practical applications.
Nearly nothing is known about most of the TMDs. Models provide information on the
sign and magnitude of TMDs, or possible (model) relations among different TMDs. This
information can be applied to make predictions for the planned experiments, and in this
way help to better explore the opportunities of the available and planned facilities. The
importance of model studies is discussed in Sec. 241

Lattice QCD is in principle a powerful approach. What can be handled presently in
lattice studies are calculations of the matrix element in the integrand of the correlator in
Eq. (1)), i.e., TMDs in Fourier-space. Most readily accessible is information on z-integrated
TMDs such as [ dz f{(z, k) [279,280]. The caveat is that lattice results presently available
have been obtained with a simplified gauge-link in the correlator (2. This simplified
gauge-link differs from the link-geometry dictated by factorization in a particular scattering
process. Investigations with more realistic gauge-links are ongoing.

Gluon TMDs

In addition to the eight TMDs for quarks, there also exist eight TMDs for gluons [248]
(281, 282]. The most prominent one is the unpolarized gluon TMD, which is a widely used
ingredient of many calculations in high-energy processes. Because of the initial and final
state interactions, the universality of this object is nontrivial and has attracted renewed
interest lately [283]. Moreover, linearly polarized gluons for an unpolarized nucleon can,
in principle, be explored through, e.g., heavy quark pair production in ¢ p-collisions [284].
A particularly important role is played by the Sivers function for gluons, which will be
discussed in quite some detail in Sec. 2331 Experimentally, the sector of gluon TMDs is
largely unexplored so far, and the EIC could provide extremely valuable information in this
respect.
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Moments of TMDs

Momentum moments of some of the TMDs are of particular interest because of their
relation to certain collinear 3-parton correlators, which appear in the QCD-description of,
e.g., SIDIS structure functions at large Ppr ~ @ or weighted asymmetries (see Sec. 2.2]).
For instance, in the case of the Sivers function one can consider the moment [264] 285]

2
Fa (@) = /d?kl 2’% fir (e, k2) = 7 Tp(x,2) (2.15)
where T represents a quark-gluon-quark correlator. These correlation functions were also
introduced in the literature to describe the single-spin asymmetries in hard scattering pro-
cesses in the collinear factorization framework [286] 287, 288] 289]. Equation 215 is a
model-independent result which allows one to relate different observables. A corresponding
relation holds for the Boer-Mulders function [264] 285]. Also the moments gg and hllL(l)
can be expressed through collinear 3-parton correlators [290].

Integrated /weighted observables

In Sec. 1.3 leading-twist soft gluon effects were mentioned. Such effects can cancel
if the components in Eqgs. (2.8]) are integrated upon the transverse momentum Pjp of the
hadron. For instance, a cancellation occurs for the unpolarized structure function Fy,
and also for the term associated with F;;(d)h_d)s ) which is related to the Sivers effect [291].
In the latter case the integration needs to be done with a proper weight factor (a more
elaborate account on this topic will be given in Sec. 22]). Such weighted observables are
therefore rather attractive from a theoretical point of view. They depend on moments of
the TMDs just discussed above and as such provide additional complementary information.
The EIC would be ideal for seriously studying these interesting observables.

Structure functions from low to high transverse momenta

While at low P, the SIDIS structure functions can be described by means of TMD-
factorization, for P, ~ @ collinear factorization is the appropriate framework. Recently,
a lot of progress has been made to understand the quantitative relation between TMD-
factorization on the one hand and collinear factorization on the other in the region Agcp <

P < @ where both approaches apply [292] 293], 294, 295] [296], 297]. An extended discus-
sion of these aspects, with a focus on the EIC, will also be given in Sec.

Higher twist TMDs

The focus of present research is on the leading-twist TMDs. However, there is also a
lot of important information encoded in twist-3 TMDs, which contain detailed information
on the quark-gluon correlators. Experimentally, such twist-3 effects can be explored by
measuring sub-leading structure functions appearing in the general decomposition of the
SIDIS cross section ([2.8]) [242], 247, 254 255]. In fact, the first clear single-spin phenomena
in SIDIS, which crucially vitalized the field, were sub-leading twist observables. Although
studied in numerous works, these first data on single-spin asymmetries in SIDIS remain
basically unexplained. Some aspects of the interesting topic of higher twist TMDs will be
discussed in more detail in Sec.
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Deliverables Observables ‘ What we learn Phase I ‘ Phase 11 ‘

Sivers + unp. | SIDIS with Tran. | Quant. Interf. valence+sea 3D Imaging of
TMD quarks | polarization/ion; | Multi-parton & | quarks, overlap | quarks & gluon;
and gluon di-hadron (di-jet) Spin-Orbit with the fixed | @Q? (PL) range

heavy flavor correlations target exp. QCD dynamics
Chiral-odd | SIDIS with Tran. | 3" basic quark valence+sea Q? (PL) range
functions: polarization/ion; PDF; novel quarks, overlap for detailed
Transversity; di-hadron hadronization with the fixed | QCD dynamics
Boer-Mulders production effects target exp.

Table 2.1. Science Matrix for TMD physics: 3D structure in transverse momentum space: golden
measurements (upper part) and silver measurements (lower part).

2.1.7 TMDs and the EIC

Despite the tremendous progress in understanding TMDs and the related physics, with-
out a new lepton-hadron collider many aspects of this fascinating field will remain untouched
or at least on a qualitative level. Existing facilities either suffer from a much too restricted
kinematic coverage or from low luminosity or from both. Based on the present status of
research we see the following potential in an EIC:

e clean quantitative measurements of TMDs in the valence region due to high luminosity,
and ability to go to sufficiently large Q? in order to suppress potential higher twist
contaminations. Primordial orbital motion is expected for valence quarks.

e related to the wide kinematic coverage and the high luminosity, ability to provide
multi-dimensional representations of the observables, which is basically impossible on
the basis of current experiments.

e production and possible observation of jets with significantly larger particle multiplic-
ities, allowing for the study a larger variety of hadronic final states.

e first access to TMDs for antiquarks.

e (first) access to TMDs for gluons, for instance through dihadron correlations, dijet
correlations, or semi-inclusive production of quarkonium.

e systematic study of perturbative QCD techniques (for polarization observables). Tests
and studies of QCD evolution properties of TMDs.

We strongly believe that the EIC will bring our knowledge of the partonic structure of
the nucleon to an entirely new level. Keeping in mind deeply QCD rooted effects, like the
(potential) sign-change of the Sivers function, the EIC can be expected to stimulate further
developments in the application of perturbative QCD to other hard scattering processes.
A series of “golden” and “silver” measurements are outlined in table 21l The significance
of these points is further enhanced by newly planned (polarized) Drell-Yan experiments,
which will study complementary physics aspects.
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2.2 Sivers function

Christine Aidala, Elke Aschenauer, Alessandro Bacchetta, Thomas Burton, Leonard
Gamberg, Delia Hasch, Min Huang, Zhong-Bo Kang, Yuji Koike, Bernhard Musch,
Alexei Prokudin, Xin Qian, Gunar Schnell, Kazuhiro Tanaka, Anselm Vossen, Feng
Yuan

We choose the example of the Sivers function to illustrate the physics case for TMD
distributions at the EIC. This function incorporates all new facets and intriguing physical
aspects of TMD distributions outlined in the introduction and discussed in more detail in
the following sections. We start this discussion with a brief review of the peculiarities of
the Sivers function thereby illustrating the crucial role TMDs play in our understanding of
the nucleon structure.

The Sivers function flL:,?(x, k), appearing in the distribution of unpolarized partons a
inside a polarized nucleon:

Fia ki S) = il ke) — o fl G k) S - (P x ky) (2.16)
describes the correlation between the momentum direction of the struck parton and the
spin of its parent nucleon and is hence related to the orbital motion of partons inside
the nucleon. This correlation generates a dipole pattern in the transverse k| -plane. We
illustrate this fascinating aspect of certain TMDs in providing a three-dimensional imaging
of the nucleon in momentum space by choosing a specific configuration for the vectors
involved in Eq. (2I6]). Taking for example pP= % = (0,0, —1) and the spin of the proton
along the y direction, so that S = (0,1,0) and the transverse momentum of the parton
ki = (kiz, kiy,0), yields a typical “dipole” modulation of the distribution:

kiz .14
Fie, ks ) = fie, ko) + 2 e ). (217)

The f1 term provides an axially symmetric contribution, while the second term containing
flLT gives rise to the dipole pattern. A superposition of both effects results in a distribution
that is shifted away from the center (distorted) in the k, -plane as shown in fig. This
distortion turns out to be of opposite sign for up and down quarks.

The Sivers function manifests the importance of initial and final state interaction effects
in hard scattering processes as the presence of these effects is required for the existence
of a non-zero Sivers function. Their inclusion in the TMD factorization approach yields a
peculiar breaking of the universality of the Sivers function. As introduced in sec. 2.1.4] and
detailed in sec.2-4T] this non-universality is well under control and ‘merely’ consists of a sign
change of the Sivers function when appearing in the Drell-Yan process as compared to DIS.
The experimental verification of this sign change is currently one of the outstanding topics
in hadronic physics and presents a crucial test for our understanding of hadron production
in high-energy reactions. We will therefore briefly review the prospects for measurements
of the Sivers effect in Drell-Yan in sec. 2231

A further intriguing aspects of the Sivers function is its connection to the orbital an-
gular momentum in the nucleon. A non-zero quark Sivers function involves a transition
between initial and final nucleon states that differ by one unit of orbital angular momen-
tum. This property together with the potential for a three-dimensional imaging, puts the
Sivers function in close relation to the GPD E discussed in chapter Bl In particular, it
was proposed that there is a dynamical relation called “chromodynamic lensing”, where
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Figure 2.2. Spin density in the transverse-momentum plane for unpolarized quarks in a transversely
polarized nucleon, as described by the Sivers function. The left panel is for up quarks and the right
one for down quarks. The model calculation of Ref. [298] was used.

the spatial distortion of the transverse quark distribution (in a transversely polarized pro-
ton) leads to a distortion in transverse momentum distribution described by the Sivers

function [299] 3001 B01].

2.2.1 What do we know so far from experiments?

Though the Sivers function was first suggested to explain the surprisingly large single-
spin asymmetries measured in pp collisions, our guiding experiments for obtaining unam-
biguous information about this function, and most of the other TMDs, involve high-energy
lepton-nucleon scattering with the observation of one or more hadrons in coincidence with
the scattered lepton (semi-inclusive DIS). In addition, model calculations of TMDs, dis-
cussed in sec. 2.4], guide Ansatze for global fits of TMD parameterizations and provide an
interpretation of the various aspects of TMDs.

In this section, after a brief review of the results from pp collisions, we will summarize
available semi-inclusive DIS measurements of observables related to the Sivers effect and
present phenomenological extractions of the Sivers function from data. The following section
will then highlight the potential of an EIC for a detailed and systematic exploration of the
various aspects of the quark Sivers functions illustrative of TMDs in general.

Transverse-spin effects in proton-proton collisions

Historically, the surprisingly large left-right asymmetries observed in hadronic reactions
with transversely polarized protons initiated the idea about a transverse momentum depen-
dence of quark distributions in polarized protons. The pioneering measurements [302] [303]
of these large (up to 0.3-0.4 in magnitude) transverse-spin asymmetries in inclusive for-
ward production of pions in pp collisions p'p — 7 + X, have been extensively confirmed
by experiments at FermiLab [304] [305] 306l B07, [308] and at RHIC (BNL) at much higher
center-of-mass energies of up to /s = 200 GeV [309]. The observation of such asymmetries
was frequently quoted as a puzzle or challenge for theory. In fact, for a long time, transverse
single-spin asymmetries were assumed to be negligible in hard scattering processes [310].
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The work of [251] introduced a transverse momentum dependent quark distribution, now
termed the Sivers function, which provides a mechanism for the observed asymmetries that
does not vanish at high energies.

A rich variety of single-spin asymmetries for identified hadrons (7%, 7%, K=, p, p) mea-
sured over a wide kinematic range is now available from the BRAHMS, PHENIX and STAR
experiments at RHIC (BNL) [311], 312l B13] 314l B15, B16l, B17, BI8]. The results exhibit
a general pattern: sizable asymmetries are measured at forward-rapidity and for positive
Feynman xr > 0.3 which increase in magnitude with increasing xr and P,p. In contrast,
for negative xp and at mid-rapidity all asymmetries are found to be consistent with zero.

Several mechanisms have been suggested to explain these asymmetries. At large values
of Ppp collinear factorization involving twist-3 distributions can be applied. However, the
intrinsic prediction of a 1/P,p fall-off has yet to be confirmed. An alternative approach
using a generalized parton model that takes intrinsic transverse momentum dependences
into account has been used to describe existing data, achieving a fairly successful description
of the observed asymmetries for pion production in pp collisions [319]. If less inclusive
measurements are performed, with an observed soft momentum scale in addition to a hard
scale, one can attempt to describe the data using a TMD approach in pQCD. However, as
discussed in sec. 241l the presence of both initial and final state interactions in hadron-
hadron collisions may prevent any kind of (standard) TMD-factorization. More insight
might be gained regarding the intricate color structure of pp reactions for example by
measuring di-jet production. In di-jet production both large scales (e.g., jet pr) and small
scales (e.g., App of nearly back-to-back jets) can be observed. To assess factorization
breaking due to color interactions in pp collisions, the experimental measurements can be
compared to calculations using TMDs extracted from DIS and Drell-Yan, for which TMD-
factorization has been demonstrated. Little experimental information currently exists on
these processes, but they are part of the physics program at RHIC.

Many questions still need to be answered, but it is clear that for a strict assessment
of whether the TMD Ansatz is indeed possible and appropriate to describe results from
hadronic collisions, more precise parameterizations of the Sivers function and, hence, more
precise data on the Sivers effect in a well-understood process like DIS is needed.

Semi-inclusive Deep-Inelastic Scattering

In semi-inclusive DIS, the Sivers function leads to single-spin asymmetries in the distri-
bution of hadrons in the azimuthal angles illustrated in fig. 21l The azimuthal modulations
of the SIDIS cross section are given in Eq. (2.8]). The Sivers effect manifests itself as a
sin(¢p, — ¢s) modulation and requires transverse polarization of the target nucleon. The ad-
ditional information provided by the azimuthal angle ¢g of the transverse component of the
target-proton spin about the virtual photon direction allows for an unambiguous extraction

of the Sivers effect. Experimentally, the so-called Sivers amplitude 2(sin(¢p — qbg))}(}T [253],

which projects out the structure function F(S]i;(?h_(ﬁs ) in Eq. (2.8) for a specific hadron h,

is extracted from the asymmetry

1 do"(¢n, ¢s) — do™ (S, ¢s + 7)
S7| do"(¢n, ds) + doh(¢n, ds +7)
where the subscript U indicates an unpolarized lepton beam and 7" a transversely polarized

target nucleon. This amplitude has so far been extracted by three polarized fixed-target
experiments as summarized in Tab. From these measurements, fig. 23 shows a selection

Al (on, b5) =

(2.18)
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experiment (laboratory) +/sin GeV target type hadron types references

COMPASS (CERN) 18 deuteron ht K+ K° [320, [321]
proton h* [322]
proton o, K+ prelim. [323]

HERMES (DESY) 7.4 proton nt [324]
proton at, (nt —77), 70 K+ [325)

HallA (JLab) 3.5 neutron nt prelim. [326]

Table 2.2. Summary of currently available measurements of Sivers asymmetry amplitudes from
lepton-nucleon DIS experiments, their center-of-mass energy, transversely polarized target type, and
analyzed hadron types.

of results that are significantly non-zero and help in determining the shape of the Sivers
function. All other asymmetry amplitudes listed in Tab. are small or consistent with
Zero.

The results have so far been interpreted in the parton model as a convolution of dis-
tribution and fragmentation functions, where the Sivers amplitude can be approximated
by

1
Zq eg fﬂ?(x7 kﬁ_) RQw D?(Z7PJ2_)

> €2 fl(x, k7)) © DY(z, P?) (2.19)

2(sin (¢p, — ¢s)>’(}T(:cB,y, 2h, Par) = —

Here the sums run over the quark flavors, the e, are the quark charges, and fi(z, ki) and
Dy (=, Pf) are the spin-independent quark distribution and fragmentation functions, respec-
tively. The symbol ® (®yy) represents a (weighted) convolution integral over intrinsic and
fragmentation transverse momenta, k; and P, respectively, as explicitely given in ([2.21]).

A qualitative picture of the Sivers function can already be derived from the measured
asymmetry amplitudes. The non-zero results shown in fig. are obtained with a proton
target. As scattering off u quarks dominates these data due to the charge factor, the
positive Sivers amplitudes for 77 and Kt suggest a large and negative Sivers function for
up quarks. This is supported by the positive amplitudes of the pion difference asymmetry,
which originates mainly from the difference ( lqul“ —4 f#‘“) in the Sivers functions for valence
down and up quarks and is dominated by the contribution from valence u quarks. The
vanishing amplitudes for 7~ require cancellation effects, e.g. from a d quark Sivers function
opposite in sign to the u quark Sivers function. Such cancellation effects between Sivers
functions for up and down quarks are supported by the vanishing asymmetry amplitudes
extracted from deuteron data by the COMPASS collaboration. An interesting facet of the
data shown in fig. 23] is the magnitude of the K+ amplitudes, which are nearly twice as
large as those of the 7+. Again, on the basis of u quark dominance, one might naively
expect that the 77 and K amplitudes should be similar. Their difference in size may thus
point to a significant role of other quark flavors, e.g. sea quarks.

Phenomenological analyses of HERMES and COMPASS data [327, [328], 329, 330}, [331],
[332], confirm the picture drawn above as discussed in the following. So far, only the analysis
of Ref. [327] makes use of a subset of the most recent data listed in Tab. and all fits have
yet to be updated for the results from proton data from COMPASS and the first neutron
data from HallA.

98



o
S

preliminary

NTE

i*{ﬁii ;r{ﬁﬁ 2SR
}“*”{ﬁ”w!‘fﬁ}

+

"m HERMES: T B $ ["A COMPASS: TT

2 Bin(e-@)Wr

o

2 - —
m HERMES: K* A COMPASS: K
preliminary

2 Bin(@-@)WJr
o
T T
>t
>
+—t
= =
[———
ot
| i
i -
= i T
4—»1#"’
e
b
ot
e

0.25 +

2 Bin(@-@)r
——
+—
+a+
+—
+——
-
—+
-
+—
+a—
+——
-
+
+—
+a—
.

bl Ll b b b b b b b 1y

10 -2 10 -1 0.2 0.4 0.6 0.8 0.5 1 1.5
X z P.; (GeV)

Figure 2.3. Sivers amplitudes for 7+, KT and the pion-difference (as denoted in the panels) from
HERMES [325] and for 77 and KT from COMPASS [323] measured with a proton target. Inner
error bars present statistical uncertainties and full error bars the quadratic sum of statistical and
systematic uncertainties. Note that the average kinematics in each bin differs for HERMES and

COMPASS.

Phenomenological extractions and models of the Sivers function

The strong impact and success of model calculations and lattice QCD on the TMD field
is discussed in detail in sec. 24l and sec. ] respectively. Models provide information on the
magnitudes and signs of TMDs and guide Ansétze for global fits of TMD parameterizations.
For example, from chiral models [333] and the QCD limit of a large number of colours (large
N, limit) [334] a Sivers function for up and down quarks of equal size but with opposite
sign (fis¥ = — fi7%) is predicted.

Phenomenological analyses provide extractions of TMDs from data. As discussed in
sec. 2.1.3] existing analyses of TMD observables are so far based on the parton model
approximation, where the measured amplitudes of the SIDIS cross section in Eq. (2.8]), are
expressed as convolutions of distribution f? and fragmentation functions D?. For the Sivers
amplitude it reads

sin — 1
FUTE’iléh ?s) o Z 63 17 (x, k1) ®@w Di(z, P1) (2.20)
q
where ®yy is defined as
S = / Pk, P, 5 (zk, + Py — Pur) W, (2.21)

with the kinematic factor ¥ depending on the involved transverse momenta. This convolu-
tion can be resolved by either employing a particular model for the transverse momentum
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Figure 2.4. Up and down quark Sivers distributions extracted from HERMES (and for the full line
also from COMPASS) data using three different parameterizations [329, [330, [B31] (see text). The
left and right panels show, respectively, the first and the 1/2 moment. The curves indicate the
1-sigma regions of the various parameterizations. None of three parameterizations makes use of the
latest experimental results listed in Tab.

dependence or by integrating over the transverse momentum P using a proper weight
factor in the extraction of the asymmetry amplitudes which involves Py, building for ex-
ample 2(% sin (¢p, — <;53)>?]T. The latter approach is very attractive but experimentally
challengingpfor measurements at current fixed target facilities as it requires full Py cover-
age, which cannot be obtained at any of the existing experiments. An EIC would be the
ideal facility to study such weighted asymmetries and to seriously explore the advantages
of these observables, as further discussed in sec. 2.2.71

An intuitive and common Ansatz for the transverse momentum dependence of distri-
bution and fragmentation functions, which provides an analytic solution of ([2Z.2IJ), is a
Gaussian distribution like

) = Fi @)z e (— ks )« DI P = DY)~ e (~ 2k
e m(k%) (k2)) TRt (P (P?)
(2.22)
with typical values for (k?) and (P?%) of 0.2 to 0.3 GeVZ.

The Sivers function was among the first to be extracted from data, as it couples to
the usual unpolarized fragmentation function D]. This fragmentation function is reason-
ably well parameterized [335, [336] using precise data from electron-positron annihilation
into charged hadrons and, most recently, also from single-hadron production in pp colli-
sions and semi-inclusive DIS [74], which provide complementary information on the flavour
dependence of the fragmentation process.

Figure[2Z4]shows the extraction of the up and down quark Sivers distributions using three
different parameterizations for the Sivers function [329] 330 [331], presenting k| -moments
defined as

FO(x /d%L M2f(x k2) and fO/2(z /d2 [feu] (z, k) . (2.23)

The parameterization from Ref. [329] (full line) is based on a combined fit to previous
HERMES and COMPASS data, while the other two fit HERMES data only but describe
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Figure 2.5. The Sivers function for u quarks extracted from recent experimental data [327]. Vertical
lines indicate the region where experimental data are available. The band represents the 2-sigma
range for the chosen parameterization. The dashed blue lines indicate the positivity bound.

the COMPASS data well when using the obtained parameters to calculate the asymmetries
for COMPASS kinematics. All three extractions use the parameterization from Ref. [335]
for the unpolarized fragmentation function. The two curves of each set indicate the 1-sigma
regions of the various parameterizations, taking into account solely statistical uncertainties
of the data sets employed in the fit. The three approaches describe the HERMES Sivers
asymmetries equally well. The differences in size and shape of the extracted Sivers up
and down quark distributions hence reflect the model dependence of the fit results. The
parameterization of [331] imposes the constraint from the large NN, limit, which results in the
symmetric parametrization of up and down Sivers distributions, shown in the left panel of
fig. 2.4l with dashed lines. None of the extractions involve parameterizations for sea quarks
as they could not be constrained by the data used in the fits.

However, the recent, surprisingly large, Sivers asymmetry amplitudes for K measured
by HERMES, which were found to be nearly twice as large as those of the 7™, might hint
at a possibly important role of sea quarks. In Ref. [327], the sensitivity of these data to sea
quark contributions was tested. A fit including Sivers functions for only up and down quarks
was compared with a second fit that allowed also for sea quark contributions (i, d, s, 5) to
the Sivers amplitude. Both fits describe the data with equally good x?, demonstrating that
their precision is not yet good enough to independently constrain the Sivers function for six
quark flavours. In this analysis, the usage of new parameterizations of the fragmentation
functions from Ref. [74] was essential for obtaining a good description of the kaon data.

The available parameterizations of the Sivers function for up and down quarks [327,
[328] 331], 332] agree, within their large uncertainties, with calculations based on a light-
cone model [298] and on a diquark spectator model [337, [338], while predictions based on
the bag model [339] appear to be too small in magnitude for both the up and down quark
Sivers function (see also sec. [2.4)).

Open issues in extractions of the Sivers function

Figure illustrates our current knowledge of the Sivers function. So far, only the
up and down quark Sivers functions can be constrained with relatively large uncertainties
within the range 0.004 < z < 0.5 using basic parameterizations for their shapes.

The precision of current data permits neither constraints of the Sivers functions for
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sea quarks nor an employment of more flexible functional forms, which would also allow
for a sign change as suggested by a spectator model (see fig. in sec. 24). The band
in fig. represents the 2-sigma range for the chosen parameterization and reflects the
precision of the data, but does not account for model uncertainties or for variations of the
functional form of the parameterizations. Also not estimated so far, is any uncertainty
stemming from the Gaussian Ansatz used to resolve the convolution in (2.21]). For example,
the average value, <k:i>, of the quark intrinsic transverse momentum used in this Ansatz
might be flavour dependent, and both (k?) and (P?) dependent on the energy scale. The
latter is particularly relevant for the fragmentation functions, which are extracted from data
collected at much higher energy than the available SIDIS asymmetry data used in the fits.
The EIC would provide both TMD observables at substantially higher scale than any fixed
target DIS experiment and unique data sets of hadron production for a flavour tagging in
the fragmentation process and a study of its transverse momentum dependence.

At this stage of analysis, also specific known issues of experimental data are ignored.
For example, the limited precision of currently available SIDIS data usually allows only
for presenting the results as a function of one kinematic variable while integrating over
the others within the experimental acceptance. Hence, the asymmetry amplitudes from a
specific experiment, presented for different kinematic variables are correlated. Moreover,
the experimental acceptance usually does not provide a full coverage in Pyp. Thus, the
‘unweighthed’ asymmetry amplitudes extracted as function of x or z present only partial
Py moments in contrast to theoretical considerations. A fully differential analysis of SIDIS
data, which requires high statistic datasets, would resolve these issues.

Turning our essentially qualitative picture of the Sivers function and the related physics
into a quantitative description, which goes beyond the tree-level approximation, requires
new facilities providing high precision polarized data over a wide kinematic range as dis-
cussed in the following section.

2.2.2 The Sivers function at the EIC

A systematic and detailed study of the Sivers function, and TMDs in general, can only be
performed on the basis of precise spin- and azimuthal-asymmetry amplitude measurements
in semi-inclusive DIS over a wide kinematic range. The availability of experimental results
that are fully differential in the kinematic variables z, Q?, z and P,y would be a great
asset for phenomenological analyses, as they permit testing the underlying perturbative
QCD techniques and assumptions. Particle identification over the full momentum range
and measurements with both proton and (effective) neutron targets would allow for a full
flavour separation of the distribution functions under study.

Planned experiments at the upcoming JLab12 facility aim at providing high precision
semi-inclusive DIS data in the walence quark region at relatively low Q?, taken with trans-
versely polarized neutrons (HallA) [340], protons and deuterons (CLAS12) [341]. The ex-
pected high luminosities should allow for fully differential extractions of the relevant az-
imuthal and transverse-spin asymmetries. The kinematic range of JLab12 experiments
will be complementary to COMPASS measurements [342], partially overlap with those of
HERMES, and provide data in the so-far unexplored high-z region.

The kinematic coverage of these experiments is compared in fig. 2.6l with the coverage of
an EIC for an energy setting of /s = 50 GeV. As discussed in sec.[ZIland sec.[.2] the ability
to vary the energy of both the electron and proton (ion) beams at the EIC provides variable
energy in the range /s = 15 — 65 GeV or /s = 45 — 200 GeV depending on the realization
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Figure 2.6. [color online] Kinematic coverage in x and Q? for the EIC for an energy setting of
/s = 50 GeV compared to the coverage of COMPASS, HERMES and future JLab12 experiments
represented by the red, purple and black hatched areas, respectively.

options under discussion. This ability puts the EIC in the unique position of accessing
the valence region at much larger @2 than current and near-future experiments (thereby
suppressing potential higher twist contaminations) while also accessing low = down to values
of about 107°, where sea quarks and gluons could be studied in detail. The expected high
luminosity will allow for a fully differential analysis over almost the whole wide kinematic
range. In this section we will illustrate this potential for fully differential analyses of TMD
observables and test the sensitivity to sea quark distributions. The unique features of the
EIC for access to TMDs for gluons, a study of the evolution properties of TMDs, and of the
transition from low to high transverse momenta will be discussed, using the Sivers function
as an example, in secs. 2.3, and ZZ5] respectively.

Generation of pseudo-data

The projections presented in the following for the Sivers asymmetry where estimated
using either modified existing Monte Carlo generators or standard parameterizations of the
unpolarized parton distribution and fragmentation functions. Events were generated for
Q?>1GeV?,0.01 <y <0.9and 0.1 < z < 0.9, over the full kinematically allowed range in
x. At this stage no cuts were applied on the scattered electron or produced hadron. Events
were divided into four-dimensional (x, Q?, z, P,7) bins and the mean asymmetry in each
bin was evaluated. Full acceptance in azimuth was assumed and statistical uncertainties
of \/2/N were assigned in each bin. More details about the simulations can be found
in [343]. For all projections shown in the following, no losses due to detector acceptance
were applied, but an overall operational efficiency of 50% was assumed. The transverse
proton beam polarization is set to 70%. No estimate of systematic uncertainties is applied.

Most of the projections will be given for an integrated luminosity of 4 fb=! or 30 fb—!.
These statistics would be achieved in approximately one week to one month (4 fb=!) or
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Figure 2.7. Projected accuracy for 77 production in semi-inclusive DIS off the proton for a particular
P,r and z range as indicated in the figure. The position of each point is according to its Q2 and z
value, within the range 0.05 < y < 0.9. The projected event rate, represented by the error bar, is
scaled to the (arbitrarily chosen) asymmetry value at the right axis. The blue squares, black triangles
and red dots represent the /s = 140 GeV, /s = 50 GeV and /s = 15 GeV EIC configurations,
respectively. Event counts correspond to an integrated luminosity of 30 fb~! for each of the three
configurations.

one month to six month (30 fb~!) for luminosities ranging from 1 x 103* cm™2s7! to 3 x
1033 cm™2s~!. Therefore the statistical precision in the figures presented here should be
understood as that achievable in a relatively brief period of operation for an EIC.

Four-dimensional mapping of the phase space

The great potential of the EIC for obtaining a fully differential mapping of almost the
entire phase space relevant for TMD studies is illustrated in figs. 27 and A wide x
and Q2 range can be mapped using different beam energies. The projected accuracy for
single 7% production is given for a four-dimensional binning in the kinematic variables z,
Q?, z and Py,7, using three different energy configurations for the EIC (/s = 15, 50 and 140
GeV) and an integrated luminosity of 30 fb~! for each configuration. Events are selected
for 0.05 < y < 0.9 and W2 > 5 GeV2. For a clearer view and explanation of the presented
projections, we show in fig. 2.7 one of the panels from fig. 2.8 corresponding to a specific z
and Pj,7 range. In both figures, the position of each point is according to its « and Q2 value
(abscissa and left ordinate, respectively) and each panel is for a specific z and Py, bin as
indicated in the figure. The projected event rate is represented by the error bar scaled with
respect to the (arbitrarily chosen) asymmetry value given at the right ordinate.

The simulations demonstrate that a four-dimensional mapping of TMD observables for
pions over the whole phase space of main interest, meaning P, values of up to about 1 GeV,
could be achieved in about 3-5 month of running for each energy configuration. Kaon rates
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Figure 2.8. Four-dimensional representation of the projected accuracy for =+ production in semi-
inclusive DIS off the proton. Each panel corresponds to a specific z bin with increasing value from
left to right and a specific P, bin with increasing value from top to bottom, with values given
in the figure. The position of each point is according to its @Q? and z value, within the range
0.05 < y < 0.9. The projected event rate, represented by the error bar, is scaled to the (arbitrarily
chosen) asymmetry value at the right axis. Blue squares, black triangles and red dots represent the
Vs = 140 GeV, /s = 50 GeV and /s = 15 GeV EIC configurations, respectively. Event counts
correspond to an integrated luminosity of 30 fb~! for each of the three configurations.

are typically a factor 4-5 lower than those for pions and a similar quality of data can be
achieved within a correspondingly longer running time.

The strategy for a full flavour separation of the Sivers distribution, and TMD distribu-
tions in general, involves both pion and kaon identification over almost the whole momentum
range and measurements with proton and effective neutron targets. For the latter, the us-
age of polarized *He ions is foreseen for both EIC concepts. Compared to the projections
shown in fig. 2.8 the dilution factor of 1/3 has to be compensated with higher luminosities
(respectively longer running times). The resulting different phase space for the neutron
measurements compared with the proton case due to the Z/A factor entering the momen-
tum distribution and the expected lower center-of-mass energy (by about 2/3) because of
the different rigidities of the beams can be compensated to a large extent by using the
different beam energy settings.

In addition, valuable and necessary information about the transverse momentum de-
pendence of the fragmentation process will be obtained from the same data using a fully
differential extraction of the individual hadron multiplicities.

Sensitivity to sea quarks

Among the unique features of the EIC is its sensitivity for an exploration of the Sivers
function for sea quarks, which are expected to play an important role in the lower z region.
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Figure 2.9. Simulated Sivers asymmetry amplitudes for 77, obtained with an energy of /s = 140
GeV, as a function of = in bins in z, P,z and for a single bin in Q? as given in the panels. Closed
blue (open black) dots correspond to (non-)zero Sivers functions for sea quarks. Error bars represent
the projected accuracy corresponding to an integrated luminosity of 4 fb~".

We investigate this sensitivity by generating two sets of events, one with and one without
contributions from sea quarks. As the Sivers distribution is essentially unknown, it was
parameterized via a constant multiplied by the unpolarized PDF with independent constants
for u, d and sea quarks. The Sivers asymmetry is returned by the generator on an event-
by-event basis. The unpolarized PDFs of [82] and the fragmentation functions of [74] were
used.

In both cases, the same parameterization for up and down quark Sivers functions was
used, which were set equal to 25% of the unpolarized distribution, but with opposite sign,
ie. fii'(z) = —0.25f(x) and fi(x) = 0.25f{(x). In the first data set, the Sivers functions
for sea quarks were also set to 25% of the corresponding unpolarized distribution. In the
second data set the sea quark Sivers distributions were fixed to zero. This allowed for a
comparison of the case in which the sea quark Sivers function was significant compared to
that of the valence quarks with the case of a vanishing sea quark contribution.

Figure 20 shows the asymmetry amplitudes for 7, obtained with an energy of /s = 140
GeV, for a single bin in Q? as a function of z, binned in z and Py as indicated in the panels.
Open black dots represent the case of non-zero Sivers functions for sea quarks and closed blue
dots the case of vanishing contributions. Error bars correspond to an integrated luminosity
of 4 fb~!, already yielding sufficient precision to resolve small resulting differences in the
asymmetry. Because of their different quark content, kaon production is expected to have a
higher sensitivity to sea quark contributions. Figure [ZT10]shows the asymmetry amplitudes

106



2 g-gi | 2rsz<02, l02<z<0.3] [(03<z<0.5] (05<z<0.7] [10.7<2<09
%O'ngiiigiffm [ basosssnses | dasssspsend :%HMMMH : HHWM
-0.02f - 3 L L
s o R S B
go.oé:ssaassaaaao :$338883668$ :@3388833“ :j{gﬁ;;ﬁﬂ uiﬁﬁﬁ#
< -0.02f ) , 5 - - 3 ) ,
?3831 ! - biedd : Mgmﬁ
£ .02} - L Flasteessedd -.‘ pt ¢ L
éz_zg:msssssaas :;32333;33% :;;oooooom :%}::;”M : lﬁ,#’ '
0.06/05<p, <08] | L N
g o4 i " SR S A ;i
02k L Y -\‘mwﬁ i ++ ¢++$% L ﬁl“
P oohiistitiint [ e :ﬁp“’ Ji
0.06r[08<p,, <10] I : b FL
2 ool . ST ST L
g 002} |, L LLLb ‘# -W'HT H P ‘u% i H
et L R L
10t 10° 10% 10 107 10° 10* 10° 10% 10* 10° 10% 10 10° 10 10!

Figure 2.10. Simulated Sivers asymmetry amplitudes for K, obtained with an energy of /s = 140
GeV, as a function of = in bins in z, P,z and for a single bin in Q? as given in the panels. Closed
blue (open black) dots correspond to (non-)zero Sivers functions for sea quarks. Error bars represent
the projected accuracy corresponding to an integrated luminosity of 4 fb~".

for K™ where indeed both scenarios are more distinct. As for 7, the estimate is based on
an integrated luminosity of 4 fb~! and obtained with an energy of /s = 140 GeV.

The study demonstrates that even a relatively brief running of the EIC provides the
potential to distinguish zero and non-zero Sivers functions for sea quarks. Note that these
parameterizations are intended not as a prediction of what asymmetries will actually be
seen at an EIC, but as an indicator of sensitivity given the expected statistical precision.

Impact of the EIC

The EIC will be the unique facility for exploring the Sivers function (and TMDs in
general) for sea quarks and the gluon, to study the evolution properties of TMD distributions
and to investigate experimentally the transition from low to high transverse momenta. As
discussed in sec. Z.2.1] our current knowledge is restricted to an essentially qualitative
picture of the Sivers function. Available data permit to constrain parameterizations for up
and down quarks only, employing relatively simple functional forms.

We illustrate the expected impact of data from the EIC using the parameterization from
Ref. [327] as an arbitrarily chosen model of the Sivers function. This parameterization,
denoted theor; = F(x;, 2, Pir,Q%;a0) with the M parameters ag = {a{, ..., a},} fitted to
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Figure 2.11. [color online] Comparison of the precision (2-c uncertainty) of extractions of the Sivers
function for u quarks (left) and d quarks (right) from currently available data [327] (grey band) and
from pseudo-data generated for the EIC with energy setting of /s = 45 GeV and an integrated
luminosity of 4 fb~! (dark grey band around the red line). The uncertainty estimates are for the
specifically chosen underlying functional form (see text for details).

existing data, serves to generate a set of pseudo-data in each kinematic bin ¢

1
f(valuei; theori, 0-7/2) — - e_(Ualuei —thEOTi)2/2U,L-2 . (224)
270

In each z;, Q?, z and P/~ bin, the obtained values, value;, for the Sivers function are
distributed using a Gaussian smearing with a width o; corresponding to the simulated
event rate at an energy of \/s = 45 GeV obtained with an integrated luminosity of 4 fb—!,
For illustration of the obtainable statistical precision the event rate for the production of
w1 in semi-inclusive DIS was used.

This new set of pseudo-data was then analysed like the real data in Ref. [327]. Figure2.11]
shows the result for the extraction of the Sivers function for w and d quarks. The central
value of fllT“, represented by the red line, follows by construction the underlying model.
The 2-sigma uncertainty of this extraction, valid for the specifically chosen functional form,
is indicated by the dark grey area, which is hardly seen around the red line. This precision,
obtainable with an integrated luminosity of 4 fb~!, is compared with the uncertainty of
the extraction from existing data, represented by the light grey band and shown before in
fig.

Remembering that the event rate of the generated pseudo-data is achievable in a brief
period of operation for an EIC, the impressive impact of the EIC on studies of TMDs is
greatly illustrated.

2.2.3 TMDs in Drell-Yan processes

One of the intriguing facets of the Sivers effect is its peculiar breaking of universality,
as discussed in secs. Z.1.4] and 2241 The symmetry properties of QCD require a reversal of
sign of the Sivers function when appearing in the Drell-Yan process, the production of di-
lepton pairs in the collision of two hadrons, as compared to DIS. The important test of this
fundamental QCD prediction remains outstanding, its invalidation would have profound
consequences for our understanding of high-energy reactions involving hadrons. It is thus
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Figure 2.12. The correlation of the quark and antiquark momentum fractions, x7 and xs, in Drell-
Yan for different rapidity bins in proton-proton collisions at /s = 500 GeV.

not surprising to see the Drell-Yan process appear as a milestone measurement in the update
for the future spin program at RHIC [344].

The Drell-Yan process with unpolarized hadrons has been studied at numerous fixed-
target experiments [345], [346], 347, [348], 349]. There are several proposals for future polarized
Drell-Yan measurements, either at fixed-target experiments (CERN, FermilLab, GSI, and
J-Parc), but also at colliders (BNL, GSI). So far no measurement exists for Drell-Yan
with transverse hadron polarization to isolate the Sivers effect, unlike the case for the
related mechanism of the Boer-Mulders function. Being a naive-T-odd distribution the
latter also involves a reversal of sign when going from DIS to Drell-Yan. For the Boer-
Mulders function data from the Drell-Yan process exist. In particular the violation of the
Lam-Tung relation [350] is a substantial hint of the Boer-Mulders effect, as discussed in
sec. However, being also a chiral-odd distribution, presents an additional challenge
for experimental measurements and their interpretation, given that a second, presently
poorly constrained, chiral-odd function is needed. In the case of Drell-Yan the other chiral-
odd function is a second Boer-Mulders function, making it especially tricky to look for the
sign change between Drell-Yan and DIS.

Among the proposed measurements of the Sivers effect in Drell-Yan two have timescales
of a few years from now. One is an experiment set at IP2 of RHIC (BNL) where transversely
polarized “beam” protons will interact with effectively unpolarized “target” protond] [344].
At the COMPASS experiment at CERN it is not the beam—in this case consisting of
pions—that will be polarized but the target [342]. This configuration is the theoretically
more challenging one of the two as the partonic structure of the pion enters besides the
structure of the proton.

The choice of measuring Drell-Yan single-spin asymmetries at a collider like RHIC has
various advantages. Among others, the asymmetries depend only weakly on the partonic
momentum xg of the (anti)quark in the unpolarized nucleon. When integrated over x5 the
cross section increases with the center-of-mass energy /s as one can reach lower values of
T9 where anti-quarks are more abundant. Furthermore, it is easier to differentiate between
“forward” and “backward” production at a collider allowing easy access to the valence
region of the (transversely polarized) beam nucleon. In fig. 212l we show the correlation
of the quark and antiquark momentum fractions, x; and x3, in the Drell-Yan (DY) process

!The proton beams at IP2 are transversely polarized but due to rapid spin flips they can be spin balanced
to get unpolarized protons.
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Figure 2.13. Sivers asymmetries for the Drell-Yan process at RHIC, as a function rapidity for

/5 = 500 GeV [351].

for different rapidity bins in proton-proton collisions at /s = 500 GeV. The plot assumes
an invariant mass range of the DY lepton pair between the J/i¢ and the Upsilon. To
select DY at masses below the J/¢ and/or at rapidities below 2.0 will be experimentally
extremely challenging due to the dominance of the QCD 2 — 2 processes (> 10%). The
expected single-spin asymmetry, Ay, is presented in fig. 213 as a function of rapidity, y, for
/s = 500 GeV and integrated over the range 4+9 GeV in the invariant mass of the di-lepton
pair [351]. The estimate makes use of a recent “DIS” Sivers function parameterization from
fits to COMPASS and HERMES data [332]. Asymmetries of this size should be readily
measurable with a limited data set. Nevertheless, one should keep in mind that the change
of sign applies to the flavor-dependent Sivers function. For a stringent test of this sign
change it is therefore of utter importance not only to measure the Sivers effect in DIS and
Drell-Yan, but to perform a flavor-decomposition of the Sivers effect as well. In pp collisions
one will be mainly sensitive to the u-quark Sivers function due to the charge factor. Using
pion beams one can vary the sensitivity to the various quark flavors via the choice of the
pion charge as the valence anti-quark flavor in the pion will either be an anti-u or an anti-d.
This will help in a subsequent flavor decomposition of the Sivers effect in Drell-Yan.

2.2.4 Single-spin asymmetry in the collinear factorization: Twist-three
mechanism

The quark Sivers function discussed in the last subsection is also closely related to
the twist-3 quark-gluon-quark correlation functions in the collinear factorization approach
which can generate large single spin asymmetries in hard scattering process, in particular,
in inclusive hadron production in pp collisions. The single-transverse spin asymmetry in
the process like pp — w.X is among the simplest spin observables in hadronic scattering.
One scatters a beam of transversely polarized protons off unpolarized protons and measures
the numbers of pions produced to either the left or the right of the plane spanned by the
momentum and spin directions of the initial polarized protons. Measurements of single-spin
asymmetries in hadronic scattering experiments over the past three decades have shown
spectacular results. Large asymmetries of up to several tens of percents were observed at
forward (with respect to the polarized initial beam) angles of the produced pion. Despite the

110



conceptual simplicity of Ay, the theoretical analysis of single-spin asymmetries in hadronic
scattering is remarkably complex. The reason for this is that the asymmetry for a single-
inclusive reaction like pp — wX is power-suppressed as 1/¢; in the hard scale set by
the observed large pion transverse momentum. Power-suppressed contributions to hard-
scattering processes are generally much harder to describe in QCD than leading-twist ones.
In the case of the single-spin asymmetry, a complete and consistent framework could be
developed [286, 288, 289 [352]. It is based on a collinear factorization theorem at non-
leading twist that relates the single-spin cross section to convolutions of twist-three quark-
gluon correlation functions for the polarized proton with the usual parton distributions
for the unpolarized proton and the pion fragmentation functions, and with hard-scattering
functions calculated from an interference of two partonic scattering amplitudes: one with a
two-parton initial state and the other with a three-parton initial state.

In the following, we briefly describe the collinear factorization formalism for the twist-
3 single-spin-dependent cross section in the semi-inclusive deep inelastic scattering, ep —
ehX. This factorization applies when the transverse momentum of the final state hadron is
large compared to the non-perturbative scale Aqcp. The usual leading twist spin-average
cross section for this process can be schematically written as

do ~ Zfa(x7ﬂ)®Dh/b(Z7:u') ®&ab(‘r727Q7M)7 (225)
a,b

where fu(z, 1) and Dy (2, 1) (a,b = q,q,g) are, respectively, the parton density in the
nucleon and the fragmentation function for b — h, convoluted with the hart part G?°. The
twist-3 cross section relevant for SSA in ep’ — ehX takes the factorized form,

do_tw3 ~ Z G((l3) (5171751727#) X Dh/b(z,,u) &® 5'[11b(51717$27 Z, Qmu)
a,b

+ Z 5fa(33, M) @ D}(lg/)b(zla 22, M) ® 6.1215(33’ 21,522, Q7 M)v (226)
a,b

where ® represents the appropriate convolution, similarly as the twist-2 factorization for-
mula (2.25]), with the relevant momentum fractions x1 2, 2, , 21 » integrated over. G((f’) (1,22, 1)

)

is the twist-3 distribution function in the transversely-polarized nucleon p', and D}(Lg/b(zl, Z9, Jt)
is the twist-3 fragmentation function for the hadron h; the latter function is chiral-odd, com-
bined with the chiral-odd transversity distribution df,(x, 1) for p'. (In the TMD approach,
the first term in (2.26)) is described in terms of the Sivers function, and the second term is
described using the Collins function.) These twist-3 distribution and fragmentation func-
tions describe the multi-parton correlations in the nucleon and in the fragmentation process,
respectively, and thus provides us with an opportunity to reveal the more detailed inter-
nal structure of hadrons beyond the parton-model picture. Each twist-3 function has its
own logarithmic scale dependence, which differs from that of the twist-2 functions; for the
corresponding p-dependence, see section ([2.4.3]).

For G,(lg) (1,9, 1) with a = ¢ in ([Z26]), two independent quark-gluon correlation func-
tions, Gp(z1,z2) and ép(:nl,xg), participate. They are defined as dimensionless, real,
Lorentz-scalar functions in terms of nucleon matrix element associated with the gluon field
strength tensor F*? as well as the quark field ¢/ on the light-cone [352, B53]. Similarly,
the twist-3 purely gluonic correlation functions O(x1,x9) and N(x1,x2) as Ggg) (1,29, 1) in
[224)), are defined through the gauge-invariant lightcone correlation of three field-strength
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tensors [354]. Thus, a complete set of the twist-3 correlation functions in the transversely-
polarized nucleon is now provided by G (1, z32), éF(ml, x9), O(x1,x9) and N (z1,x2), tak-
ing into account all symmetry constraints in QCD. We note that the twist-3 correlation
functions, Tr(z1,z2), T((;f’d) (z,x), etc., used in the literature [355 B56l B57] can be ex-
pressed by the above correlation functions.

Another origin of SSA is in the fragmentation process for the final hadron, as represented
in terms of the twist-3 fragmentation function D}(L?})b(zl, 29, p) of (2.26]), which is also defined
as a multi-parton light-cone correlation function (see [297]).

For SIDIS, ep — ehX, the large transverse-momentum Pj,7 of the hadron h should come
from a perturbative mechanism, i.e. from the recoil from the hard (unobserved) final-state
partons. Then, the factorization formula (2.26]) is derived in the LO perturbative QCD,
manifesting their gauge invariance at the twist-3 level, and a practical procedure to calculate
the relevant partonic hard part 6 is provided in [352, 354, 297]: an extra gluon, which
emanates from nonperturbative multi-parton correlation and carries the momentum fraction
T9 — T1, participates in the partonic hard scattering. The coupling of this gluon allows an
internal propagator in the partonic subprocess to be on-shell, and this produces the required
imaginary phase. The results for those partonic subprocesses imply [352] B58] [359],

d50.tw3
dedQ2thdP}%Td¢h
+sin ¢g FSM9S 4 sin(3¢y, — ¢g) FSRBh=95) 4 gin(gy, 4 ¢g) FSM @ +ogh 27)

= sin(¢h — (bS) FSin(¢h—¢S) + SiIl(Q(bh _ ¢S) Fsin(2¢h—¢s)

with the azimuthal angles ¢, and ¢g of P,pr and S, respectively, measured from the
lepton plane; the five azimuthal dependences in (Z20]) are similar as those in the TMD
approach. Here, each structure function F5"(") is expressed in a factorized form, convoluted
with Gp(x,z) and dGp(z,z)/dx. The similar twist-3 effects from Gr and Gp have been
investigated for SSA in Drell-Yan and direct photon productions, and hadron production
in pp collisions.

Charm production in SIDIS and pp collisions is useful to study the twist-2 gluon distri-
butions in the nucleon, since the cc-pair creation through the photon-gluon or gluon-gluon
fusion is their driving subprocess. Likewise, the three-gluon correlation functions can be
probed by SSA in these processes. From this point of view, the three-gluon contribution to
SSA in D-meson production processes, ep! — eDX and p'p — DX, have been studied in
13561, B57], B354, [360]. For both processes, the twist-3 cross sections for SSA can be derived
entirely as the gluonic pole contribution leading to x1; = x2, and thus receive the contribu-
tions O(zx, z), O(z,0), N(z,x) and N(x,0) (and their derivatives) [354], 360]. The result for
ep! — eDX has five azimuthal dependences like in ([227) [354].

So far, RHIC at BNL reported a significant amount of data of Ay for p'p — hX
(h = m,K,n,D,J/V). Given that the NLO QCD in collinear factorization can provide
a reasonable description of the corresponding unpolarized cross section, we expect that
one can apply the above twist-3 formalism to analyze the Ay data [289] 355, 361]. The
complete LO QCD formula for Ay from the twist-3 quark-gluon correlation functions to
p'p — hX has been derived: It consists of the contribution associated with G r(z,x) and
dGp(z,z)/dv (Gr(v,x) = 0) [355], and the contribution [362] associated with Gp(x,0)
and Gr(x,0). Phenomenological analysis of RHIC data shows that both contributions are
important, although the main contribution comes from the G r(x, ) contribution [289] 355],
the Gp(x,0) (Gp(z,0)) contribution also plays an important role, and the combination of
both contributions provides a reasonable description of the RHIC data, shedding light on
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Figure 2.14. Left: kinematics for D-meson events showing the momentum vs. polar angle distri-

bution for the electron and D (or equivalently D) meson in the laboratory frame. Right: Projected
accuracy for transverse single-spin asymmetries from single D meson production using an energy of
/s =50 GeV and an integrated luminosity of 370 fb~1.

the behavior of G and G F [361]. There are also some initial efforts to calculate the twist-3
fragmentation contribution to Ay [363]. Global analysis of RHIC and future EIC data is
expected to reveal more details on the role of the multi-parton correlations, including the
three-gluon correlation functions.

The potential of the EIC for measuring transverse single-spin asymmetries in charm pro-
duction is illustrated in fig. 214l In the simulation, based on the PYTHIA event generator,
the main decay channel for D mesons, D — 7K ~, with a branching ratio of 3.8 £ 0.1% is
investigated. Events are selected for Py > 1 GeV and Q2 > 1 GeV within 0.05 < y < 0.9
and 1.86 < Mp < 1.87. The signal-to-background ratio for the reconstructed D mesons
strongly depends on the detector resolution. In this study, we assume a momentum resolu-
tion of 0.8% - ﬁ; and a resolution of the polar and azimuthal angles of 0.3 mrad and
1 mrad, respectively. The resulting resolution of the reconstructed invariant mass of the
D meson is 1.8 MeV yielding an overall signal-to-background ratio of about 1.6 to 1. The
overall detection efficiency for this triple coincidence process is assumed to be 60%. The
polarization of the proton beam is set to 80%.

The projected accuracy for measuring transverse single-spin asymmetries in single D
meson production is shown in fig. 214 (right) as a function of z for different regions in @2,
x and Ppr, as indicated in the figure, together with model calculations of the asymmetry
from Ref. [356]. An energy of \/s = 50 GeV and an integrated luminosity of 370 fb~!
were used. The study demonstrates a very promising feasibility of extracting observables
involving charm production. It will significantly benefit from higher energies up to /s = 200
GeV.

In summary, the twist-3 collinear factorization framework provides us with a systematic
way for describing SSA in the region of large transverse-momentum Py, of the final hadron,
and is thus complementary to the TMD description of SSA which is valid in the low Ppp
region. For the twist-3 distribution functions in the transversely-polarized nucleon, relevant
to SSA, there are two independent quark-gluon correlation functions and the two indepen-
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dent three-gluon correlation functions, all of which are process-independent. Twist-3 cross
section formulae for SSA are available for many important processes, which can be used for
confronting with the RHIC and EIC data and may serve to reveal multi-parton correlation
effects in QCD hard processes.

2.2.5 Unifying the Mechanisms for the Sivers effect

Recent developments have shown that the TMD approach and the collinear factorization
approach can be unified to describe the Sivers effect for the single transverse-spin asym-
metries in semi-inclusive DIS. The TMD approach covers the kinematic region Pppr < @
where @) > Aqcp, while the twist-3 approach covers the large Pp,r region, Py, > Aqcp.
A natural question here is whether the two mechanisms give rise to equivalent (or consis-
tent) SSA in the overlapping region, Aqcp < Ppr < Q. To address this issue, we first
recall the relation between the Sivers function fllT(x, k1) and the quark-gluon correlation
function Gr(z,z) [364]: [ dk? k2 fiz(z,k1) = TM%Gp(z,z), which indicates that the two
mechanisms are closely related.

A more explicit relation for the SSA in the two approaches has also been derived for the
Sivers cross section, F5(on=%s) in [Z27) [292, 294} 295]: In the TMD approach, F5(¢n—¢s)
is expressed in terms of the Sivers function ffi«(:l?, k1). In the large k| -region, relevant to
Aqep < Ppr < @, the k| -dependence of flLT(a:, k) ) can be generated perturbatively, such
that ffj«(:l?, k) is expressed as the convolution of the corresponding perturbative coefficient
functions with the nonperturbative correlation functions G and Gr. By inserting this
form of fi-(z,ky) into the TMD factorization formula for FS™@:=¢s)  one obtains the
cross section written in terms of Gp and G r, and this expression turns out to be identical
to the leading Pyp behavior of the twist-3 mechanism for F5™(#r=9s) in the overlap region
Aqep € Py < Q. From these studies, the two mechanisms for single-spin asymmetries
represent a unique QCD effect over the entire P, region. The same equivalence was also
shown for the SSA in the Drell-Yan process. It should be noted that the sign of the Sivers
function changes from SIDIS to the Drell-Yan case, while the twist-3 quark-gluon correlation
functions are process-independent. The connection between the two mechanisms is also
consistent with such process-(in)dependence [293].

The contribution from the twist-3 fragmentation function in ([2.20]) gives rise to the struc-
ture function F*™(@x+9s) in [@Z27), and dominates the leading P, behavior of Fsn(®r+os)
compared to that from the quark-gluon correlation functions. This leading P, behavior
in Fsn(@nt9s) turns out to be identical to the corresponding contribution from the Collins
function in the TMD approach, similarly as the above equivalence for Fsn(¢n—és) [297].

These are nontrivial and important results, which demonstrate that we indeed have a
unique picture for single transverse-spin asymmetries in DIS and hadronic collisions. The
discussion can be further generalized to other structure functions in SIDIS as well.

To analyze the general power behavior of the structure functions, it is important to real-
ize that the power expansions are done in two different ways in the above two descriptions.
At low qr, first we expand in (¢r/Q)" 2 and neglect terms with n bigger than a certain
value (so far, analyses have been carried out only up to n = 3, i.e., twist-3). To study the
behavior at intermediate gr we further expand in (M/ qT)k . Vice versa, at high g7 we first
expand in (M /qp)™ (also in this case, analyses are available up to n = 3, i.e., twist-3). To
study the intermediate-g7 region, we further expand in (gr/ Q)k_2. We can encounter two
different situations:
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e Type-I observables, where the leading terms at high and low transverse momentum
have the same behavior. For instance,

a3 A a5 o

where the term A is leading in both the low- and high-gp calculations. In this case, the
calculations at high and low transverse momentum must yield exactly the same result
at intermediate transverse momentum [273] 292]. If a mismatch occurs, it means that
one of the calculations is incorrect or incomplete.

e Type-II observables, where the leading terms at high and low transverse momentum
have different behavior. For instance,

;| ar 0|:M:|4 /|:QT:|2|:M:|2
F(gr,Q)=A [Q} - + B 0 o +.... (2.29)
where the first term is leading and the second term sub-leading in the low-qp cal-
culation, whereas the reverse holds in the high-¢r calculation. In this case, if the
calculations at high and low transverse momentum are performed at their respective
leading order, they describe two different mechanisms and will not lead to the same
result at intermediate transverse momentum. In order to “match”, the calculations
should be carried out in both regimes up to the sub-subleading order. We could call
this situation an “expected mismatch”, since it is simply due to the difference between
the two expansions.

In Tab. 23l we list the power behavior of the structure functions at intermediate trans-
verse momentum, as obtained from the limits of the low-gr and high-¢7 calculation. For
details of the calculation, we refer to [296]. The structure functions with a “yes” or “no” in
the last column of Tab. are type-I observables, where on the basis of power counting we
know that two calculations describe the same physics and should therefore exactly match.
In these cases, the high-gp calculation describes the perturbative tail of the low-qp effect.
The two mechanisms need not be distinguished. Using resummation it should be possible to
construct expressions for these observables that are valid at any ¢pr. Six of these structure
functions have been calculated explicitly.

For the functions identified as type-II in the last column of Tab. 23] the low-¢r and
high-¢g7 calculations at leading order pick up two different components of the full structure
function. They therefore describe two different mechanisms and do not match. For such
type-1I observables, if one aims at studying the leading-twist contribution from transverse
momentum distributions, some considerations have to be kept in mind:

e the leading contribution from the high-gp calculation (often referred to as a pQCD
or radiative correction) is a competing effect that has to be taken into account [363],

366, 367];

e gr-weighted asymmetries enhance the high-gr mechanism and thus are not appropri-
ate to extract type-II TMDs;

e it is at present impossible to construct an expression that extends the high-gr cal-
culation to gr ~ M, since this requires a smooth merging into unknown twist-4
contributions, which most probably cannot be factorized (see also Ref. [368]);
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structure | low-gr | high-gp exact structure low-gr | high-gr exact
function | power | power match function power power match
F 1 2 1 2 FSin(¢h—¢S) 1 3 1 3

UuU,T /ar /ar yes UT,T /ar /dr yes
Fog™ | Yap | 1/Q | typell Fgp® ) | gk | 1/gh | ves
Fop® | 1/qh (typeTT) Fp® o9 1 1/gh | 1/(Q%ar) | typell
Frp lap | 1/ay yes Fpp o) | 1/g3 (yes)

Table 2.3. Behavior of SIDIS structure functions in the region M < ¢r < @, as deduced from
the low-gp calculation based on TMD factorization and the high-gr calculation based on collinear
factorization. Empty fields indicate that no calculation is available. The last column indicates
whether the expressions match exactly, do not match exactly, or should not be expected to match.
In parentheses: expected answers based on analogy, rather than actual calculation.

e it is desirable from the experimental point of view to build observables that are least
sensitive to the effect of radiative corrections.

We stress that the above considerations apply not only to semi-inclusive DIS, but also to
Drell-Yan and ete™ annihilation [369], which have been already used to extract the Boer—
Mulders and Collins functions [367 [370].

In summary, at the moment there is the hope to build descriptions of the structure
functions that go from low to high transverse momentum for the five structure functions
with a “yes” in the last column of Tab. 23]

2.2.6 From low to high transverse momentum

Based on the above results, we can write down a unique formula for the transverse
momentum dependence. Following the procedure of [273], the differential cross section for
the spin dependent SIDIS process can be written as,

dAo(S) dAgTMD ( dAc©O dAcCO

dydzpdzn Py dydzpdadBry | \ dydzpdand® Py dyd:anzhd2PhT|PhT<<Q>(2'30)

which is valid in the whole transverse momentum region at leading power of 1/Q?. In the
above equation, the first term comes from the TMD factorization formalism, and the second
term from the collinear factorization, CO, with the twist-three quark-gluon correlations
contributions. The second term will dominate the SSA at large transverse momentum, and
its gr-dependence can be calculated from perturbative QCD. On the other hand, at low
transverse momentum P, < @, the second term vanishes, because the two contributions
are exactly the same in this limit, and cancel each other out. Experimentally, if we can
study the transverse momentum dependence of the SSA for a wide range, we shall explore
the transition from the perturbative region to the nonperturbative region.

The potential of the EIC for a study of this transition is illustrated in fig. 215 which
shows the projected accuracy for single 7= production for a four-dimensional binning in
the kinematic variables x, Q?, z and Pjr, using three different energy configurations for
the EIC (/s = 15, 50 and 140 GeV) and an integrated luminosity of 120 fb~! for each
configuration. Events are selected for 0.05 < y < 0.9 and W? > 5 GeV? and for the z
range of 0.30 < z < 0.35, as example. An overall detection efficiency of 50% and a beam
polarization of 70 % are assumed. The position of each point is according to its  and Q?
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Figure 2.15. Four-dimensional representation of the projected accuracy for single 7 production in
semi-inclusive DIS off the proton focussing on the transition region from low to high Pyr (¢r =~
Pyr/21) as indicated in the panels. The position of each point is according to its Q2 and x value for
a specific bin in z of 0.30 < z < 0.35 and within the range 0.05 < y < 0.9. The projected event rate,
represented by the error bar, is scaled to the (arbitrarily chosen) asymmetry value at the right axis.
Blue squares, black triangles and red dots represent the /s = 140 GeV, /s = 50 GeV and /s = 15
GeV EIC configurations, respectively. Event counts correspond to an integrated luminosity of 120
fb~! for each of the three configurations.

value (abscissa and left ordinate, respectively) and each panel is for a P, bin as indicated
in the figure. The projected event rate is represented by the error bar scaled with respect to
the (arbitrarily chosen) asymmetry value given at the right ordinate. The parameterization
of Ref. [371] was used to simulate the cross section in the transition region. The simulation
demonstrates that the transition region qp ~ Py /zp ~ 4 +8 GeV can be explored in great
detail. Energies up to /s = 200 GeV and longer running times will allow for exploring even
higher values of Py7.

The most important example to study the transition between low and high transverse
momentum and the role of resummation is the structure function Fyy7r. The double-
longitudinal structure function F7j, is the only other example where the theoretical frame-
work has been developed at the same level [372].

Fig. shows an example of resummation results for DIS at a high-energy EIC op-
tion. These results give us an idea of the extension of the region of intermediate transverse
momentum (and therefore also of the regions of high and low transverse momentum). This
extension obviously depends on experimental kinematics, in particular on Q%. As a lower
boundary of this region we can consider the values of ¢r where the nonperturbative com-
ponent of the Sudakov factor becomes relevant. As an upper boundary we can consider the
values of gr for which the fixed-order cross section becomes comparable to the resummed
cross section. From fig. we can estimate that the intermediate-transverse-momentum
region corresponds to 4 GeV < gr < 8 GeV.

A lot remains to be done to better pin down the nonperturbative Sudakov factors, their
functional form, their flavor dependence, and their errors. This should be a high-priority
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Figure 2.16. Unpolarized SIDIS cross section for EIC kinematics from Ref. [372]. Shown are: the
fixed-order result, the resummation results with different high-b regularizations and different values
of the nonperturbative Sudakov factor.

task for the EIC. The same is true for the doubly-longitudinally polarized case, where the
nonperturbative components are unknown.

To conclude this section, we mention that the same program of resumming radiative con-
tributions should be pursued also for the Sivers, Collins, and F/, COS(% %) structure functions.
At the moment the only discussion of similar topics is done in sec. 9 of Ref. [369]. However,
we can expect developments in this direction in the near future and hope to obtain an
expression of the above-mentioned structure functions that includes transverse-momentum

resummation and describes the physics in the whole transverse-momentum spectrum.

2.2.7 Weighted Asymmetries

Currently, experimental studies in semi-inclusive DIS have limited access to single-spin
asymmetries at large transverse momentum, and most of the data are in the low transverse
momentum region, where the TMD formalism dominates. In phenomenological studies, in
order to compare with the experimental data, one has to make model assumptions for the
transverse momentum dependence of the distribution and fragmentation functions. How-
ever, there is a class of observables that does not require detailed model assumptions about
transverse momentum dependence. These are transverse momentum weighted single-spin
asymmetries, which transform the convolutions in the factorized cross section into simple
products [244], 373].

Staying for the moment in the framework of collinear factorization, an example for a
weighted differential cross section at leading order in ay is

Ppr . dAc™P(S) 9s
d? Pyp——— sin(¢y, — e? Tq D(z) , 2.31
[ P s — o) WL g THOE) . (23

where e, is the electric charge for a quark of flavor ¢, and where Tr(x) is the Qiu-Sterman

matrix element of the quark-gluon correlation function, and has been defined above. With
the standard choice of Pyp-weights wy = Pyp/zp, Mp for the numerator and wg = 1 for the
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denominator, the P,p-weighted Sivers-asymmetry thus becomes

(FHEsin(¢n — bs))uT B oL (1 —y+ %) st 2oq €a9sTH(2)D(2)
e d (1-v+ %) s T, Gh@DE)

(2.32)

We can go beyond the above leading order results and establish a collinear factorization for-
malism for the weighted single transverse spin dependent cross section. A similar study has
been performed for the Drell-Yan lepton pair production process, where a next-to-leading
order perturbative corrections have been obtained [291]. We expect similar calculations for
SIDIS shall appear soon.

Recently, a generalization to employ Bessel functions as weights w,, o J,,(|Ppr|Br) has
been suggested [374]. The Sivers asymmetry with generalized weights reads

<%§T‘BT) sin(én — ¢s))ur .
(Jo(PnrBr))
2 i s
i (1-y+ %) X, ¢ FHV"(w, 2283) (= B)

& (1= 9+ %) 2,2 (. 22B3) Du(= B3)

9 , (2.33)

where now fllT(l)q, ff and D are TMDs and TMD FFs Fourier transformed with respect
to transverse momentum. In the asymptotic limit By — 0, we recover the conventional
weighted asymmetry Eq. (232)), and the Fourier transformed TMDs and FFs can be iden-
tified with the moments in that equation.

An important advantage of the generalized weights is that a non-zero choice of the
parameter Br can reduce the sensitivity to large transverse momenta. This property also
applies to the Fourier transformed TMDs and TMD FF's entering the asymmetries. The new
approach thus avoids the problem of divergent k| -integrals that affects moments of TMDs
and TMD FFs. Additionally, the analysis in Ref. [374] shows that soft factors appearing
beyond tree level cancel out of the weighted asymmetry.

We conclude that an EIC presents a unique opportunity to obtain the necessary coverage
and resolution in P,p to explore the nucleon spin structure in the language of weighted
asymmetries.

119



2.3 Transverse polarization effects with gluons

Daniél Boer, Stanley J. Brodsky, Piet J. Mulders, Cristian Pisano, Markus Diehl,
Bo-Wen Xiao, Feng Yuan

The gluon Sivers function shares the same characteristic features as its counterpart in
the quark sector, the quark Sivers function, as discussed in the last section. Among the
important information we can obtain from this distribution is the spin-orbit correlation of
gluons inside the nucleon, which will help us to understand the gluon spin contribution
to the proton spin. The EIC is the unique machine to map out in much detail the gluon
distribution, including the spin-dependent and spin-averaged transverse momentum depen-
dent distributions. In this section, we will focus on the gluon Sivers function. The study
of this distribution is strongly related to other measurements such as the gluon GPDs and
the unintegrated gluon distributions of nucleon/nucleus at small-z.

Various processes in DIS can be used to probe the transverse momentum dependent
gluon distributions, such as heavy quark and quarkonium production. Also the dijet/di-
hadron correlation has been proposed as a promising probe for the gluon Sivers function
and other TMD gluon distributions.

In Ref. [375], it was suggested to use the dijet-correlation to study the gluon Sivers
function in pp collisions. However, because of both initial and final state interaction effects
involved in pp scattering, the factorization of this process is shown to be broken (see detailed
discussions in next section). On the other hand, for the DIS processes, because only one
hadron is involved in the initial state, the dijet-correlation process could be factorized in
the same spirit as the semi-inclusive hadron production discussed in the previous sections.

We consider here the dijet/quark-antiquark production in DIS

YN — Hy(k1) 4+ Hy(kg) + X (2.34)

where N represents the transversely polarized nucleon, H; and Hy are the two final state
particles with momenta k; and ko, respectively. We are interested in the kinematic region
where the transverse momentum imbalance between them is much smaller than the individ-
ual transverse momenta: k; = |kir + kor| < Pyp where Pjp is defined as (kip — kar)/2.
This is referred to as the (back-to-back) correlation limit. An important advantage of tak-
ing this correlation limit is that we can apply the power counting method to obtain the
leading order contribution of k| /P;p where the differential cross section directly depends
on the TMD gluon distribution. As illustrated in Fig. 217, with transverse spin in the
dijet plane, the correlation between the two jets will lead to a preferred direction in the
transverse plane. This will signal the gluon Sivers effect if the process is dominated by the
gluonic subprocesses.

As demonstrated in Ref. [283], the TMD gluon distribution in the quark-antiquark jet
correlation in the DIS process of (2.34]) follows the original gluon distribution definition of

Ref. [241],

N TR . ,
o) = [ Gt R PP )L P OIP) L (239)

where F'* is the gauge field strength tensor Fy"” = O* Al — 0" Al — g fapc Al AL with fop. the
antisymmetric structure constants for SU(3), and the gauge-link follows the similar defini-
tion as that for the quark distribution but in the adjoint representation. The physics behind
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Figure 2.17. Back-to-back dijet correlation can be used to probe the TMD gluon distributions.

this factorization is the following. The virtual photon scatters on the nucleon target and
produces a quark-antiquark pair through the partonic process v*g — ¢g. In the correlation
limit, the quark-antiquark pair stays close in the coordinate space, and act as a color-octet
object, which effectively behaves like a single gluon. In particular, the net effect of the final
state interactions between the nucleon target and the quark-antiquark pair is exactly the
same antisymmetric structure fup. as in the TMD gluon definition of Eq. ([2.35]). This is
totally different from the analogous QED process where the final state interactions cancel
out completely with the fermion-antifermion pair.

In the following, we will present some recent phenomenological studies on the gluon
TMDs from the quark-antiquark correlation in DIS processes. We expect more interesting
results shall be obtained in the near future.

2.3.1 The gluonic Sivers effect in dihadron production

The production of a pair of hadrons with high transverse momenta in DIS is sensitive to
the transverse-momentum dependent gluon distribution. In particular, it has a transverse
target spin asymmetry due to the gluon Sivers function. The relevant parton-level subpro-
cess is v*g — qq, and to eliminate contributions from v*¢ — ¢g and v*q — ¢g we focus on
charm production.

As a straight forward generalization of the unpolarized case recently studied in [283],
the cross section for the dijet/c¢ production from a nucleon with transverse polarization S|
can be written as

do P X e (Sux k) 0
Gl Py~ @R gy T

(2, k1) | . (2.36)

Here, f{ is the usual gluon TMD, ffj% the gluon Sivers distribution and zZ = 1 — z. Again,
we are interested in the back-to-back correlation limit. The gluon momentum fraction is
then given by z/xp ~ 1+ (P, +m?2)/(22Q?), where m, is the charm quark mass. The
hard-scattering cross sections H V1.L97C for transverse and longitudinal photons depend on
P,?T, Q?, z and m, and can be found in [283].

It may be possible to study the cross section (2.30)) experimentally through the produc-
tion of two heavy-quark jets, but the interpretation of this process requires a quantitative
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understanding of the relative transverse momentum between a reconstructed jet and the
heavy quark it originates from. As an alternative, we consider here the production of two
heavy hadrons, e.g. D mesons. Its cross section reads

dU’Y},Lp—mlhz +X 1—29 H'y}ng—wé
= dz ——5—— | &®\ir dPXor | (2, k
dzy dzo dzpth d2Ph2T /21 z 2272 / T 2T |:f1 (337 J_)
(S xky)? gl hije(?1 #1 hy/c %2 22
—_— Jk D 16(—,—)\ )DQ/C(—,—)\ ), 2.
+ Vi 17 (@ kL) ST S0 (2.37)
where

Z z

kir = M\ + Z_l Pth, kor = Ao + 2—2 PhQT- (2.38)

Here h; is the hadron containing a ¢ quark and hy the one containing a ¢, with Py, 7, Pp,r
denoting their transverse momenta and zj, zo their momentum fractions w.r.t. the virtual
photon. The fragmentation functions D(z, P, ) depend on the momentum fraction z and
the relative transverse momentum P; of the hadron with respect to the quark or antiquark.

The parton-level variables k17, ko and z are not directly measurable, but a detailed
analysis of the kinematics [376] reveals that they can be partly determined from the hadronic
final state. In particular, one can define variables k', , Py and 2’ that are measurable and
closely related to k; = kip + kor, Pr = (kip — kor)/2 and z, respectively. The cross
product (S, x k) in (Z37) gives rise to an angular modulation

doY p—=hiha+X

~ / / . ,
T dgey = AR+ B sin(@si +9). (2.39)

where ¢gy is the azimuthal angle between S| and k. The coefficient B(k’) depends on
the gluon Sivers function, as well as the phase ~.
To estimate the possible size of the Sivers asymmetry, we follow [377] and assume

20M e ki/0?

I (k) = g (ko). k) = ——5— f(x) (2.40)
€L

with o = 800MeV and the integrated gluon distribution f{(z) from MSTW 2008 [22].
This Ansatz saturates the positivity bound %‘f{’%(w,kﬂ! < fl(z,k) at k; = o and
undershoots it for all other values of k;. We consider the production of D meson pairs
and take a fragmentation function D(z, P.) = D(z)e F1/7* /(102) with the same Gaussian
width as in (Z40). We take D(z) o 2*(1 — 2)? €7*(172) with a = 2.86, 8 = 1.57,7 = 5.66,
which gives a fair description of the DY spectrum observed in ete™ annihilation [221], 220].
In Fig. 218 we show the transverse target spin asymmetry

da(k‘/ dskr) — dU(k/ bsk + )
A(K N — 1o Lo 2.41
(KL dsir) do (K, dsi) + do (K, b + ) (2.41)

for the process v*p — D°D® + X summed over transverse and longitudinal photon polar-
ization. We find that the phase shift v in ([2:39]) is tiny. The asymmetry is found to be
sizable with our Ansatz, which suggests that DIS production of heavy meson pairs at EIC
has good sensitivity to the gluon Sivers function.
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Figure 2.18. The transverse target asymmetry (ZZ4I) for v*p — D°D® + X. The kinematics is
specified by W = 100GeV, Q? = 16 GeV?, z; = 20 = 0.3, 0.25 < 2/ < 0.75 and 5GeV < P} <
40 GeV.

2.3.2 Probing the linear polarization of gluons in unpolarized hadrons

Gluons inside unpolarized hadrons can be linearly polarized provided they have a non-
zero transverse momentum. The simplest and theoretically safest way to probe this TMD
distribution of linearly polarized gluons is through cos 2¢ asymmetries in heavy quark pair or
dijet production in electron-hadron collisions. Future EIC or LHeC experiments are ideally
suited for this purpose. Here we estimate the maximum asymmetries for EIC kinematics.

Linearly polarized gluons in an unpolarized hadron, carrying a light-cone momentum
fraction x and transverse momentum k| w.r.t. to the parent’s momentum, are described by
the TMD hy 9(x, k) [281), 284} B78]. Unlike the quark TMD h; ? of transversely polarized
quarks inside an unpolarized hadron (also frequently referred to as Boer-Mulders function)
[244], hfg is chiral-even and T-even. This means it does not require initial or final state
interactions (ISI/FSI) to be non-zero. Nevertheless, as any TMD, hllg can receive contribu-
tions from ISI or FSI and therefore can be process dependent, in other words, non-universal,
and its extraction can be hampered in non-factorizing cases.

Thus far no experimental studies of hng have been performed. As recently pointed out,
it is possible to obtain an extraction of hfg in a simple and theoretically safe manner, since
unlike hllq it does not need to appear in pairs [284]. Here we will discuss observables that
involve only a single hllg in semi-inclusive DIS to two heavy quarks or to two jets, which al-
low for TMD factorization and hence a safe extraction. The corresponding hadroproduction
processes run into the problem of factorization breaking [272], 284].

Again, we consider heavy quark production, e(¢)+h(P)—e(')+Q(k1)+Q(k2)+X, where
the four-momenta of the particles are given within brackets, and the heavy quark-antiquark
pair in the final state is almost back-to-back in the plane perpendicular to the direction of
the exchanged photon and hadron. The calculation proceeds along the lines explained in
Refs. [378, [379]. We obtain for the cross section integrated over the angular distribution of
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Figure 2.19. Upper bounds of the asymmetry ratio R in equation (ZZ4]) as a function of |Pyr| at
different values of Q2, with y = 0.01 and z = 0.5.

the back-scattered electron e(¢'):

do ?as (14 yzp) k2
= ° A+ ZE Bcos2p ) 6(1 — 21 — 20) (2.42
dyy dyy dy dz, ik, Py wsMZ yoas < Tap e ¢> (1= 21— 2)(242)

The kinematics are the same as in the last subsection with the heavy quark mass Mg,
MET = M:,% = Mé + P}T and the rapidities y; for the quark momenta along photon-target
direction. The azimuthal angles of k, and Pj;p are denoted by ¢, and ¢, respectively,
and ¢ = ¢, — ¢r. The functions A and B depend on y, 2(= 22),Q*/ M2, Mé/M%, and k2 .
The angular independent part A involves only the unpolarized TMD gluon distribution f{,
while the magnitude B of the cos2¢ asymmetry is determined by hng (z,k.). Since hng is
completely unknown, we estimate the maximum asymmetry that is allowed by the bound

[284]

2
o @) < B oy, (2.43)

where the superscript (2) denotes the n = 2 transverse moment (defined as f"(z) =
[d*ky (K2 /2M?)" f(z,k?%)). The maximal (absolute) value of the asymmetry ratio

[ &k k% cos2(¢py — ¢p)do|  [dk} k7 |B]

R= -
[ 2k, k2 do 2M? [ dk? k2 A

(2.44)

is depicted in Fig. as a function of |Py7| at different values of Q2 for charm (left
panel) and bottom (right panel) production, where we have selected y = 0.01, z = 0.5,
and taken M? = 2 GeV?, sz = 25 GeV?. Such large asymmetries, together with the
relative simplicity of the suggested measurement (polarized beams are not required), would
probably allow an extraction of hllg(:n, k1) at the EIC (or LHeC).
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2.4 Theory Highlights

Igor O. Cherednikov, Piet J. Mulders, Barbara Pasquini, Ted Rogers, Peter
Schweitzer, Nicolaos G. Stefanis, Jian-Wei Qiu

The candidates for the golden measurement at the EIC are the spin-dependent Sivers
function flLT7 as well as the unpolarized quark distribution f;. The proposed silver candi-
dates are the transversity, the Boer-Mulders, and the Collins functions. All these objects
are transverse-momentum dependent parton densities that describe the inner structure of
hadrons by taking into account the longitudinal and the transversal partonic degrees of
freedom.

In the last few years, there has been tremendous progress on the theory developments
for the transverse momentum dependent parton distributions. In particular, there have
been intensive investigations on the QCD factorization and the associated universality of
the TMD parton distributions in various hard processes; the energy scale dependence for
the TMD distributions and related quark-gluon correlation functions. In this section, we
will highlight these developments.

2.4.1 Gauge-links, TMD-factorization, and TMD-factorization breaking

In this section, we discuss some basic features of transverse momentum dependent parton
distribution functions. In hard processes, parton distribution functions and fragmentation
functions are expressed as matrix elements of nonlocal combinations of quark or gluon
fields. In the collinear situation that all transverse momenta of partons are integrated over
in the definitions, the nonlocality is in essence light-like. These correlation functions are
convoluted with the squared amplitude for the partonic subprocess (in essence the partonic
cross section) of a hard process. When the transverse momenta of partons are involved,
the non-locality in the matrix elements includes a transverse separation, and a transverse
momentum dependent (TMD) factorization theorem is needed. In all cases the definitions
of the non-perturbative functions include gluon contributions resummed into gauge-links
(or Wilson lines) that bridge the nonlocality.

It is important to realize that the appearance of the gauge-links is a consequence of the
systematic resummation of extra gluon contributions in the derivations of factorization, so
their structure is dictated by the requirements of factorization.

In processes like £ + H — ¢/ + h + X (semi-inclusive DIS), £ + ¢ — hy + hy + X
(annihilation process) or Hy + Hy —+ £ + £ + X (Drell-Yan process) one has, at leading
power in the hard scale, a simple underlying hard process, which is a virtual photon (or
weak boson) coupling to a parton line. The color flow from the hard part to collinear or
soft parts is simple. Additional gluons with polarizations collinear to the parton momenta
are resummed into gauge-links, which exhibit the interesting behavior that for transverse
momentum dependent functions they bridge the transverse separation between the non-
local field combinations at lightcone past or future infinity. Which gauge-link is relevant in
a particular non-perturbative function depends on the color flow in the full process. For a
quark distribution function one has a link via (future) lightcone +oc if the color flows into
the final state, and a link via (past) lightcone —oo if the color is annihilated by another
incoming parton.

QCD factorization theorems are central to understanding high energy hadronic scat-
tering cross sections in terms of the fundamentals of perturbative QCD. In addition to
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providing a practical prescription for order-by-order calculations, derivations of factoriza-
tion provide a solid theoretical underpinning for concepts like PDFs and FFs which are
crucial in the quest to expand the basic understanding of hadronic structure. The most
natural first attempt at a TMD-factorization formula is simply to extend the classic parton
model intuition familiar from collinear factorization. For the semi-inclusive deep inelastic
scattering (SIDIS) cross section, for example, the cross section might be written schemati-
cally as

do~ [H? @ ®(z, k1) © D(z,P.) 6 (qr + kL — PL). (2.45)

Here ®(z, k) is the TMD PDF while D(z, P, ) is the TMD FF, with the usual probability
interpretations, and |#|? represents the hard part. The momentum g7 is the small momen-
tum sensitive to intrinsic transverse momenta, k; and P, , carried by the colliding proton
and the produced hadron. The ® symbol denotes all relevant convolution integrals, and the
x and z arguments are the usual longitudinal momentum fractions.

In a perturbative derivation of factorization, a small-coupling perturbative expansion
of the cross section is analyzed in terms of “leading regions”, and the sum is shown order-
by-order to separate into the factors of Eq. (2.458]). The precise field theoretic definitions
of the correlation functions, ®(x,k;) and D(z, P, ), should emerge naturally from the
requirements of factorization. In the hard part |#|?, all propagators must be off-shell by
order the hard scale ) so that asymptotic freedom applies, and small-coupling perturbation
theory is valid, with non-factorizing higher-twist contributions suppressed by powers of
Q. Such factorization theorems are well-established for inclusive processes that utilize
the standard integrated correlation functions (see [380] and references therein), but TMD-
factorization theorems involve other subtleties, particularly with regard to the definitions
of the TMD PDF's and FFs and their associated gauge-links.

In cases where there is a more complex color flow such as is often the case when the
underlying hard process involves multiple color flows and/or if the incoming partons are
gluons, this can potentially lead to a more complex gauge-link structure including traced
closed loops or looping gauge-links. For situations in which only one TMD correlation
function is studied, these structures have been examined in [265] 267, 381 [382] for two-to-
two partonic subprocesses. In situations that involve several TMD functions, factorization
using separate TMD functions fails completely.

To understand the issues that arise in defining TMDs, it is instructive to start with a
review of the definition of the standard integrated quark PDF. It is

f(@;p) = F.T.(p| (0, w™,0.)7 Vig o (ug) ©(0)]p) (2.46)

where “F.T.” stands for the Fourier transform from coordinate space to momentum space.
The above definition contains UV divergences which must be renormalized. This gives
dependence on an extra scale p, and ultimately results in the well-known DGLAP evolution
equations for the integrated PDF. For a gauge invariant definition, the PDF must contain a
path ordered exponential of the gauge field that connects the points 0 and (0, w™, 0¢). This
is the gauge-link and its formal definition is

Vio,w)(ug) = Pexp (—z’gt“/ dAuy - A“()ﬂu)) . (2.47)
0

The path of the gauge-link is determined by the light-like vector uy = (0,1,0¢). That
is, the gauge-link follows a straight path connecting 0 and (0,w~,0;) along the exactly

126



# \n \

U

() (b

Figure 2.20. (a) Target-collinear gluons in a graph for SIDIS. (b) Factorization of extra gluons into
gauge-link contributions.
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light-like minus direction. In Feynman graph calculations, the contribution from the gauge-
link corresponds to the so-called “eikonal factors,” which have definite Feynman rules that
follow naturally from factorization proofs. After a sum over graphs, and the application of
appropriate approximations and Ward identity arguments, extra collinear gluons like those
shown in Fig. 2:20(a) for SIDIS factor into gauge-link contributions. In Fig. 220(b), the
eikonal factors are shown as gluon attachments from the target-collinear bubble to a double
line.

The most natural first try at extending the PDF definition in Eq. (2:46]) to the TMD case
is to simply leave the integration over transverse momentum in the TMD PDF definition
undone. That is, instead of Eq. (Z40) one may try

O(x, k) = F.T. (p| (0, w™, we)y Vo ) (ws)¥(0) [p). (2.48)

The separation is now 0 and (0, w™,w;) — it has acquired a transverse component and the
Fourier transform is now in both w™ and w;. As a result, the structure of the gauge-link
Ulo,w)(u.s) must also be modified from the simple straight light-like Vjo ,,)(uy) gauge-link of
Eq. (246). The eikonal attachments on either side of the cut in Fig. still give minus-
direction Wilson lines, but now in order to have a closed link there must also be a small
transverse detour at light-cone infinity. This detour arises naturally from boundary terms
that are needed as subtractions to make higher twist contributions gauge invariant [263} 264].

The gauge-link structure in Eq. (Z48]), with its two exactly light-like legs and a transverse
link at infinity is commonly cited as the gauge-link that is necessary for the definition of
the TMD PDFs. However, there are a number of further subtleties, and we will find that
the definition needs to be modified. One complication is that rapidity divergences, which in
collinear factorization would cancel in the sum of graphs, remain uncanceled in the definition
of the TMD correlation functions. Rapidity divergences correspond to gluons moving with
infinite rapidity in the direction opposite the containing hadron, and remain even when
infrared gluon mass regulators are included. (For a more complete review of these and
related issues, see for example [259] [383].) The most common way to regularize the light-
cone divergences is to make the gauge links slightly non-light-like. In the coordinate space
picture, the gauge-link therefore becomes more like the tilted hook shape. This introduces
a new arbitrary rapidity parameter — the “tilt” of the gauge-link. A generalization of
renormalization group techniques is needed to recover predictability in the factorization
formula. A system of evolution equations for the TMD case was developed by Collins, Soper

127



and Sterman (CSS) and has been successfully applied to specific processes [240] 24T 273].

A complete treatment of TMD-factorization involves soft gluons, which give rise to an
extra “soft factor” S(q) in the factorization formula of Eq. (245). The TMD-factorization
formula then becomes

do ~ |H|>® ®(z, k) @ D(z, P.)® S(hr) 6P (qr + ky — P, — hr). (2.49)

The soft factor describes the role of gluons with nearly zero center-of-mass rapidity. One
difficulty with the usual presentation of the CSS formulation is that the explicit appearance
of a soft factor seems somewhat counter to the basic parton model intuition wherein all non-
perturbative effects are associated with functions for each external hadron with simple and
specific probabilistic interpretations. A natural hope is that, with an appropriate sequence
of redefinitions, the role of the soft gluons can be absorbed into the definitions of the PDFs
and FFs. The recent work of Collins [384] has shown how this is possible. Indeed, this
treatment of the soft factor is necessary for a completely correct factorization derivation
with fully consistent definitions for the correlation functions.

While the CSS formalism has been implemented for specific spin independent processes
(see, for example, [385]), much work remains to be done in tabulating and classifying the
TMDs. This is especially true for cases that involve spin. Work in this direction has been

started in [260].

TMD-factorization breaking

The discussion has focussed on situations where factorization is known to hold. There
are also, however, situations where TMD-factorization is now known to break down [265],
267, 268, 270, 271, 272, B81, B82]. The key issue is the failure of the usual Ward identity
arguments that ordinarily allow eikonalized gluons to be factorized and identified with a
particular gauge-link structure in the definitions of the TMDs. A hint of what leads to
TMD-factorization breaking is already suggested by the well-known overall relative sign flip
in the Sivers function for SIDIS as compared to the Drell-Yan (DY) process [261], 262]. The
difference comes because in the SIDIS TMD-factorization formula, the gauge link in the
Sivers function is future pointing, whereas it is past pointing in the DY case. At the level
of Feynman graphs, the difference can be seen in the fact that the “extra” gluons which
contribute to the gauge-link attach before the hard scattering in one case, and after the
hard scattering in the other. This illustrates that the direction of the flow of color through
the eikonal lines is a critical factor in the definition of the correlation functions.

In the more complicated hadro-production processes, H1 + Ho — H3 + H4 + X, where
Hj3; and H, may be either jets or hadrons, a reasonable first approach would be to trace
the flow of color through the eikonal factors and use analogous arguments to what we
used for SIDIS and DY in the previous section. One finds that the resulting structures
are not simply the future or past pointing gauge-links familiar from SIDIS or DY, but
rather are complicated and highly process dependent objects [265, 267, 381l 382]. That this
corresponds (at least) to a breakdown of universality is most directly seen in an explicit
spectator model calculation. For example, one may consider an Abelian scalar-quark /
Dirac spectator model with multiple flavors as in [270]. Then, in addition to the standard
gauge-link attachments, there are extra gluon attachments that do not cancel in a simple
Ward identity argument, and which give contributions that are not consistent with having
a simple gauge-link like what is found SIDIS or DY (opposite pointing).
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Therefore, it is clear that there is at least a violation of universality in the hadro-
production of hadrons. The natural next approach to try is to maintain a basic factorization
structure, but to loosen the requirement that the TMDs be universal, resulting in a kind
of “generalized” TMD-factorization formalism. That is, the cross section might still be
expected to factorize order-by-order into a hard part and well-defined, albeit non-universal,
matrix elements for each separate external hadron [268]. However, a careful order-by-order
consideration of multiple gluons in the derivation of TMD-factorization shows that even
this is not possible [272]. If, for example, one extends the model of [270] to allow the
gluons to carry color (while still considering a hard part that involves only the exchange of
a colorless boson) then it is straightforward to see that the flow of color spoils the possibility
of factorizing the graph into TMD PDF's with separate gauge-links for each TMD, regardless
of what kind of gauge-link geometries are allowed. Therefore, the problem with factorization
in the hadro-production of hadrons is more than just a problem with universality — separate
correlation functions cannot even be defined in a way that is consistent with factorization.

The root of the problem is a failure of Ward identity arguments, which normally allow
“extra” gluons to be factorized after a sum over graphs. The Ward identity arguments are
only valid after an appropriate sequence of contour deformations on the momentum inte-
grals. In the case of hadro-production of hadrons the necessary deformations are prohibited.
In other cases where the direction of color flow may at first appear to pose a problem for
factorization (such as in e +p — hy + X and e + p — hy + he + X), the necessary con-
tour deformations are possible and factorization holds. (See the explanation in chapter 12
of [384].)

To summarize, we list the status of TMD-factorization for various well-known processes
with a check mark for processes where factorization appears to be valid and !! where it has
been shown to fail:

v' Semi-inclusive DIS (e +p — h1 + X).

v' Drell-Yan (up to overall minus signs for some spin-dependent TMDs).

v Back-to-Back hadron or jet production in e™e™ annihilation.

v' Back-to-back hadron or jet production in DIS (e +p — hy + hy + X).

II' Hadro-production of back-to-back jets or hadrons (Hy + Hy — Hs + Hy + X).

In cases where TMD-factorization is valid, there is still much work left to be done (and
much potential insight to be gained) in terms of implementing the evolution of precisely
defined TMDs [260]. Much already exists for the case of unpolarized scattering, but even
here the most complete and formal identification of evolution effects with separate TMDs
has only recently been clarified in [384]. For polarization dependent functions, it is also
important to include evolution, but to date there has been very little work that accounts
for evolution in actual fits to data.

Finally, the experimental search for TMD-factorization breaking effects opens the possi-
bility of new and exciting insights into the transverse dynamics of hadronic collisions. The
breakdown of TMD-factorization in the hadro-production of hadrons implies that unex-
pected and exotic correlations between partons in different hadrons can exist. Calculations
that allow for experiments to distinguish between factorization and factorization-breaking
scenarios are therefore very important, and a quantitative understanding of factorization
(via the methods of [283], for example) are part of the next step toward understanding
hadronic structure in high energy collisions.
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2.4.2 Evolution of transverse-momentum-dependent densities

Much of the success of QCD collinear factorization relies on our ability to calculate the
short-distance partonic dynamics in QCD perturbation theory order-by-order in powers of
as and the universality as well as the scale evolution of the non-perturbative collinear par-
ton distribution and correlation functions. With its dependence on the parton’s transverse
momentum, TMDs carry much richer information on the partonic structure of a hadron
than what collinear PDFs could provide. Like the case of collinear factorization, the pre-
dictive power of the TMD factorization formalism also requires our ability to calculate the
short-distance dynamics and the evolution of TMDs. However, the theoretical framework
for calculating the evolution of TMDs and radiative corrections to short-distance dynamics
has not been fully established. All existing parameterizations of TMDs are extracted from
SIDIS data at relatively low Q2. The available hard scale Q? at a future EIC is expected
to be much larger. The TMDs, like PDFs, depend on the momentum scale Q? where they
are probed. Understanding the Q? dependence of the TMDs is crucial for testing the TMD
factorization formalism and for extracting correct information on the partonic structure of
hadrons at the EIC. However, the Q?-dependence of TMDs in the existing TMD factoriza-
tion formalism is very different from the factorization scale u2. dependence of the PDFs. The
factorization scale is not a physical scale. Any factorized physical cross section should not be
sensitive to the choice of the factorization scale. The perturbatively calculated factorization
scale dependence of PDF's is necessarily compensated by the same scale dependence in the
high order short-distance partonic dynamics. On the other hand, the TMDs in the existing
proved TMD factorization formalism are effectively physical quantities. They are connected
to a physical observable by a partonic scattering cross section without strong interaction
and a soft factor which can be absorbed into the redefinition of TMDs [384]. Unlike the
DGLAP evolution equation of PDFs, the Q?-dependence of TMDs cannot be derived by a
simple renormalization group equation. The Q?-dependence of TMDs was systematically
studied in the context of the transverse momentum (gr) distribution of the Drell-Yan pro-
cess and the two-jet momentum imbalance in ete™ collisions [273]. The @Q?-dependence
was derived by resumming ln2(622 / q%)—type large logarithms perturbatively in the impact
parameter bp-space (a Fourier transform of the parton’s transverse momentum space). The
CSS formalism was extended to SIDIS [386], [387] as well as spin observables [257] [388]. With
the proof that the soft factor of the TMD factorization formalism could be absorbed into
the redefinition of TMDs [384], the CSS resummation formalism was recently applied to
the TMDs directly [260]. Within the CSS formalism, it is not the Q*-dependence of TMDs
that is derived but rather the Q?-dependence of the Fourier transformed TMDs at small b .
In order to obtain the Q*-dependence of TMDs, one has to perform the Fourier transform
from the impact parameter b -space to the parton’s transverse momentum kp-space. The
procedure of Fourier transform requires necessarily input from the nonperturbative large
b, region, which could significantly reduce the predictive power of the TMDs [389]. Various
treatments/models for the extrapolation into the large b, region have been proposed to fit
the existing data [385]. For the precision study of TMDs at the EIC, it is very important
to examine the universality of the nonperturbative extrapolation to the large b region and
its dependence on the observed kinematic variables; and most important, the predictive
power of the formalism [389)]. In order to understand the Q2-dependence of spin-dependent
TMDs, a careful generalization of the CSS resummation formalism to k| -dependent TMDs
is needed [388], which is necessary for the study of asymmetries generated by the TMDs at
the EIC.
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2.4.3 QCD Evolution for the Correlation Functions

As introduced in Sec. 2.2 a collinear factorization formalism at twist-3 is relevant for
describing the SSAs of high P, particle production. Even though the phenomenological
applications of this approach have been successful, the theoretical calculations so far have
been mainly limited to the “bare” parton model, that is, to the zeroth order of pertur-
bation theory without any QCD corrections. These leading order (LO) calculations have
some disadvantages: they strongly depend on the choice of the renormalization as well as
the factorization scale, while the physically observed SSAs should not depend on the choice
of these scales. The strong dependence on the choice of these scales is an artifact of the LO
perturbative calculation, and a significant cancellation of the scale dependence between the
leading and the next-to-leading (NLO) contribution is expected from the QCD factoriza-
tion theorem. As demonstrated by many examples, NLO contributions are typically very
important in hadronic processes, and often offer a more comprehensive test of the relevant
QCD factorization formalism.

To move forward to the NLO QCD dynamics, it is necessary to study the evolution
(or the scale dependence) of the universal long distance distributions and to evaluate the
perturbative short-distance contribution beyond the LO. The evolution equation of the
twist-3 distribution functions have been derived by different groups [290] 2911 [390, [391].
Recently the evolution equations for the twist-3 fragmentation functions have also become
available [392]. A first NLO calculation for the short-distance hard part function has been
presented in [291].

As emphasized in Sec. 2.3, there are close connections between the twist-3 collinear fac-
torization formalism and the TMD factorization formalism. The twist-3 correlation func-
tions are closely related to the relevant TMD functions. Even though the Collins-Soper
evolution equations have been derived for all the leading-twist TMD functions [393], these
evolution equations are available in b-space (b is conjugate to the transverse momentum & ).
How these evolution equations are transformed into the scale (or energy) dependence of the
SSAs (thus leading to a similar Collins-Soper-Sterman transverse momentum resummation )
is not yet fully understood.

The evolution equations of twist-3 distribution functions, particularly for the so-called
soft-gluonic-pole correlation functions have been derived in [290] 2911 390, 391]. Among
them, Tr(x1,x2) and T}U) (1, x2) are the most discussed ones and they are related to the
Sivers and Boer-Mulders functions [264]:

k 2
Tr(v,z) = —/d27ﬂ|]\}| fir(z, k%) |prs,
p
(o) 2 |’ﬂ|2 1 2
710 ) = — [ s S b (o ko, (2.50)
p

where M,, is the nucleon mass. The evolution equations for both Tr(xz,z) and T}") (x,z)
have the following generic form:

O (x,x,p*)  as [ da ¢ o2 / r2

W:%/y[/l(f)ﬂfﬂ,x,# )+ B(z,2")T(z, 2", %) |, (2.51)
where T represents either Tr or T}"), and € = z/2’. As can be seen in (Z51)), the evolution
equation for the diagonal correlation function (x1 = x93 = x) is not a closed equation since

it also depends on the off-diagonal piece (the B(x,z’) term). The diagonal A(&) terms are
typically similar to the relevant twist-2 splitting kernel: for T, it is the same as the ¢ — ¢
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splitting kernel for the unpolarized distribution functions; for T(U), it is the same as the
splitting kernel for the transversity distribution. It might be worth pointing out that there
are some discrepancies for the evolution equation of Tr in the literature: Ref. [391] contains
additional contributions compared to [290] 29T], [390]. One additional piece corresponds to
a contribution from the mixing between a gluon state and quark-antiquark state, which
are missing in [290] 291] [390] and could be easily reproduced. Another term [—N.Tr(x,x)]
seems difficult to reconcile at the moment, and further study is needed to resolve this
discrepancy.

Similarly, one could study the evolution of the three-gluon correlation functions. For
an initial effort, see [390]. They receive contributions from themselves, as well as from
the quark-gluon correlation functions Tp. Even though our information on three-gluon
correlation functions is very scarce, one can not rule out the possibility that they might
be large since they could be generated through the QCD radiation from the quark-gluon
correlation. It is also worth pointing out that we now have data from PHENIX on the SSA
of J/W [313], which turns out to be non-zero and gives some indication that three-gluon
correlation functions might be sizable. It has been suggested that open charm production
in a future Electron Ion Collider (EIC) with broader kinematics could be used to unravel
the three-gluon correlation functions.

Within the same method, one could study the evolution equations for the twist-3 frag-
mentation functions. The two most important ones are related to the first transverse-
momentum-moment of the Collins function Hi-(z,2%k?%) and the polarizing fragmentation

function D1z (z, 22k% ) [297, 394):

N k 2 . k 2
i) :—23/d2k]_| P22, () :—z?’/d?kl' L DL (282, (252)
M;, M,

with both Hi- and Dy from the convention in [243]. These twist-3 fragmentation functions
belong to the more general two-argument fragmentation functions denoted as H F(z,21) and
Tr(z, 1), for details on the operator definitions, see [392]. The evolution equation for H(z)
takes the following generic form (same form for 7'(z)):

aﬁ(zh,,u2) as [dz o 5 dz 1 . )
dln p2 _%/7 A(2)H (z, p )+/Z—%PV %71 B(zp,z,21)Hp (2, 21, 17) |,

21

(2.53)

where 2 = z/z,, and in the case of H(zp, u?), A(2) is the same as the evolution kernel for
the transversity distribution; while for T'(zp,, u2), A(2) is the same as the ¢ — ¢ splitting
kernel for the unpolarized fragmentation function.

We have reviewed the evolution equations for the twist-3 distribution and fragmentation
functions. Particularly for those related to the first transverse-momentum-moment of the
Sivers and Boer-Mulders function, and Collins and polarizing fragmentation function. These
evolution equations are generally not a closed set of equations. However, the diagonal
pieces are very similar to those appearing in the evolution of leading-twist distribution and
fragmentation functions. For the Sivers function and polarizing fragmentation function,
this piece is the same as for the unpolarized distribution functions. For the Boer-Mulders
function and Collins function, this piece is the same as for transversity. The evolution
equations of these functions will transform into the scale dependence of the spin observables,
which could be studied at EIC. With a wide coverage in = and Q?, EIC offers a great
opportunity to study these scale dependences - a direct test of QCD dynamics.
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2.4.4 Non-perturbative studies of TMDs in effective approaches

TMDs are matrix elements of certain non-local QCD light-front operators in hadron
states and can only be calculated using non-perturbative frameworks. Several low-energy
QCD-inspired models have been employed. Although they all have in common that they
strongly oversimplify the complexity of the QCD dynamics in hadrons, studies in different
models based on often complementary assumptions, help to unravel non-perturbative as-
pects of TMDs. Insights into non-perturbative properties are of particular interest when
confirmed in various models. The practical value of model results is that they can be used
to predict new observables, or to guide educated Anséatze for fits of TMD parameterizations.
Especially in the context of TMDs one should not underestimate the conceptual importance
of model calculations. Model calculations demonstrated the existence of effects [261], paved
the way towards an understanding of universality in the fragmentation process [395], estab-
lished new TMDs [396 [397], see [398] for a review. The distinction of T-even and T-odd
TMDs is important also from the point of view of modeling. In order to model the former it
is sufficient to use a model with explicit quark degrees of freedom. In contrast, the modeling
of T-odd TMDs requires the explicit presence of gauge-field degrees of freedom.

In the following we will briefly review TMD models, though a detailed classification of
all models in which TMDs have been studied would go far beyond the scope of this section.

Models of TMDs

An interesting model is QCD in the multicolor limit, i.e. one works with N, — oo instead
of N. = 3 colors. In the large-N. limit the nucleon can be described as a classical soliton of
the chiral field [399]. Also for N, — oo QCD cannot be solved (in 3 4+ 1 dimensions). But
certain symmetry properties of the soliton field are known [399] and can be used to derive
relations which compare the relative magnitudes of different flavor combinations [334],

(fi+ > 1= fL 1A = A > i+ fif,
v — gl > gt +gil,  lgi — i > |t + gt
Wy —hg| >+ hil, hag — haf] > |ha + A,
Wi + bt > bt — b bt — hift| > [hagt + hif] (2.54)

where the not indicated arguments of the TMDs scale with N, as # ~ 1/N, and k; ~ N?.
Analogous relations hold for antiquarks [334]. In (254)) the respectively ‘large’ flavor combi-
nations are one order in N, enhanced compared to the ‘small’ ones. For known distribution
functions the hierarchies in (Z54]) are roughly supported in nature [400]. The large-N,
prediction [334] also proved useful as a guideline for a first extraction of the Sivers function
from SIDIS [32§]. Conclusions about gluon TMDs can also be drawn. For instance, fllj? is
predicted to be one order in N, suppressed with respect to the quark Sivers distributions
[328], which seems supported by phenomenology [401] [402].

The first quark model to give practical results on T-even TMDs was the quark-diquark
spectator model [403]. The basic idea of this model is to make a spectral decomposition
of the correlation function which defines the TMDs, and to evaluate it in the spectator
approximation, i.e. by truncating the sum over intermediate states to a single on-shell
spectator with definite mass. The spectator can have the quantum numbers of a scalar
(spin 0) isoscalar or axial-vector (spin 1) iso-vector diquark, and it plays the role of an
effective particle which effectively takes into account non-perturbative effects related to the

133



sea and gluon content of the nucleon. The nucleon-quark-diquark coupling is described by
an effective vertex which may contain a model-dependent form factor. This class of models
with various vertex functions and different choices for the axial-vector diquark polarization
states have been used extensively in literature [337], 404}, 405], 406]. These results for TMDs
can also be interpreted in terms of overlap of light-cone wave functions (LCWFs) for the
diquark [407]. The advantage of the spectator model is that the complicated many-particle
system can be effectively treated by a simple two-particle technique. However, the price
to pay is that basic properties like the momentum and quark-number sum rules cannot be
satisfied simultaneously, since the number of quarks “seen” in the spectator model is only
one. This fundamental limitation can be resolved only by considering the diquark not as
an elementary particle, but as formed by two quarks which play the role of active particles
(see, e.g., ref. [408]).

A different approach consists in exploiting LCWFs to model the three-quark structure of
the nucleon. The three-quark LCWEF's encode the bound state quark properties of hadrons,
including their momentum, spin and flavor correlations, in the form of universal process-
and frame-independent amplitudes. Such amplitudes have also the important property to
be eigenstates of the total quark orbital-angular momentum L% [278] [407] and therefore,
allow for mapping in a transparent way the multipole pattern in k| associated with each
TMD [409,410]. In particular, f{, g{; and h{ describe monopole distributions with AL = 0
between the initial and final nucleon states, with f, ¢, containing S,P and D wave
contributions, and h{ only S and P waves. The other twist-2 T-even TMDs are non-diagonal
in the orbital angular momentum, with ggT and h‘f 1, describing dipole distributions due to
the interference of S— P and P— D waves, and h# being related to a quadrupole shape due
to a transfer of two units of orbital angular momentum [411} B0I]. Two phenomenologically
successful models were used to compute the quark LCWFs: the light-cone constituent quark
model (LCCQM) [409] and the chiral quark-soliton model (xQSM) [412] 413 [414], 415]. In
the LCCQM one describes the baryon state in terms of three free on-shell valence quarks.
The three-quark state is however not on-shell, i.e. M # 3" w;, where w; is the energy of
free quark ¢ and M is the physical mass of the bound state. The motion of the quarks
inside the nucleon is described by a momentum-dependent function which is assumed to
have a simple analytical expression, with free parameters fitted, e.g., to the anomalous
magnetic moments and the axial charge of the nucleon. In the YQSM quarks are not free
but bound by a relativistic chiral mean field (semi-classical approximation). This field
creates a discrete level in the one-quark spectrum and distorts at the same time the Dirac
sea. Despite the different model assumptions in LCCQM and xyQSM, it turns out that the
corresponding LCWFs are very similar in structure. It should be noticed that the xQSM
naturally incorporates higher Fock states and it has been applied to describe the unpolarized
TMD for both quark and antiquarks [416].

A different model used to compute TMDs is the bag model. In its simplest version it
describes the nucleon as three non-interacting massless quarks confined inside a sphere. This
is therefore the only quark model discussed so far which incorporates confinement, which is
modeled by the bag boundary condition, i.e. in some sense the boundary condition mimics
gluons [418]. All twist-2 and twist-3 T-even TMDs were studied in this model in [419],
and a complete set of linear and non-linear relations among them was derived. Another
remarkable insight was that the bag model strongly supports the Gaussian k| -dependence
of TMDs observed in phenomenology [420].

A physical picture nearly “opposite” to the bag model is provided by the covariant
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Figure 2.21. Results for hi(z) (left panels), hi‘L(l)q (middle panels) and hi‘r}l)q (right panels) as
functions of z within different models at low scales for up (upper panels) and down quarks (lower
panels). Dashed curves: spectator model of ref. [403]. Dotted curves: bag model of ref. [417]. Solid
curves: light-cone constituent quark model of ref. [298].

parton model [421], 422 423]. In this approach the partons are free, and assumed to be
described in terms of 3D spherically symmetric momentum distributions in the nucleon rest
frame. Compliance of the model with relations derived from QCD equations of motion
allows the existence of only two such covariant momentum distributions: one describes
unpolarized and the other polarized quarks. All twist-2 TMDs are described in terms
of these two covariant distributions. This also implies relations among TMDs discussed
in [421]. The most interesting aspect of the model is that the symmetry of the covariant
momentum distributions tightly connects longitudinal and transverse parton momenta. As
a consequence, it is possible to predict the z- and k| -dependence of TMDs from the z-
dependence of known PDFs [423]. Interestingly, also this model supports the Gaussian
k| -dependence. An important feature is that the covariant parton model yields results
which refer to a large scale. Other parton model approaches in the context of TMDs were
discussed in [424] [425], [426].

TMDs in the non-relativistic limit were studied for an arbitrary number of colors N, in
[421]. In this context we recall the popular non-relativistic model prediction h{(z) = ¢i(z).
The non-relativistic model makes similar predictions for other TMDs. In particular, it
naturally explains why in many models the integrated pretzelosity function, h#(:n), is so
large compared to other TMDs.

Results for selected T-even TMDs computed within different models are shown in
Fig. 2211 In order to model T-odd TMDs one needs to invoke also gauge-boson degrees of
freedom. We shall devote a separate section to that. But before that we discuss relations
among TMDs.

In QCD all TMDs are independent functions. However, in a large class of quark mod-
els [409, 403, [405], [413], 414\ [415] [419], [421), [422] [423] there appear relations among different
TMDs. In fact, certain relations, the so-called ‘LIRs’ (‘Lorentz-invariance relations’) must
hold in any consistent quark model framework without gauge-field degrees of freedom. The
14 T-even leading- and subleading-twist TMDs can be expressed in terms of 9 independent
‘quark-nucleon scattering amplitudes’ which implies the relations [243], 427] (see [428] for a
review).
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T-odd TMDs

T-odd TMDs emerge from the gauge-link structure of the parton correlation functions
which describe initial/final-state interactions (ISI/FSI) via soft-gluon exchanges between
the struck parton and the target remnant. Here we will summarize the status of model
calculations for the two leading-twist T-odd TMDs, namely the Sivers function fllT and
the Boer-Mulders function hi. Both these functions require orbital angular momentum in
the nucleon, since they involve a transition between initial and final nucleon states whose
orbital angular momentum differ by ALY = £1. Following the first calculation which explic-
itly predicted a non-zero Sivers function within a scalar-diquark model [261], more refined
calculation of the T-odd TMDs were performed in the spectator models with both scalar
and axial-vector diquark [337] [404], 429, 430] (43T, [432], 433 [434]. Other model calculations
include the bag model [339] 435], 436], the non-relativistic constituent quark model [437]
and a light-cone constituent quark model [298]. Within all these models, the FSI/ISI are
approximated by taking into account only the leading contribution due to the one-gluon
exchange mechanism. As a result, the final expressions for the T-odd functions are pro-
portional to the strong coupling constant, which plays the role of a global normalization
factor with different values depending on the intrinsic hadronic scale of the model. Mean-
while, we also notice that it may be not appropriate to use a perturbative coupling for these
non-perturbative calculations. A non-perturbative approach was studied in refs. [438] [439],
where T-odd distributions were obtained from the non-perturbative chromomagnetic quark-
gluon interaction induced by instantons. A complementary approach is also to take into
account the physics of the FSI/ISI by constructing augmented LCWFs which incorporate
the rescattering effects by acquiring an imaginary (process-dependent) phase [440]. Finally
we remark that an interesting way to circumvent the no-go theorem concerning the mod-
eling of T-odd TMDs in chiral quark models [441] was discussed in [333] where the role of
gluons is played by a ‘hidden vector-meson gauge symmetry’.

Recently, interesting studies were presented, which go beyond the one-gluon exchange
approximation by resumming all order contributions [338] 442, [443]. This is achieved us-
ing approximate relations between TMDs and GPDs. In particular, the T-odd TMDs are
described via factorization of the effects of FSIs, incorporated in a so-called “chromody-
namics lensing function”, and a spatial distortion of impact parameter space parton distri-
butions [444], 299] [300]. While such relations are fulfilled from lowest order contributions in
spectator models [282] B00], they are not expected to hold in general [445] [446]. However,
the interesting novelty in the approach of refs. [338],[442] [443] is the calculation of the lensing
function using non-perturbative eikonal methods which permit to take into account higher
order gluonic contributions from the gauge-link.

A non trivial constraint in modeling or fitting the Sivers function is given by the Burkardt
sum rule [447]. This sum rule is related to momentum conservation, which requires that the
first transverse-momentum moment of the Sivers function, i.e. the net transverse momentum
due to final state interactions, should vanish. In the bag model this sum rule is violated
by a few percent [339 [435], since the bag states are not good momentum eigenstates.
Analogously, the non-relativistic calculation in constituent quark models leads to a small
violation of the sum rule. In spectator models, the sum rule is expected to be fulfilled only
when taking into account both the quark and the diquark as explicit degrees of freedom [432].
On the other side, it was proven to hold in light-cone constituent quark models [298].

In fig. the results from different models for the first transverse-momentum moment
of the Sivers and Boer-Mulders functions are compared with phenomenological parametriza-
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Figure 2.22. Results for the (1)-moments of the quark Sivers (upper panels) and Boer-Mulders (lower
panels) functions as function of z. The different curves correspond to the results after (approximate)
evolution from the model scale to Q2 = 2.5 GeV?2. Solid curves: light-cone constituent quark model
of ref. [298]. Dashed curves: spectator model of ref. [337]. Dotted curves: bag model of ref. [339] 436].
In the case of the Sivers function, the lighter and darker shaded areas indicate statistical uncertainties
of the parameterizations of ref. [332] and [328][331]. For the Boer-Mulders function the dashed-dotted
curves are the results of the phenomenological parametrization of refs. [366, [367].

tions [328] [332] B3], valid at an average scale of Q% = 2.5 GeV?, extracted by a fit to
available experimental data for pion and kaon production in semi-inclusive deep inelastic
scattering. The model results are evolved from the corresponding hadronic scale to Q% = 2.5
GeV?, by employing those evolution equations which seem most promising to be able to
simulate the correct evolution, which is presently not available. In particular, we evolved
the (1)-moment of the Sivers function by means of the evolution pattern of the unpolarized
parton distribution, while for the (1)-moment Boer-Mulders function we used the evolution
pattern of the chiral-odd transversity. Within the large error bar, the results of both the
LCCQM and spectator model for the Sivers function are compatible with the parameter-
izations for both up and down quark, although the shapes of the distributions and the
magnitude of the up- and down-quark contributions are quite different. On the other hand,
the bag model predicts much smaller results, for both the Sivers and Boer-Mulders func-
tions. In all the models the Boer-Mulders function has the same sign for both the up and
down contributions, confirming theoretical expectations [334] [448]. Furthermore, the up
and down contributions to the Boer-Mulders function are expected to have the same order
of magnitude within the available parametrizations [366, B67, 370, 449]. This is confirmed
from the predictions of the LCCQM and bag model, while it is at variance with the specta-
tor model where the up distribution is more than twice bigger than the down distribution.
However, we note that the available data do not allow yet a full fit of h- with its = and k2
dependence and the available phenomenological parameterizations are only first attempts
to extract information on this distribution. New experimental data will play a crucial role
to better constrain these analyses.
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2.5 Chiral-odd partonic densities

Harut Avakian, Alessandro Bacchetta, Andreas Metz, Marco Radici

Half of the leading-twist TMDs are denoted by the letter h, which means that they
describe the distribution of transversely polarized partons. In the helicity basis for a spin
% nucleon, where the unpolarized distribution f; and the helicity distribution g; have their
well known probabilistic interpretation, transverse polarization states are given by linear
combinations of positive and negative helicity states. Since helicity and chirality are the
same at leading twist [245], they are called chiral-odd distributions.

One of the four leading-twist chiral-odd TMDs, the transversity distribution A, sur-
vives the integration upon transverse momentum. From the experimental point of view,
transversity is quite an elusive object. In any observable the chiral-odd transversity needs
to be coupled to a chiral-odd nonperturbative partner. In SIDIS, as discussed in Sec. 2.1],
h1 can appear in the leading-twist part of the cross section together with the chiral-odd
Collins fragmentation function Hj-, which can be determined separately, e.g., by measuring
azimuthal asymmetries of the distribution of back-to-back pions in two-jet events in electron-
positron annihilations, i.e. ete™ — 77~ X [250, [369]. Another promising approach to ac-
cess transversity is semi-inclusive production of pion pairs, ep! — €’ (rt7w~)X [450], where
the chiral-odd partner of hy is represented by the chiral-odd Dihadron Fragmentation Func-
tion (DiFF) H,' [451].

Among the remaining chiral-odd quark distributions, the so-called Boer-Mulders func-
tion attracted great interest from both experiment and theory. It shares some common
features as the quark Sivers function discussed in Sec. In this section, we will dedi-
cate one subsection to briefly describe this function, including the unique opportunity of
exploring it using unpolarized hadrons.

2.5.1 The quark transversity distribution

At leading twist, three collinear distribution functions are needed to describe the quark
distribution in the nucleon. Transversity is a leading-twist collinear PDF and enjoys the
same status as f1 and g; [452] 418]. An important difference between h; and ¢ is that in
spin—% hadrons there is no gluonic function analogous to transversity. The most important
consequence is that h! for a quark with flavor ¢ does not mix with gluons in its evolution
and it behaves as a non-singlet quantity; this has been verified up to NLO, where chiral-odd
evolution kernels have been studied so far [453] [454] 455].

The tensor charge of the nucleon is defined as the sum of the Mellin moments dg(Q?) =

[ dx [h‘f(:n, Q%) — h?(x, Q?)|. Contrary to the axial charge — which is related to g{(z,Q?)

— it has a nonvanishing anomalous dimension: it evolves with the hard scale Q2 [418]. It
has been calculated on the lattice [456] and in various models [408], [457] [458] [459], 460], and
was found to be sizable. For a more comprehensive review, we refer to Ref. [461].

The extraction of transversity is of fundamental interest for obtaining a complete de-
scription of the nucleon structure even for the case when internal transverse momenta are
integrated over. To achieve this goal, it is crucial to cover the widest possible range in
(7, Q?%), to measure the related asymmetries differential in the relevant kinematic variables
and to be able to perform a flavor separation.
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experiment (laboratory) /s in GeV target type  hadron types references

COMPASS (CERN) 18 deuteron  h*, 7, K+ KO [320 [321]
proton h* [322]
proton o K+ prelim. [323]

HERMES (DESY) 7.4 proton nt [324]
proton nE, 70, K+ [462]

HallA (JLab) 3.5 neutron nt prelim. [320]

Table 2.4. Summary of currently available measurements of Collins asymmetry amplitudes from
lepton-nucleon DIS experiments, their center-of-mass energy, transversely polarized target type, and
analyzed hadron types.

The Collins effect

As discussed in Sec. 1, at tree-level and leading-twist, the SIDIS F[S]i;(¢h+¢s ) structure
function of Eq. (Z8) can be described as a convolution between the transversity ki, and
the Collins fragmentation function H f‘ 1 ie.,

Fonontos) Z 2 hi,© Hi . (2.55)

In order to project out the structure function Flsji;%ﬁ(z’s ) in Eq. ([2.8]), the so-called Collins
amplitude 2(sin(¢y, + ¢s)) s for a specific hadron h is extracted from the asymmetry

1 do"(¢n, ds) + do"(én, ps + )
S| do"(pn, bs) + doh(én, s + )

where the subscript U indicates an unpolarized lepton beam and 7" a transversely polarized
target nucleon. The azimuthal angles are illustrated in Fig. 2l This amplitude has so
far been extracted by three polarized fixed-target experiments as summarized in Table 241
From these measurements, Fig. 2.23] shows a selection of results that are significantly non-
zero and help in determining both the shape of transversity and the relative size and sign
of the Collins fragmentation function. All other asymmetry amplitudes listed in Table 2.4]
are small or consistent with zero.

For the second unknown in Eq. (2355]), the Collins fragmentation function, model cal-
culations are available [382] [463] 464, [465], 466, 467, [468] 469]. However, for a model-
independent extraction of transversity from the SIDIS asymmetry amplitudes we need to
determine the Collins function from an independent source. This is represented by the
measurement of azimuthal asymmetries in the distribution of back-to-back pions in two-jet
events in electron-positron annihilations, i.e. ete™ — 777~ X [470].

The relevant vectors and angles involved in ete™ annihilations leading to back-to-back
jets are depicted in Fig. 2:24] (left panel). The following asymmetry can be measured [250],
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Figure 2.23. Collins amplitudes for 7%, 7~ and KT (as denoted in the panels) from HERMES [462]
and COMPASS [323] measured with a proton target. Inner error bars present statistical uncertainties
and full error bars the quadratic sum of statistical and systematic uncertainties. Note that the
average kinematics in each bin differs for HERMES and COMPASS and the sign of the COMPASS
asymmetries have been reversed.

Pioneering measurements of this spin-dependent fragmentation function have been per-
formed by the BELLE Collaboration (KEK) [472, [471]. Experimentally, double ratios of
asymmetries for like-sign (L), unlike-sign (U) and any charged (C) pion pairs are built in
order to cancel (to a large extent) contributions from the experimental acceptance and
radiative effects. The resulting asymmetries, AV and AYC, are then sensitive to differ-
ent combinations of the favored and unfavored Colllins fragmentation functions as given
in [471]. These asymmetries are presented in Fig. as function of z9 for four bins of z;
for the light quarks (u,d, s), where z; and z9 are for a hadron in each of the back-to-back
jets.

The experimental results shown in Figs. and are striking. First, they clearly
demonstrate that the Collins effect as a manifestation of chiral-odd and naive T-odd mech-
anisms is different from zero and not suppressed, both in SIDIS and in e™e™ annihilations.
Second, the results for oppositely charged pions (hadrons) in Fig. 2:23] suggest a very pe-
culiar feature for the Collins fragmentation function. As scattering off u quarks dominates
these data due to the charge factor, the large magnitude of 7~ amplitudes being of similar
size than the 7 ones but having opposite sign, can only be understood if the disfavored
Collins function H f unfav s large and of opposite sign to the favored one. Opposite signs
for the favored and unfavored Collins functions are also supported by the different size of
AYL and AYC asymmetries from BELLE in Fig. They can be understood in light of
the string model of fragmentation [463] (and also of the Schéifer-Teryaev sum rule [473]).
If a favored pion is created at the string end by the first break, an unfavored pion from the
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Figure 2.24. Left: the kinematics of eTe™ annihilation leading to back-to-back jets along the 2 axis
(jet frame), P; is the momentum of a hadron in one jet, P, is the momentum of a hadron in the
other jet. Right: Collins asymmetry A;s for the double ratios for like-sign (L), unlike-sign (U) and
any charged (C) pion pairs as function of 23 in bins of z; from BELLE [7I]. AVL and AYC are
sensitive to different combinations of the favored and unfavored Collins fragmentation functions.

next break is likely to inherit transverse momentum in the opposite direction.

The extraction of transversity and Collins functions from available data faces the same
issues as discussed for the Sivers function in Sec. 22.1] for resolving the convolution in
Eq. [2353) and the same strategies are applied here. Employing the Gaussian Ansatz in
Eq. (2:22) both transversity and Collins function have been extracted [250, [474] from (part
of) the experimental data discussed before. The new COMPASS proton or Hall-A neutron
data are not yet included in this fit. The results of this global analysis are presented in
Fig. for u and d transversity distributions (left panel) and favored and unfavored Collins
fragmenation functions (right panel). The decrease in the presented uncertainties for the
specifically chosen parametrization, which is the same as in [250] [474], is due to the new
BELLE and HERMES data. The extracted favored and unfavored Collins functions confirm
the features discussed before.

Dihadron Fragmentation Functions

A complementary approach to transversity is provided by semi-inclusive two-hadron
production, ep! — ¢’ (hy ho) X, where the two unpolarized hadrons with momenta P; and P»
emerge from the fragmentation of the struck quark. The underlying mechanism differs from
the Collins mechanism in that the transverse spin of the fragmenting quark is transferred to
the relative orbital angular momentum of the hadron pair. Consequently, this mechanism
does not require transverse momentum of the hadron pair and collinear factorization applies.

Dihadron fragmentation functions were introduced in Ref. [475] and studied for the
polarized case in Refs. [450, 476l [477]. The decomposition of the SIDIS cross section in terms
of quark distributions and dihadron fragmentation functions was carried out to leading twist
in Ref. [451] and to sub-leading twist in Ref. [47§].

The kinematics is similar to the one in single-hadron SIDIS except for the final hadronic
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Figure 2.25. Left: transversity zhi(z) for u (upper panel) and d (lower panel) quarks. Right: the
normalized Collins functions \/§HlL (1/2) (2)/D1(z) for favored (upper panel) and unfavored (lower

panel) fragmentation. The light grey band represents the uncertainty for the extraction in Ref. [250]
and the dark grey band from the updated analysis [474]. Blue lines indicate the Soffer and positivity
bound for transversity and Collins function, respectively.

state, where now z = z; + 29 is the fractional energy carried by the hadron pair and we
introduce the vectors Py, = P + P» and R = (P, — P»)/2 (see Fig. 2.20)), together with the
pair invariant mass M}, which must be considered much smaller than the hard scale (e.g.,
P? = M? < Q?). We shall often use the quantity [479],

1
[R| = 5 /M =2 (ME + M) + (MF - M3, (2.58)

where P = M, P§ = M3 and R3. is related to M} [A79].
In analogy with the Collins function, the expression for unpolarized hadrons (hq, hs)
produced by a transversely polarized quark reads

SJ_q : (ﬁ X RT)

Dhlhz/qT(Z7M}%7RT) :Dg(Z7Mf%)_H<Iq(Z7M2) Mh

1sp

(2.59)

<49

Choosing p || 2 and S, 4 || §, a positive Hy,

along —% and hadron hy along .

Since Ry = R sinf, where in the c.m. frame of the hadron pair 6 is the angle between
Py and the direction of Py in the laboratory frame (for more details, see refs. [479] [480), [48T],
[482]), the relevant asymmetry that should be measured in SIDIS is

gsin(@pteg)sing J dcos 0dprdps sin(¢r + ¢s) [do(¢r, ¢s) — do(¢r, ¢s + )] /sind
ur [ dcos0dprdps [do(pr, ps)+ do(dr, ¢s + )]
|R| 2, eq hi(x) HY (2, ME)
My 32, ez fi(x) DY(z, M)

means that hadron hq is preferentially emitted

(2.60)

As in the single-hadron production case, transversity can be extracted from the asymme-
try (2:60]) only if the unknown H fsp is independently determined from the e*e™ annihilation

producing, in this case, two hadron pairs: eTe™ — (777 )jet1 (7777 )jet2X with kinematics
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Figure 2.26. Kinematics for the production of two hadrons (left) and for the ete™ —
(TH 7 )jet1 (TT 77 )jet2X process (right).

depicted in Fig. (right). The relevant signal is similar to that of the Collins function,
except that each transverse polarization of the quark-antiquark pair is now correlated to
the azimuthal orientation of the plane formed by the momenta of the corresponding hadron
pairs, suggesting that HfI is related to the concept of handedness of the jet containing a
specific pair [483], [484], [485].

The leading-twist cross section of this process contains many terms [485], among which

<J4q

1sp for the quark ¢ and of Hffp for the g partner,

there is one involving the product of H

weighted by cos(¢r + ¢r). Thus, we can properly weight the cross section and extract this
contribution by defining the so-called Artru—Collins azimuthal asymmetry [485] 482]

. - 794 = T2
sin?6y 7 |R|[R| Xq caH iz M) H (2, M)
1 4 cos2 6y 32 My, My, Eq egD‘II(z, Mg)ﬁg(?, Mi)
(2.61)

ACOS(¢R+$R> (COS 027 z, M}%; E7 Mi) =

where the dihadron fragmentation functions D} and H fs‘;, are the same universal functions
appearing in the SIDIS asymmetry of equation (2:60]).

Pioneering measurements of A?}r}(%ﬂbs)sma from HERMES [481] gave evidence for a
non-zero dihadron fragmentation function H fs‘;) as shown in Fig. The M, dependence
does not exhibit any sign change and rules out the model of Ref. [4706]: interference patterns
in semi-inclusive 777~ production are different from those in 777~ elastic scattering. Cal-
culations based on the spectator model [480] [486] are compatible with data. They, however,
overestimate the asymmetries if h{ is taken from the parametrization [474] discussed in
Fig. This estimate is presented in Fig. by the grey band where the model H fjsz, is
reduced by a factor o = 0.324+0.06 in order to reproduce the magnitude of the asymmetry.

Preliminary SIDIS data are also available from the COMPASS Collaboration using trans-
versely polarized deuteron and hydrogen [487] targets. While A;}r}(%w)s)smg is basically
vanishing on the deuteron, the proton data show a signal larger than the HERMES results
in Fig. 227, which might be due to different kinematics. B

Last but not least, results from pioneering measurements of the A°°5(?r+9r) agsymmetry

related to the dihadron fragmentation function became recently available from the BELLE
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Figure 2.27. The spin asymmetry for the semi-inclusive production of a pion pair in deep-inelastic
scattering on a transversely polarized proton [481]. The grey band presents a fit to the data involving
the dihadron FF calculated in the spectator model of Ref. [480] and on the parametrization for hy
from Ref. [474].

Collaboration in Ref. [488].

For a real breakthrough of this promising approach to transversity, much more data over
wide kinematic range are needed. We only mention that the SIDIS cross section does now
depend on nine kinematic variables compared to six for the single-hadron case, which calls
even more for a multi-dimensional analysis for a bias-free extraction of the asymmetries.

Collins effect at EIC

The exploration of chiral-odd structures using the Collins effect is far from being com-
plete. Several aspects need to be significantly improved. The x dependence is largely
unconstrained due to the lack of SIDIS asymmetries outside the range 0.005 < x <0.3. The
antiquark and sea-quark content of transversity in the proton is completely unknown. To-
gether with the loose constraints on the x dependence, this missing piece of information
makes the calculation of the tensor charge still unsatisfactory. Also the transverse momen-
tum dependence of both the transversity and the Collins function has a significant degree of
arbitrariness. Lastly, the Q? range of HERMES and COMPASS measurements is approxi-
mately the same: it would be desirable to study the A?}r}(d)ﬁ(ﬁs )(Qz) dependence in a wide
range of Q2.

All these remarks call for more data in order to enlarge the phase space and perform a
multi-dimensional analysis in all relevant kinematic variables simultaneously. An ambitious
program is planned at JLabl2, that would aim for exploring A?}r}((b’LJr(bs ) in the valence
region with high luminosity [340, B41]. The EIC would be the ideal facility to carry out
this program over a uniquely wide range in = and Q2. This potential for a mapping of the
multi-dimensional phase-space in an unprecedented kinematic range is illustrated by the
studies presented in Sec. and are equally valid for transversity.

The promising and complementary approach of extracting transversity with help of the
dihadron fragmentation function will even more profit from the high energy option of an
EIC. Fig. shows the projected accuracy for semi-inclusive kaon pair production at an
energy /s = 140 GeV and for an integrated luminosity of 30 fb~!. The PYTHIA event
generator has been used to obtain the SIDIS event rate, and an overall detection efficiency
of 50% and beam polarization of 70% were assumed. Data are shown as function of x for
the various different z and Mg g bins indicated in the panels. The invariant mass range of
the kaon pair, Mk g, is chosen for the vicinity of the ¢ meson, which provides unique access
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Figure 2.28. Projected accuracy, represented by the error bars, for semi-inclusive kaon pair produc-
tion obtained with an energy of /s = 140 GeV for an integrated luminosity of 30 fb~!, as a function
of  in bins in z, Mgk and for a single bin in Q? as indicated in the panels.

to strange quark distributions.

Furthermore, the general picture obtained so far would significantly profit from data
available over a wide Q? range which can only be provided by the EIC. This picture ob-
tained so far, is based on a tree-level analysis of transverse-momentum dependent azimuthal
(spin) asymmetries occurring at very different energies: while the average scale of SIDIS
experiments is approximately 2.5 GeV?, the BELLE measurement was performed at the
typical bottonium mass, i.e. Q% ~ 100 GeV2. Beyond tree level, the evolution effects with
running scale were included (at LO) only in the modification of the  and z dependence of
the various functions. At low P%./Q? (Q%/Q? for eTe™ annihilation, where Qr = |g7| is
the transverse momentum of the virtual photon), the correct @* dependence beyond tree
level of transverse-momentum dependent structure functions should be studied extending
the Collins—Soper—Sterman formalism mentioned in Sec. [273]. A quantitative attempt
to go in this direction was presented in Ref. [369], where it was estimated that transverse-
momentum resummation produces a suppression of the tree level result by almost a factor
5 at BELLE energies. Therefore, the extraction of the Collins function using the tree level
formula could significantly underestimate its actual magnitude. In order to fit the available
SIDIS asymmetries, a larger H f would automatically imply a transversity smaller than that
one illustrated in Fig.
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2.5.2 Boer-Mulders function

The Boer-Mulders function h; [244] can be considered as the counterpart of the Sivers
function flLT: while fllT describes the distribution of unpolarized quarks in a transversely
polarized target, hi- describes the distribution of transversely polarized quarks in an un-
polarized target. Both functions are T-odd, and therefore vanish if the gauge-link is not
taken into account in their operator definition, which makes them somewhat unique among
the TMDs. Put it differently, their existence depends on the presence of initial and/or final
state interactions between the active partons of a process and the target remnants (see the
corresponding discussion in Sec. 24.T]). It is expected that both TMDs change their sign
when going from SIDIS to the Drell-Yan process [262]. There is, however, one important
difference between them. The Sivers function is chiral-even, whereas the Boer-Mulders func-
tion is chiral-odd. Since the elementary interactions of the Standard Model do not change
the chirality (helicity) of fermions, one has to couple the Boer-Mulders function — like any
other chiral-odd object too — to another nonperturbative chiral-odd correlator in order to
generate a non-zero observable. This implies that hi, in general, is harder to measure than
fig-

On the other hand, in the case of the Boer-Mulders function no polarized target is
required, which makes this distribution rather attractive. In fact, it is believed that the
Boer-Mulders effect is essential for understanding data on the angular distribution of the
unpolarized Drell-Yan process [489]. To be more specific, the general structure of the Drell-
Yan cross section reads (see [490] and references therein)

1 dopy 3 1

p—Te) = E}\_Fg(l+)\COS29+,USin29COS¢+ gSiH29COSQ¢>, (2.62)

where the angles # and ¢ characterize the orientation of the lepton pair in a dilepton rest
frame like the Collins-Soper frame [491]. What attracted particular attention is the so-called
Lam-Tung relation between the coefficients A and v [350], 492],

A2 =1. (2.63)

This relation is exact if one computes the Drell-Yan process to O(ag) in the standard
collinear perturbative QCD framework. Even at O(a?) the numerical violation of (Z.63)
is small [493]. However, data for 7= N — pu~ pu™ X taken at CERN [345] [346] and at
Fermilab [494] were found to clearly violate the Lam-Tung relation. In particular, an unex-
pectedly large cos 2¢ modulation of the cross section was observed. Various explanations of
this experimental result have been put forward, with the most favorable one being based on
intrinsic transverse motion of partons leading to the Boer-Mulders effect [489]. The product
of two Boer-Mulders functions — one for each initial state hadron — contributes to the
cos 2¢ term in the cross section in (262 [489]. An ultimate understanding of the angular
distribution in (2.62]), and thus also of the role played by the Boer-Mulders function, is of
crucial importance if one keeps in mind that, from a theoretical point of view, the Drell-Yan
process is the cleanest hard hadron-hadron reaction.

Several model calculations have been carried out for the Boer-Mulders function of both
the nucleon [282], 298, 337, [338|, 1404, 429, [435], [436] and the pion [443] [446] [495], where the
treatments for the nucleon comprise spectator models, the MIT bag model, and constituent
quark models. In the case of the nucleon two general features emerge: first, the Boer-
Mulders function comes out to be as large as the Sivers function or even larger. Second,
it has the same sign for up-quarks and down-quarks. This finding nicely agrees with a
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model-independent analysis according to which hll“ = hlld to leading order of an expansion
in powers of 1/N,, with N, being the number of colors [334].

A lot of attention has been paid to an intuitive relation between the Boer-Mulders func-
tion and (a specific linear combination of) chiral-odd Generalized Parton Distributions in
impact parameter space [496, [497]. (This connection between two types of parton distri-
butions is the analogue of a corresponding relation involving the Sivers function which was
proposed earlier [444] 299].) The intuitive picture is compatible with the two general results
from model calculations discussed above. In particular, it also suggests a significant size for
the Boer-Mulders function in the valence region. In Quantum Field Theory one can make
such a relation quantitative in the framework of simple spectator models [282] [433] [300].
However, according to current knowledge, a general model-independent relation cannot
exist [445], [446].

The Boer-Mulders function describes the strength of a correlation between the transverse
momentum and the transverse spin of the active quark. This correlation generates a dipole
pattern in the transverse k| -plane — like the correlations associated with fi7, g1, and hllL
do. One way of visualizing the Boer-Mulders effect is by looking at the density

ij i 1.
i thion) = [dog| sttt + S ok (2.69)

describing the distribution of transversely polarized quarks in an unpolarized nucleon [298].
The quark polarization is specified by the spin vector s;. Note that the longitudinal
momentum fraction has been integrated over. In Eq. (Z.64]), the f; term provides an axially
symmetric contribution, while the second term containing hll gives rise to the mentioned
dipole pattern. If both effects are superimposed, the resulting distribution is shifted away
from the center (distorted) in the &, -plane.

The Boer-Mulders function can also be studied in SIDIS and therefore at the EIC. In
this process it couples to the chiral-odd Collins fragmentation function H 1l [249] and gives
rise to a cos 2¢p-modulation of the cross section. The pertinent structure function takes the
generic form

Fi?om el (hfq ® Hi 9+ % flo Dy +.. ) , (2.65)

q

where C' is a kinematic factor. The second term on the right hand side of (2.65]) is the
so-called Cahn effect [498], [499], which is also caused by intrinsic transverse parton motion.
It is a kinematic twist-4 contribution, i.e., it is suppressed by a factor 1/Q? relative to
the first term. Theoretical estimates of this effect are still plagued by large uncertainties,
mainly related to the insufficient knowledge of the transverse momentum dependence of
f{ and DI. The explicit form of all potential additional (dynamical) twist-4 effects in
this structure function is presently not known. These considerations show that a reliable
extraction of the Boer-Mulders function from SIDIS requires data in a kinematic region for
which the (largely unknown) higher-twist contributions can be neglected. Since f{ > hfq
and D} > H IL  the suppression of the Cahn effect requires very large Q2.

The SIDIS structure function Fé‘gzd}h has already been measured by the CLAS Col-
laboration at JLab [500], the HERMES Collaboration at DESY [501], and the COMPASS
Collaboration at CERN [502]. More precisely, typically data are shown for the relevant
azimuthal asymmetry given by Fgﬁ 20h /Fyu. However, due to the limited range in Q? the
present SIDIS data allow at most a qualitative extraction of hll, as is also obvious from
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a first exploratory study [367]. Moreover, the Boer-Mulders function for antiquarks is not
at all constrained by the available data from SIDIS. Some information about antiquarks is
available from recent Fermilab data on proton-deuteron [348] and proton-proton [349] Drell-
Yan, though the uncertainties are again significant and not the least due to the presently
large uncertainties for the Boer-Mulders function of quarks [370] [503], [504].

Even without further detailed reasoning it is clear that a quantitative knowledge about
the Boer-Mulders function can only be obtained with data from new facilities. Measure-
ments of the structure function Fg;;?% in the valence region in electroproduction of pions
and kaons compose an important part of the upgraded JLab program on TMD studies.
However, the Q? range obtainable with JLab12 will not be sufficient to suppress the con-
tribution from the Cahn effect.

Only the unprecedented wide kinematic range of the EIC would provide clean measure-
ments of the Boer-Mulders function for valence and sea quarks, and will allow for studying
both, its Q? evolution and transition behavior from low to high Pj7.

Finally, there also exists a Boer-Mulders function for gluons, hfg , describing the distri-
bution of linearly polarized gluons in an unpolarized hadron [248] 281] 282]. In contrast to

the Boer-Mulders function for quarks, hllg is T-even. See the relevant discussions in Sec. 3.
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2.6 Overview on other TMDs

Harut Avakian, Alessandro Bacchetta, Andreas Metz, Peter Schweitzer

In previous Sections, we discussed the unpolarized TMD f1, the Sivers distribution flLT7
the transversity distribution ki, and the Boer-Mulders distribution hi-. They have been
given more emphasis because at the present state of our knowledge they seem to be the
most attractive and promising for EIC studies.

Nevertheless, interesting physics is embodied also in all other TMDs. Only the com-
bination of information from all TMDs will fully explore the information contained in the
unintegrated quark correlator, and provide a complete picture of the parton structure of
the nucleon in transverse momentum space. This wealth of information may become one of
the biggest legacies of the EIC.

In this Section, we briefly discuss the leading-twist TMDs that have not been analyzed
in previous Sections and some of the sub-leading twist TMDs.

quark pol. quark pol.

_ Ul L T U L T
g|lu| f, ht g|u| f* g+ e h
5 5
L 01 hy < fit o he e
2| T | fk || h|hiy 2| T fr,ff| gr.gt | hr,ht | e, e

(a) (b)

Table 2.5. Transverse momentum dependent (a) twist-2, (b) twist-3 distribution functions. The
U,L,T correspond to unpolarized, longitudinally polarized and transversely polarized nucleons (rows)
and quarks (columns). Functions in boldface survive transverse momentum integration. Functions
in gray cells are T-odd.

2.6.1 Other leading-twist TMDs

Table 2.5k summarizes the full list of leading-twist TMDs. The helicity distribution g,
together with f; and hq, survives integration over transverse momentum and has been al-
ready discussed extensively. Here we mention the importance of also studying its transverse
momentum dependence. It may be possible that the transverse momentum distribution
of quarks with spin antiparallel to the nucleon is different from that of quarks with spin
parallel to the nucleon as suggested by lattice calculations [280] shown in Fig. The
structure function Fpr, involving the transverse-momentum dependence of g1, is the only
one where transverse-momentum resummation studies have been carried out to a level sim-
ilar to Fyyr [372], but no extraction of the nonperturbative component has ever been
attempted. The EIC will be an ideal machine to address this question.

The chiral-odd T-even TMD hllT appears in the SIDIS structure function Ftsjl;(gd)_(ﬁs ),
This function may be interpreted as the distribution of quarks with a polarization transverse
but orthogonal to that of a transversely polarized nucleon. The popular name “pretzelosity”
is due to the fact that this distribution has a quadrupole shape, vaguely reminiscent of a
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Figure 2.29. Ratio between the helicity distribution and the unpolarized distribution for up quarks
based on lattice QCD computations [280]: the significant k; dependence of the two curves (cor-
responding to two different parameterizations) suggests that quarks with different spin orientation
have different transverse momentum distributions.

pretzel [411], B0I]. This TMD has attracted a lot of interest in the literature recently
because of its possible connection with orbital angular momentum (see detailed discussion
in Sec. [ZZ4]). Tt is also interesting that, in a number of nonperturbative models, th is just
the difference between the quark helicity and the transversity distribution [419]. Moreover,
in simple spectator models of the nucleon it can be related to a particular linear combination
of chiral-odd generalized parton distributions [282]. In general, th involves an interference
between light-cone wave function components that differ by two units of orbital angular
momentum. Preliminary data from COMPASS [505] and from HERMES [506] taken with
transversely polarized deuterons or protons, respectively, showed an effect compatible with
zero, however, within large experimental uncertainties.

The TMDs ¢17 and hfL appear in the structure functions Fz(;(¢_¢s ) and F[S]izw, re-
spectively. The chiral-even (chiral-odd) gi7 (hi;) describes longitudinally (transversely)
polarized quarks in a transversely (longitudinally) polarized nucleon. Since both functions
link two perpendicular spin directions, they are sometimes named “worm-gear” functions.
Both functions are related to quark orbital motion inside nucleons. They represent the real
part of an interference between nucleon wave functions that differ by one unit of orbital
angular momentum, while the imaginary parts are related to the Sivers and Boer—-Mulders
functions [278] [507]. Because of this, they appear in positivity bounds together with the
Sivers and Boer-Mulders function [507]. They do not depend on final-state interactions
and may offer cleaner insights into orbital angular momentum compared to the Sivers and
Boer-Mulders functions. Interestingly, these functions are the first TMDs that have been
computed on the lattice [279] 280]. The results (with the due caveats) indicate that they
are sizable, g}, > 0, gfljp <0, and g17 ~ —hfL. These general findings also agree with some
model calculations, see Sec. 2.4.4]

Notice that due to their chirality properties, g1 couples through evolution to its analo-
gous function for gluons (named AGr in Ref. [281] and ¢Y; in Ref. [282]), while this is not
true for hf-L. This difference will be particularly relevant at the EIC, where gluons will play
an important role.

By exploring QCD equations of motion, and neglecting “pure twist-3” quark-gluon cor-
relators and current quark mass terms, one can express gir (hi;) in terms of g1 (h1)
(see, e.g., [243] 252] [427), [508] and references therein). This is similar in spirit to the clas-
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sic Wandzura-Wilczek approximation [509] for the twist-3 distribution function gh(z) =

fxl dy ¢1(y)/y, (which is supported by the instanton QCD vacuum model [510, 5I1] and
lattice QCD [512L[513]). At an initial stage, it may be convenient to exploit such Wandzura—
Wilczek-type approximations, in order to make estimates for planned experiments [252] [508],
[GI4]. In fact, existing data suggest that they are reasonable [508], even though at present
there are no compelling grounds for supporting their validity [515] 516, 517]. In the end,
these approximations should be tested and twist-3 effects should be extracted from the data,
as we will also argue in the next subsection.

2.6.2 Subleading-twist TMDs

Eight out of the 18 structure functions providing the complete description of the SIDIS
cross section are leading twist and were discussed in detail in previous sections. However, 10
structure functions are higher twist, where the underlying twist-classification follows [245]:
“an observable is twist-t if its effect is effectively suppressed by (M/Q)=2.”

Higher twist functions, see Table for a full list of twist-3 TMDs, are of interest for
several reasons. Their understanding is required not only to complete the description of
the SIDIS process. Besides being indispensable to correctly extract twist-2 parts from data,
the knowledge of higher twists will also offer important tools to access the physics of the
largely unexplored quark-gluon correlations which provide direct and unique insights into
the dynamics inside hadrons, see, e.g., [518]. The EIC, which will span a large Q-range,
will be an ideal tool to identify higher-twist effects, which fall off as powers of 1/Q.

Although suppressed with respect to twist-2 observables by 1/@Q), twist-3 observables are
not small in the kinematics of fixed target experiments. Indeed, the first unambiguously
measured single spin phenomena in SIDIS which triggered important theoretical devel-
opments, were the sizable longitudinal target (Aszjrzd)) and beam (A??Jq&) spin asymmetries
observed at HERMES and JLab [519] 520], 521), 522] 523], [524]. Further data on twist-3 spin
asymmetries are underway [505] 525, [526]. In unpolarized SIDIS, the sizable twist-3 effects
(A9 are known since EMC  [527] [528], sce also recent results from JLab, HERMES and

COMPASS [501], 529, 500, 530]. At high energies A?})(SJ(’j can be described in perturbative
QCD, and the unique possibilities of EIC could bridge [371] the gap to high energy data
6311 532] 533], 534]. The understanding of the “matching” of the TMD formalism and the
large-pr collinear description is of fundamental importance, see Sec. and references
therein.

The theoretical description of twist-3 observables is challenging. A good illustration
of this point is that in spite of the enormous dedicated theoretical and phenomenological

effort  [396], (397, 465] 5351 536} 537, 538} 539, 540, 5411, 542, 543, 544), 545], 546, K47, 48|
649 550, B51L 52, B53), 554, 555] to explain the first single spin phenomena in SIDIS,
Aziriqb and ASLi?](Z’, these observables are still not understood. The theoretical challenge is
that presently it is not understood how to control light-cone divergences in SIDIS at 1/@Q
order [555]. This does not necessarily mean there is no factorization, but it indicates that
possibly new techniques are needed to pave the way towards a factorization proof in SIDIS
at twist-3. If one assumes twist-3 TMD factorization, the phenomenological challenge is
that each twist-3 observable receives contributions from several unknown twist-3 TMDs or
fragmentation functions [247]. The situation simplifies in semi-inclusive jet production, a
promising process to study at EIC energies, which could provide valuable complementary
information on twist-3 TMDs [556].
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An important process which can provide independent information on twist-3 (and, of
course, also twist-2) TMDs are interference functions [451) [478| 479, 480, 476] (57, (58].
The advantage of this approach is that here collinear factorization applies, i.e. one cannot
access TMDs. However, those functions which “survive” the k| -integration of the quark
correlator can be studied, and this includes at the twist-3 e*(x), ¢%(z), h}(z). These
functions contribute to observables in convolution with specific interference fragmentation
functions, which can be inferred from azimuthal asymmetries in e™e™ annihilations [485].

There is no doubt that experimental, phenomenological and theoretical efforts to go be-
yond twist-2 are worth. Twist-3 functions describe multiparton distributions corresponding
to the interference of higher Fock components in the hadron wave functions, and as such
have no probabilistic partonic interpretations. Yet they offer fascinating insights into the
nucleon structure [559]. The Mellin moment [ dz 2%§%(x) of the pure twist-3 piece in g%
describes the transverse impulse the active quark acquires after being struck by the virtual
photon due to the color Lorentz force. The Mellin moment [ dz 226%(x) of the pure twist-3
piece in e(x) describes the average transverse force acting on a transversely polarized quark
in an unpolarized target after interaction with the virtual photon.

Twist-3 TMDs are closely related to projections of different combinations of the collinear
twist-3 correlation functions Gp(z,2/) and Gp(x, /) discussed in Sec. ZZAl which are
involved in the evolution equations of twist-3 collinear PDFs [560] 561, 562, (563], 564 565,
[566], and play important roles also in derivations of the evolution equations for transverse
moments of TMDs [290, 2911, 390, B91], 392], calculations of processes at high transverse
momentum [352], or calculations of the high transverse momentum tails of TMDs [292] 295].
Ultimately, through a global study of all of these observables, one could simultaneously
obtain better knowledge of twist-3 collinear functions and twist-2 TMDs, and at the same
time test the validity of the formalism. Gathering as much information as one can on the
quark-gluon-quark correlator is essential to reach this goal.
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Chapter 3

Three-dimensional structure of the
proton and nuclei: spatial imaging

Convenors and chapter editors:

M. Burkardt, V. Guzey, F. Sabatié
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3.1 Spatial imaging of sea quarks and gluons: summary

V. Guzey, F. Sabatié, M. Burkardt

The internal landscape of the nucleon and nuclei in terms of the fundamental quarks
and gluons can be studied in different hard processes and can be characterized by differ-
ent quantities (distributions). Hard exclusive reactions such as deeply virtual Compton
scattering (DVCS) and exclusive production of mesons give an access to the aspects of the
hadron structure that are encoded in generalized parton distributions (GPDs) and dipole
amplitudes.

GPDs generalize the well-known form factors, distribution amplitudes and parton dis-
tributions and quantify various correlations/distributions of quarks and gluons in terms
of their momentum fractions and positions in the transverse plane. Thus, GPDs provide
a rigorous framework for studies of the three-dimensional parton structure of hadrons as
well as many additional important aspects of the hadron structure such as the parton an-
gular momentum and the related “spin puzzle”, spin and flavor content, the role of chiral
symmetry, and many more.

At the moment, our knowledge about GPDs is mostly limited to valence quark GPDs
(Hermes, Compass, Jefferson Lab 6 GeV and also Jefferson Lab 12 GeV in the near future)
and rather low precision data from HERA. A high-energy high-luminosity Electron-Ion Col-
lider (EIC) will be an ideal machine for the studies of hard exclusive reactions and sea quark
and gluon GPDs as summarised in table B.11

‘ Deliverables ‘ Observables ‘ What we learn Requirements
sea quark and DVCS and J/, p, ¢ transverse images of L£>10% ecm™2s71,
gluon GPDs production cross sect. sea quarks and gluons Roman Pots
and asymmetries in nucleon and nuclei; wide range of g and Q2

total angular momentum; | polarized e~ and p beams

onset of saturation e™ beam for DVCS
sea and valence cross sections for flavor decomposition and L£>10% cm™2s7!
quark GPDs K, K* p* polarization of quarks Roman Pots
electroproduction in the transverse plane high Q2

range of beam energies

for o, /o separation

Table 3.1. Science Matrix for Exclusive Processes at EIC.

(i) One essential aspect of the GPD program is obtaining the transverse image of quarks
and gluons in the nucleon/nucleus through the measurement of the ¢ dependence of cross
sections of various exclusive processes (DVCS, production of J/v, ¢, m, K, etc. mesons) in
a wide range of t. In the nucleon case, covering the interval 0 ~ |t| < 2 GeV? will enable
one to map out the parton distributions in the transverse plane of the impact parameter b
down to as low as b~ 0.1 fm.

(ii) One area where an EIC shines is the large range in Q? available in the full 23 inter-
val. QCD evolution equations of GPDs, similarly to the PDF case, allow one to globally
fit the data using flexible parameterizations of GPDs and to extract accurate and model-
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independent information on GPDs. One also will use the large lever arm in Q? to establish
the reaction mechanisms (scaling properties, higher twist effects).

(iii) Another clear advantage of an EIC is the availability of different polarizations for the
lepton and proton beams that allows one to fully disentangle the various GPDs from the
experimental observables. While DVCS is sensitive to singlet quark and gluon GPDs, other
exclusive diffractive processes (electroproduction of p, J/1, ¢, etc.) and non-diffractive
processes (electroproduction of 7+, K etc.) will allow one to access the spin and flavor
dependences of GPDs. Note that the non-diffractive processes push the requirements for
high luminosity much further than DVCS or other diffractive processes.

(iv) Exclusive processes with nuclei in a collider and, subsequently, the spatial image of sea
quarks and gluons in nuclei will be studied for the first time. All the processes mentioned
above will benefit from the high luminosity of an EIC (of the order of 103 cm™2s71) as well
as excellent detection capabilities and particle identification guaranteeing exclusivity.

The contributions below describe in detail various aspects of the rich program of spatial
imaging of sea quarks and gluons at an EIC. In conclusion, a high-energy high-luminosity
EIC, studying various deep exclusive processes through cross sections and polarization ob-
servables, would uniquely extend and complement our knowledge of the 3D partonic struc-
ture of the nucleon/nucleus to the sea of quarks and gluons.
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3.2 Basics of generalized parton distributions

Anatoly Radyushkin

3.2.1 Introduction

The fundamental physics to be accessed via the generalized parton distributions (GPDs)
67, 274, 568, (69, 570, B71, B72] is the structure of hadrons. This is a rather general
statement, and we may want to have a more specific one. A classic example of such a
specific case is the search for the Higgs boson (HB) performed currently at the Large Hadron
Collider (LHC). The motivation for the search is that HB is supposed to be responsible for
generation of masses, in particular, quark masses. However, by far, the largest part of
visible mass is due to the nucleons, and out of 940 MeV of the nucleon mass, less than 30
MeV (current quark masses) may be related to HB. The remaining 97% of the nucleon mass
is due to gluons — which are massless! This is a characteristic illustration of the situation
in hadron physics:

i) All the relevant particles are already established, i.e., no “higgses” to find.

1) The QCD Lagrangian is known.

ii1) However, we still need to understand how QCD works, i.e., to understand hadronic
structure in terms of quark and gluon fields.

Projecting quark and gluon fields ¢(z1) , ¢(z2) , ... onto hadronic states |p,s) gives
matrix elements:
(0]Ga(z1)gp(22) [M(p),s)  (0]gal21) g5(22) g4(23)| B(p),s) (3.1)

that can be interpreted as hadronic wave functions. In particular, in the light-cone (LC)
formalism [573], a hadron is described by its Fock components in the infinite-momentum
frame. For the nucleon, one can schematically write:

|P) = \quq‘q(l’lP, k11)q(@oP, koo )q(x3 P, ks1)) +\IquqG’qqu> +\I/qqqtiq‘qq(J@> +..., (3.2)

where x; are momentum fractions satisfying >, x; = 1; k;| are transverse momenta,
> kil = 0; ¥ are light-cone wave functions. In principle, solving the bound-state equation
H|P) = E|P) one should get the wave function |P) that contains complete information
about the hadron structure. In practice, however, the equation (involving an infinite number
of Fock components) has not been solved yet in the realistic 4-dimensional case. Moreover,
the LC wave functions are not directly accessible experimentally.

The way out of this situation is the description of hadron structure in terms of phe-
nomenological functions. Among the “old” functions used for a long time we can list form
factors, usual parton densities, and distribution amplitudes. The “new” functions, general-
ized parton distributions (for reviews, see [574], 575, 576 [577]), are hybrids of form factors,
parton densities and distribution amplitudes. Furthermore, the “old” functions are limiting
cases of the “new” ones.

3.2.2 Form factors

The form factors are defined through matrix elements of electromagnetic (EM) and weak
currents between hadronic states. In particular, the nucleon electromagnetic form factors
are given by

Vv

(p', 8" J*(0) | p, s) = a(p',s") |y"Fu(t) + 5

Fy(t) | ulp,s) , (3.3)
my
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where r = p — p/ is the momentum transfer and t = r?

given by the sum of its flavor components:

JH(z) = Z erthp(2)v r(2) . (3.4)
f

. The electromagnetic current is

The nucleon helicity non-flip form factor F(t) can also be written as a sum >, esFir(t). A
similar decomposition holds for the helicity flip form factor Fy(t) = >, efFor(t). At t =0,
these functions have well known limiting values. In particular, Fi(t =0) = ey = >_ fNyrey
gives total electric charge of the nucleon (Ny is the number of valence quarks of flavor f) and
Fy(t = 0) = Ky gives its anomalous magnetic moment. The form factors are measurable
through elastic eN scattering.

Nt

Figure 3.1. Elastic eN scattering in the one-photon exchange approximation.

3.2.3 Usual parton densities

The parton densities are defined through forward matrix elements of quark/gluon fields
separated by light-like distances. In particular, in the unpolarized case we have

1
(=270l |9} oy =2 [ [0 fula) =20 )] ao . (35)

In the local limit z = 0, the operators in this definition coincide with the operators con-
tributing into the non-flip form factor £}. Since ¢ = 0 for the forward matrix element, we
obtain the sum rule for the numbers of valence quarks:

1
/0 fal@) — fa(x)] dz = N, . (3.6)

The definition of parton densities has the form of the plane wave decomposition. This
observation allows one to give the momentum space interpretation: f,)(z) is the probabil-
ity to find a (a)-quark with momentum xp inside a nucleon with momentum p. The classic
process to access the usual parton densities is deep inelastic scattering (DIS) v*N — X.

Using the optical theorem, the v*N — X cross section is given by the imaginary part of
the forward virtual Compton scattering amplitude. The momentum transfer ¢ is spacelike
¢*> = —Q?, and when it is sufficiently large, perturbative QCD factorization works. At the
leading order, one deals with the so-called handbag diagram, see figure

Through simple algebra, %Im 1/(q +2zp)? ~ 6(x — v5)/2(pq), one finds that DIS mea-
sures parton densities at the point z = xp, where the parton momentum fraction equals
the Bjorken variable x5 = Q?/2(pq). Comparing parton densities to form factors, we note
that the latter have a point vertex instead of a light-like separation and p # p'.
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Figure 3.2. Lowest order pQCD factorization for DIS.

3.2.4 Nonforward parton densities

“Hybridization” of different parton distributions is the key idea of the GPD approach.
As the first step, we can combine form factors with parton densities [578] and write the
flavor components Fi,(t) of form factors as integrals over the momentum fraction variable
T

1
Fra(t) = /O Fula,t) — Fa(, 1)) da . (3.7)

In the forward limit ¢ = 0, the new objects—nonforward parton densities fa((—l)(x,t)
(NPDs)—coincide with the usual (“forward”) densities:

fa(a) (‘Tvt = O) - fa(&) (‘7:) : (38)

NPDs can be also treated as Fourier transforms of the impact parameter b distributions
f(x,b1) describing the variation of parton densities in the transverse plane [579] 580].

A nontrivial question is the interplay between z and ¢ dependencies of Fgqg) (x,t).
The simplest factorized ansatz F(z,t) = fo(x)Fi(t) satisfies both the forward constraint,
Fa(z,t =0) = fo(z), and also the local constraint (3.7]). The reality may be more compli-
cated: light-cone wave functions with Gaussian k| dependence

U (x;, ki) ~ exp [—% Z kﬁ/:nl] (3.9)

suggest that ) ,
Fo(x,t) = fa(z)e™/?A (3.10)

where = 1 — 2. Taking f,(x) from existing parametrizations and adjusting A\? to provide
the standard value of the quark intrinsic transverse momentum (k%) ~ (300 MeV)? gives a
rather reasonable description of the proton form factor Fi(t) in a wide range of momentum
transfers —t ~ 1 — 10 GeV? [578]. To comply with the Regge behavior, one may wish
to change e/ 20X 2=t where o is the Regge trajectory slope. The modified Regge
ansatz,

F(x,t) = folx)s 02 (3.11)

allows one to easily fit electromagnetic form factors for the proton and neutron [G81]. A
similar model was proposed in Ref. [582].

The same nonforward parton densities appear in the handbag diagrams for the wide-
angle real Compton scattering, see figure [3.3]
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Figure 3.3. Form factor and wide-angle Compton scattering amplitude in terms of nonforward parton
densities.

The handbag contribution is approximately given by the product of a new form factor,
R{,(t), and the cross section of the Compton scattering off an elementary fermion (given by
Klein—Nishina expression):

2
do 2 1a do
T [ZZ: eaRV(t)] T

The predictions based on handbag dominance and NPDs [578] [583] are in much better
agreement with the existing data [584] than the predictions based on two-gluon hard ex-
change mechanism of asymptotic perturbative QCD: the predicted cross section is too small
in the latter case. The absolute normalization for predictions is settled by the form of the
nonperturbative functions (NPDs in the handbag approach and nucleon distribution am-
plitudes in the pQCD approach) which were fixed by fitting the F} form factor data. Still,
when there is an uncertain overall factor, it is risky to make strong statements. Remarkably,
the perturbative QCD hard scattering mechanism and soft handbag mechanism give drasti-
cally different predictions for the polarization asymmetry Ap; [683]. Experiment E-99-114
performed at Jefferson Lab [584] strongly favors handbag mechanism that predicts the
value close to the asymmetry for the scattering on a single quark.

1 ra
with R“V(t):/ #dw (3.12)
0

KN

3.2.5 Distribution amplitudes

Another example of nonperturbative functions describing the hadron structure are the
distribution amplitudes (DAs). They can be interpreted as light cone wave functions inte-
grated over transverse momentum, or as (0] ... [p) matrix elements of light cone operators.
In the case of the pion, we have

1

(O Ga(==/ 205702 | 7 D) oy = 0 [ 0 (@), (33
with z; = (1 + «)/2, z2 = (1 — «)/2 being the fractions of the pion momentum carried
by the quarks. The distribution amplitudes describe the hadrons in situations when the
pQCD hard scattering approach is applicable to exclusive processes. The classic example is
the y*y — 7¥ transition; its amplitude is proportional to the 1/(1 — a?) moment of ¢, (),
see figure 34] left. The predictions for the y*y — ¥ form factor based on two competing
models for the pion DA, the asymptotic ¢25(a) = 3(1 — a?) and Chernyak-Zhitnitsky DA
% (o) = La?(1 — o?) differ by factor of 5/3, and the hope was that this difference would

allow for an experimental discrimination between them. Indeed, the comparison with CLEO
and CELLO data for Q2F7*Wo (Q?) that extend to Q* < 10 GeV? favors DAs that are closer
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to ©*(a). However, recent BABAR data covering the range up to Q% ~ 40 GeV? show the
increase of Q2Fy*wo(Q2) for @2 > 10 GeV?. To explain this increase, the scenarios were
proposed in which the pion DA does not vanish at the end-points, e.g., p12*(a) = 1.

™

(1+a)

T

—

Figure 3.4. Lowest-order pQCD factorization for v*y — 7° transition amplitude and for the pion
electromagnetic form factor.

Another classic application of pQCD to exclusive processes is the pion electromagnetic
form factor, see figure B.4] right. With the asymptotic pion DA ¢2*(«), the hard pQCD
contribution to F(Q?) is (20rs/7)(0.7 GeV?)/Q?, which is less than 1/3 of the experimental
value. Taking wider DAs formally increases the size of the one-gluon-exchange contribution,
but it is dominated then by the regions where the gluon virtuality is too small to be treated
perturbatively. So, in this case we deal with the dominance of the competing soft mechanism
which is described by nonforward parton densities, exactly in the same way as the proton
form factor F¥(t) discussed in the previous section.

3.2.6 Hard electroproduction processes

An attempt to use perturbative QCD to extract new information about hadronic struc-
ture is the study of deep exclusive photon [274] or meson [569] [572] electroproduction
reactions. In the hard kinematics when both Q% and s = (p + ¢)? are large while the mo-
mentum transfer t = (p — p’)? is small, one can use pQCD factorization which represents
the amplitudes as a convolution of a perturbatively calculable short-distance amplitude
and nonperturbative parton functions describing the hadron structure. The hard pQCD
subprocesses in these two cases have different structure, see figure Since the photon
is a pointlike particle, the deeply virtual Compton scattering (DVCS) amplitude has the
structure similar to that of the v*y7¥ form factor: the pQCD hard term is of zero order in
as (the handbag mechanism), and there is no competing soft contribution. Thus, we can
expect that pQCD works from Q2 ~ 2GeV?2. On the other hand, the deeply virtual meson
production process is similar to the pion EM form factor: the hard term has a O(a,/7) ~ 0.1
suppression factor. As a result, the dominance of the hard pQCD term may be postponed
to Q% ~ 5 —10GeV?2.

Figure 3.5. Lowest-order factorization for deeply virtual photon and meson production.
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One should also have in mind that the competing soft mechanism can mimic the same
power-law @Q%-behavior (just like in case of pion and nucleon EM form factors). Hence,
a mere observation of a “right” power-law behavior of the cross section may be insuffi-
cient to claim that pQCD is already working. One should look at other characteristics of
the reaction, especially its spin properties, to make strong statements about the reaction
mechanism.

3.2.7 Deeply virtual Compton scattering and generalized parton distri-
butions

It is convenient to visualize DVCS in the v*N center-of-mass frame, with the initial
hadron and the virtual photon moving in opposite directions along the z-axis. Since the
momentum transfer ¢ is small, the hadron and the real photon in the final state also move
close to the z-axis. This means that the virtual photon momentum ¢ = ¢’ — xgp has the
component —xpp canceled by the momentum transfer r. In other words, the momentum
transfer r has the longitudinal component r* = xpp*, where 15 = Q%/2(pq) is the DIS
Bjorken variable. One can say that DVCS has a skewed kinematics in which the final hadron
has the “plus” momentum (1 — ¢)p™* that is smaller than that of the initial hadron. In the
particular case of DVCS, we have ( = xp.

The parton picture for DVCS has some similarity to that of DIS, with the main difference
that the plus-momenta of the incoming and outgoing quarks in DVCS are not equal; they
are Xp™ and (X — ()p™, see figure[B.6l Another difference is that the invariant momentum
transfer £ in DVCS is nonzero: the matrix element of partonic fields is essentially nonforward.

Thus, the nonforward parton distributions (NFPDs) F¢(X,t) describing the hadronic
structure in DVCS depend on X (the fraction of p* carried by the outgoing quark), ¢ (the
skewness parameter characterizing the difference between initial and final hadron momenta),
and ¢ (the invariant momentum transfer). In the forward r = 0 limit, we have a reduction
formula

(Xt =0) = folX) (3.14)

relating NFPDs with the usual parton densities. The nontriviality of this relation is that
F¢(X,t) appear in the amplitude of the exclusive DVCS process, while the usual parton
densities are measured from the cross section of the inclusive DIS reaction.

Another limit for NFPDs is zero skewness ( = 0, where they correspond to nonforward
parton densities: F¢_q(X,t) = F*(X,t). The local limit relates NFPDs to form factors:

! a, dX a
/0 FX ) 1=z = F1O)- (3.15)

The description in terms of NFPDs has the advantage of using the variables most close
to those of the usual parton densities. However, the initial and final hadron momenta are
not treated symmetrically in this scheme. Ji [274] proposed to use symmetric variables in
which the plus-momenta of the hadrons are (1+&)PT and (1—&)P™, and those of the active
partons are (x + &)PT and (z — &)PT, P being the average momentum P = (p + p')/2, see
figure[3.6l In the simplified case of scalar fields, the GPD parametrization of the nonforward
matrix element is

1
(P4 1/2(—2/2)(2/2)| P — r/2) = / (P (. €) d + O(22) (3.16)

-1
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Xp (X-Z)p (x+&)P (x-¢)P

p (1-2)p 1L+g)P (1E)P

Figure 3.6. Comparison of NFPDs and OFPDs.

To take into account the spin properties of hadrons and quarks, one needs four off-
forward parton distributions H, E, H, E, each of which is a function of z, &, and ¢. The
skewness parameter £ = r*/2PT can be expressed in terms of the Bjorken variable, £ =
xp/(2 —xp), but it does not coincide with it.

Depending on the value of z, each GPD has 3 distinct regions. When £ < z < 1,
GPDs are analogous to usual quark distributions; when —1 < z < —¢, they are similar to
antiquark distributions. In the region —§ < z < &£, the “returning” quark has a negative
momentum and should be treated as an outgoing antiquark with momentum (§ —x)P. The
total ¢ pair momentum r = 2¢P is shared by the quarks in fractions (1 + z/£)/2 and
r(1—x/£)/2. Hence, a GPD in the region —§ < z < § is similar to a distribution amplitude
O (o) with a = x/€.

In the local limit, GPDs reduce to elastic form factors:

1 1
Zea/H“(x,ﬁ; t)de = Fy(t) Zea/E“(:E,g;t) dx = Fy(t). (3.17)
a 1 a 1

The E function, like F(t), comes with the 7, factor. Hence, it is invisible in DIS described
by the forward r = 0 Compton amplitude. However, the t = 0,£ = 0 limit of E exists:

E®%(z,6 =0;t =0) = k™(z). (3.18)

In particular, its integral gives the proton anomalous magnetic moment r,,

Zea /(ﬁ“(m) — k%)) dz = Ky, (3.19)

while its first moment enters Ji’s sum rule for the total quark contribution J, to the proton
spin:

1
J, = % 3 /ac F9(2) + (@) + K (z) + 5 (2)] da - (3.20)
@ 0

Note that only valence quarks contribute to r,, while J, involves also sea quarks. Fur-
thermore, the values of k,, (unlike e,, = FI""(0)) strongly depend on dynamics, e.g.,
kN ~ 1/mg in constituent quark models.
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3.2.8 Double distributions

To model GPDs, two approaches are used: a direct calculation in specific dynamical
models: bag model, chiral soliton model, light-cone formalism, etc., and a phenomenological
construction based on the relation of GPDs to usual parton densities f,(x), Af,(x) and form
factors F(t), Fa(t),Ga(t), Gp(t). The key question in the second approach is the interplay
between z, ¢ and ¢ dependencies of GPDs. There are not so many cases in which the pattern
of the interplay is evident. One example is the function E(z,§,t) which is related to the
G p(t) form factor and is dominated for small ¢ by the pion pole term 1/(t —m2). It is also
proportional to the pion distribution amplitude ¢ (o) taken at o = x/£. The construction
of self-consistent models for other GPDs can be performed using an ansatz based on the
formalism of double distributions (DD) [585].

The main idea behind the double distributions is a “superposition” of P* and r* mo-
mentum flows, i.e., the representation of the parton momentum k™ = P+ + (1 + «a)rt/2
as the sum of a component SP* due to the average hadron momentum P (flowing in the
s-channel) and a component (1 + a)r* /2 due to the t-channel momentum r, see figure 3.7
In the simplified case of scalar fields, the DD parametrization reads

(P —r1/21Y(=2/2)¢(2/2)|P +1/2) = / F(B, ) e P00 4 do + O(2%) . (3.21)

Q
Thus, the double distribution f(3,a) (we consider here for simplicity the ¢ = 0 limit) looks
like a usual parton density with respect to 8 and like a distribution amplitude with respect
to a. The connection between the DD variables 5, a and the GPD variables x, ¢ is obtained

from r* = 2¢PT, which results in the basic relation z = 8 + £a. The formal connection
between DDs and GPDs is

H(x,&) = /QF(B,Q) zr —p—Ea)dBda . (3.22)

(x+&)P (x€ )P BP+(1+a)r/2 BP-(1-a )r/2

(1+&)P (1-¢)P P+r/2 P-r/2
Figure 3.7. Comparison of GPD and DD descriptions.

The forward limit £ = 0,¢t = 0 corresponds to x = (3, and gives the relation between
DDs and the usual parton densities:

—18|
/ T BaB,a5t = 0)da = £u(8) | (3.23)
—1+|B]

The DDs live on the rhombus |a| + |8] < 1 [denoted by © in (B2I) and (322)] and are
symmetric functions of the “DA” variable a: fo (5, a;t) = fo(B, —a;t) (“Munich” symme-
try [686]). These restrictions suggest a factorized representation for a DD in the form of
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a product of a usual parton density in the S-direction and a distribution amplitude in the
a-direction:

_ o o) o L= 18)? — o2V IRl o) doy —
F(B,a) = f(B)h(B,a) , hn(B,a) (SR /—1+|5 h(B,a)da =1. (3.24)

To obtain usual parton densities from DDs, one should integrate (scan) them over the
vertical lines § = & = const. To obtain the GPD H(x, &) with nonzero £ from DDs (3, ),
one should integrate (scan) DDs along the parallel lines o = (x — 3) /£ with a ¢-dependent
slope. One can call this process the DD-tomography. The basic feature of GPDs H(x, &)
resulting from DDs is that for £ = 0 they reduce to usual parton densities, and for £ = 1
they have a shape like a meson distribution amplitude. A more complete truth is that such
a DD modeling misses terms invisible in the forward limit: meson-exchange contributions
and so-called D-term, which can be interpreted as o-exchange. The inclusion of the D-term
induces nontrivial behavior in the central |z| < & region (for details, see [587]).

3.2.9 GPDs and the structure of hadrons

Hadronic structure is a complicated subject, and it requires a study from many sides
and in many different types of experiments. The description of specific aspects of hadronic
structure is provided by several different functions: form factors, usual parton densities,
distribution amplitudes. Generalized parton distributions provide a unified description: all
these functions can be treated as particular or limiting cases of GPDs H (z,&,t).

Usual parton densities f(x) correspond to the case £ = 0,¢t = 0. They describe a hadron
in terms of probabilities ~ [¥|2. However, QCD is a quantum theory: GPDs with ¢ # 0
describe correlations ~ WiW,. Taking only the point ¢ = 0 corresponds to integration over
impact parameters b; — information about the transverse structure is lost.

Form factors F(t) contain information about the distribution of partons in the trans-
verse plane, but F'(t) involve integration over momentum fraction  — information about
longitudinal structure is lost.

A simple “hybridization” of usual densities and form factors in terms of NPDs F(z, )
(GPDs with £ = 0) shows that the behavior of F'(t) is governed both by transverse and lon-
gitudinal distributions. GPDs provide adequate description of nonperturbative soft mech-
anism. They also allow to study transition from soft to hard mechanism.

Distribution amplitudes ¢(x) provide quantum-level information about the longitudinal
structure of hadrons. In principle, they are accessible in exclusive processes at large momen-
tum transfer, when hard scattering mechanism dominates. GPDs have DA-type structure
in the central region |z| < &.

Generalized parton distributions H(x,&,t) provide a 3-dimensional picture of hadrons.
GPDs also provide some novel possibilities, such as “magnetic distributions” related to the
spin-flip GPD E(z,¢,t). In particular, the structure of nonforward density E(x,& = 0,t)
determines the ¢-dependence of Fy(t). Recent JLab data give Fy(t)/Fy(t) ~ 1/y/—t rather
than 1/t expected in hard pQCD and many models — a puzzle waiting to be resolved. The
forward reductions k%(x) of E(z,&,t) look as fundamental as f®(z) and Af%(z): Ji’s sum
rule involves k%(x) on equal footing with f(z). Magnetic properties of hadrons are strongly
sensitive to dynamics providing a testing ground for models. Another novel possibility is the
study of flavor-nondiagonal distributions, e.g., proton-to-neutron GPDs accessible through
processes like exclusive charged pion electroproduction, proton-to-A GPDs (they appear in
kaon electroproduction), and proton-to-A GPDs — these can be related to form factors of
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proton-to-A transition (another puzzle for hard pQCD). The GPDs for N — N + soft 7
processes can be used for testing the soft pion theorems and physics of chiral symmetry
breaking.

An interesting problem is the separation and flavor decomposition of GPDs. The DVCS
amplitude involves all four types of GPDs, H, ¥, H, E/, so we need to study other processes
involving different combinations of GPDs. An important observation is that, in hard elec-
troproduction of mesons, the spin nature of produced meson dictates the type of GPDs
involved, e.g., for pion electroproduction, only H, E¥ appear, with £/ dominated by the pion
pole at small ¢. This gives an access to (generalization of)) polarized parton densities without
polarizing the target.

In summary, the structure of hadrons is the fundamental physics to be accessed via
GPDs. GPDs describe hadronic structure on the quark-gluon level and provide a three-
dimensional picture (“tomography”) of the hadronic structure. GPDs adequately reflect
the quantum-field nature of QCD (correlations, interference). They also provide new in-
sights into spin structure of hadrons (spin-flip distributions, orbital angular momentum).
GPDs are sensitive to chiral symmetry breaking effects, a fundamental property of QCD.
Furthermore, GPDs unify existing ways of describing hadronic structure. The GPD for-
malism provides nontrivial relations between different exclusive reactions and also between
exclusive and inclusive processes.
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3.3 GPDs and transverse nucleon structure at collider ener-
gies

C. Weiss

Generalized parton distributions (GPDs) have emerged as a key concept in nucleon
structure and the theory of high momentum—transfer processes in QCD. They unify the
traditional notions of parton densities and elastic form factors and describe the transverse
spatial distribution of quarks and gluons in a fast—-moving hadron. A general introduction to
GPDs and hard exclusive processes is given in section[3.21 Here we summarize the properties
of GPDs at collider energies, where the parton picture can be combined with methods
specific to high—energy scattering (“small—z physics”). This includes the transverse spatial
structure of the nucleon at small z; gluon and quark imaging with hard exclusive processes
at ep colliders (HERA, EIC); the correspondence with the QCD dipole model and the role
of transverse nucleon structure in saturation at small x; and the application of GPDs to
high—energy pp collisions with hard processes (Tevatron, LHC).

GPDs are defined as the transition matrix elements of the QCD twist—2 operators be-
tween nucleon states of different momenta. They are functions of the longitudinal momen-
tum fractions of the partons, x and 2/, and the invariant momentum transfer ¢, as well
as the resolution scale Q? (see figure B:8h). Of particular interest is the “diagonal” limit
r = 2/, where the momentum transfer is in the transverse direction only, ¢ = —|A|?, and
the GPD can be regarded as the form factor of partons carrying longitudinal momentum
fraction z. Its two—dimensional Fourier transform

2
fab @) = G5

describes the transverse spatial distribution of partons with momentum fraction x and thus
provides a “tomographic” image of the structure of the fast—moving nucleon (see figure3.8b)
[580]. The coordinate b measures the distance from the transverse center—of-mass (CM),
defined as the average of the transverse positions of all constituents weighted with their
longitudinal momentum fractions. In general, the removal of a parton with momentum
fraction = changes the position of the CM, and this effect must be taken into account in
interpreting the coordinate distributions at  ~ 1. At x < 1 however, the contribution of the
removed parton to the CM is negligible and one can think of the b—distributions of (3.:25]) as
referring to a fixed transverse center of the nucleon. This considerably simplifies the spatial
interpretation of GPDs at small x.

eUAY) GPD(z,t = —A2 Q?) (3.25)

| P X X
X X L, X
a
N, -
&% %o %
@ (b) & (©

Figure 3.8. (a) GPD and partonic variables. (b) Transverse spatial distribution of partons. (¢) QCD
evolution generates small x, 2’ from the quasi—diagonal GPD at lower scale.
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Figure 3.9. (left) Exclusive J/4 production as a probe of the gluon GPD. (right) Average transverse
gluonic size of the nucleon (b?), extracted from .J/1b photoproduction at HERA [588| [589] and
FNAL [590] (adapted from [591]). The effective scale at which the GPD is probed is Q%; ~ 3 GeV?.

Hard exclusive processes require a non—
zero longitudinal momentum transfer to the
nucleon and probe the GPDs at z — 2/ =
2¢ # 0, where the “skewness” is related to
the Bjorken variable by £ = xp/(2 — xp).
Models or additional assumptions are gen-
erally needed to extract the diagonal GPD
from the data. However, at zp < 1 and
sufficiently large @? the “skewed” GPD can
approximately be reconstructed from the di-
agonal limit [592] [593]. In this case QCD
evolution generates the GPD with x and 2’
from configurations at a lower scale with
momentum fractions xg,z{ > z,2'; be-
cause the difference of the parton momen-
tum fractions is preserved under evolution,
the lower-scale GPD is effectively evalu-
ated in the diagonal limit zo — z{, < @, 2},
(see figure[3.8c). This approximation allows
one to relate the measured t—dependence of
the differential cross sections directly to the
transverse structure of the nucleon at fixed
T.

The transverse spatial distribution of
partons changes with the momentum frac-
tion z and the scale Q2. The valence quarks
and gluons at « > 0.1 are concentrated at
small transverse distances b < 1fm, as can
be inferred from the nucleon axial form fac-
tor and exclusive processes at large . Be-
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Figure 3.10. A simulated measurement of ex-

clusive J/v electro-production with a medium-—
energy EIC for an integrated luminosity of 100
fb~!. The expected statistical errors in the t—
dependence of the J/v dilepton cross section in
a fully differential measurement in W, Q? and t
are shown. The values of x = Mg/w/W2 in the
bins are indicated above the curves, correspond-
ing approximately to the x—values where the gluon
GPD is probed. Such measurements can image the
transverse distribution of gluons at > 0.1 and ex-
plore the unknown ¢-dependence at [t| > 1 GeV?.
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low x < M, /My chiral dynamics gives rise to a distinct large—distance contribution to the
parton density at b ~ 2/M, [594]. At even smaller values of  the nucleon’s transverse size is
expected to grow as a result of Gribov diffusion in the successive parton branchings building
up the small-z parton density. The transverse distribution also shrinks with increasing Q>
as a result of DGLAP evolution [595]. Overall, much interesting information on nucleon
structure and non-perturbative dynamics can be obtained from the study of the transverse
spatial distributions of quarks and gluons.

The transverse spatial distribution of gluons can be measured cleanly through exclusive
J /¢ photo— or electroproduction YON = J /¥ + N, or electroproduction of ¢ mesons at
Q? > 10GeV? (see figure B.9h). Measurements at HERA have confirmed the applicability
of QCD factorization, with corrections for the finite size of the produced meson, and tested
the universality of the gluon GPD; see [596] for a review. The data show that the nucleon’s
transverse gluonic radius at z < 0.01 is substantially smaller than the transverse charge
radius (see figure B.9b). It increases only moderately with decreasing x, with a logarithmic
slope much smaller than that of the Pomeron trajectory, o/, = 0.25 GeV 2, showing that
Gribov diffusion is suppressed for partons with virtualities ~ few GeV?. Both observations
are of central importance for nucleon structure and small-z physics.

While the HERA experiments have provided basic information on the nucleon’s trans-
verse gluonic size at small x, many important questions remain unanswered:

e How are the gluons at 2 > 1072 distributed in transverse space? Global PDF fits
indicate a substantial momentum density of gluons in that z-range at low scales
Q? ~ few GeV?2. Knowledge of their spatial distribution would help to explain their
dynamical origin, one of the key issues of nucleon structure in QCD.

e Do singlet quarks and gluons have the same transverse distribution? This can be
studied by comparing the t-dependence of J /v and ¢ with p° and ~ electroproduction.
A larger radius for quarks than gluons is expected from non-perturbative effects [597].

e How are non-singlet sea quarks distributed in transverse space? The non-singlet sea
at z < 0.1 reveals non-perturbative QCD interactions (vacuum fluctuations, mesonic
degrees of freedom) in the nucleon. This component is probed in exclusive 7, K, p*
or K* production — non—diffractive processes involving quantum number exchange.

e How does the nucleon’s gluon GPD behave at [t| ~ few GeV?? The large-|t| behavior
of GPDs is important not only to obtain accurate images at small b, but also to
understand how soft Regge—like dynamics is connected to QCD at short distances.

e What is the probability for a nucleon to break up into a low—mass hadronic state
(Mpy ~ few GeV) in an exclusive process at small zg? Such “diffractive dissociation”
reveals the quantum fluctuations of the nucleon’s gluon density — new information
going beyond the average densities described by the GPDs [59§].

An EIC would enable a comprehensive program of transverse imaging of gluons and sea
quarks in the nucleon. Measurements of J/1 photo— and electroproduction, as well as ¢
meson electroproduction at @2 > 10 GeV?, would cleanly map the transverse distribution
of gluons, including the gluons at = > 0.1 (see the example in figure BI0). They could also
explore the unknown t-dependence of the GPD at |t| > 1GeV?. Measurements of p° and
v production (DVCS) would provide additional information on the singlet quarks. With a
high-luminosity EIC, even the non—diffractive channels (7, K, p*, K*) could be measured
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Figure 3.11. (a) Dipole picture of high—energy scattering in the target rest frame. (b) Multiparton
processes in high—energy pp collisions.

for the first time down to & ~ 0.01, providing detailed information on the spatial distribution
of the non-singlet sea, including its spin and flavor composition (see section [B.12)).

The QCD factorization theorem for hard exclusive processes at small z (figure B.9h) is
equivalent to the dipole picture of exclusive processes in the nucleon rest frame in the leading
as log Q? approximation [599]. The scattering amplitude for a dipole of size » with impact
parameter b is proportional to the b-dependent gluon density of (3.25)) at a scale Q? ~ 72 /r?
(see figure B.3h). This correspondence relates GPDs to the dipole model phenomenology
of small-x physics [596]. In particular, the transverse spatial distribution of gluons is an
essential input to studies of the unitarity limit in hard processes at small x (“black—disk
regime”). It defines the spatial profile of the initial conditions of non-linear QCD evolution
equations leading to gluon saturation at small x. Detailed studies of saturation in the
dipole model have used the transverse gluonic size extracted from the HERA data (see
figure 39b) [600, 601]; better knowledge of the transverse profile would help to accurately
predict the x and b-dependence of the saturation scale.

The transverse distribution of partons also plays an important role in high—energy pp
collisions with hard processes. It determines the probability of hard parton—parton processes
as a function of the pp impact parameter. Using knowledge of the transverse distribution
of partons from ep scattering one can explain many features of the underlying event in pp
collisions with hard processes [591]. In particular, one can predict the rate of multiparton
processes (see figure[3.3b), which form a potentially large background to new physics events
at the LHC. The enhancement of such processes beyond their geometric probability signals
dynamical correlations between partons, the study of which represents a new frontier of
nucleon structure.
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3.4 How large can the distributions F? and E£Y be?

Markus Diehl

3.4.1 Positivity bounds

The generalized parton distributions F for quarks and gluons play a key role in the study
of nucleon structure through exclusive processes. In the following I focus on the case of zero
skewness, £ = 0, where the physics interpretation is most intuitive and where constraints on
these distributions are most easily obtained. The density of unpolarized quarks in a proton
polarized along the z-axis is given by

b 0

X, 7 2
g (z,b) = q(x,b )—Eweq

(z,0%), (3.26)
where m is the proton mass. The quarks have impact parameter b and move in the z-
direction with momentum fraction x. The term with

2 .
eq(x,b?) = / %e_im E(z,6 =0,t = —A?) (3.27)
quantifies the transverse shift of the density due to the proton polarization. The density
interpretation of (320 (together with its analog for longitudinal quark and proton polar-
ization) entails a positivity bound [602]:
[ o
2
The theoretical status of this bound is the same as for the positivity of unpolarized parton
densities and for the Soffer inequality: they hold in the parton model and are preserved by
leading-order DGLAP evolution to higher scales, but they can be violated by higher-order
evolution effects or at very low scales. Since so little is known about E, I suggest to use
[3:28) as a guide, with proper caution. A consequence of (28] is that (9/9b%)e, must
decrease faster with b than /¢? — A¢?. This has immediate consequences for parameteri-
zations: using Gaussian forms E? o« ePe? and 1/¢? — A¢? x ePet for the momentum-space
distributions at £ = 0, one must have B, < By, and with power laws E9 o (1—t/M?2)~3 and
V@ — Ag? o (1 —t/M2)~2, one must have 1/M, < 1/M,, with equality of the parameters
not being allowed in either case. Starting from (3.28]) one can also derive a bound [602] for
the integrated distribution:

2
" (z, bz)] < [q(:n, b?) + Aq(z, bz)] [q(x, v?) — Aq(z, bz)] . (3.28)

eq(z) = /d%eq(x, D) = F9(z, € = 0,1 = 0). (3.29)

That bound constrains the large « behavior of e,(x), but numerically turns out to be rather
weak for z below 0.5, see e.g. [603].
Analogous definitions and bounds apply to antiquark and gluon distributions ez and e,.

3.4.2 Sum rules

An important constraint follows from the sum rule

1
Kq = Ofdzzt leq(x) — eq(:n)] , (3.30)
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Figure 3.12. GPDs in the forward limit obtained in a phenomenological fit [582] to the nucleon
form factors. The first two panels correspond to two parameter sets giving a good fit. The valence
quark distributions tya = v — @ and dya = d — d in the third panel are shown for comparison. All
distributions are shown at the scale p =2 GeV.

where k, is the contribution of quark flavor ¢ to the anomalous magnetic moment of the
proton. From the magnetic moments of proton and neutron one obtains k,, — kg = 3.71 and
Ky + kg + ks = —0.36. Under the reasonable assumption that k, is small compared with
Ky and kg, these numbers imply that , and kg4 are both large but have opposite signs and
largely cancel in the flavor sum. As a consequence, the functions e, va1(z) = €, (z) — ea(x)
and eq val(x) = eq(x) — eg(x) must be large at least in some region of . This is illustrated
in figure B.I2] which shows distributions obtained by fitting a model ansatz for u and d
quark GPDs to the electromagnetic nucleon form factors [582] (neglecting strange-quark
contributions). The fit suggests that e, ya1 and eqya are of similar size as the unpolarized
valence distributions, whereas e, val + €4 val is small and poorly known, to the point that we
do not know whether it has zero crossings.
The second moments of e(z) appear in Ji’s angular momentum sum rules,

1 1 1 1
2J9 = Ofdxa:[q(a:) + q(z)] + ({dmx[eq(a:) +ez(z)], 2J9= Ofda: rg(r) + Ofdx zeg(x),

(3.31)

where they give “nontrivial” contributions in addition to the “trivial” ones from the mo-
mentum integrals of quarks and gluons (whose values are well known). Summed over all
partons, the momentum integrals add up to 1 and the angular momenta to %, so that

1 1
[dx zeging () + [dx zey(x) =0, (3.32)
0 0

where esing(z) = >_, [eq(x) +eg(z)]. Note that both (3.30) and (3.32]) are exact relations in
QCD, in contrast to the positivity bound ([B28]). The scale dependence of e,4(z) and eging(z)
is governed by coupled DGLAP equations, with the same kernels as for the unpolarized gluon
and quark singlet distributions. With (8.32]) one finds that to leading order in s

f _(es(w) Y g
Ofdznajeg(aj,,u) = <ozs(,u0)> Ofdznajeg(aj,,uo), (3.33)
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where v = 50/81 for ny = 3 and 56/75 for ny = 4 active flavors. All numbers in the
following refer to u = 2 GeV; the evolution of ([333]) to higher scales is rather slow.

With the distributions in [582] one finds that f dx weging has a very small valence part
f dx zle, — ez + eq — eg] between —0.042 and 0.068. A similar situation is found in lattice
calculations, which obtain a small contribution to f dx xle, + ez + eq + eg] from connected
graphs, with values between —0.077(16) and 0.015(11) for different extrapolations to the
physical quark masses [604].

Assuming that [ dz z[e, — ez + eq — 4] is indeed small (and barring the possibility of an
implausibly large e5 —e5) we find that the sum [ dz zey+ [ dz zege, of second moments must
be small, where ege, =2 4 €a This still leaves us with a number of possible scenarios:

1. both eg(x) and egea(r) are small (note that this does not exclude large eg(z) for
individual quark flavors: only the flavor sum must be small),

2. e4(z) and egea(x) are both large but have opposite signs,
3. both distributions are large but have nodes such that their second moments are small.

Scenario 2 is illustrated in figure B3l which shows two variants of model distributions
proposed in [605]. The absolute size of the distributions is limited by the bound ([B.:28]) and
its analogs for e and ey, and the opposite signs of e, and eg, ensure that (3.32]) can be
fulfilled. We see that scenarios where both e, and ege, are large cannot be ruled out with
our present knowledge. If the above model distributions are evolved to higher scales, e,
becomes even larger and steeper at small x [603].

Goloskokov, Kroll variant 2 Goloskokov, Kroll variant 3

2 2 05xg -
__________ ; X &g

""""""""""" X esing )
1 1 X qsing
o T 0 S
1 X Osing 1

X esing ....................
[P R A
]
2 ~05xg ~--n- 2
0.001 0.01 0.1 1 0.001 0.01 0.1 1
X X

Figure 3.13. Two variants of model distributions e, and egng at p = 2GeV from [605]. The
distributions of the quark singlet qging = q(q + @) and the gluon are shown for comparison.

3.4.3 Exclusive processes

Up to now I discussed E9, E? and EY at zero skewness £ = 0, but in exclusive processes
like DVCS and meson production £ is always nonzero. Nevertheless, experience from phe-
nomenology and models suggests that GPDs at £ = 0 are closely enough related to those
at € # 0 to serve as a guide for their overall size, see e.g. [577, [606].

Note that even the large model distributions e, and ege, in figure result in small
values for the transverse target spin asymmetry Ay in exclusive p electroproduction [605].
This is in part due to cancellations in the sum over u and d quarks in this process (the
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same distributions give a larger asymmetry for w production). Moreover, Ayr in exclusive
meson production is proportional to Im(#H £*), where H and £ are the scattering amplitudes
associated with H and E distributions, respectively. Hence Ay is also small when both
amplitudes are large but have a small relative phase. The transverse target asymmetry
in DVCS is therefore of special importance, because the interference between Compton
scattering and the Bethe-Heitler process is linear in Im &.
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3.5 Imaging transverse distributions

Gerald A. Miller

3.5.1 Introduction

Much effort has gone into measuring electromagnetic form factors, which are related to
the charge and magnetization densities within the nucleons. The influence of relativistic
motion of the quarks within the nucleon causes the standard textbook interpretation of form
factors as three-dimensional Fourier transforms to be wrong [607]. The use of transverse
densities [608], [609] avoids various difficulties by working in the infinite momentum frame
and taking the spacelike momentum transfer to be in the direction transverse to that of the
infinite momentum. In this case, the different momenta of the initial and final nucleon states
are accommodated by using two-dimensional Fourier transforms and transverse charge and
magnetization densities are constructed from density operators that are the absolute square
of quark-field operators.

The transverse charge density is given by [608], [610]

p0) = [ depla™b) = o~ [ QaQAQDA(@?). (3.34)

where p(z~,b) is the three dimensional spatial density.

The transverse charge densities are shown in [608 [609]. The interesting feature is that
the central neutron charge density is negative. An interpretation of this finding based on
the impact parameter distribution [580} [611] was presented in [612]. All models of these
quantities are based on the Drell-Yan—West relation, which connects large values of z with
large values of Q%. These models tell us that the d quarks that dominate deep inelastic
scattering from the neutron at large values of x dominate the neutron center. It is also
possible that the negatively charge pionic cloud may penetrate the center [613].

The transverse anomalous magnetization density is obtained from the matrix element
of the magnetization density operator %5 X j, where j is taken in the z-direction:

sin? gbb Q2%dQ

b [ S R(QR QD). (3.35)

pm(b) =

The integral [ d?bpys(b) gives the anomalous magnetic moment.

3.5.2 Realistic transverse images of the proton charge and magnetic den-
sities

The word “realistic” refers to the ability to know the uncertainty in the transverse
densities derived from experiment. The previously obtained transverse densities are derived
from various parameterizations of the form factors. A more detailed treatment is needed to
be able to extract uncertainties. The following discussion is based on the analysis [614].

The basic idea behind our approach is to use the observation that p(b) ~ 0 for b > R,
where R is a finite distance. Since the functions p and F' are Fourier transforms, F' is band-
limited. We proceed in the spirit of the Nyquist-Shannon sampling theorem and expand
the function p as

o) =Y o gyt @ (X ) (3.36)

n=1
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Figure 3.14. Plot of pp (solid), 5 term approximation (red, long dash), 10 term approximation
(green, medium dash) and 15 term approximation (brown, short dash). From Ref. [614].

where X, is the n-th zero of the regular cylindrical Bessel function of order 0, Jy; Q, =
X,n/R and X, = (n+ 3/4)7. Equation (3.36) defines the so-called finite radius approxima-
tion (FRA). Using, for example, R = 3 fm and n = 10, Q> ~ 4 GeV?. Thus, the measure-
ment up to Q% = 4 GeV? determines the first ten terms of the expansion. As an example,
let us consider the expansion (336]) for the dipole form factor: Fp(Q?) = 1/(1 + Q?/A?)?
with A%2 = 0.71 GeV?2. The results shown in figure B.14] indicate that relatively few terms
suffice to give an accurate representation.

The relationship between the FRA and the usual expansion into a complete set of
functions is examined in [614] where it is shown that the FRA is very accurate. The available
data set consists of ep scattering up to 31 GeV? and G E,m are separately extracted for up
to 10 GeV2. The form factors G and G have been extracted from a global analysis of the
world’s cross section and polarization data, including corrections for two-photon exchange
corrections [615]. The analysis is largely identical to that of [616], although additional high
Q? form factor results [617] have been included. In addition, the slopes of G and G at
Q? = 0 were constrained in the global fit based on a dedicated analysis of the low Q2 data.
In writing Gg(Q?) = 1 — Q*R%/6, the value of Rg was constrained to be 0.878 fm and
Rp; was constrained to be 0.860 fm. This is important in the extraction of the large scale
structure of the density. The fit is given in [614].

We then use the fit and uncertainties for G and G to extract Fy and Fb, treating the
uncertainties in Gg and Gy as uncorrelated, yielding:

1

T

(@F)? = (2 (dGe) + (),
(dFy)? = (ﬁ)%deﬁ + (ﬁ)%dam? (3.37)

For Q2 < 30 GeV?, we use dF} above in the FRA to get dp(b). For Q% > 30 GeV?, we use
the FRA and take dFy = £|F(fit)|. This corresponds to a maximum value of n = 30. The
resulting transverse charge density is shown in figure The proton transverse charge
density is now very well known.

Our FRA technique can be exploited to image other quantities that depend on the
transverse position. Suppose there is a transverse quantity p()‘)(b) that is a two-dimensional
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Figure 3.15. (Color online) pcp, (solid, blue) with error bands (short dashed, red). From Ref. [614].

Fourier transform of an experimental observable F*)(Q?) such that

p(0) = 5= [ QURI@FN Q). (3.39)

An example, discussed in detail in [614], is the magnetization density pys. The index (\) is
associated with a given number of units of the orbital angular momentum. The extraction
of p™)(b) is facilitated by using the expansion

[e o]

2 b
Vey=SN" o _FQ2 )T <X n—) , 3.39

where X ,, is the n-th zero of the Bessel function of order A\; Qx, = X,/R. The re-
sult (3:39) can be used to relate accessible kinematic ranges with transverse regions.

3.5.3 Summary

Much data for form factors exist and JLabl12 will further improve the data set. The
charge density is not a three-dimensional Fourier transform of Gg. One can interpret
form factors as determining transverse charge and magnetization densities. The nucleon
transverse densities are known now to high precision. The new FRA technique can be
used for other quantities that depend on transverse position, in particular, for the exclusive
scattering amplitudes and generalized parton distributions discussed in this chapter.
Acknowledgments. 1 thank S. Venkat, J. Arrington, and X. Zhan for their extensive efforts
in producing the paper [614] on which this presentation is based. I also wish to thank
Jefferson Laboratory for its hospitality during a visit while this work was being completed.
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3.6 From transverse-momentum spectra to transverse im-
ages

Elke-Caroline Aschenauer, Markus Diehl, Salvatore Fazio

3.6.1 Imaging partons in the transverse plane

The principle of “parton imaging” using exclusive processes such as DVCS or hard
exclusive meson production is rather simple. The key variable to measure is the transverse
momentum transfer Ap to the target proton or nucleus in the y*-target c.m. The invariant
momentum transfer is then given by
_:E2m2 + &% Q%+ M2

with 2= -V (3.40)

t—
1—xz Qr+WwW2’

where m is the target mass and My the mass of the produced meson. For DVCS one should
omit My, so that x coincides with the Bjorken variable. In the limit of large Q? + M‘Q/,
the v*p scattering amplitude is a linear combination of generalized parton distributions
convoluted with hard-scattering kernels. The distribution of partons in the transverse plane
is obtained by a Fourier transform w.r.t. Ap [580, 6I1]. In the simple case where the
unpolarized quark or gluon GPDs H' dominate the 7*p cross section do/dt, the impact
parameter profile is

L[ 2R o-iBr [do _ 1 / °° do
Ape 2T\ — = — Ar A A — Al
(27)? /d re dt 2w J dAr Ar Jo(bAr) dt’ (341)

where A = |Ap| and b = |b|. For simplicity we drop the information from the absolute
size of the cross section in this contribution and focus our attention on the normalized
b-space profile, which satisfies [ d*b F(b,z,Q?) = 1. For polarization asymmetries and for
the interference term between DVCS and the Bethe-Heitler process, the extraction of the
relevant +*p amplitudes is more involved, but the principle of Fourier transforming these
amplitudes w.r.t. A remains the same.

In the present contribution, we estimate how accurately one can hope to determine
F(b,z,Q?%) from cross section measurements for DVCS on the proton. Firstly, do/dt will
have statistical and systematic errors. Secondly, the range of A in a measurement will be
restricted both from above and from below, so that an extrapolation is required in order to
perform the Fourier integral in (B.41]).

F(b,x,Q%)

3.6.2 Acceptance in transverse momentum

To achieve the precision discussed below for imaging partons in the impact parameter
space, it is critical to integrate from the beginning the detection of the scattered proton
into the detector and interaction region design. The scattered proton in exclusive reactions
is characterized by carrying almost the full beam momentum and a transverse momentum
Ap between several MeV and a few GeV, corresponding to very small scattering angles.
Figure [3.16] shows the relation between the longitudinal momentum of the protons and their
scattering angle for two different ep center-of-mass energies.

The commonly used method to detect these protons is to integrate “Roman pots” in the
machine lattice. The standard technologies for such detectors are silicon strip detectors or
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Figure 3.16. (Color online) The longitudinal momentum p, of the scattered proton in exclusive
reactions vs. its scattering angle 6 for an ep center-of-mass energy of 15.5 GeV (left) and 145 GeV
(right).

scintillating fiber detectors. The acceptance for protons with the transverse momentum in
the MeV region is limited by the requirement that Roman pots must have a beam clearance
distance of 10 times the beam emittance. The upper transverse acceptance is given by
the apertures of the magnets that the protons have to transverse. For transverse momenta
above 1GeV, the proton can be detected in the main solenoidal detector. Details on the
solutions for the eRHIC and ELIC interaction region designs are given in section

3.6.3 Precision of the measurement

A detailed simulation of DVCS events is described in section To illustrate the
expected statistical accuracy of a measurement, we show do/dt for a selected bin of = and
Q? in figure BI71 The value of y in this bin ranges from 0.05 to 0.14. For bins with lower
x or lower %, the statistical errors are smaller, except for kinematics where the y > 0.01
cut applied in the simulation becomes relevant.

The ¢ spectrum shown in the figure B.I7] was generated with an exponential dependence
do/dt x exp(Bt) with B = 5GeV 2. An exponential fit to the generated spectrum gives
B = 5.02GeV 2 with an error below 1%. Data of this quality also allows one to explore
possible deviations from an exponential spectrum. To this end, we have also fitted to
do/dt  exp(Bt — Ct?). This fit and its 1o error band is shown in the figure and gives
B = (4.9240.10) GeV~2 and C = (0.07940.076) GeV ~%. Although the relative uncertainty
on the extra parameter C is large, the term Ct? in the exponential is small compared with
Bt in the fitted ¢ range (as it should be for a spectrum generated with a pure exponential
law). The logarithmic ¢ slope at [t| = 1.75GeV? in this fit is (5.20 4+ 0.18) GeV 2.

We conclude at this point that with the projected luminosity available at an EIC, the ¢
spectrum for the DVCS cross section will be dominated by systematic uncertainties and not
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Figure 3.17. (Color online) Generated ¢ spectrum for the DVCS cross section in a selected bin of
and Q2. The errors are statistical only and correspond to the integrated luminosity of 11.9fb™! for
t| < 1GeV? and to 151 fb~ " for |t} > 1 GeV?. The curve represents a fit explained in the text.

by statistics, even if one measures differentially in  and Q?. Systematic uncertainties, for
instance due to momentum resolution, strongly depend on details of the experimental setup
and have not been studied yet. We note that the normalized b space profile F (b, z, Q?) is
not affected by errors on the overall luminosity and acceptance.

3.6.4 Uncertainty from the extrapolation in ¢

We now estimate the uncertainty in the impact parameter profile F'(b) due to the lack
of knowledge of the scattering amplitude for all . Since the projected statistical errors are
so small, we do not include them in this exercise.

For the extrapolation to large |t|, we assume a measured t-spectrum do/dt o exp(Bt)
with B = 4GeV 2 up to |t|max = 1 or 2 GeV?2. Larger values of B give a smaller cross section
at high [t| and thus a smaller extrapolation uncertainty in the Fourier integral ([B.41]). In
turn, the statistical errors on the cross section at high |t| are then larger, so that in F(b)
there is a tradeoff between the uncertainties from the measured ¢ spectrum and those from
its extrapolation.

To estimate the extrapolation uncertainty, we adopt a strategy similar to that in [618]
and assume different forms for the scattering amplitude (i.e., for y/do/dt) at [t| > |t|max:

1. an exponential o< exp(Bt/2), labeled “exp” in figure B.I8]

2. a dipole form o (1 -+ \t\/M2)_2, labeled “dip”,

3. a modified dipole form o (1 + 0.05 |75|/M2)_1 (1+0.45 |t|/M2)_1, labeled “mod dip”,
4. a modified exponential oc exp(—Dt?), labeled “mod exp”.

In each case we require the amplitude and its first derivative to be continuous at |t| = |t|max-
Note that in the measured ¢ region, forms 2 to 4 would give unacceptable fits to the simulated
spectrum in figure B.I7l Forms 3 and 4 should be regarded as examples for functions falling
off especially slowly or especially fast and do not claim to be particularly realistic. When
performing the Fourier transform (3.41)), we neglect the term 2?m? in (B.40), which is
justified in a large region of phase space.
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In figure we show the resulting scattering amplitude (normalized to unity at Ar =
0) and its Fourier transform F(b). We observe that the curves in b space are close together in
a wide region and rather quickly start to differ below a certain critical value be,. For |t|max =
1GeV?, we find ber ~ 0.25fm and an appreciable spread of F (b) at lower b. This would be a
serious limitation for studying the central region of the proton. Interesting physical effects
like the variation of F(b) with 2 or Q2 are typically expected to be only logarithmic (see,
e.g., the estimates in [619]) and hence require sufficiently precise measurements. Clearly,
there is a very significant gain of accuracy in impact parameter space if |t|max can be raised
from 1 to 2GeV?, i.e., if a scattered proton in the corresponding kinematics can be seen in
the main detector. We then find b, ~ 0.1fm and a small uncertainty even at b = 0.

As an alternative scenario we assume a dipole form instead of an exponential ¢t depen-
dence in the measured region with a dipole mass M = 770 MeV that gives the same
scattering amplitude at |t| = 1 GeV? as the exponential with B = 4 GeV 2. The extrapola-
tion error is larger in the dipole scenario, but since the cross section decreases much more
slowly, it can be measured out to higher values of |t| before statistics becomes an issue.
We recall however that a description in terms of generalized parton distributions requires
t| < Q2+ MZ. As seen in figure[3.19] a measurement up to |t|max = 3.3 GeV? in the dipole
scenario gives a very precise F'(b) down to b, ~ 0.1fm. The extrapolation uncertainty at
lower b is larger than for |t|max = 2 GeV? in the exponential scenario.

Let us now investigate the extrapolation to small |t|. We assume again an exponential
cross section do/dt oc exp(Bt), but now with a larger slope B = 6.6 GeV 2 in order to
maximize the importance of low |¢| in the Fourier integral. We consider either 300 MeV or
200 MeV as minimum measured values of Ap, and take the following extrapolations for Ap
down to zero:

1. an exponential in ¢, labeled “exp” in figure [3.20],
a dipole form o (1 + |t|/M2)_2, labeled “dip”,
a linear function in ¢, labeled “lin”,

a monopole form oc (1 + \t\/M2)_1, labeled “mono”,

otk W

an inverse square root oc (1 + \t\/M2)_1/2, labeled “sqrt”.

We see in figure that with a measurement down to Ar = 300 MeV, one has a rapidly
growing extrapolation uncertainty for b above about 1.25fm. The situation dramatically
improves if one has to extrapolate only below Apr = 200 MeV. Repeating this study with a
dipole form in the measured region yields the same conclusion [621]. Whether a measure-
ment down to even lower A can still improve the accuracy of b space images can only be
decided after an estimate of experimental uncertainties.

Let us recall the specific physics interest of the impact parameter profile of the proton
at very large b. This is the region where the dynamics of chiral symmetry breaking should
manifest itself. A description in terms of virtual pion fluctuations yields definite predictions,
such as a behavior F(b) o« b~ le™™ with k ~ 2m, ~ (0.7fm)~! at large b [594]. This
translates into a small |¢| behavior given by the inverse square root law in point 5 (with
M? = k?). These predictions should be tested quantitatively.

'"We note that the measurement of J/¥ photoproduction at HERA [589] [620] strongly favors an expo-
nential ¢ dependence at |t| below 1GeV?, but the behavior of exclusive hard scattering cross sections at
larger t is poorly known. For a conservative error estimate, we do not want to rule out a dipole behavior at
[t| > 1GeV?.
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Figure 3.18. (Color online) Examples for normalized amplitudes (left) with different extrapolations
to large |t|, together with their Fourier transforms to impact parameter space (right).
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Figure 3.20. (Color online) As in figure BI8 but with extrapolation to small |¢|, i.e. small Ap. The
impact parameter profile F'(b) is multiplied with 5% in order to make the large b behavior visible.

In summary, we find that with the parameters we have assumed, neither statistics nor
acceptance in t will seriously limit b space imaging at an EIC, with an accessible b range
from 0.1 fm up to 1.5fm or larger. Detailed estimates of experimental uncertainties will be
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necessary to assess the limiting factors of accuracy in this endeavor.
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3.7 GPDs from DVCS

Matthias Burkardt, Hikmat BC

3.7.1 Introduction

GPDs are linked to many processes and observables involving hadrons [622], but their
most intuitive application is in the context of Ji’s angular momentum decomposition (see
section B4]) and in three-dimensional imaging (see section B.0]). Both involve GPDs in the
¢ = 0 limit (the {-dependence drops out in the Ji sum rule). At the same time, the DVCS
amplitude Apycs provides direct access only to GPDs along the ”diagonal” z = £ (through
the imaginary part of the DVCS amplitude) as well as to a convolution integral involving
GPDs (through the real part of Apycs). In the leading order (LO) factorization, one finds

Sm Apves — GPD(+)(£7£7t) )

Re Apves — f_ll dit%)éx’g’t). (3.42)
The ’(+) superscript in ([3.42]) emphasizes that DVCS is sensitive only charge-even (i.e.,
quark+antiquark) combinations of GPDs. Moreover, the accessible range in £ is limited,
Emin < € < &nax- The lower limit &, is defined by the DIS kinematics. The upper limit
Emax follows from the relation

462 M? + A2

T (3.43)

and the positivity of Ai. Thus, even in an idealized DVCS experiment (fixed Q?), where an-
gular dependencies as well as spin asymmetries have been used to disentangle different GPDs
and the proton and 'neutron’ targets have been used to accomplish the flavor decomposition,
one can at best expect a determination of the observables in ([B.42) for &nin < € < &maz-
One of the key question in the context of DVCS is whether this information will allow an
unambiguous and model-independent extraction of GPDs.

3.7.2 Constraints on GPDs: polynomiality, dispersion relations and QCD
evolution

GPDs are not only constrained by DVCS, but also by DIS and form factor data. How-
ever, the form factor data constrains only charge-odd distributions and helps only in kine-
matical regimes where antiquark contributions are negligible. While DIS data is sensitive
to charge-even distributions, there is no DIS data that would constrain the forward (£ = 0,
t = 0) limit of EY(z,&,1t).

Fortunately, multiple theoretical constraints exist that will be helpful in determining
GPDs from DVCS data. For example, Lorentz invariance implies the polynomiality condi-

tions on GPDs [274], [574]:
1
/ du :EnGPD(:Ev 57 t) = An,(](t) + An,2(t)£2 + ot An,n+1£n+l ) (344)
-1

where the highest power £"*1 is only present when n is odd. These polynomiality conditions
imply that the dependence of GPDs on the variables « and £ cannot be independent. This
imposes significant and rigorous constraints on any GPD extraction from DVCS data.
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Rigorous dispersion relations exist for the DVCS amplitude A(v, t, Q?):

ReA(n1,qh) = 2 [TUEIMAVLD) | 5 ), (3.45)
0

T /2 /2 _ V2

where A(t,Q?) is a possible subtraction that can be identified with the D-form factor [587].
In combination with the leading order (LO) factorization (3.42]), this implies for GPDs

Re A&, t, Q%) A(t,Q?).

(3.46)
Although its derivation from dispersion relations is more physical, ([3.46]) was first derived
from polynomiality [574].

One of the consequences of (3.40]) is that it allows to "“condense” the information from
the DVCS amplitude (including the real part) into GPDs along the diagonal x = ¢ plus the
D-form factor. However, it should be emphasized that this does not render measurements of
the real part of the DVCS amplitude redundant. Indeed, measurements of m Apycg for a
given beam energy do not cover the whole region 0 < £ < 1 that enters (3.46]). This implies
that one can, for example, use Re A(&, ¢, Q?) at fixed Q2 to constrain GPD(&,&,t, Q%) for
the values of ¢ that are not accessible directly through the measurement of Sm A(&,t, Q?).
In summary, a DVCS experiment at fixed Q? (large enough for GPD factorization to hold)
should in principle allow for the determination of GPDs along the diagonal x = £ as well
as the D-form factor, which (through the polynomiality condition) impose some constraints
on GPDs for x # £.

Additional important constraints on GPDs come from their QCD evolution. The @Q?
evolution equations can be ”diagonalized” by expanding GPDs in terms of Gegenbauer

( 2) 2
/dGPD+3:£,tQ /dGPD :EgttQ)

polynomials cy? (x):

n

GPD(z,¢,t Q2 Z 03/2 Z Anm(§)Crnm (&, 1, Q2) ) (3.47)

m:O(even)

where a,,,(£) are known polynomials. The coefficients Ci(&,t, Q%) are a priori unknown,
but their Q2 evolution is known. This allows one (in principle) to determine Cy(¢,t, Q?)
model independently. For this purpose, let us consider z = £, where GPDs can be measured
directly. Upon relabeling k = n —m, [B.47) reads

GPD(¢,6,t,Q%) = ch (&6, Q%) fr(©), (3.48)

k=0

where fi(§) = 20 _o(even) am+k7m(€)cm/+k(€) are known functions. For any fixed &, each
term in (3.48)) evolves differently and, thus, a measurement over a wide range of Q2 should
allow for the determination of Cx(&,t,Q?) as well as the GPDs for z # ¢ [via (B4T7)]. At
an EIC with its wide Q2 range and high luminosity, it may be possible for the first time to
carry out a model-independent extraction of GPDs. More detailed numerical studies will
be required to quantify this expectation.
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3.8 Accessing GPDs from experiment: potential of a high-
luminosity EIC

K. Kumericki, T. Lautenschlager, D. Miiller, K. Passek-Kumericki, A. Schéfer,
M. Meskauskas

3.8.1 Introduction

Generalized parton distributions (GPDs) [567), 568, [569] have received much attention
from both the theoretical and experimental sides. This was triggered by the hope to solve
the “spin puzzle” that refers to the mismatch between the quark contribution to the proton
spin extracted from polarized DIS and the one given by the constituent quark model. We
view the “spin puzzle” first and foremost as a quest to quantify the partonic structure
of the nucleon in terms of quark and gluon angular momenta [274]. Furthermore, it has
been realized that GPDs allow for a three-dimensional imaging of nucleons and nuclei [623],
providing, in the zero-skewness case (¢ = 0), a probabilistic interpretation in terms of
partonic degrees of freedom [579]. In fact, GPDs build up a whole framework for description
of hadron structure [575, [576], with the “spin puzzle” being just one interesting aspect.

In phenomenology, GPDs are used for modeling elastic form factors and the description
of hard exclusive leptoproduction and even photoproduction. For hard exclusive processes,
factorization theorems have been proven in the collinear framework at twist-two level [572)
[624]. In the last decade, various hard exclusive processes have been measured by the H1
and ZEUS collaborations (DESY) in the small 25 region and by HERMES (DESY), CLAS
(JLAB), and Hall A (JLAB) in the moderate g region in the fixed-target experiments.

Deeply virtual Compton scattering (DVCS) off nucleon is considered as the theoretically
cleanest process offering access to GPDs. Its amplitude can be parameterized by twelve
Compton form factors (CFFs) [625], which are given in terms of twist-two (including gluon
transversity) and twist-three GPDs. For instance, at leading order (LO), parity-even twist-
two CFFs, H and &, can be expressed through quark GPDs H and E:

H 2y LO ! 2x H B 9
{5}($Bat,Q)—/_ldiﬂm{E}(x,ﬁ—f,t’Q), (3.49)

where both quark and anti-quark GPDs are defined in the region z € [, 1]; zp =
26/(1 + €). Similar expressions can be written for twist-two parity-odd CFFs H and &,
while for other CFFs they are a bit more intricate [625]. Analogous formulae hold for the
LO description of v*N — M N transition form factors (TFFs), measurable in deeply virtual
electroproduction of mesons (DVEM). Here, in addition to GPDs, the non-perturbative me-
son distribution amplitude enters, which describes the transition of a quark-antiquark state
into the final meson. This induces an additional uncertainty in the GPD phenomenology.
Let us briefly clarify which GPD information can be extracted from experimental mea-
surements. Neglecting radiative and higher twist-contributions, one might view the GPD

on the n = x cross-over line as a “spectral function”, which provides also the real part of

the CFF via the “dispersion relation” [626], 627, [628] [629]:
SmF(zp,t, Q%) = wF(&6E ¢, Q2) F={H E H E}, (3.50)
%e{i}(:nB,t, 0?) Lo PV/ dr ——— { }(:E,:E,t, Q?) £ D(t, Q?). (3.51)
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The GPD support properties ensure that ([8.50) and (B.51]) are in one-to-one correspondence
to the perturbative formula ([3:49]), where the subtraction constant D, which is related in a
specific GPD representation to the so-called D-term [587], can be calculated from either H
or E. However, we note that the “dispersion relation” (B.51]) is given in terms of partonic
variables and compared to the dispersion relation formulated in physical variables it differs
by power suppressed contributions. To pin down the GPD in the outer region y > n = x,
one might employ evolution. For instance, in the non-singlet case, the change of the GPD
on the cross-over line is governed by (the equation in the whole outer region is needed)

d Ly
N2d—M2F(‘T7‘T7t7:U'2) :/ ?V(Ly/xaas(u))F(y7x7tau2)7 (352)

where V is the evolution kernel [567]. Unfortunately, a large enough Q2 range is not available
in fixed target experiments. Hence, we must conclude that in such measurements, essentially
only the GPD on the cross-over line [thanks to ([B.51]), also outside of the experimentally
accessible part of this line [629]] and the subtraction constant D can be accessed. Moments,
such as those entering the spin sum rule, can only be obtained from a GPD model, fitted
to data, or more generally with help of some “holographic” mapping [629]:

{F($777:07t7Q2)7 F($777:$7t7Q2)} = F($7777t7Q2)' (353)

Here, F(z,n = 0,1, Q?) are constrained from form factor measurements and, additionally,
GPDs H (H) by (un)polarized phenomenological PDFs. Of course, a given ‘holographic’
mapping holds only for a specific class of GPD models.

3.8.2 GPD modeling

The implementation of radiative corrections, even including LO evolution (3352]), re-
quires to model CFFs or TFFs in terms of GPDs. This can be done in different represen-
tations, which should be finally considered as equivalent. However, for a specific purpose a
particular representation may be more suitable than the others.

Neglecting positivity constraints, we model GPDs by means of a conformal SL(2,R)
partial wave expansion, which can be written as a Mellin-Barnes integral [630]:

2 i fetee i (z,m) 2
F(z,n,t,p") =5 /c_m dj Sin(ﬂj)F](n,t,u ) (3.54)
Here, pj(x,n) are the partial waves given in terms of associated Legendre functions of
the first and second kind, and the integral conformal GPD moments F}(n),t, u?) are even
polynomials in 7 of order j or j 4+ 1. Other representations of GPDs based on the SL(2,R)
partial wave expansion include the so-called “dual” parameterization [631] [632] [633], 634].

In the Mellin-Barnes representation, the CFFs possess a rather convenient form, e.g.,

(B49) can be rewritten in the following form [627 [635]:

c+ioco .
[t [acr e ()

y 2010 (j 4+ 5/2) {Hj
TB/20G +3) L5
This integral is numerically implemented in an efficient routine in two different factorization

schemes, including the standard minimal subtraction (MS) one at next-to-leading order
(NLO) accuracy. Further advantages of this representation are:

) (3.55)
5:275B

bo—era2)
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(i) The conformal moments evolve autonomously at LO.

(ii) One can employ conformal symmetry to obtain next-to-next-to-leading order (NNLO)
corrections to the DVCS amplitude [635] [636].

(iii) PDF and form factor constraints can be straightforwardly implemented. Namely,
Fi(n=0,t=0, u?) are the Mellin moments of PDFs, F i—o0 are partonic contributions
to elastic form factors, H;—; and E;_; are the energy-momentum tensor form factors,
and for general j one immediately makes contact to lattice measurements.

To parameterize the degrees of freedom that can be accessed in hard exclusive reactions,
one can expand the conformal moments in terms of ¢-channel SO(3) partial waves expressed
in terms of the Wigner rotation matrices d}-(n) (ch(n =0) = 1) [637]. An effective GPD
model at given input scale Q% is provided by taking into account three partial waves,

Fi(n,t) = d;(m) f771 () + n’dj—2(n) £ (8) + 0 dj—a(m) 11°(8) (3.56)

which is valid for integral j > 4. In the simplest version of such a model, one might introduce
just two additional parameters by setting the non-leading partial wave amplitudes to:

FEm =sufl T t), k=24, (3.57)

Such a model allows us to control the size of the GPD on the cross-over line and its Q-
evolution, see fig. A flexible parameterization of the skewness effect in the large x
region requires to decorate the skewness parameters s, with some j dependence and for
more convenience one might replace Wigner‘s rotation matrices by some effective SO(3)
partial waves.

3.8.3 GPDs from hard exclusive measurements

Based on the experimental data set from the collider experiments H1 and ZEUS at
DESY, the fixed target experiment HERMES at DESY, and the Hall A, CLAS, and Hall C
experiments at JLAB, GPDs have been accessed from hard exclusive meson and photon elec-
troproduction in the last few years. Favorably, DVCS enters as a subprocess into the hard
photon electroproduction where its interference with the Bethe-Heitler (BH) bremsstrahlung
process provides variety of handles on the real and imaginary part of twist-two and twist-
three CFFs [625] 638]. However, switching from a proton to a neutron target allows only
for a partial flavor separation, which is much more intricate than in DIS. On the other
hand, DVEM can be used as a flavor filter, however, here one expects that both radia-
tive [639, [640, [641] and (non-factorizable) higher-twist contributions might be rather im-
portant. The onset of the collinear description remains here an issue which should be
explored.

For the DVCS process, the collinear factorization approach has been employed in a
specific scheme up to NNLO in the small zp region [627) [635] [636]. It turns out that
NLO corrections are moderate, while NNLO ones are becoming much smaller [627]. Ex-
perimentally, the unpolarized DVCS cross section has been provided by the H1 and ZEUS
collaborations [642] [643] [644], [645]. In the collider kinematics, the DVCS cross section is
primarily given in terms of two CFFs, H and &:

dUDVCS
dt

o (3.58)
TBR G2

(Wit Q%) ~ T Wt @ 2

Tt W22 AM?

|s|2] (25,1, Q%)
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Figure 3.21. Quark (a) and gluon (b) transverse profile function [5J) for Q? = 4 GeV? and z = 103
from a six parameter DVCS fit [646].

Although at a fixed scale and to LO accuracy the CFF's are given by (dominant sea) quark
GPDs, evolution will induce a gluonic contribution, too. Indeed, the experimental lever
arm 3GeV? < Q% < 80GeV? is sufficiently large to access the gluonic GPD. In our fitting
procedure, the Mellin-Barnes integral was utilized within a SO(3) partial wave ansatz for
the conformal moments and good fits (x?/d.o.f. ~ 1) could be obtained at LO to NNLO
accuracy, exemplifying that flexible GPD models were at hand. From such fits, one can
then obtain the image of quark and gluon distributions. It is illustrated in figure B.21] that
in impact space, the (normalized) transverse profiles,

*® P2 A z,m=0t=—-A2 Q>
olb,Q?) = LB T =00 =270 (3.59)
f_oodzA H(x,n=0,t = —-A2Q?)

determined for dipole and exponential t-dependence of H, mainly differ for distances larger
than the disc radius of the proton, i.e., for b > 0.6 fm. Hence, the larger values of the

transverse widths, (g2>s , ~ 0.9fm and 4/ (b2) =~ 0.8fm for the dipole ansatz, arise
from the long-range tail of the profile function, see the solid curves in figure B2l For an

exponential ansatz, we find slightly smaller values (l_))2>sea ~ 0.7fm and <52>G ~ 0.6 fm,
where the gluonic one is compatible with the analysis of J/v production [594]. Note that the
model uncertainty in the extrapolation of the GPD to t = 0 corresponds to the uncertainty
in the long-range tail. Moreover, the model uncertainty of the extrapolation into the region
—t > 1GeV? is essentially canceled in the profile (3.59) normalized at b = 0.

We also note that at LO the gluonic GPD (as the gluonic PDF) is rather steep and
radiative corrections might provide a large GPD/PDF reparameterization effect, which will
be studied in more detail in the future. Our first successful LO description of DVCS within
a flexible GPD model [646] is in agreement with aligned-jet model considerations [647].
We also mention that an attempt has been undertaken to access the & CFF from the beam
charge asymmetry measurement [648], proportional to the combination Je [F 1(OH — #Fg (t)é'] .
Unfortunately, the size of the experimental uncertainties does not allow one to separate the
‘H and & contributions.

An approach analogous to the one employed for DVCS [627] is also suitable for LO and
NLO analysis of DVEM. Hence, one can simultaneously make use of DVCS and DVEM
measurements in a global fitting procedure, which is in progress.

GPD studies were also performed for the DVCS process in the fixed target kinematics

188



to LO accuracy. In this region, relying on the scaling hypothesis, one might directly ask for
the value of the GPDs on their cross-over line. For instance, for valence quarks we use the
following generically motivated ansatz:

1357 / 2z \ °® /1-z\° 1—z ¢t \ !
H¥ t) = 1—— 3.60
(z,2,1) 1+z <1—|—:17> <1—|—:17> ( 1—1—:17MV31> ’ (3.60)

where r = lim, 0 H(x,z)/H(z,0) is the skewness ratio; a(t) = 0.43 + 0.85t/GeV?; b
controls the z — 1 limit and M"® controls the residual ¢-dependence, which we set to
M3l = 0.8 GeV. For the forward limit q(z) = H(z,0), we used the LO parameterization
of Alekhin [649]. The generic (—t)~2 fall-off at large —t for generalized form factors is
indirectly encoded in the Regge-trajectory and the residual ¢ dependence is modeled by a
monopole form with an z-dependent cut-off mass. The subtraction constant (3.51) is taken
an a dipole form:

AN
Dit)=d|1—-— . 3.61
0=d(1-5z) (361)

In a first global fit [646] to hard exclusive photon electroproduction off unpolarized
proton, we took sea quark and gluon GPD models with two SO(3) partial waves at small x,
reparameterized the outcome from H1 and ZEUS DVCS fits at Q% = 2GeV?, and employed
it in fits of fixed target data within the scaling hypothesis. To relate the CFFs with the
observables, we employed the BKM formulas [625] within the ‘hot-fix’ convention [650] and
used the Sachs parameterization for the electromagnetic form factors. Thereby, we utilized
the “dispersion relation” ([B.50I3.51]), where the ansatz (3.60)) specifies a valence-like GPD on
the cross-over line. Besides the subtraction constant ([B.61]), we also included the parameter-
free pion-pole model for the E GPD [651] and parameterized the H GPD rather analogously
to ([B.60) with b = 3/2. For the fixed target fits, we chose two data sets resulting in two fits
(KMO09a and KMO09b). Out fit gives:

KM09a:  b*°*=3.09, =095, 0" =045, d=-0.24, My;=05GeV,
KMO09b: 6 =4.60, =111, 0" =240, d=-6.00, My;=1.5GeV(3.62)

These values of the fit parameters are compatible with our generic expectations: the skew-
ness effect at small = should be small, i.e., » ~ 1, the subtraction constant should be
negative [574] 652], and, according to counting rules [653], b should be smaller than the
corresponding (3 value of the relevant PDF [646] [654].

To improve the models that we just described, we now use a hybrid technique where
the sea quark and gluon GPDs are represented in terms of conformal moments, while, for
convenience, the valence quarks are still modeled in momentum fraction space and within
the “dispersion integral” approach. Also, the residue of the pion-pole contribution is now
considered as a parameter, and the Hall A data forces a roughly three times larger value
than expected from the model [651]. Optionally, we might also use the improved formulae
from [655] applicable for a longitudinally polarized target. The new parameters read:

KM10a: " =088, M =15GeV, v =040, d=—1.72, My=2.0GeV,
KM10b: 7 =081, MY =08CeV, b =0.77, d = —5.43, My = 1.33G8.63)

Note that for the valence part of the H GPD, these results are qualitatively compatible
with those from the pure KM09 “dispersion relation” fits.
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Figure 3.22. Experimental measurements for fixed target kinematics (circles) labeled by data point
number n: ALY (1-18), A (19-36), ALY (37-54) from [656]; ALY (55-66) and £42™ (67-70) are
derived from [657] and [658]. Model results are from the “dispersion-relation” fits KMO9a without
Hall A data [646] (squares, slightly shifted to the left) and KMOYb with the Hall A data (circles,
slightly shifted to the right), hybrid model fit KM10b (triangles-up), and a hand-bag prediction
GKO07 from hard vector meson production (triangles-down, slightly shifted to the r.h.s.) [659].

We also performed an additional fit where we directly used the harmonics of beam spin
sums and differences measured by Hall A (fit KM10). The results of our two “dispersion-
relation” fits and three hybrid model fits are available as a computer program providing the
four-fold cross section of polarized lepton scattering on unpolarized proton for a given kine-
matics, see http://calculon.phy.hr/gpd/. Unlike “dispersion-relation” fits, the hybrid
model fits, where LO evolution of sea quark and gluon GPDs has been taken into account,
are suitable for estimates in the small z g region.

In figure we confront our fit results (x?/d.o.f. ~ 1 w.r.t. the employed data sets)
to experimental data: KM09a (squares), KM0O9b (circles), and the hybrid model fit KM10b
(triangles-up) in which we now utilized the improved formulae set [655] and the Kelly form
factor parameterization [660]. We also include the predictions from the GK07 model [659]
(triangles-down), where we adopt the hypothesis of H dominance. Qualitatively, these pre-
dictions are consistent with a VGGH code estimate, which tends to over-estimate the BSAs
[657, [656] and describes the BCAs from HERMES rather well without the D-term [661].
This is perhaps not astonishing, since the employed H GPD model relies on Radyushkin’s
DD ansatz, too. We would like to emphasize that at LO, the GK07 model is in reasonable
agreement with the H1 and ZEUS DVCS data (x?/d.o.f. ~ 2), essentially thanks to the
rather small and stable skewness ratio r°¢® of sea quarks.

Longitudinally polarized target data from CLAS [662] and HERMES [663] provide a
handle on H [625], where the mean values of CFF fits [664] in the JLAB kinematics give
two to three times bigger H contribution compared to our expectations (r g=Lbg~ 2).
These findings are one to two standard deviations away from our big H ad hoc scenario
of the KMO09b fit, which is indeed disfavored by the longitudinally polarized proton data.
We like to add that with our present hybrid model a reasonable global fit, such as KM10
above, is possible. In such a fit, the Hall A data require a rather large pion pole contribution,
inducing a large DVCS cross section contribution. Still, we have not included the transversal

2 VGG refers to a computer code originally written by M. Vanderhaeghen, P. Guichon, and M. Guidal.
To our best knowledge, the code for DVCS presently used by experimentalists employs a model that adopts
Radyushkin’s DD ansatz [574].
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Figure 3.23. Sm#H /7 from different strategies: our DVCS fits [dashed (solid) curve excludes (in-
cludes) Hall A data from ”dispersion relation” KM09a (KMO09b) [646] and hybrid KM10b (dash-
dotted) models], GK07 model from DVEM (dotted), seven-fold CFF fit [666, 667] with boundary

conditions (squares), H, H CFF fit [664] (diamonds), smeared conformal partial wave model fit [668]
within H GPD (circles). The triangles result from our neural network fit, cf. figure

target data from the HERMES collaboration [661] or the neutron data from Hall A [665].

So far we did not study model uncertainties or experimental error propagation, since
both tasks might be rather intricate. To illuminate this, in figure we compare our
results for Sm#H(xp,t)/m with the results that do provide error estimates. The squares
arise from constrained least squares fits [666), [667] at given kinematic means of HERMES
and JLAB measurements on unpolarized proton, where the imaginary and real parts of
twist-two CFF's are taken as parameters. The huge size of the error bars shows the limited
accuracy with which H can be extracted from unpolarized proton data alone [625]. A pure
H GPD model fit [668] (circles) to JLAB data provides much smaller errors, arising from
error propagation and some estimated model uncertainties. All three of our curves are
compatible with the findings [666], [667] and the H GPD model analysis [668] of CLAS data.
However, for Hall A kinematics, the deviation of the two predictions that are based on
the H dominance hypothesis (the dashed curve and circles in the right panel) are obvious
and are explained by our underestimation of the cross section normalization by about 50%.
Moreover, the quality of fit [668], x2/d.o.f. ~ 1.7, might provide another indication that
CLAS and Hall A data are not compatible, when this hypothesis is assumed, see, e.g., the
two rightmost circles in the left panel for CLAS (zp = 0.34, t = —0.3GeV?2, Q% = 2.3
GeV?) and Hall A (xp; = 0.36, t = —0.28GeV?, Q% = 2.3 GeV?). While the pure H and
H CFF fit [664] (diamonds), including longitudinally polarized target data, is within error
bars inconsistent with the H dominated scenario [668] (circles), it (accidentally) reproduces
our dashed curve.

Another source of uncertainties are twist-three contributions and perhaps also gluon
transversity related contributions, which might be strongly affected by twist-four effects [669].

All this exemplifies that within (strong) assumptions and the present set of measure-
ments, the propagated experimental errors cannot be taken as an estimate of GPD uncer-
tainties. An error estimation in model fits might be based on twist-two sector projection
technique [625], boundaries for the unconstrained model degrees of freedom, and error prop-
agation in the twist-two sector. Alternatively, neural networks, already successfully used
for PDF fits [47], may be an ideal tool to extract CFFs or GPDs. In figure [3.24] we present
a first example in which, within the H-dominance hypothesis, H is extracted using a pro-
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Figure 3.24. Neural network extraction of fe H(xp,t)/n from BCA [656] and BSA [657] data.

cedure similar to the one of [670]. Here, 50 feed-forward neural nets with two hidden layers
were trained using HERMES BCA [656] and CLAS BSA [657] data. Hence, only the exper-
imental errors were propagated, which, in the absence of a model hypothesis, become large
for the ¢ — 0 extrapolation.

3.8.4 Potential of an electron-ion collider

A high luminosity machine in the collider mode with polarized electron and proton or
ion beams would be an ideal instrument to quantify QCD phenomena. It is expected that
such a machine, combined with designated detectors, would allow for precise measurements
of exclusive channels. Besides hard exclusive vector meson and photon electroproduction,
one might address the behavior of parity-odd GPDs H (related to polarized PDFs) and &
via the exclusive production of pions even in the small z region. It is obvious from what
was said above that an access of GPDs requires a large data set with small errors. In the
following we would like to illustrate the potential of such a machine for DVCS studies, where
we also address the GPD deconvolution problem.

Let us remind that already the isolation of CFF's is rather intricate. For a spin-1/2 target,
we have four twist-two, four twist-three, and four gluon transversity-related complex valued
CFFs. The photon helicity non-flip amplitudes are dominated by twist-two CFFs, the
transverse—longitudinal flip amplitudes by twist-three effects, and the transverse—transverse
flip ones by gluon transversity. Hence, the first, second, and third harmonics w.r.t. the
azimuthal angle of the interference term are twist-two, twist-three, and gluon transversity
dominated, respectively. In an ideal experiment, assuming that transverse photon helicity
flip effects are negligible, cross section measurements would allow to separate the sixteen
quantities that are then given in terms of twist-two and twist-three CFFs. The reader might
find a more detailed discussion, based on a 1/@) expansion, in [625]. We also note that the
definition of CFFs is convention-dependent.

In a twist-two analyzes on unpolarized, longitudinally and transversally polarized pro-
tons, one might be able to disentangle the four different twist-two CFF's via the measurement
of single beam and target spin asymmetries. In figure B.25] we illustrate that the beam spin
asymmetry for a proton target (solid curves),

AQ o Vi 8 by () (6,6,1,0%) — i BOEEELQY) +| . (3.64)
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Figure 3.25. KM10b model estimate for the DVCS beam spin asymmetry with a proton (solid) and
neutron (dashed) target. Left panel: Apg vs. ¢ for Ex = 250 GeV, E. =5 GeV, x5 = 5 x 1073,

Q% =10 GeV?, and t = —0.2 GeV?. Right panel: Amplitude Ags) of the first harmonic vs. zpj at
t = —0.2 GeV? for small zp (thin) [E. = 30 GeV, E, = 360 GeV, Q> = 4 GeV?] and large zp
(thick) [E. = 5 GeV, E, = 150 GeV, Q> = 50 GeV?] kinematics.

might be rather sizeable over a large kinematical region in which the lepton energy loss y
is not too small. Here the helicity conserved CFF H is the dominant contribution, while
£ appears with a kinematic suppression factor ¢/4M?, induced by the helicity flip. For a
neutron target, the H contribution is suppressed by the accompanying Dirac form factor F7*
(F{*(t = 0) = 0) and, hence, one becomes sensitive to the CFF £. Unfortunately, one also
has to worry about other non-dominant CFF contributions, indicated by the ellipsis. Note
that the asymmetry for the neutron (dashed curves in figure B:25]) might be underestimated
since we set in our model E(xz,x,t,Q?) to zero.
For a longitudinally polarized target, the asymmetry

tmin — t

=L | RA(E64 Q) — 1 BWEBEELS) + | (365)

A?S(l) X 4M2
is sensitive to the GPD H , while SE and other GPDs might contribute to some extent.
Naively, one would expect that this asymmetry vanishes in the small zp region and might
be sizeable at x5 ~ 0.1, see the left panel of figure[3.261 Not much is known about the small
z behavior of H and it might be even accessible at smaller values of xp, as illustrated by
the KM09b model with its big H contribution (solid curve, the right panel of figure B.20]).
For a neutron target, the asymmetry becomes sensitive to the {E GPD. Note that here the
factor ¢ is annulled by a conventional 1/¢ factor in the definition of the E GPD.

Finally, we emphasize that a single spin asymmetry measurement with a transversally
polarized target provides another handle on the helicity-flip GPDs E and E. If the target
spin is perpendicular to the reaction plane, the asymmetry

1 t
AR o (R H(E61,Q%) — F(DB(E 64,95+ -] (3.66)
is dominated by a linear combination of the GPDs H and E. In the case when the target
spin is aligned with the reaction plane, the asymmetry
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Figure 3.26. DVCS longitudinal target spin asymmetry vs. ¢ for KM09a (dashed), KM09b (solid),
and KM10b hybrid (dash-dotted) models at E, = 5 GeV, t = —0.2 GeV?, Q% = 4 GeV? within
E, =150 GeV, xzgj = 0.1 (left) and E, = 350 GeV, zp; = 0.01 (right).

Unfortunately, compared to the single beam spin ([B.64]) and longitudinal target (B.65)
asymmetries, the transversally ones are kinematically suppressed by an additional factor
~ \/—t/(2M) and, for a neutron target, in addition by the Dirac form factor F}(t).

Although the given formulae ([B.64H3.67]) are rather crude, they illustrate that a mea-
surement of single spin asymmetries would allow to access the imaginary part of the four
twist-two related CFFs. However, the normalization of these asymmetries depends to some
extent also on the real part of the twist-two related CFFs and the remaining eight ones.
Measurements of cross section differences would allow one to eliminate the normalization
uncertainty, and in combination with the harmonic analysis, one can separate to some ex-
tent twist-two, twist-three, and gluon transversity contributions. However, the extracted
harmonics might also be contaminated by DVCS cross section contributions which are bi-
linear in the CFFs. To get rid of these admixtures, one needs cross section measurements
with a positron beam. Forming differences and sums of cross section measurements with
both kinds of leptons, allows one to extract the pure interference and DVCS squared terms
and, thus, might allow one to quantify twist-three effects. Existing data indicate that these
effects are small as expected based on kinematic factors. However, even obtaining only an
upper limit is important for the determination of the systematic uncertainties of twist-two
CFFs.

We also emphasize that having both kinds of lepton beams available allows one to
measure the real part of CFFs. In figure B.27], we show the beam charge asymmetry,

t

A](B% o Re | Fy(H)H (zp;, t, Q%) — YRYE

Fy(t)E(zpj, t, Q%) + -+ |, (3.68)
for an unpolarized target, which is expected to be sizeable. For a proton target, this
asymmetry should possess a node in the transition from the valence to sea region(thick
solid curve, right panel). In our parameterization, the real part of the & CFF is determined
by the D subtraction term, which induces a sizeable asymmetry (thick dashed curve, right
panel), even for a neutron target.

The large kinematical coverage of the proposed high-luminosity EIC raises the question:
Can one utilize evolution, even at moderate x g values, to access GPDs away from their cross-
over line? Similarly to what has been done for the small x5 region, we use the Mellin-Barnes
integral technique to address the problem. Taking different non-leading SO(3) partial waves
in the ansatz for the conformal moments (B.563.57]), we build three different GPD models
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Figure 3.27. KM10b model estimate for the DVCS beam charge asymmetry with a proton (solid)
and neutron (dashed) target. Left panel: Apc vs. ¢ for Exy = 250 GeV, E, =5 GeV, x5 = 5x 1073,
Q? =10 GeV?, and t = —0.2 GeV?. Right panel: Amplitude Ag()j of the first harmonic vs. zp at
t = —0.2 GeV? for small zp (thin) [E. = 30 GeV, E, = 360 GeV, Q> = 4 GeV?| and large zp
(thick) [E. =5 GeV, E, = 150 GeV, Q* = 50 GeV?] kinematics.

for valence quarks that provide almost identical CFFs, see the upper left panel in figure B.28]
They are compatible with ([8.60]) from the ”dispersion-relation” fit KM09a (dotted curves).
We note that the different model behavior at large x5 results only in a small discrepancy for
the real part of the CFF in the kinematics of interest. In the lower left panel of figure 3.28],
we illustrate that for fixed 7, the x-shape of the three GPD models looks quite differently.
Compared to the minimalist model (dotted curve), a model with a negative next-to-leading
partial wave (solid) decreases the size of the GPD on the cross-over line = = and generates
an oscillating behavior in the central region. The model with an alternating-sign SO(3)
partial wave expansion (dash-dotted) possesses more pronounced oscillation effects in the
central region or even nodes. In the third model (dashed curve), the reduction on the
cross-over line is reached within a next-to-next leading SO(3) partial wave. Note that the
GPDs in the region n < x are governed by the xz-behavior of the PDF analogues. In the
right panels, we demonstrate that for a large lever arm in Q2 (e.g., Q* = 50 GeV?), the
evolution effects are important in the valence quark region. However, for CFFs (the upper
right panel), the discriminating power of evolution effects remains moderate even if the
GPD shapes look rather different.

3.8.5 Conclusions and summary

With all the theoretical tools sketched above plus those which are presently under devel-
opment, it is clear that our understanding of hadron structure will be revolutionized once
most of the diverse asymmetries are measured with percent or permille precision (depending
on the observable). At present, first steps have been undertaken to access GPDs from ex-
perimental data in the small g region and in the fixed target kinematics providing us with
some insight into the GPD H. In particular, for DVCS in the fixed target kinematics, LO
model fits are compatible with least-square CFF fits and first results from neural networks
(assuming H dominance). The large uncertainties in extracting CFFs are mainly related to
the lack of experimental data. Thus, not only the extraction of the very desired £ playing
an important role in the ”spin-puzzle”, but also of other CFFs, requires a comprehensive
measurement of all possible observables in dedicated experiments. A further comparison
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Figure 3.28. Upper left panel: The valence-like contribution (3.60) to the CFF H extracted with
a “dispersion-relation” fit KM09a from fixed target measurements (dotted) at t = —0.2 GeV? and
Q? =2 GeV? vs. zp together with various models. Lower left panel: The corresponding models of
the GPD zH (x,n,t, Q%) together with a minimalist GPD parameterization (dotted curve) vs. z at
n=02t=-02GeV? and Q% = 2 GeV?. The same quantities at Q? = 50 GeV? are displayed in
the right panels.

shows that while in the valence region the extracted quark GPDs are somewhat different,
they become compatible for small x. The main difference lies in the gluonic sector; a more
appropriate analysis requires the inclusion of radiative corrections in a global fitting proce-
dure, which is in progress. We should also mention here that hard exclusive processes with
nuclei, which at present are not extensively studied, open a new window for the partonic
view of nuclei.

Imaging the partonic content of the nucleon and the phenomenological access to the
proton spin sum rule from hard exclusive processes can only be reached through proper
understanding of GPD models. We also point out that GPDs can al