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Foreword

The study of the fundamental structure of nuclear matter is a central thrust of physics
research in the United States. As indicated in Frontiers of Nuclear Science, the 2007 Nu-
clear Science Advisory Committee long range plan, consideration of a future Electron-Ion
Collider (EIC) is a priority and will likely be a significant focus of discussion at the next long
range plan. We are therefore pleased to have supported the ten week program in fall 2010 at
the Institute of Nuclear Theory which examined at length the science case for the EIC. This
program was a major effort; it attracted the maximum allowable attendance over ten weeks.

This report summarizes the current understanding of the physics and articulates important
open questions that can be addressed by an EIC. It converges towards a set of “golden”
experiments that illustrate both the science reach and the technical demands on such a
facility, and thereby establishes a firm ground from which to launch the next phase in
preparation for the upcoming long range plan discussions. We thank all the participants in
this productive program. In particular, we would like to acknowledge the leadership and
dedication of the five co-organizers of the program who are also the co-editors of this report.

David Kaplan, Director, National Institute for Nuclear Theory
Hugh Montgomery, Director, Thomas Jefferson National Accelerator Facility
Steven Vigdor, Associate Lab Director, Brookhaven National Laboratory
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Preface

This volume is based on a ten-week program on “Gluons and the quark sea at high ener-
gies”, which took place at the Institute for Nuclear Theory (INT) in Seattle from September
13 to November 19, 2010. The principal aim of the program was to develop and sharpen
the science case for an Electron-Ion Collider (EIC), a facility that will be able to collide
electrons and positrons with polarized protons and with light to heavy nuclei at high ener-
gies, offering unprecedented possibilities for in-depth studies of quantum chromodynamics.
Guiding questions were

• What are the crucial science issues?

• How do they fit within the overall goals for nuclear physics?

• Why can’t they be addressed adequately at existing facilities?

• Will they still be interesting in the 2020’s, when a suitable facility might be realized?

The program started with a five-day workshop on “Perturbative and Non-Perturbative
Aspects of QCD at Collider Energies”, which was followed by eight weeks of regular program
and a concluding four-day workshop on “The Science Case for an EIC”.

More than 120 theorists and experimentalists took part in the program over ten weeks.
It was only possible to smoothly accommodate such a large number of participants because
of the extraordinary efforts of the INT staff, to whom we extend our warm thanks and
appreciation. We thank the INT Director, David Kaplan, for his strong support of the
program and for covering a significant portion of the costs for printing this volume. We
gratefully acknowledge additional financial support provided by BNL and JLab.

The program was structured along several subtopics, which roughly correspond to the
chapters in this report. For each topic, convenors were appointed, who played an important
role in the scientific organization of the program weeks and in editing the corresponding
chapters. We gratefully thank them for their work. Special thanks are due to Matt Lamont
and Marco Stratmann, who took on the lion’s share in the painstaking task of merging the
different chapters and making final edits.

Last but not least, we thank all participants of the INT program and all authors of
this report for the work and enthusiasm they put into their contributions. Thanks to their
efforts, much progress has been achieved, and we hope that the community will keep this
momentum going in the continuing effort to build a compelling case for an Electron-Ion
Collider.

August 2011
The program organizers

Daniël Boer
Markus Diehl
Richard Milner
Raju Venugopalan
Werner Vogelsang
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Department of Physics, University of Zagreb, Zagreb, Croatia

T. Lappi
Department of Physics, 40014 University of Jyväskylä, Jyväskylä and Helsinki Institute of
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versità di Pavia, Pavia, Italy

C. Ciofi degli Atti, C. B. Mezzetti, L. P. Kaptari
Instituto Nazionale di Fisica Nucleare, Sezione di Perugia and Department of Physics, Uni-
versity of Perugia, Perugia, 06123, Italy

M. Anselmino
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R. Dupré, B. Erdelyi, S. Manikonda, P. N. Ostrumov
Physics Division, Argonne National Laboratory, Argonne, IL 60439, USA

S. Abeyratne, B. Erdelyi
Northern Illinois University, De Kalb, IL 60115, USA

ix



A. Vossen
Department of Physics, Indiana University, Bloomington, IN 47408, USA

K. Kumar, S. Riordan
Department of Physics, University of Massachusetts, Amherst, MA 01002, USA

E. Tsentalovich
MIT Bates Linear Accelerator Center, Middleton, MA 01949, USA

G. R. Goldstein
Department of Physics and Astronomy, Tufts University, Medford, MA 02155, USA

E. Pozdeyev
FRIB, Michigan State University, East Lansing, MI 48824, USA

M. Huang
Department of Physics, Duke University, Durham, NC 27708, USA

M. Burkardt
New Mexico State University, Las Cruces, NM 88003, USA

C. Aidala
Physics Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA

A. Dumitru
Department of Natural Sciences, Baruch College, New York, NY 10010, USA

F. Dominguez
Department of Physics, Columbia University, New York, NY 10027, USA

I. Ben-Zvi, A. Deshpande, C. Faroughy, L. Hammons, Y. Hao, E. C. Johnson, V. N. Litvi-
nenko, S. Taneja, N. Tsoupas, S. Webb
Department of Physics & Astronomy, Stony Brook University, Stony Brook, NY 11794-
3400, USA

J. Beebe-Wang, S. Belomestnykh, I. Ben-Zvi, M. M. Blaskiewicz, R. Calaga, X. Chang, A.
Fedotov, D. Gassner, H. Hahn, L. Hammons, Y. Hao, P. He, W. Jackson, A. Jain, E. C.
Johnson, D. Kayran, J. Kewisch, V. N. Litvinenko, Y. Luo, G. Mahler, G. McIntyre, W.
Meng, M. Minty, B. Parker, A. Pikin, V. Ptitsyn, T. Rao, T. Roser, B. Sheehy, J. Skaritka,
S. Tepikian, Y. Than, D. Trbojevic, N. Tsoupas, J. Tuozzolo, G. Wang, S. Webb, Q. Wu,
W. Xu, A. Zelenski
Collider-Accelerator Department, Brookhaven National Laboratory, Upton, NY 11973, USA

E. C. Aschenauer, G. Beuf, T. Burton, R. Debbe, S. Fazio, M. A. C. Lamont, Y. Li, W. J.
Marciano, J.-W. Qiu, M. Stratmann, T. Toll, T. Ullrich
Physics Department, Brookhaven National Laboratory, Upton, NY 11973, USA

x



A. Deshpande, A. Dumitru, Z.-B. Kang, A. M. Staśto, F. Yuan
RIKEN BNL Research Center, Brookhaven National Laboratory, Upton, NY 11973, USA

Y. V. Kovchegov, A Majumder
Department of Physics, The Ohio State University, Columbus, OH 43210, USA

A. Metz, J. Zhou
Department of Physics, Temple University, Philadelphia, PA 19122, USA

L. Gamberg
Penn State University-Berks, Reading, PA 19610, USA
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Executive summary

Daniël Boer, Markus Diehl, Richard Milner, Raju Venugopalan, Werner Vogelsang

Introduction

Understanding the fundamental structure of the matter in the physical universe is one
of the central goals of scientific research. Strongly bound atomic nuclei predominantly con-
stitute the matter from which humans and the observable physical world around us are
formed. In the closing decades of the twentieth century, physicists developed a beautiful
theory, Quantum Chromodynamics (QCD), which explains all of strongly interacting mat-
ter in terms of point-like quarks interacting by the exchange of gauge bosons, known as
gluons. Experiments have verified QCD quantitatively in processes involving a very large
momentum exchange between the sub-atomic participants. Further confidence is obtained
from significant progress in numerical computations of the static properties of the theory,
in particular the excellent agreement of theory with the mass spectrum of low lying hadron
resonances.

However, more than thirty years after QCD was first proposed as the fundamental theory
of the strong force, and despite impressive theoretical and experimental progress made in the
intervening decades, the understanding how QCD works in detail remains an outstanding
problem in physics. Very little is known about the dynamical basis of hadron structure in
terms of the fundamental quark and gluon fields of the theory. How do these fundamental
degrees of freedom dynamically generate the mass, spin, motion, and spatial distribution of
color charges inside hadrons with varying momentum resolution and energy scales? Deeply
Inelastic Scattering (DIS) experiments at the HERA collider revealed clearly that at high
momentum resolution and energy scales, the proton is a complex, many-body system of
gluons and sea quarks, a picture very different from a more familiar view of the proton as
a few point-like partons (a term that collectively refers to both quarks and gluons), each
carrying a large fraction of its momentum. This picture, which is confirmed at hadron
colliders, raises more questions than it answers about the dynamical structure of matter.
For instance, how is the spin-1/2 of the proton distributed in this many-body system of sea
quarks and gluons ? In the early universe, how did the many-body plasma of quarks and
gluons cool into hadrons with several simple structural properties ? Recreating key features
of this quark-hadron transition in heavy ion collisions has been a major activity in nuclear
physics, with several surprising findings including the realization that this matter flows
with very little resistance as a nearly perfect fluid. A deep understanding of the two cited
examples, among many others, ultimately requires detailed knowledge of the quark-gluon
structure of hadrons and nuclei.

This report on the science case for an Electron-Ion Collider (EIC) is the result of a
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ten-week program at the Institute for Nuclear Theory (INT) in Seattle (from September
13-November 19, 2010), motivated by the need to develop a strong case for the continued
study of the QCD description of hadron structure in the coming decades. Hadron structure
in the valence quark region will be studied intensively with the Jefferson Lab 12 GeV science
program, the subject of an INT program the previous year. The focus of the INT program
was on understanding the role of gluons and sea quarks, the important dynamical degrees
of freedom describing hadron structure at high energies. Experimentally, the most direct
and precise way to access the dynamical structure of hadrons and nuclei at high energies
is with a high luminosity lepton probe in collider mode. An EIC with optimized detectors
offers enormous potential as the next generation accelerator to address many of the most
important, open questions about the fundamental structure of matter. The goal of the INT
program, as captured in the writeups in this report, was to articulate these questions and
to identify golden experiments that have the greatest potential to provide definitive answers
to these questions.

At resolution scales where quarks and gluons become manifest as degrees of freedom,
the structure of the nucleon and of nuclei is intimately connected with unique features of
QCD dynamics, such as confinement and the self-coupling of gluons. Information on hadron
sub-structure in DIS is obtained in the form of “snapshots” by the “lepton microscope” of
the dynamical many-body hadron system, over different momentum resolution and energy
scales. These femtoscopic snapshots, at the simplest level, provide distribution functions
which are extracted over the largest accessible kinematic range to assemble fundamental
dynamical insight into hadron and nuclear sub-structure. For the proton, the EIC would be
the brightest femtoscope lepton collider ever, exceeding the intensity of the HERA collider
thousand fold. HERA, with its center-of-mass (CM) energy of 320 GeV, was built to search
for quark substructure. EIC, with its scientific focus on studying QCD in the regime where
the sea quarks and gluons dominate, would have a lower CM energy. In a staged EIC design,
the CM energy will range from 50-70 GeV in stage I to approximately twice that for the
full design. In addition to being the first lepton collider exploring the structure of polarized
protons, EIC will also be the first electron-nucleus collider, probing the gluon and sea quark
structure of nuclei for the first time.

Following the same structure as the scientific discussions at the INT, this report is
organized around the following four major themes:

• The spin and flavor structure of the proton

• Three dimensional structure of nucleons and nuclei in momentum and configuration
space

• QCD matter in nuclei

• Electroweak physics and the search for physics beyond the Standard Model

In this executive summary, we will briefly outline the outstanding physics questions in these
areas, and the suite of measurements that are available with an EIC to address these. The
status of EIC accelerator and detector designs is addressed at the end of the summary.
Tables of golden measurements for each of the key science areas outlined are presented on
page 12. In addition, each chapter in the report contains a comprehensive overview of the
science topic addressed. Interested readers are encouraged to read these and the individual
contributions for more details on the present status of EIC science.
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The spin and flavor structure of the proton

To understand how the constituents of the proton carry the proton’s spin has been a
defining question in hadron structure for several decades now. The proton spin problem
presents the formidable challenge of understanding an essential feature of how a complex
strongly-interacting many-body system organizes itself to produce a simple result. It goes
directly to the heart of exploring and understanding the QCD dynamics of matter. From
the surprising finding by the European Muon Collaboration that very little of the proton
spin is provided by the spins of quarks and anti-quarks combined, the exploration of nucleon
spin structure has by now developed into a world-wide quest central to nuclear and particle
physics. To provide definitive answers in this area will be among the key tasks of an EIC.

Significant progress can be expected from the unique capability of the EIC to reach
small momentum fractions x and large momentum resolution scales Q, with high precision.
A suite of measurements will be available. A golden measurement of nucleon spin structure
at the EIC will be precision study of the proton’s spin structure function gp1(x,Q

2) and its
scaling violations, over wide ranges in x and Q2. As studies in this report will demonstrate,
global analysis of spin-dependent parton distributions will determine the gluon helicity
distribution ∆g and the quark singlet ∆Σ down to values of x of about 10−4. This vastly
extended reach should allow for the determination of the gluon and quark/anti-quark spin
contributions to the proton spin to about 10% accuracy or better. The accuracy to which
processes such as deeply-virtual Compton scattering can independently provide information
on the remaining orbital angular momentum contributions will be addressed further in the
section on spatial imaging.

The EIC will provide unprecedented insight into the flavor structure of the nucleon, a
key element in mapping the “landscape” of hadron structure. There are two powerful golden
measurements available at the EIC to achieve this. One of these methods, Semi-Inclusive
Deep-Inelastic Scattering (SIDIS) has been used in previous fixed-target lepton scatter-
ing experiments HERMES and COMPASS. (Polarized proton-proton collisions at RHIC
employ W -boson production for flavor identification.) At the EIC, semi-inclusive measure-
ments would extend to much higher Q2 than in fixed-target scattering, where the reaction
becomes significantly cleaner, less contaminated with higher-twist effects (a technical term
for contributions power suppressed in 1/Q2), and therefore more tractable theoretically.
Kinematic coverage for SIDIS in x and Q will overall be similar to what can be achieved in
inclusive DIS. With EIC’s high luminosity, extractions of the light-flavor helicity distribu-
tions ∆u, ∆d and their anti-quark distributions from SIDIS will be possible with exquisite
precision. With dedicated studies of kaon production, also the strange and anti-strange
distributions will be accessible. All this will likely give insights into the question why it is
that the combined quark and anti-quark spin contribution to the proton spin turns out to
be so small.

The other independent method for accessing the quark and antiquark helicity distribu-
tions at the EIC is electroweak DIS. At high Q2, the DIS process also proceeds significantly
via exchange of Z and W± bosons. This gives rise to novel structure functions that are
sensitive to various different combinations of the proton’s helicity distributions. Studies
show that both neutral current and charged current interactions would be observable at the
EIC. To fully exploit the potential of the EIC for such measurements, positron beams are
required, albeit not necessarily polarized. Besides the new insights into nucleon structure
this would provide, studies of spin-dependent electroweak scattering at short distances with
an EIC would be interesting physics in and of itself, much in the line of past and ongoing
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electroweak measurements at HERA, Jefferson Lab, and RHIC.
Polarized electron-proton physics can be expected to take center stage at the EIC be-

cause these would be the first such collider measurements. However, as studies in this
report show, there is a large potential for unpolarized physics at the EIC. Thanks to its
high luminosity and the more flexible energy scan feasible, the EIC would vastly improve
over HERA data on measurements of the longitudinal structure function FL. This quan-
tity is a key observable for studies of gluon structure and the possible transition to a high
parton density or saturation regime in the proton. At EIC, several SIDIS measurements
of flavor distributions and multi-particle correlations will be posssible for the first time. In
particular, pinning down the strange quark and antiquark content of the proton would close
one of the last notable gaps in our knowledge of unpolarized parton densities. Extended
rapidity coverage will also allow for detailed studies of the rapidity gap structure of hard
diffractive final states. In addition, the very high luminosities will bring a vast improvement
in precision of measurements of the charm and beauty contributions to nucleon structure.

Three dimensional structure of hadrons and nuclei: Trans-
verse momentum distributions

Partons can have a momentum component transverse to the direction of their parent
nucleon and there exists experimental evidence to support an average transverse momen-
tum of a few hundred MeV/c. However, much of our understanding of nucleon structure
is in terms of integrated parton distributions that are only sensitive to the momentum res-
olution of the probe. A rigorous theoretical framework for parton transverse momentum
distributions (TMDs) has been developed recently which allows for a description of specific
scattering cross sections in terms of these distributions. TMDs are an essential step toward
a more comprehensive understanding of the parton structure of the nucleon in QCD. An
EIC will enable precise and detailed measurements of TMDs over a broad kinematic range.

For the scattering processes of interest, the large scale Q2 justifies, in leading twist ap-
proximation, the factorized description of the cross section in terms of several calculable
or measurable factors, yielding a predictive framework. TMDs are examples of such mea-
surable factors. In such descriptions not only does the magnitude of the parton transverse
momentum enter, but also the transverse momentum direction, yielding strikingly asym-
metric distributions. Several recently observed angular asymmetries are most naturally
described by asymmetric, spin direction dependent TMDs.

A golden measurement at EIC will be the Sivers asymmetry, a particular angular corre-
lation between the target polarization and the direction of a produced final state hadron in
polarized SIDIS. At the parton level, the Sivers effect is a spin-orbit coupling effect in QCD
and is described by a TMD that quantifies how strongly the transverse momentum from
orbital motion is coupled to spin. The Sivers effect is especially interesting because it is a
consequence of phase interference peculiar to the gauge structure of QCD. The gauge in-
variant Sivers TMD is non-zero only if gluon initial or final state interactions are taken into
account. There is a calculable process dependence, most strikingly evident in SIDIS and
Drell-Yan lepton pair production where the polarized Sivers function in the former is equal
in magnitude but opposite in sign to the latter. Factorization breaking is also expected
in more complicated processes, such as hadron-hadron collisions with hadronic final states.
This process dependence has not yet been demonstrated but several such experiments, in
particular at RHIC, will study the Sivers and other TMD effects. The comparison of these
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results with complementary information from EIC will allow a detailed understanding of
the nature and extent of factorization breaking for TMDs.

A goal at EIC is to obtain a flavor-separated extraction of the Sivers TMD in an en-
ergy regime where its theoretical interpretation is unambiguous. Percent level azimuthal
asymmetries measured by HERMES, COMPASS and Jefferson Lab at rather modest Q2

have enabled rough first estimates of the magnitude of the Sivers effect. With the 12 GeV
upgrade program at Jefferson Lab, the valence (large x) region will be explored in detail,
whereas sea quark and gluon contributions at small x (down to 10−4) mapped out with
the EIC. The large Q2 reach of EIC will allow for extensive study of evolution effects in
TMDs, and at large x (x ∼ 0.2) will have overlap with preceding experiments. High ener-
gies and high precision will enable a good understanding of the x dependence of the Sivers
functions for each quark flavor, including antiquarks and gluons. In addition, the larger
transverse momentum range of final state particles at EIC allows for studies of so-called
weighted asymmetries that are cleaner to interpret theoretically but are beyond the reach of
fixed target experiments. The extensive transverse momentum range will for the first time
in polarized SIDIS allow studies of the transition region between the TMD description at
low transverse momentum and the description in terms of collinear quark-gluon-quark cor-
relation functions (known as the Qiu-Sterman mechanism) at high transverse momentum.
Finally, with respect to previous SIDIS experiments and future Jefferson Lab experiments,
a larger variety of final states can be considered at EIC, such as (multiple) jets or D-mesons,
all of great interest in isolating quark and gluon contributions to the various TMD effects.

Now that angular asymmetries consistent with the TMD framework have been observed,
the road towards full-fledged experimental studies of TMDs can be mapped out and the
essential role of EIC identified. Besides the Sivers effect, essential information on the un-
polarized TMD f1 is obtained from unpolarized scattering cross sections. For reasons we
shall outline, this extraction of f1 can be classified as another golden measurement. This
TMD determines the Q2 dependence of the unpolarized cross section, which has been pre-
dicted but not yet verified. Predictions of its x, transverse momentum, scale and flavor
dependence of f1 allow for non-trivial checks of the fundamental TMD formalism corrob-
orating and complementing what one learns from the Sivers and other spin TMD effects.
The unpolarized SIDIS measurements at EIC will give detailed information on the differ-
ence between sea and valence quark contributions, and on the role of gluons. Extracting
unpolarized gluon TMD at small x is especially interesting because of recently discovered
agreement between predictions in the TMD framework and previous computations of the
same in the Color Glass Condensate formalism we shall discuss later.

The proposed silver experiments are 1) the distribution of transversely polarized quarks
inside transversely polarized hadrons, 2) spin-orbit correlations inside unpolarized hadrons
(the Boer-Mulders TMD), and 3) the Collins TMD fragmentation function, which describes
a similar spin effect in the fragmentation of quarks into unpolarized hadrons. All three
quantities involve transverse quark spin, which distinguishes them from the Sivers effect
which deals with unpolarized partons inside a transversely polarized proton. EIC will be able
to provide multi-dimensional representations of all these quantities and the observables they
give rise to. The TMD chapter illustrates by means of concrete examples and calculations
how much further TMD studies can be pushed with an EIC compared with the present
status. A prime example is shown in figure 2.11 on page 108.
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Three dimensional structure of nucleons and nuclei: Spatial
imaging

The high luminosity and large kinematic reach of an EIC offers unique possibilities for
exploring the spatial distribution of sea quarks and gluons in the nucleon and in nuclei. The
“imaging” of partons is possible in suitable exclusive reactions. The transverse position of
the quark or gluon on which the scattering took place is obtained by a Fourier transform
from the transverse momentum of the scattered nucleon or nucleus. At the same time, the
longitudinal momentum loss of the target is correlated with the longitudinal momentum
fraction x of the parton. By choosing particular final states, measurements at EIC will be
able to selectively probe the spatial distribution of sea quarks and gluons in a wide range
of x. Such ’tomographic images’ will provide essential insight into QCD dynamics inside
hadrons, such as the interplay between sea quarks and gluons, the role of pion degrees of
freedom at large transverse distances and, from a more general perspective, the mechanism
for confinement in QCD.

The quantities that encode this tomographic information are generalized parton distri-
butions (GPDs). The formalism of GPDs is applicable in the full range of x. An alternative
description at small x is the dipole formalism, which is expressed in terms of the ampli-
tude for small color dipoles to scatter off gluons in the hadron target. GPDs allow direct
comparison of tomographic images for sea quarks and gluons with their counterparts in the
valence quark region, where the 12 GeV program at Jefferson Lab will obtain information
of unprecedented accuracy.

Potential golden measurements for parton imaging at EIC are deeply virtual Compton
scattering and photo- or electroproduction of J/ψ mesons. For Compton scattering there are
a large number of observables that can be calculated with high precision, whereas a unique
advantage of J/ψ production is its selectivity to gluons. A suite of further reaction channels
play the role of “silver measurements”, which will provide complementary information and
in particular help separate different quark flavors. Among those exclusive channels whose
cross sections grow with energy, deeply virtual Compton scattering demands the highest
luminosity. Simulations performed during the INT program indicate that precise and multi-
differential measurements of this process can be envisaged with the projected EIC luminosity
(see figures 3.34, 3.35 and 3.37 on pages 203, 204 and 207). Detailed studies including
detector effects will be required to establish the achievable experimental accuracy.

The envisaged configuration of the EIC interaction region and detector will provide data
in a wide enough range of transverse momentum transfer to permit a Fourier analysis of
observables. With this, exclusive cross sections and angular or polarization asymmetries will
give direct quantitative information about the spatial distribution of partons in a specified
range of x. Estimates indicate that transverse distances ranging from about 0.1 fm to 2
fm or higher will be accessible, provided that a good enough momentum resolution can be
achieved experimentally. Such data will provide the basis for reconstructing generalized
parton distributions and, ultimately, the joint distribution of partons in transverse position
b and longitudinal momentum fraction x. For this second step, EIC’s large lever arm in
photon virtuality Q2 at given photon energy will be essential, since it is the scale evolution
in Q2 that carries the most detailed information about the longitudinal parton momentum.

Our current knowledge about the helicity distributions of quarks and gluons indeed sug-
gests that the orbital angular momentum of partons plays a prominent role in the nucleon.
Exclusive scattering on a transversely polarized target gives access to this degree of freedom
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in parton tomography and allows one to study spin-orbit correlations at the parton level.
An especially interesting aspect is the relation between a polarization induced asymmetry
in transverse parton position and the Sivers asymmetry in transverse parton momentum.
Such a relation is profoundly dynamical, and its quantitative exploration in the sea quark
and gluon domain will be a highlight of exploring hadron structure and dynamics at an EIC.
Deeply virtual Compton scattering will again play an essential role in this context, along
with vector meson production channels. Quantitative estimates of the achievable statistical
and systematic accuracy were not made during the INT program, but the necessary tools
are now in place and results should be available soon.

Ji’s angular momentum sum rule condenses the connection between generalized parton
distributions and parton angular momentum into a single number for each quark flavor and
for the gluon. To evaluate this sum rule from exclusive measurements is truly challenging
for several reasons. The most serious among them is that one needs to reconstruct the
full x dependence of GPDs from observed scaling violations in Q2. As already mentioned,
the large kinematic coverage of an EIC provides a good starting point for such a program,
but it remains to be seen which accuracy can be attained for the angular momentum. We
regard this as a long-term endeavor, which will profit from the progress one can expect in
the coming years from the 12 GeV program at Jefferson Lab.

Physics opportunities in electron-nucleus collisions

The EIC will be the world’s first e+A collider. It will significantly extend parton studies
of nuclear structure into the regime dominated by sea quarks and gluons. Prior fixed target
DIS measurements on nuclei revealed that the ratio of nuclear to nucleon cross sections
is significantly less than unity (normalized by the atomic mass number) both at large x
(the EMC effect) and at small x (shadowing). These interesting nuclear phenomena were
however only observed for valence and (to a lesser extent) sea quarks. The nuclear gluon
distribution is very poorly constrained at all x values, especially at x < 0.01 where it is
completely unknown. EIC could reveal surprises in our fundamental understanding of the
parton structure of nuclei in this terra incognita.

A fundamental feature of QCD is gluon saturation, which arises as a consequence of the
fact that gluon distributions at a fixed Q2 cannot grow rapidly indefinitely with decreasing
x. The properties of matter in this novel saturation regime of strong color fields in QCD
is described by a saturation scale which grows both with decreasing x and with increasing
nuclear size. Model estimates of this nuclear “oomph” give a saturation scale in a large
nucleus at EIC energies to be of the same magnitude as the saturation scale in a proton at a
TeV scale electron-proton collider; electron-nucleus collisions therefore provide an efficient
method to explore saturation in QCD.

As a consequence of asymptotic freedom, the large saturation scale (relative to the intrin-
sic QCD scale ΛQCD) accessible at an electron-nucleus collider implies that the properties
of saturated gluon matter at small x can be computed systematically using weak coupling
techniques and compared to experiment. One such weak coupling approach is the Color
Glass Condensate (CGC). Renormalization group (RG) methods in the CGC are used to
compute observables in electron-nucleus collisions that are sensitive to the energy evolu-
tion of particular many-body gluon correlators. These correlators, classified as “dipole”,
“quadrupole” and “multipole” effective degrees of freedom from their color structure, are
universal. Final states in proton-nucleus and nucleus-nucleus collisions can also be expressed
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in terms of these objects. Properties of multipole degrees of freedom can be inferred from
measurements of cross-sections for specific final states in one of these reactions and used
as an input in computations of cross-sections for other final states, thereby providing an
important test of the validity and limits of the CGC effective theory. A further interesting
possibility is that multipole correlators at very high energies become independent of the
initial conditions specific to a particular nucleus that are inputs at a given x scale to the
RG evolution equations. While it appears unlikely that an EIC would have sufficient energy
to access this asymptotic regime, DIS off different nuclei can provide important constraints
on pre-asymptotic trends in that direction.

At large x in nuclei, DIS corresponds to the virtual photon scattering off quarks, with the
nucleus acting as an extended colored medium that interacts with the hard colored probe.
Because the energy and momentum resolution of the probe can be accurately controlled
in DIS, one can quantitatively address, with a precision unmatched at hadron colliders,
interesting questions about the nature of multiple scattering and p⊥ broadening, energy
loss and fragmentation, and the propagation of heavy quarks and jets in colored media.
Perturbatively calculable short distance physics can be isolated from the hadronization
mechanism by tuning the energy and momentum resolution of the virtual photon probe to
shed new light on the latter both in medium and in the vacuum. While some such studies
have been performed previously at fixed target DIS facilities and in proton-nucleus collisions,
the extended kinematic reach, collider geometry and precision probes will vastly add to their
scope, allowing for definitive answers to enduring questions about in-medium properties of
QCD. For instance, the propagation of heavy charm and beauty quarks in medium will be
quantitatively studied in DIS for the first time. In addition to being interesting in their own
right, DIS studies of parton propagation in ”cold” QCD media are an important benchmark
for a quantitative understanding of their role in the hot QCD medium produced at RHIC
and the LHC.

An important opportunity to understand the role of gluons in the structure of short
range nuclear forces is made possible by exclusive measurements with EIC of open heavy
flavor and quarkonium in DIS off light nuclei. Other interesting studies at large x where
the kinematic reach of EIC will complement the Jefferson Lab 12 GeV program include the
EMC effect and generalized parton distributions for nuclei.

A number of experimental observables have been identified that can shed light on the
compelling physics issues outlined. One set of golden measurements include the inclusive
structure functions F2 and FL for light and heavy nuclei. They will provide the first ever
unambiguous measurements of nuclear gluon distributions. Studies of the evolution of quark
singlet and gluon distributions with x and Q2 for light and heavy nuclei can systematically
uncover the breakdown of leading twist evolution, the onset and development of non-linear
saturation dynamics and enable extraction of the corresponding saturation scale. Another
set of golden measurements are provided by semi-inclusive DIS (SIDIS) off nuclei. Di-
hadron correlations in particular, are very sensitive to non-linear QCD evolution, and allow
for clean extraction of the saturation scale. They will corroborate (or invalidate) claims of
saturation seen in di-hadron correlations in deuteron-gold collisions; more generally, they
enable the previously discussed tests of universality of multipole correlators at small x.
Golden measurements at large x are semi-inclusive production of light and heavy flavors
and jets. These provide unique insight into energy loss and parton shower development in
an extended colored medium, as well as into the dynamics of hadronization in this many-
body environment. The heavy flavor and jet measurements will be the first of their kind in
nuclear DIS; we note that feasibility studies for them are still in a preliminary stage.
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In addition to these golden measurements, there are several important measurements
classified as “silver” instead of gold only in a relative sense. The most important among
these are the diffractive structure functions F2,D and FL,D which will be extracted for nuclei
for the very first time. At HERA, these structure functions, for protons, constituted more
than 15% of the cross-section; the predictions of saturation models is that this fraction will
be significantly larger in nuclei. Exclusive production of vector mesons and deeply virtual
Compton scattering probe the spatial distribution of partons in nuclei; at small x, they can
help clarify the interplay between saturation and the effects of chiral symmetry breaking
and confinement.

Finally, a frequently posed question is whether proton/deuteron-nucleus scattering can
provide the same information content as electron-nucleus collisions. In the former, the
computation of final states, in leading twist kinematics, contains convolutions over par-
ton distributions in the nucleon projectile as well as that in the target. In addition, for
a number of final states, a large number of parton scattering reactions are likely to con-
tribute. This significantly compromises the accuracy to which one determines the parton
structure of the target. For fundamental questions regarding the spatial distribution of
partons and color singlet structures exchanged in hard diffractive scattering, there are es-
sential qualitative differences in hadron-hadron and lepton-hadron processes arising from
the lack of universality in key aspects of the dynamical structure of nucleons and nuclei.
Thus while proton/deuteron-nucleus scattering at high energies has the strong potential to
be a discovery machine for new QCD physics, uncovering the origins of such physics and
its implications for our fundamental understanding of the parton structure of nuclei, will
require an EIC.

Electroweak interactions and physics beyond the Standard
Model

While the EIC is discussed primarily for the study of the strong interactions, its physics
case is strengthened by its potential to contribute to electroweak studies as well. Experi-
ence has shown that a new accelerator that pushes the frontiers either in energy, and/or
luminosity and intensity, is of interest for studies of electroweak physics. We have already
mentioned that precision studies of (parity-violating) electroweak spin structure functions
would be possible at the EIC, giving new insights into nucleon spin structure. However,
the electroweak physics case for the EIC is broader as it would also allow measurements of
parameters of the electroweak theory. Studies presented in detail in the INT report suggest
that for high energy and luminosity there would be excellent prospects for extractions of
the Weinberg angle, which should even be possible over a fairly wide range in Q2 so that
its running can be further studied in detail. In this way, the EIC would complement the
precise LEP and SLD measurements on the Z-pole, atomic parity-violation measurements,
the SLAC E158 Møller scattering data, and the NuTeV data whose final value is in fact
around three standard deviations above the SM prediction. Comparison of the EIC results
for sin2 θW with those on the Z-pole in particular can be used to search for new physics
effects. Some of the experimental systematics involved at the EIC are broadly understood,
byt may still need further work to clarify. A full “global survey” of electroweak parameters
from EIC data – much in the spirit of the approach also taken at HERA – is still outstand-
ing but planned. In addition, the EIC might possibly be able to open a direct window on
beyond-Standard Model physics, assuming that conditions are favorable. Studies indicate
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that the EIC might be able to perform a sensitive search for a third generation leptoquark in
electron-tau conversion ep → τX, with potential reach well beyond that in previous studies
at HERA.

EIC Accelerator Design

Two substantial, focused efforts at developing a design for the electron-ion collider in
the U.S. based on existing accelerators are underway at Brookhaven National Laboratory
and Thomas Jefferson National Accelerator Facility. At BNL, the eRHIC design utilizes a
new linear electron accelerator to collide with the existing polarized proton and ion beams
of the operating Relativistic Heavy Ion Collider (RHIC). At JLab, the ELIC design employs
new electron and ion storage rings together with the 12 GeV upgraded existing CEBAF.
Although based on two different, existing accelerators, because they are driven by the same
science objectives, the two U.S. EIC design efforts have similar characteristics. The most
important include:

• highly polarized (> 70%) electron and nucleon beams

• ion beams from deuterium to the heaviest nuclei - uranium or lead

• center of mass energies: from about 20 GeV to about 150 GeV

• maximum collision luminosity ∼ 1034 cm−2 s−1

• non-zero crossing angle of colliding beams without loss of luminosity (so-called crab
crossing)

• cooling of the proton and ion beams to obtain high luminosity

• staged designs where the first stage would reach CM energies of about 70 GeV

• possibility to have multiple interaction regions

It is clear from the EIC physics studies that with a luminosity of ∼ 1033 cm−2 s−1

operating for about a decade ground breaking new experiments to probe our understanding
of QCD will become feasible. This would require delivery of order 50 fb−1 with polarized
nucleon and heavy ion beams to experiments in about a decade. This would be 100 times
more integrated luminosity than recorded over a decade at the only previous electron-proton
collider, HERA at DESY. With a luminosity of ∼ 1034 cm−2 s−1, precision imaging and
electroweak experiments become feasible at EIC.

The EIC accelerator designs being considered will require significant R&D for realization.
The cooling of the hadron beam is essential to attain the luminosities demanded by the
science. Development of a new technique, coherent electron cooling, is underway at BNL
while conventional electron cooling is being pushed to high RF power at JLab. Energy
recovery linear accelerators at high energy and intensity are a key technology for EIC.
Further, the eRHIC design demands an increase in the intensity produced by polarized
electron sources of over an order of magnitude beyond what is available at present. The
ELIC design utilizes novel figure-8 storage rings for both electrons and ions.

In Europe, two electron-ion collider accelerators are under consideration. At the Large
Hadron Collider at CERN, physicists are considering colliding an electron beam (either a
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linac or ring) with energy of about 70 GeV with the existing unpolarized proton and heavy
ion beams. The present LHeC design can reach a CM energy of about 1.4 TeV with a
luminosity of 1033 cm−2 s−1. At GSI in Germany, an Electron-Nucleon Collider (ENC)
would be realized by colliding electrons in a 3 GeV storage ring with 15 GeV protons in
the High Energy Storage Ring of the planned Facility for Antiproton and Ion Research
(FAIR). The CM energy at ENC is about 14 GeV and the expected luminosity is about
1032 cm−2 s−1. Thus, the two European colliders differ in CM energy by about two orders of
magnitude, in colliding luminosity by about one order of magnitude, and have very different
scientific objectives.

EIC Detectors

Optimized detectors are essential to carry out the ground breaking experiments planned
at EIC. The design of EIC detectors is intimately connected to the design of the EIC accel-
erator interaction regions (IR) through the location of magnets, configuration of crossing
angles, and available space. A particular challenge is to detect forward-going scattered
protons from exclusive reactions, as well as decay neutrons from the break-up of ions in
incoherent diffraction. Past experience at colliders with lepton beams has shown that syn-
chrotron radiation generated by bending the electron beam close to the IR can produce
challenging backgrounds for detectors.

Detector concepts for EIC are being developed and are guided both by the demands
of the scientific program and by the experience with ZEUS and H1 at HERA. The EIC
detector will certainly include a large central detector likely containing a solenoidal mag-
netic field (of order 4 T); trackers for momentum and angular resolution; electromagnetic
and hadronic calorimetry; particle identification involving Cerenkov detectors, and vertex
detectors. Further, detectors in the forward and backward directions will be required to
augment the large central detector. These are necessary to detect hadrons from low x pro-
cesses and will require particle identification, calorimetry (both electron and hadron) and
possibly magnetic field. With multiple interaction regions, it may be more advantageous
to consider different detectors (e.g. forward/backward vs. central, high luminosity vs. low
luminosity) for different IRs.

Minimizing the effects of systematic uncertainties is an important aspect of detector
design. Absolute and relative luminosity determination is a key to extracting important
observables, for instance the longitudinal structure function or small polarization asymme-
tries. Measurement of the polarization of electron and hadron beams has a high priority.
As with the EIC accelerator, R&D for EIC detectors will be essential.
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Tables of golden measurements

Spin and flavor structure of the nucleon

Deliverables Observables What we learn Requirements

polarized gluon scaling violations gluon contribution coverage down to x ≃ 10−4;

distribution ∆g in inclusive DIS to proton spin L of about 10 fb−1

polarized quark and semi-incl. DIS for quark contr. to proton spin; similar to DIS;

antiquark densities pions and kaons asym. like ∆ū−∆d̄; ∆s good particle ID

novel electroweak inclusive DIS flavor separation
√
s ≥ 100GeV; L ≥ 10 fb−1

spin structure functions at high Q2 at medium x and large Q2 positrons; polarized 3He beam

Three-dimensional structure of the nucleon and nuclei: transverse momentum dependence

Deliverables Observables What we learn Phase I Phase II

Sivers and SIDIS with transv. quantum interference valence+sea 3D Imaging of

unpolarized polarization/ions; multi-parton and quarks, overlap quarks and gluon;

TMDs for di-hadron (di-jet) spin-orbit with fixed target Q2 (P⊥) range

quarks and gluon heavy flavors correlations experiments QCD dynamics

Three-dimensional structure of the nucleon and nuclei: spatial imaging

Deliverables Observables What we learn Requirements

sea quark and DVCS and J/ψ, ρ, φ transverse images of L ≥ 1034 cm−2s−1,

gluon GPDs production cross sect. sea quarks and gluons Roman Pots

and asymmetries in nucleon and nuclei; wide range of xB and Q2

total angular momentum; polarized e− and p beams

onset of saturation e+ beam for DVCS

QCD matter in nuclei

Deliverables Observables What we learn Phase I Phase II

integrated gluon F2,L nuclear wave function; gluons at explore sat.

distributions saturation, Qs 10−3 ≤ x ≤ 1 regime

kT -dep. gluons; di-hadron non-linear QCD onset of RG evolution

gluon correlations correlations evolution/universality saturation; Qs

transp. coefficients large-x SIDIS; parton energy loss, light flavors, charm precision rare

in cold matter jets shower evolution; bottom; jets probes;

energy loss mech. large-x gluons

Electroweak interactions and physics beyond the Standard Model

Deliverables Observables What we learn Phase I Phase II

Weak mixing Parity violating physics behind electroweak good precision high precision

angle asymmetries in symmetry breaking over limited over wide range

ep- and ed-DIS and BSM physics range of scales of scales

e-τ conversion ep→ τ,X flavour violation challenging very promising

induced by BSM physics
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1.1 Introduction and Chapter Overview

Marco Stratmann

Two weeks of the INT program on “Gluons and the Quark Sea at High Energies”
were devoted to the physics of unpolarized and polarized parton distribution functions.
A compelling set of physics opportunities at an EIC has emerged from lively discussions
among the participants and subsequent interactions with the hadron structure community.
This Chapter outlines the identified open fundamental questions in hadronic physics and
the “golden measurements” and experimental requirements to thoroughly address them at
a future EIC. The anticipated results will have a profound influence on our understanding
of the spin and flavor structure of nucleons.

Sixteen years of operations at DESY-HERA had a transformational impact on the way
we view the internal partonic content of nucleons and have led to various new developments
in the field of Quantum Chromodynamics. The experiments have left a rich legacy of results,
the most prominent ones being the strong rise of the gluon density at small momentum
fractions x, the large portion of diffractive events, and the transition from high to low
momentum transfer Q for various processes. Likewise, vigorous experimental programs
with polarized beams and targets in the past twenty-five years at all major laboratories
have brought us closer to pinpoint the various contributions to the proton’s spin. They also
revealed novel, often puzzling phenomena which initiated new directions of research in spin
physics such as transverse-momentum dependent parton densities; see Chapter 2.

In each case, the experimental progress was matched by considerable theoretical efforts in
Quantum Chromodynamics. Most notable in this context are the level of precision reached
in higher-order calculations in perturbative QCD and the much refined global analysis
tools to reliably extract information on parton densities from data and to determine their
uncertainties. Yet, there is still a significant lack of understanding on quite a few outstanding
issues. An EIC will prove crucial in addressing them by making use of the anticipated high
luminosities and the variability of beam energies.

Of course, due to the lower center-of-mass system energies of an EIC as compared to
HERA one cannot extend the kinematic reach towards smaller values of x for unpolarized
electron-proton collisions. Also, over the next couple of years the CERN-LHC will provide
a great deal of information on helicity-averaged parton densities in a broad range of x from
various different hard scattering processes up to very large resolution scales Q. The 12
GeV upgrade of the CEBAF facility at Jefferson Laboratory is designed to map parton
distributions up to very large values of x at scales Q of a few GeV to test how well, for
instance, counting rules apply. Therefore, we expect that most aspects of unpolarized parton
densities will be sufficiently well known by the time an EIC is expected to turn on, with
some important exceptions to be discussed below.

The situation is rather different for spin physics where the bulk of experimental informa-
tion stems from fixed-target lepton-nucleon scattering experiments at rather low energies.
Ideas to turn HERA into a polarized electron-proton collider never materialized. Exist-
ing experiments studying the helicity structure of the nucleon, like PHENIX and STAR
at RHIC, will continue to add data in the next couple of years. In particular, measure-
ments of double-spin asymmetries for di-jets in pp collisions at 500GeV should improve the
current constraints on the polarized gluon density ∆g(x) and extend the covered x range
towards somewhat smaller values. Parity-violating, single-spin asymmetries for W boson
production should reach a level where they help to constrain the spin-dependent u and d
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quark and antiquark densities at medium-to-large x. At JLab-12 the focus is again on the
large x frontier at moderate values of Q to address to what extent quarks obey helicity
retention which predicts that in the limit x → 1 quark and nucleon spins become fully
aligned. Ultimately, all these efforts are limited by their kinematic coverage both in x and
in Q. Since the most fundamental open questions in spin physics concern the polarization
of wee partons, see below, there are many opportunities for a high-energy polarized EIC to
contribute significantly due to its unique capabilities to access values of x down to about
10−4. This is central to finally determine and understand the role of quarks and gluons in
the spin decomposition of the nucleon.

Factorization of experimental observables into non-perturbative parton densities and
calculable hard scattering cross sections is the cornerstone for the theoretical application of
QCD at high energies within perturbative methods. Available QCD calculations for inclu-
sive and semi-inclusive deep-inelastic scattering processes will allow us to confront future
high-statistics EIC data with theory at the necessary very high level of precision. A brief
account of the status of perturbative QCD calculations for most of the key measurements
at an EIC is given in Sec. 1.2.

Since the EIC is a natural extension of the physics program carried out at HERA
both in terms of the anticipated significant increase in luminosity and the possibility to
have polarized beams, we summarize the latest status of HERA data based on the recent
combination of results from the H1 and ZEUS experiments in Sec. 1.3. This discussion also
helps to expose the open questions about the structure of unpolarized nucleons an EIC can
elucidate and which cannot be answered solely by measurements at the LHC. The most
compelling ones comprise

• the longitudinal structure function FL,

• the elusive strangeness and anti-strangeness densities,

• and heavy flavor contributions to deep-inelastic scattering.

A detailed account, including other second tier opportunities is given in Sec. 1.4.
An EIC could make the first precise measurement of FL in a kinematic range that

overlaps both previous fixed-target and HERA data, none of which very precise. FL is
particularly sensitive to the gluon distribution and QCD dynamics at small x which makes
it a promising candidate to study the transition to the high parton density regime, i.e.,
the phenomenon of saturation, with an inclusive observable. While one does not expect
non-linear effects to be of significant relevance in electron-proton collisions at an EIC, a
measurement of FL provides the baseline for similar studies in electron-heavy ion collisions.
Here, the onset of saturation effects is expected already at x ≃ 10−3 which elevates FL
to one of the golden measurements to be performed at the EIC; see Chapter 5 on QCD
matter under extreme conditions for details. The determination of FL relies on an accurate
measurement of the variation of the so-called reduced cross section for fixed values of x and
Q at different c.m.s. energies

√
s. The large variability of beam energies at sustained large

luminosities is a particular strength of an EIC and proves critical for this measurement. A
first feasibility study for electron-proton collisions can be found in Sec. 1.6.

Semi-inclusive deep-inelastic production of identified pions and kaons is expected to
be the most viable and promising way to determine differences among parton distribution
functions for different quark flavors or between quarks and anti-quarks. Such measurements
make use of the different probabilities for producing a certain hadron species from a given
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quark flavor or gluon and have been successfully performed at fixed-target experiments such
as HERMES. The EIC offers unprecedented opportunities to extend the kinematic reach
toward small x or large Q. In particular, the elusive strangeness density and a possible
asymmetry between strangeness and anti-strangeness distributions can be deduced from
charged kaon production yields. Prerequisites are an excellent particle identification in most
of the phase space and a thorough theoretical understanding of the hadronization of quarks
and gluons into the observed hadrons. In collinear factorization, the latter information is
encoded in non-perturbative fragmentation functions which are constrained by a wealth of
available experimental data on single-inclusive hadron yields. Further significant progress
on the quality of such fits is expected once upcoming data from B factories and the LHC
are included. In Sec. 1.5 we present a first feasibility study for charged kaon production at
the EIC.

Heavy flavors, in particular charm quarks, can give a sizable contribution to deep-
inelastic scattering structure functions. Within the foreseen EIC kinematics charm yields
up to 10 ÷ 15% of the inclusive cross section. The theoretical framework for heavy quark
production is much more complex than for light (massless) quarks due to the presence
of multiple scales. The mass of the heavy quarks prevents them from having a partonic
interpretation, and they can be only produced externally, for instance, by photon-gluon
fusion. This framework yields a very good description of all available HERA data within
the present uncertainties and is expected to be relevant also in the entire kinematic regime
of an EIC. Nonetheless, one may introduce heavy quark densities for asymptotically large
scales, i.e., Q≫ m, and smooth interpolation schemes have been devised which incorporate
the correct threshold and asymptotic behavior. The relevant theoretical framework and
recent progress on higher order calculations is briefly reviewed in Sec. 1.7.

The charm contribution to the longitudinal structure function FL is expected to be
particularly sensitive to mass effects and has never been measured before. A first feasibility
study within the kinematics of an EIC can be found in Sec. 1.8. An EIC is also well suited to
address the long-standing question of a possible relevance of a non-perturbative “intrinsic”
charm contribution in the nucleon wave-function, mainly concentrated at large momentum
fractions. Quantitative estimates based on models for an intrinsic charm contribution are
promising and can be found in Sec. 1.9.

The physics opportunities with polarized lepton and proton beams are even more multi-
faceted and will address some of the most fundamental open questions in hadronic physics
for which one has been seeking answers for more the two decades now. Thus, the anticipated
results will have far-reaching impact on our understanding of the nucleon’s spin structure.
The unique capability of the EIC to reach small momentum fractions x or large scales Q
in longitudinally polarized electron-proton collisions with high luminosity will enable us to
explore in detail

• the polarized gluon distribution and its contribution to the proton’s spin,

• the individual light quark helicity distributions in a broad kinematic range,

• novel electroweak structure functions,

• and the strangeness and anti-strangeness polarizations.

The latest status of global QCD fits to helicity dependent parton densities, which is not
expected to improve much by the time the EIC would turn on, and the set of questions we
want to address at the EIC are laid out in some detail in Sec. 1.10.
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Precise measurements of the polarized structure function g1 in a wide kinematic range
will be a flagship measurement for the EIC. The gluon helicity distribution ∆g is strongly
correlated with QCD scaling violations, i.e., the Q dependence of g1 at a given x. This
will allow for a determination of ∆g down to unprecedented small values of x of about
10−4. This in turn will eventually pinpoint the elusive gluon contribution to the spin of the
proton, given by the integral of ∆g over all momentum fractions x, to about 10% accuracy
or better. The striking quantitative impact on extractions of ∆g based on projected EIC
data is demonstrated in Sec. 1.11. The same set of inclusive measurements will also provide
a significantly better determination of the total quark contribution ∆Σ both as function of
x and the integral relevant for the nucleon spin sum.

Like in the unpolarized case, see Sec. 1.5, the best strategy to achieve a full flavor and
quark-antiquark separation of polarized helicity densities is based again on semi-inclusive
deep-inelastic hadron production. The kinematic coverage in x and Q is similar to what
can be achieved in inclusive DIS, with the extra theoretical complication of the need for
fragmentation functions to model hadronization. At medium-to-large values of x one can
address with precision certain interesting asymmetries in the polarized quark sea like ∆ū−
∆d̄ (from charged pion yields) and perhaps even ∆s−∆s̄ (from charged kaon yields). The
first quantity is predicted to be sizable in several model calculations of the nucleon but the
precision of current experiments only gives a first hint of a possible non-zero asymmetry; the
latter quantity may help to understand why the sum ∆s+∆s̄ appears to be much smaller
in current experiments than expected. If ∆s and ∆s̄ have their spins anti-aligned their
sum could be small but the asymmetry would be sizable. Constraints from hyperon decay
matrix elements and arguments based on SU(3) symmetry predict a significant negative
total (x integrated) strange quark polarization. To address the validity of this constraint
and to access to what extent SU(3) symmetry is broken one needs to determine ∆s down
to small values of x to obtain a reliable estimate of its x integral. This is another unique
measurement to be performed at the EIC.

First simulations of electroweak neutral and charged current deep-inelastic scattering at
the EIC in Sec. 1.12 show that such measurements become feasible already with relatively
modest integrated luminosities. The corresponding structure functions for polarized pro-
tons have never been measured before and probe combinations of quark flavors other than
in one-photon-exchange dominating at low Q. To fully exploit the potential of the EIC
for such measurements positron beams are required, albeit not necessarily polarized. An
effective source of polarized neutrons such as a Helium-3 beam would be highly desirable.
When combined, these measurements will greatly aid the flavor decomposition of polarized
parton densities at medium-to-large x, free of any hadronization ambiguities. At the highest
c.m.s. energies and luminosities also photon-Z boson interference contributions to structure
functions should be accessible at the EIC. The production of charmed mesons in charged
current DIS events is an alternative probe for the strange and anti-strange densities both
unpolarized and polarized. This is discussed in Sec. 1.13.

Table 1.1 summarizes the identified golden measurements, science deliverables, and ex-
perimental requirements in spin-dependent lepton-proton collisions at an EIC. Other, second
tier measurements with polarization involve the currently unknown charm contribution to
the deep-inelastic structure function g1 which offers sensitivity to ∆g through photon-gluon
fusion. Some expectations can be found in Sec. 1.11. If an effective neutron beam is avail-
able one can also attempt to determine the fundamental Bjorken sum rule at a few percent
level. The Bjorken sum is probably one of the most precisely calculated quantities in per-
turbative QCD and provides an interesting link to the Adler D function in electron-positron
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Deliverables Observables What we learn Requirements

polarized gluon scaling violations gluon contribution coverage down to x ≃ 10−4;

distribution ∆g in inclusive DIS to proton spin L of about 10fb−1

polarized quark and semi-incl. DIS for quark contr. to proton spin; similar to DIS;

antiquark densities pions and kaons asym. like ∆ū−∆d̄; ∆s good particle ID

novel electroweak inclusive DIS flavor separation
√
s & 100GeV; L & 10fb−1

spin structure functions at high Q2 at medium x and large Q2 positrons; polarized 3He beam

Table 1.1. Golden measurements in polarized ep collisions at an EIC.

annihilation through the so-called Crewther relation.
Finally, the production of hadronic final states in electron-proton collisions is dominated

by the exchange of photons of almost zero virtuality. Photoproduction measurements and,
in particular, the exploration of kinematic regimes where so-called “resolved photon” con-
tributions dominate was one of the great successes of the HERA physics program. Resolved
processes, where the photon interacts with the proton through its non-perturbative source
of partons, offer a fresh look at these densities which are so far mainly determined from
not very precise LEP data. Given the anticipated high luminosity, an EIC can elevate
these studies to a level of unprecedented precision, and, thanks to the polarized beams,
allows one to investigate for the first time also the non-perturbative structure of circularly
polarized photons. A good knowledge of the partonic structure of photons is essential for
part of the physics program of a possible future linear collider. The general framework for
photoproduction and two examples of physics studies are presented in Secs. 1.14-1.16.

To summarize, the physics goals of the EIC should be ambitious and must offer detailed
answers to all the open fundamental questions concerning the spin and flavor structure
of nucleons laid out above. The following Sections will outline the path to achieve these
goals. The program bears significant experimental challenges which all need to be carefully
addressed to reach the desired unprecedented level of precision. With the exception of
some of the electroweak structure function measurements, most observables will be quickly
limited by systematic uncertainties, intrinsic ambiguities of the extraction method like, for
instance, the Rosenbluth separation for FL, and the way how well we can control QED
radiative corrections to unfold the information one is actually interested in. Experimental
aspects will be discussed in Chapter 7.
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1.2 Status of Perturbative QCD Calculations

Sven-Olaf Moch

1.2.1 Introduction

Deep-inelastic scattering (DIS) and the observed scaling violations are at the very center
of the formulation of QCD as the gauge theory of the strong interactions [1, 2].

Over the decades the experiments using lepton and neutrino scattering off fixed targets
at CERN, FNAL, SLAC, and JLAB as well as electron-proton collisions at the HERA
collider at DESY have provided unique insight into the nucleon structure with the available
high precision experimental data spanning a large kinematical range. Dramatic further
improvements can be expected from the planned electron-ion collider EIC.

The key observables are either inclusive structure functions or differential cross sections
in the semi-inclusive case, which parametrize the hard hadronic interaction in the QCD
improved parton model. The particle data group (PDG) [3] provides a very readable account
of DIS, including the definitions of kinematic variables, etc.

P

µ

fi

q
xP

Ci

Figure 1.1. QCD factorization of the cross section for the scattering of a deeply virtual boson with
(space-like) momentum q (−q2 = Q2 > 0) off a proton with momentum P in their center-of-mass
frame, see Eq. (1.1).

Precision predictions in perturbative QCD rest on the fact that we can separate the
sensitivity to dynamics from different scales, i.e., the physics at scale of the proton mass from
hard, high-energy scattering at a large scale Q2. For lepton-proton DIS in the one-boson
exchange approximation this is depicted in Fig. 1.1. For unpolarized DIS, this factorization
at a scale µ allows to express the structure functions Fk (k = 2, 3, L) as convolutions of
parton distributions (PDFs) fi (i = q, q̄, g) and short-distance Wilson coefficient functions
Ck,i,

Fk(x,Q
2) =

∑

i=q,q̄,g

∫ 1

x
dz fi

(x
z
, µ2
)
Ck,i

(
z,Q2, αs(µ), µ

2
)
, (1.1)

up to corrections of higher twist O(1/Q2). The coefficient functions Ck,i are calculable
perturbatively in QCD in powers of the strong coupling constant αs,

C = C(0) + αsC
(1) + α2

s C
(2) + α3

s C
(3) + . . . , (1.2)
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with the expansion coefficients C(0) denoted as the leading order (LO), C(1) the next-to-
leading order (NLO) and so on. The PDFs fi describe the fraction x = Q2/(2P · q) of
the nucleon momentum carried by the quark or gluon. PDFs are non-perturbative objects
and have to be obtained from global fits to experimental data or determined, e.g., by
lattice computations. Perturbation theory, however, provides information about their scale
dependence, i.e., the well-known evolution equations,

d

d lnµ2

(
fqi(x, µ

2)

fg(x, µ
2)

)
=
∑

j

1∫

x

dz

z

(
Pqiqj(z) Pqig(z)

Pgqj(z) Pgg(z)

) (
fqj(x/z, µ

2)

fg(x/z, µ
2)

)
. (1.3)

The splitting functions Pij are universal quantities in QCD and describe the different pos-
sible parton splittings in the collinear limit. Like the Ck,i also the Pij can be computed in
a power series in αs,

P = αs P
(0) + α2

s P
(1) + α3

s P
(2) + . . . . (1.4)

Analogous formulae hold for the polarized DIS structure functions. In particular, for
g1 one may apply the obvious replacements fi → ∆fi, Ck,i → ∆Cg1,i, and Pij → ∆Pij
in Eqs. (1.1)–(1.4). QCD factorization has also been established for (semi-)inclusive deep-
inelastic scattering (SIDIS), where the cross section d2σ/dxdQ2 is subject to a decompo-
sition similar to Eq. (1.1). Although, in that case, the process dependent hard parton
scattering cross sections need to be augmented by an additional prescription for the final
state parton, e.g., a jet algorithm or fragmentation functions.

1.2.2 Current status

QCD predictions for DIS observables have reached over the years an unprecedented
level of precision. All quantities in Eqs. (1.1)–(1.4) have been computed to higher orders in
perturbation theory so that the effect of radiative corrections on those observables is well
understood and largely under control. In the case of unpolarized DIS, the splitting functions
Pij are known to NNLO [4, 5] and, likewise, the coefficient functions Ck,i [6, 7, 8, 9]. For
photon and charged current W±-boson exchange, even the hard corrections at order O(α3

s)
are available [10, 11]. In the case of polarized DIS, the spin dependent splitting functions
∆Pij at two loop order have been obtained some time ago [12, 13]. At NNLO, the polarized
splitting functions ∆Pqq and ∆Pqg have been reported [14], and the coefficient functions
∆Cg1,i are available from [15]. For semi-inclusive observables, the QCD corrections are
typically known to NLO. This corresponds to O(α2

s) since the underlying Born cross section
behaves as d2σ(0)/dxdQ2 ∼ O(αs) due to the additional final state parton. Processes
considered include, for instance, the electro-production of hadrons with high transverse
momentum [16, 17] or single inclusive DIS jet cross sections [18].

The currently available QCD predictions for inclusive DIS and SIDIS put us in comfort-
able position to confront experimental data with theory at a very high level of precision.
In these comparisons, we no longer test QCD. Rather we use perturbative QCD as an es-
sential and established part of our theory toolkit to deduce important information about
PDFs or the value of the strong coupling constant αs(MZ). Of course, this is a situa-
tion that, generally, needs to be addressed also beyond DIS, since experimental data from
the unpolarized (anti-)proton-proton colliders Tevatron at FNAL and the LHC at CERN
as well as from the polarized proton-proton collider RHIC at BNL help to further con-
strain the non-perturbative input to QCD precision predictions. See, e.g., the analyses of
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unpolarized PDFs to NNLO in Refs. [19, 20, 21, 22] or recent studies of polarized PDFs
in [23, 24, 25, 26, 27, 28].

Given the current status of perturbative QCD, experimental data from a future program
of electron-ion collisions, EIC, can help to address and clarify a number of still open and
yet very relevant questions; see also Secs. 1.4 and 1.11. For the case of unpolarized PDFs
improvements can be made with respect to the flavor asymmetry of sea quarks at low x
and the valence quarks at large x, by studying, e.g., electron-deuteron collisions. Much of
the physics case here had already been investigated in an assessment of the experimental
prospects of electron-deuteron scattering at HERA some time ago [29]. More generally, the
high luminosity of an EIC would further constrain PDFs, especially the gluon at low x and
Q2. In this context, a precision measurements of the longitudinal structure function FL,
which is an observable predominantly driven by the gluon PDF is of high interest as it would
complement and, eventually even supersede, existing experimental data, see, e.g., [30]. New
high statistics DIS experiments can also improve the current precision of strong coupling
constant αs measurements in space-like kinematics.

For polarized DIS, a very fundamental question still remains the understanding of the
proton spin, in particular, whether the polarized gluon PDF ∆fg provides a significant
contribution. To that end, an extension of the kinematical coverage in x and Q2, as it could
be achieved by an electron-ion collider, is of paramount importance. This would help to
access higher scales in Q2 in order to test the perturbative evolution Eq. (1.3). Likewise,
access to an extended x-range allows for a better determination of moments of the ∆fi.
They also enter, e.g., in the Bjorken sum rule for polarized electro-production, which is
again an observable very well-known in perturbative QCD [31, 32]. Other issues of interest
for polarized DIS in electron-ion collisions concern a reliable extraction of flavor structure
as well as a study of strangeness PDFs, ∆fs.

1.2.3 Summary

We have briefly summarized the current status of perturbative QCD predictions for DIS
experiments. To date, we can build on a very mature understanding of the theory, which
could be confronted with experimental data from a future electron-ion collider in order
to improve our knowledge about the fundamental structure of matter and the important
dynamics of quarks and gluons in nucleons.
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1.3 Unpolarized Proton Structure - HERA’s Legacy

Amanda Cooper-Sarkar (for the H1 and ZEUS Collaborations)

1.3.1 Introduction

HERA data provide the most insight into the behaviour of unpolarized parton distribu-
tion functions (PDFs) at present and as such represent an integral part of all global QCD
analyses. The H1 and ZEUS experiments are combining their various sub-sets of data so as
to provide a legacy of HERA results. The combination of inclusive cross section data from
HERA-I and the PDF fit based on these data are already published [20]. In 2010 further
data have been combined and PDF fits to the augmented data sets have been made available
in preliminary form. In Sec. 1.3.2 results from the published combination are reviewed. In
Sec. 1.3.3 results from a combination of F cc̄2 data are presented and their sensitivity to the
mass of the charm quark and the choice of the heavy flavor scheme adopted in the global
PDF fit is discussed. In Sec. 1.3.4 results from the combination of inclusive cross section
data taken at lower proton beam energies are discussed. Finally, in Sec. 1.3.5 an updated
combination of all inclusive data from HERA-I and HERA-II running is shown and a PDF
fit to these data is presented.

1.3.2 Inclusive data from HERA-I running (1992-2001)

The inclusive cross section data, from the HERA-I running period, for Neutral Current
(NC) and Charged Current (NC), e+p and e−p scattering have been combined [20]. The
combination procedure pays particular attention to the correlated systematic uncertainties
of the data sets such that resulting combined data benefits from the best features of each
detector. The combined data set has systematic uncertainties which are smaller than its
statistical errors and the total uncertainties are small (1 − 2%) over a large part of the
kinematic plane. The combined data is compared to the separate input data sets of ZEUS
and H1 in Fig. 1.2.

These data are used as the sole input to a PDF fit called the HERAPDF1.0 [20]. The
motivations for performing a HERA-only fit are firstly, that the combination of the HERA
data yields a very accurate and consistent data set such that the experimental uncertainties
on the PDFs may be estimated from the conventional χ2 criterion ∆χ2 = 1. Global fits
which include dats sets from many different experiments often use inflated χ2 tolerances
in order to account for marginal consistency of the input data sets. Secondly, the HERA
data are proton target data so that there is no uncertainty from heavy target corrections
or deuterium corrections and there is no need to assume that d in the proton is the same as
u in the neutron since the d-quark PDF may be extracted from e+p CC data. Thirdly, the
HERA inclusive data give information on the gluon, the Sea and the u- and d-valence PDFs
over a wide kinematic region: the low-Q2 NC e+p cross-section data are closely related to
the low-x Sea PDF and the low-x gluon PDF is derived from its scaling violations; the high-
x u− and d-valence PDFs are closely related to the high-Q2 NC e±p, CC e−p, and CC e+p
cross sections, respectively; the difference between the high-Q2 e−p and e+p cross-sections
gives the valence shapes down to low x, x ∼ 10−2.

HERAPDF provides model and parametrisation uncertainties on the PDFs as well as
experimental uncertainties; for details, see Ref. [20]. A major contribution to the total
uncertainties in the HERAPDF1.0 set comes from the model uncertainty on the charm
mass value. This can be improved using information from data on F cc̄2 .
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Figure 1.2. HERA combined data points for the NC e+p cross section as a function of Q2 in selected
bins of x, compared to the separate ZEUS and H1 data sets input to the combination.

1.3.3 Charm data from HERA-I and II running

H1 and ZEUS have also combined their data on F cc̄2 [20]. In Fig. 1.3 the combined data
are compared to the separate data sets which go into the combination. These data are input
to the HERAPDF fit together with the inclusive data which were used for HERAPDF1.0.
The χ2 of this fit is sensitive to the value of the charm quark mass. Fig. 1.4 compares
the χ2, as a function of this mass, for a fit which includes these data (left) to that for the
HERAPDF1.0 fit (middle). However, it would be premature to conclude that the data can
be used to determine the charm pole-mass. The HERAPDF formalism uses the Thorne-
Roberts (RT) variable-flavour-number (VFN) scheme for heavy quarks. This scheme is not
unique, specific choices are made for threshold behaviour. In Fig. 1.4 (right) the χ2 profiles
for the standard and the optimized versions of this scheme are compared to two alternative
ACOT VFN schemes and the Zero-Mass VFN scheme. Each of these schemes favours a
different value for the charm quark mass, and the fit to the data is equally good for all
the heavy quark mass schemes; see Fig. 1.3 (right). However, the Zero-Mass scheme is χ2

disfavoured; see Ref. [20] for further details.

1.3.4 Low energy proton beam data from 2007

In 2007 NC e+p data were taken at two lower values of the proton beam energy in order
to determine the longitudinal strucure function FL. Some of the H1 and ZEUS data sets
from these runs have now been combined [20] and the results for the NC e+p cross section
are shown in Fig. 1.5. These data have been input to the HERAPDF fit together with the
inclusive data from HERA-I. The resulting PDFs are compared with those of HERAPDF1.0
in Fig. 1.5. The low energy data are sensitive to the choice of minimum Q2 (standard cut
Q2 > 3.5 GeV2) for data entering the fit. If a somewhat harder cut, Q2 > 5 GeV2, is made, a
steeper gluon distribution results, see Fig. 1.5, whereas for the HERAPDF1.0 this variation
of cuts results in PDFs which lie within the PDF uncertainty bands. This sensitivity is also
present if an x cut, x > 5× 10−4, or a “saturation inspired” cut, Q2 > 0.5 x−0.3, is made.
This sensitivity may indicate the breakdown of the DGLAP formalism at low x [33].
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Figure 1.3. Left: HERA combined data points for F cc̄2 compared to the separate ZEUS and H1 data
sets. Right: HERA combined data points for F cc̄2 compared to HERAPDF fits to these plus the
inclusive DIS data, for various different heavy-quark-mass schemes.
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Figure 1.4. The χ2 of the HERAPDF fit as a function of the charm mass mmodel
c . Left and Middle:

using the RT-standard scheme, when F cc̄2 data are not included and included in the fit, respectively.
Right: results for using various mass schemes in the fit to F cc̄2 data.
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Figure 1.5. Left: HERA combined data points for the NC e+p cross-section for three different
proton beam energies. Right: PDFs, xuv, xdv, xS = 2x(Ū + D̄), and xg at Q2 = 10 GeV2, for
HERAPDF1.0 and for a HERAPDF fit which also includes the low-energy proton beam data, with
the standard Q2 cut, Q2 > 3.5 GeV2, and for Q2 > 5.0 GeV2.

1.3.5 High-Q2 data from HERA-II running

Preliminary H1 data on NC and CC e+p and e−p inclusive cross-sections and published
ZEUS data on NC and CC e−p and CC e+p data, from HERA-II running, have been
combined with the HERA-I data to yield an inclusive data set with improved accuracy at
high Q2 and high x [34]. The HERA-I data set and the new HERA I+II data sets are
compared for CC e−p data in Fig. 1.6. This new data set is used as the sole input to
a new PDF fit called the HERAPDF1.5 which uses the same formalism and assumptions
as the HERAPDF1.0 fit [35]. These fits are superimposed on the corresponding data sets
in the figure. Fig. 1.7 (left) shows the combined data for NC e±p cross-sections with the
HERAPDF1.5 fit superimposed. The PDFs from HERAPDF1.0 and HERAPDF1.5 are
compared in Fig. 1.7 (right). The improvement in precision at high x is clearly visible.

1.3.6 Summary

The status of the combinations of H1 and ZEUS data has been discussed. HERA leaves
rich legacy of results which are the basis for all present QCD analyses of unpolarized PDFs
and define the goals for any future DIS experiment.
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Figure 1.7. Left: HERA combined data points for the NC e±p cross-sections for data from the
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1.4 Unpolarized Parton Distribution Functions:
Questions to be Addressed at an EIC

Marco Guzzi, Pavel Nadolsky, Fredrick Olness

1.4.1 Introduction

The Electron-Ion Collider (EIC) will operate at a time when the Large Hadron Col-
lider (LHC) has established a new “gold standard” for perturbative QCD by measuring a
variety of hard-scattering processes. High-luminosity EIC measurements will be very com-
plementary to those at the LHC, as they will accurately probe various aspects of hadronic
structure using independent experimental techniques. In the next few years, when next-to-
next-to-leading order (NNLO) accuracy of QCD calculations becomes the norm, a variety
of perturbative and nonperturbative effects need to be taken into account to match the
precision of multi-loop radiative contributions. Some of these effects can be constrained
solely by the LHC data; others need independent measurements, not affected by systemat-
ical uncertainties present at the LHC. With an integrated luminosity of 10 fb−1 or more,
the EIC will disentangle many such effects, including modifications of the nucleon structure
within heavy-nuclei targets, flavor dependence of parton distribution functions (PDFs), and
QCD dynamics at very large or small x.

As compared with previous lepton–nucleus experiments, the EIC will probe to smaller
x values with high precision. In contrast to the HERA ep collider, which explores the same
{x,Q2} region, heavy-ion scattering will achieve much higher partonic densities that are
a prerequisite for the onset of saturation. It will help delineate the kinematical boundary
between the DGLAP factorization and saturated dynamics in the nuclear medium.

The Q2 range of the EIC will cover the transition region from the perturbative to the
non-perturbative regime. Here, we wish to learn how the perturbative parton-scattering pic-
ture valid at large momentum transfers matches on nonperturbative models describing the
strongly-coupled resonance region. Understanding of this region is important for hadronic
experiments at the intensity frontier.

1.4.2 Open Questions

Several questions about PDFs will likely remain open at the time of the EIC operation.
Figure 1.8 shows the kinematic domains in x and Q2 probed by current experiment and the
PDFs that are most strongly constrained in these reqions.

Nuclear PDFs. Several groups extract nuclear PDFs and their uncertainties by ana-
lyzing the global data on nuclear targets [36, 37, 38, 39, 40]. In their studies, they find that
the nuclear corrections depend on the type of the nucleus (its atomic number A), flavor
of the probed parton, and even the type of the probing boson. For example, it was found
recently [41, 37] that the nuclear correction factors preferred by the νFe DIS data by NuTeV
[42] are surprisingly different from predictions based on the ℓ±Fe charged-lepton results.

By performing deep inelastic scattering (DIS) both on proton and heavy-nuclei targets,
the EIC can distinguish between intrinsic properties of the proton and those of the extended
nuclear medium. A high-intensity EIC could use a variety of nuclear beams to precisely
map the A-dependent nuclear correction factors in the {x,Q2} kinematic plane and clarify
the behavior of nuclear corrections to NC DIS. Such information is of importance for deter-
mining the proton PDFs, in particular, the strange quark PDF that is constrained largely
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Figure 1.8. Kinematic domains in x and Q2 probed by fixed-target and collider experiments, shown
together with the PDFs that are most strongly constrained by the indicated regions [3]. DIS data
off nuclear targets exist only in the fixed-target region.

from the NuTeV data . The nuclear correction affects the uncertainty in s(x,Q), which
is large at present and may limit the precision of electroweak studies in W and Z boson
production at the LHC [43].

The topics of nuclear PDFs and saturation will be extensively discussed in the Chapter
5 devoted to eA physics at an EIC.

Better constraints on the strangeness PDF. Despite extensive investigation, there
remain large uncertainties in flavor differentiation of sea-quark PDFs both in the proton
and nuclei. In particular, the strange quark+antiquark distribution in the proton, s+(x) =
s(x)+s̄(x), and its asymmetry, s−(x) = s(x)−s̄(x), are still poorly known [44, 45, 46, 22, 47],
despite their significance for understanding of the nucleon structure. Existing constraints
on the strangeness come predominantly from neutrino (semi-)inclusive DIS [48, 42]. At the
EIC, both s+(x) and s−(x) can be probed in semi-inclusive DIS production of kaons; see
Sec. 1.5 for some quantitative studies. This measurement will rely on a good understanding
of fragmentation functions, which will be known much better by the time an EIC turns on.

The d/u ratio at large x. Because of its intermediate energy and high beam intensity,
the EIC is ideal for studying parton distributions at large Bjorken x (x > 0.1), where
separation of parton flavors is not fully understood despite many years of experiments.
For example, even the ratio d(x,Q)/u(x,Q) of the dominant up and down quark proton
PDFs at x > 0.3 has been recently put in doubt by contradicting constraints from DIS on
deuteron targets [49, 50] and charged lepton asymmetry at the Tevatron [51, 52]. While the
PDF analysis groups labor to understand these differences [22, 46, 53] (and new clean LHC
measurements of the d/u ratio in proton scattering are in the queue), the EIC will help to
resolve this controversy by extracting the ratio Fn2 (x,Q)/F p2 (x,Q) from DIS data on various
nuclear targets. Such measurement will help to separate several types of kinematical and
nuclear corrections ([54], and references therein) that influence the Fn2 /F

p
2 ratio derived
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from nuclear-target DIS.
Gluon PDF in the proton and charm production at large x. Even more uncer-

tainty exists in the gluon PDF g(x,Q) at large x, where it can be larger than the down-quark
d(x,Q) at x > 0.5 in some recent parametrizations for proton PDFs [55]. This ambiguity
will be reduced by upcoming high-pT jet production at the LHC, but significant systematic
limitations of both experimental and theoretical nature may persistent at the largest x,
where the EIC could independently contribute. Production of heavy-quark (c, b) pairs or
heavy mesons (J/ψ,Υ) in deep-inelastic scattering could accurately probe the large-x gluon
PDF. The EIC detectors will have excellent charm tagging efficiency, in a relatively clean
scattering environment as compared to the LHC.

Inclusive charm production is interesting in its own right, given that large radiative
contributions are known to exist near the heavy-quark production threshold, i.e., at Q
comparable to the charm quark mass; see Sec. 1.7 for a detailed account of heavy quark
contributions to DIS structure functions. The rate for charm production at large x, x & 0.1,
can be increased by up to an order of magnitude by nonperturbative intrinsic charm
production suggested by light-cone models [56, 57]. An EIC will be a unique opportunity
to cleanly test for the presence of intrinsic charm contributions; see Sec. 1.9 for some
quantitative studies.

Transition to the high-density regime. There is a long-standing question of par-
tonic saturation and recombination in the small-x region. As a related phenomenon, BFKL
[58, 59, 60] effects from large ln [1/x] contributions may supersede the usual DGLAP evo-
lution in the small-x regime. The EIC should be capable of probing the transition from
DGLAP factorization to BFKL/saturation dynamics, particularly using heavy nuclei beams
in order to produce large partonic densities; see Chapter 5 for details on eA physics.

Perturbative-nonperturbative QCD boundary. The general kinematic parame-
ters of an EIC would span across both the perturbative (large Q2) region and the non-
perturbative (small Q2) region. The theoretical description of the physics in these two
regions is very different, and precise EIC data might enable us to better connect these two
disparate theoretical descriptions.

The longitudinal structure function. The longitudinal structure function FL =
F2 − 2xF1 is of special interest, in view that its leading O(1) term vanishes according to
the Callan-Gross relation. The first non-vanishing, leading order contribution is of O(αs)
and dominated by photon-gluon fusion. Hence, FL is particularly sensitive to the gluon
distribution g(x,Q2). Corrections up to O(α3

s) are known [10], allowing for a consistent
analysis of FL at NNLO accuracy. An EIC could make the first precise measurements of FL
in a kinematic range that overlaps both the fixed-target and HERA collider data [30] which
have large statistical uncertainties; see Sec. 1.6 for more details on such a measurement at
an EIC.

Electroweak contributions to proton PDFs. Some, if not all, NLO electroweak
effects will be included in future PDF analyses, as their magnitude is comparable to the
size of NNLO QCD radiative contributions that will be routinely included. The QCD+EW
PDFs require additional experimental input to constrain nonperturbative parametrizations
for photon PDFs, as well as charge asymmetry effects (isospin violation) between PDFs
for up-type quarks and down-type quarks at the initial scale Q ≈ 1 GeV. An EIC has the
potential to contribute toward improving limits on electroweak PDF terms either directly
or in combination with neutrino DIS measurements.

When extracting information about the proton PDFs from scattering on nuclear targets,
we generally make use of isospin symmetry to relate the proton and neutron PDFs via a
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u↔ d interchange. While the isospin symmetry is elegant, it is nonetheless approximate and
can be violated at the level of a few percent [61, 62, 63, 64, 65, 66, 67, 41, 68]. Violation of the
exact p↔ n isospin symmetry, or charge symmetry violation (CSV), invalidates the parton
model relations that reduce the number of independent nonperturbative distributions; e.g.,
un(x) 6≡ dp(x) and up(x) 6≡ dn(x). It is important to be aware of the potential magnitude
of isospin symmetry violation and its consequences for flavor separation of proton PDFs.

It is noteworthy that isospin symmetry is automatically violated both perturbatively and
nonperturbatively. This is because the photon couples to the up quark distribution up(x)
differently than to the down quark distribution dn(x). These terms can be comparable to
the NNLO DGLAP evolution effects [69, 70, 71].

Some combinations of structure functions, such as ∆F2 ≡ 5
18 F

CC
2 (x,Q2)− FNC2 (x,Q2)

and ∆xF3 = xFW
+

3 − xFW
−

3 , can be particularly sensitive to isospin violations, and an
EIC can contribute to their measurement. For example, the EIC is capable of measuring
precisely the structure function FNC2 mediated by the neutral-current γ/Z exchange pro-
cesses. Measurement of FCC2 , mediated by the charged-current W± exchange, would rely
on compensating the M2

W/Q
2 suppression of the W boson propagator with high intensity

of the beams; see Sec. 1.12 for more details on electroweak structure function measurements
at an EIC.

In separate experiments, ∆xF3 can be measured precisely via the neutrino-nucleon DIS
process; as these measurements are performed with heavy nuclear targets, the nuclear cor-
rection factors can be the limiting factor as to the derived CSV constraint. Since an EIC
will use a variety of nuclear targets, it can obtain very precise nuclear correction factors;
this information could, in principle, be used together with the neutrino-nucleon DIS data
to extract improved CSV limits.

The structure functions ∆F2 and ∆xF3 receive contributions from both heavy flavors
as well as CSV contributions; improved understanding of the heavy-quark components
(discussed previously) can indirectly contribute to better CSV limits [68].

The combination of high-statistics EIC measurements and constraints could thus yield
important information on the fundamental charge symmetry.
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1.5 Flavor Separation from Semi-Inclusive DIS

Elke-Caroline Aschenauer, Marco Stratmann

1.5.1 Motivation and Method

The strangeness distribution and a possible asymmetry between strangeness and anti-
strangeness densities have been identified as two of the most compelling open questions in
hadronic physics which are difficult to address without an EIC; see Sec. 1.4.

Existing constraints in global fits come predominantly from neutrino (semi-)inclusive
DIS [48, 42] but both s+(x) ≡ s(x) + s̄(x) and s−(x) ≡ s(x) − s̄(x) are still only poorly
known [46, 22, 72]. Figure 1.9 summarizes recent uncertainty estimates for s± from three
global QCD fits.
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Figure 1.9. Uncertainty bands for s± at Q2 = 2GeV2 for recent fits. Figure taken from [72].

Semi-inclusive DIS with identified charged kaons is expected to be a viable method to
determine the elusive strange quark density and perhaps a possible asymmetry s− exper-
imentally. One can access basically the same a broad kinematic range in x and Q2 as in
inclusive DIS. The HERMES collaboration has successfully performed such a measurement
in the range 0.02 < x < 0.6 at an average Q2 of about 2.5GeV [73]. Compared to s(x)
from most global PDF fits, they find a softer strangeness distribution in their LO analysis.
Clearly, more data in a larger range of x and Q2 are necessary to clarify this issue.

The SIDIS measurement relies, however, on a good understanding of the hadronization
mechanism which is encoded in non-perturbative, collinear parton-to-hadron fragmentation
functions (FFs) DH

i if factorization is assumed in a pQCD calculation. Like PDFs, FFs
are extracted from global QCD analyses. One can resort to a wealth of single-inclusive
hadron production data obtained at different c.m.s. energies in e+e− annihilation and in
ep and pp (pp̄) scattering. Pion FFs are currently known best with uncertainties of about
5÷ 10% depending on the flavor of the fragmenting parton [74]. Ambiguities for kaon FFs
are about twice as large [74]. Significant progress on the quality of fits to FFs is expected
once data from B factories and the LHC become available. Also, NNLO evolution kernels
are expected to become available in the near future [75], which will help to reduce theoretical
scale ambiguities further.

All relevant SIDIS cross sections are known at least to NLO accuracy [76, 77, 78, 79],
and the analytical expressions are relatively simple and easy to implement into global fits of
PDFs, see, e.g., [80]. Schematically the unpolarized SIDIS cross section for the production
of a hadron H in the current fragmentation region reads

dσH

dxdydz
=

2πα2

Q2

[
1 + (1− y)2

y
2FH1 (x, z,Q2) +

2(1− y)

y
FHL (x, z,Q2)

]
(1.5)
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with x and y denoting the usual DIS variables, −q2 = Q2 = Sxy, and z = pH · p/p · q the
momentum fraction taken by the hadronH. Assuming factorization, the structure functions
FH1,L at a factorization scale µ ∼ Q can be expressed as convolutions of non-perturbative

PDFs fj(x, µ) and FFs DH
i (z, µ) with short-distance Wilson coefficients C1,L

ij (x, z, µ).

1.5.2 Expectations for Charged Kaon Production at an EIC

Figures 1.10 and 1.11 show expectations for the K+ and K− production cross section
(1.5) at NLO accuracy, respectively, as a function of x in bins of Q2, using 0.01 ≤ y ≤ 0.95
and

√
S = 70.7GeV (i.e., 5× 250 GeV collisions at an EIC). To reduce uncertainties from

kaon FFs, z is integrated in the range 0.2 ≤ z ≤ 0.8. The DSS set [74] is used. The solid
lines are the statistical average over 100 replicas in the NNPDF2.0 neural network analysis
[47] and the dashed lines reflect the corresponding PDF uncertainties.

Also shown in Figs. 1.10 and 1.11 are simulations based on the PYTHIA [81] event
generator in the same kinematic range. Here, the CTEQ6L set of PDFs [82] has been used.
The hadronic final state was simulated using JETSET based on LEP fragmentation settings
and a suppression of ss̄ pair production from the vacuum of 0.3 [PARJ (2)] compared to
uū or dd̄ creation. The results turn out to be remarkably similar to the NLO calculations
based on collinear factorization despite the very different way hadronization is implemented
in PYTHIA and the fact that only LO matrix elements are used, albeit matched with a
parton shower. This gives us quite some confidence that the PYTHIA generator can be used
to provide very reasonable estimates of yields for DIS-type processes at an EIC. In addition,
it also tells us that the current DSS kaon FFs are doing a good job and include a realistic
amount of “strangeness suppression”. Already after one month of operation, corresponding
to an integrated luminosity of about 20fb−1 the measurement will be limited by systematic
uncertainties which need to be carefully studied. The statistical accuracy is significantly
better than indicated by size of the points shown in the figures.

If one compares the results for K+ and K− in Figs. 1.10 and 1.11 one finds hardly any
difference at the smallest x values in each Q2 bin. At larger x values, where s− is largest,
see Fig. 1.9, the yields for K− are significantly lower than the ones for K+. An EIC should
be able to provide accurate measurements of both s+ and s− in a broad kinematic range
up to Q2 values of a few hundred GeV.

Within the neural network approach it is in principle fairly straightforward to quantify
by how much a new data set will reduce present PDF uncertainties. The original ensemble of
replicas is constructed in such a way that all have the same weight. Information contained
in new data sets can be incorporated without the need for refitting by reweighting each
PDF in the ensemble by the probability that it agrees with the new data [47, 53]. Sets with
small weights will become largely irrelevant in statistical averages. If too many sets receive
small weights the accuracy of results from the new PDF ensemble will deteriorate, and the
reweighting procedure becomes unreliable, necessitating a full refit. One reason for this to
happen is, that the new data set contains significant new information which leads to much
smaller uncertainties in certain kinematic regions. This is exactly what happens when one
applies the reweighting method to the SIDIS data shown in Figs. 1.10 and 1.11 even if one
assigns a fictitious O(5%) systematic uncertainty to each data point.

There are many other things which can be studied in SIDIS at an EIC. For instance,
one can also bin in z which makes the measurement more sensitive to the shape of the
kaon FFs. This will provide a more stringent check whether FFs are universal functions
in e+e−, ep, and pp scattering. Pion yields will allow one to study other interesting and
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relevant PDF combinations such as ū(x) − d̄(x). Similar measurements can be also done
with longitudinally polarized beams which will give access to the helicity-dependent quark
and antiquark densities, see Sec. 1.11. Detailed quantitative studies including more time-
consuming global QCD analyses with simulated SIDIS data for various c.m.s. energies are
planned to quantify the impact of such measurements on our understanding of the spin
and flavor structure of the nucleon. These studies should include also some estimates of
the various sources of systematic uncertainties, like detector resolution, uncertainties in the
particle identification, luminosity, and polarization measurements, details on these can be
found in Sec. 7.3.
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Figure 1.10. SIDIS cross section for K+ production at NLO accuracy using NNPDF2.0 PDFs [47].
The dashed lines denote the PDF uncertainties. Also shown (points) are the results from a PYTHIA
simulation (see text).
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Figure 1.11. Same as in Fig. 1.10 but now for K− production.
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1.6 The Longitudinal Structure Function FL at an EIC

Elke C. Aschenauer, Ramiro Debbe, Marco Stratmann

1.6.1 Motivation and Current Status of FL Results

The DIS reduced cross section σr for one-photon-exchange can be represented as the
sum of two independent structure functions F2 and FL as follows

σr ≡
Q4x

2πα2
emY+

d2σ

dxdQ2
= F2(x,Q

2)− y2

Y+
FL(x,Q

2) (1.6)

where Y+ ≡ 1 + (1− y)2 depends on the inelasticity y = Q2/(sx) of the process.
FL is proportional to the cross section for probing the proton with a longitudinally

polarized virtual photon and vanishes in the naive Quark Parton Model due to helicity
conservation. Starting from O(αs), the longitudinal structure function differs from zero,
receiving contributions from both quarks and gluons.

At low x, the gluon contribution due to photon-gluon fusion greatly exceeds the quark
contribution. Therefore, measuring FL provides a rather direct way of studying the gluon
density and QCD dynamics at small x, i.e., the transition to the high parton density regime.
Measurements can be used to test several phenomenological and QCD models describing
the low x behavior of the DIS cross section, including color dipole models [83, 84, 85] and
expectations from DGLAP fits performed at NLO and NNLO accuracy of QCD. Possible
deviations from the DGLAP behavior in the small x, low Q2 region can be studied by
varying kinematic cuts to the data used in the fits.

The longitudinal structure function, or the equivalent cross section ratio R = σL/σT =
FL/(F2 − FL), was first measured in fixed target experiments and found to be small at
large x, x ≥ 0.01, see, e.g., Ref. [86]. H1 [30] and ZEUS [87] have recently combined their
measurements of σr for three different proton beam energies [20], Ep = 920, 575, and 460
GeV, see Fig 1.5 in Sec. 1.3. The extracted FL, shown in Fig. 1.12, covers a wide kinematic
range, spanning 2.5 < Q2 < 800GeV2 and 0.0006 < x < 0.0036. As can be seen, FL
is clearly non-zero, and there is some mild tension with the HERAPDF1.0 fit based on
DGLAP evolution [20] at the lowest values of x and Q2 where one expects non-linear effects
to be relevant; see Chapter 5 on eA physics. In this regime, predictions from the dipole
model provide a better description of the data. However, the achieved statistical precision
of the combined H1 and ZEUS measurement is too limited to be conclusive.

1.6.2 Measurement Strategy and Experimental Challenges

The measurement of FL relies on an accurate determination of the variation of the
reduced cross section (1.6) for common values of the (x,Q2) bin centers at different beam
energies, i.e., c.m.s. energies

√
s. Relative normalizations and systematic uncertainties of

the different data sets for σr have to be well under control.
FL and F2 can be extracted simultaneously from σr by plotting σr for fixed values of

(x,Q2) as a function of y2/Y+. FL is then determined as the slope of the line fitted to the
measurements of σr for different values of

√
s: FL(x,Q

2) = −∂σr(x,Q2, y)/∂(y2/Y+). Like-
wise, F2 is the intercept of the fitted line with the y axis: F2(x,Q

2) = σr(x,Q
2, y = 0). All

measurements at HERA are observed to be consistent with the expected linear dependence
[30, 87, 20]. At any given value of Q2, the lowest possible x values are only accessed by
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Figure 1.12. Combined H1 and ZEUS extraction of FL [20] as a function of Q2 averaged over x
compared to the HERAPDF1.0 fit and predictions from dipole models.

the highest
√
s, and the slope related to FL cannot be determined. Hence, the Rosenbluth

separation limits the kinematic coverage of FL at small x. At larger values of x, measure-
ments of σr for various different

√
s are available and the slopes can be straightforwardly

extracted.
The contribution of FL to the reduced cross section (1.6) can be sizable only at large

values of y. For low values of y, σr is very well approximated by the structure function F2

[30, 87, 20]. Low y data can be used to normalize data sets taken at different c.m.s. energies
relative to each other. For measurements at high y the reconstruction of the DIS kinematics
using the scattered lepton, the so called “electron method”, has the best resolution and was
used at HERA.

In the large y region, y & 0.5, and low x the electron method is prone to large QED
radiative corrections which can reach a level of more than 50% of the Born cross section.
Studies based on the DJANGO [88] and HECTOR [89] programs for HERA kinematics
show that the largest radiative contributions arise because of hard initial-state radiation
(ISR) from the incoming lepton [30]. The radiated photon usually escapes in the beam pipe
and the E − Pz of the event is reduced. Therefore, hard ISR can be efficiently suppressed
to a level of about 10% at HERA with only a slight residual dependence on y by requiring
E − Pz close to the nominal value of twice the electron beam energy implied by energy-
momentum conservation [30]. E − Pz can be reconstructed from the measured final-state
particles. At the highest y, y & 0.7, corrections increase due to QED Compton events which
can be rejected by certain topological cuts. All cross section measurements at HERA are
corrected for QED radiation up to O(αem) using HERACLES [90] which is included in the
DJANGOH package; further details can be found in Sec. 7.3.

Kinematically, for low Q2, large values of y correspond to low energies of the scattered
lepton. Selecting high y events is thus further complicated due to a possibly large back-
ground from energy deposits of hadronic final state particles leading to fake electron signals.
However, the cut on E−Pz also suppresses such type of backgrounds. In addition, electron
tracking, which is foreseen for an EIC detector, will largely eliminate fake electron signals
as an additional cut on E/p ≃ 1 can be placed to identify the lepton.

Extractions of FL are certainly the most demanding inclusive structure function mea-
surements but an EIC will have many advantages compared to HERA, in particular, the
possibility to vary

√
s in a wide range for high luminosity collisions. Also, much better

detector capabilities, for instance, concerning the electron, are foreseen. One can also take
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Figure 1.13. Projected uncertainties for an extraction of F2 and FL from a Rosenbluth separation
for data taken at three different c.m.s. energies. Also shown are theoretical expectations at NNLO
based on the ABKM09 set of PDFs [19] (see text).

advantage of all the analysis techniques and Monte Carlo codes developed for HERA to
deal with QED radiative corrections.

1.6.3 Expectations for the EIC

Pseudo-data for the reduced cross section (1.6) have been generated using the Monte
Carlo generator LEPTO [91] for the first stage of an EIC (5 GeV electrons on 100, 250,
and 325 GeV protons). The CTEQ6L set of PDFs [82] has been used in the simulations.
The hadronic final state was simulated using JETSET [81]. We note that the current
pseudo-data do not include any simulations of QED radiative effects and reflect statistical
uncertainties which could be achieved by running one month at each of the beam energy
settings with the projected luminosities for eRHIC. In addition, a 1% systematic uncertainty
is added.

Figure 1.13 shows the structure functions FL and F2 extracted from the pseudo-data
of the reduced cross section by means of a Rosenbluth separation, requiring a minimum
scattered lepton momentum of 0.5 GeV, Q2 > 1GeV2, 0.01 < y < 0.90, and 0.5◦ < θ <
179.5◦. To guide the eye, the expected uncertainties are placed on theoretical expectations
for F2,L at NNLO accuracy using the ABKM09 set of PDFs [19]. One should note that
these PDFs use only data with Q2 > 2.5GeV2 in their fit and, hence, the behavior of F2,L

in the lowest Q2 bin must be taken with a grain of salt and are only for illustration. The
extracted uncertainties take detector smearing of the scattered electron momentum into
account. The momentum resolution was taken from ZEUS, i.e., δp/p = 0.85%+ 0.25%× p.
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1.6.4 Summary and To-Do Items

Like for most inclusive and semi-inclusive measurements at the EIC, an extraction of
FL will be dominated by systematic uncertainties which need to be thoroughly addressed.
This is work in progress. It is planned to study the unfolding of FL in great detail both
in ep and eA scattering, including QED radiative corrections and a full simulation of the
detector. This will elucidate to what extent the methods developed and used at HERA
[30, 87, 20] are suited for high precision measurements of FL aimed at the EIC. In any case,
it will be crucial to design the relevant detector components very carefully to optimize

• the luminosity measurement and its relative calibration for running at different c.m.s.
energies,

• the lowest lepton momentum we can detect (0.5 GeV would be desirable),

• the identification of the scattered lepton to suppress potential background from misiden-
tified hadrons,

• the resolution in momentum and scattering angle of the scattered lepton, and

• the acceptance for the hadronic final state to suppress events which have a photon
radiated from the incoming or outgoing lepton as well as quasi real photo-production
events.

Details on the design of the detector are given in Sec. 7.3. Also, it will be possible to
extract FL from the EIC data alone, but the combination of the EIC reduced cross section
measurements with the ones from HERA may provide an even better lever arm in a larger
x,Q2 range. This needs to be investigated.

Finally, we note that even for statistically very precise measurements of σr, the Rosen-
bluth separation of FL, i.e., the determination of the slope with respect to y2/Y+, can lead
to significantly larger uncertainties if the measured values of σr have very similar y2/Y+.
This source of uncertainties needs be minimized by optimizing the binning in y and the set
of different c.m.s. energies

√
s. Studies is this direction are ongoing as well.
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1.7 Theoretical Status of Inclusive Heavy Quark Production
in Deep-Inelastic Scattering

Sergey Alekhin, Johannes Blümlein, Sven-Olaf Moch

1.7.1 Introduction

Heavy quark production gives a sizable contribution to the unpolarized DIS structure
functions at small x, see, e.g., [92, 93, 94, 95]. For the foreseen EIC kinematics of DIS it
yields up to 10% of the inclusive cross section. Therefore in order to employ the full potential
of the small-x EIC data for phenomenology one has to provide an accurate theoretical
description of heavy-quark electro-production within perturbative QCD.

For the light-parton contributions to DIS structure functions a theoretical accuracy of
O(few %) is achieved, with the complete QCD corrections up to 3-loops being available,
see also Sec. 1.2. In the case of the fixed-flavor-number scheme (FFNS) the heavy fla-
vor corrections are available only to O(α2

s). This can be a bottleneck for the analysis of
high-precision data. Therefore, progress in the higher-order calculations of heavy-quark-
production coefficient functions is quite important for the EIC phenomenology. For the
variable-flavor-number scheme (VFNS) the massive quarks are considered on the same foot-
ing as the massless ones. Furthermore, the heavy-quark PDFs appearing in the VFNS are
derived from the light-parton PDFs and the appropriate massive operator-matrix elements
(OMEs). The VFNS coefficient functions are known up to 3-loop accuracy due but the mas-
sive OMEs are only available to the NLO corrections. This limits the theoretical accuracy
of the VFNS as well.

In the following we summarize the state-of-art in calculations of the NNLO corrections
to the unpolarized heavy-quark coefficient functions and to the massive OMEs. The FFNS
and VFNS are compared to the available HERA data and to each other. We also discuss
the implementation of the running-mass scheme for the NLO and NNLO heavy-quark coef-
ficient functions and the resulting improvement in the perturbative stability related to this
definition.

1.7.2 General framework

The heavy flavor corrections to deep-inelastic structure functions emerge in the Wilson
coefficients for the respective processes, i.e., they contribute in terms of virtual and final
state effects. Heavy quarks have no strict partonic interpretation since partons are massless,
and by virtue of this, infinitely long lived, with the possibility to move collinear to each
other. Adopting this picture, heavy quarks can be singly or pair produced from massless
partons and the gauge bosons of the Standard Model as final states. This description is
called FFNS, which is the genuine scheme in any quantum-field theoretic calculation. The
DIS structure functions Fi(x,Q

2) obey the representation

Fi(x,Q
2) =


 ∑

k=ql,g

[
Cki,light(x,Q

2/µ2) + Cki,heavy(x,Q
2/µ2,m2

h/µ
2)
]
⊗ fk(µ2)


 (x) , (1.7)

where ql and g label the massless quarks and gluons, fk(µ2) are the PDFs, Cki,light(heavy)
the massless (massive) Wilson coefficients, h = c, b the charm and bottom quarks, and ⊗
denotes the Mellin convolution. Other approaches derive from this description.
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In case of unpolarized DIS the LO contributions were given in [96, 97, 98, 99] and the
NLO corrections were calculated in semi-analytic form in [100, 101]. For asymptotic values
Q2 ≫ m2

h one may obtain the massive Wilson coefficients in analytic form. This is due to
a factorization theorem [102] relating the massive Wilson coefficients Cki,heavy to universal
massive OMEs and the massless Wilson coefficients [77, 6, 103, 10]. As comparisons up to
NLO showed [102], these representations are valid for the structure function F2(x,Q

2) if
Q2/m2

h
>∼ 10. To O(α2

s) the Wilson coefficients were obtained in [102, 104, 105] at general
values of the Mellin variable N . A first contribution to the 3-loop corrections was given in
[106] by the O(α2

sε) terms which contribute to the logarithmic terms O(lnk(Q2/m2
h)), k =

1, 2, 3, in O(α3
s). A large number of even Mellin-moments for all unpolarized 3-loop massive

OMEs have been calculated in [107] up toN = 10 . . . 14 depending on the respective channel.
For the structure function FL(x,Q

2) the asymptotic 3-loop corrections were given in [108]
for general values of N . However, they are valid at 1% accuracy at much higher scales of
Q2/m2

h
>∼ 800 only. All logarithmic terms at O(α3

s) for the heavy flavor Wilson coefficients
contributing to the structure function F2(x,Q

2) are known [109, 110]. More than this,
all the contributions to the constant terms emerging from lower order contributions by
renormalization have been calculated, cf. [107] for details. Due to the size of the constant
contributions phenomenological applications for the kinematic range available at HERA
and the EIC cannot be based on only the logarithmic contributions. QCD corrections to
charged current heavy flavor production have been considered in [111, 112, 113].

1.7.3 FFNS and VFNS

The logarithmic contributions in the heavy flavor Wilson coefficients ∝ lnk(Q2/m2
h)

never become large enough in the kinematic region of HERA or the EIC that their resum-
mation would be required [114]. Nonetheless one may introduce a description changing the
number of light flavors effectively, which refers to the universal contributions to the heavy
flavor Wilson coefficients, consisting of the twist-2 parton densities and the massive OMEs
[115, 107, 116, 117]. This requires the knowledge of also the gluonic OMEs to 3-loop order
[107].

By matching at typical scales µf one performs the transition from nf to nf +1 massless
flavors using the asymptotic relations. In this way one may introduce a heavy quark density.
The corresponding representation, which is obtained in terms of a reformulation of the
FFNS, is called zero mass variable flavor number scheme (ZMVFNS). It is unique up to
the choice of the matching point(s). An important issue is the choice of the scale µf , for
which very often µf ≃ mh is used. In Ref. [118] it was shown, however, comparing exact
and flavor number matched calculations that this scale is process dependent and often very
different scales have to be chosen. In this context various problems arise. Because of the
value of the charm to bottom mass ratio, m2

c/m
2
b ∼ 1/9, power corrections due tom2

c usually
cannot be neglected at scales µ2 ≃ m2

b . Therefore, sequential decoupling of both charm and
bottom quarks is problematic. Furthermore, starting at O(α3

s), Feynman diagrams with
both bottom and charm quarks contribute, which cannot be attributed to either the charm
or the bottom quark PDF [119]. The description of the FFNS, on the other hand, is still
possible. Therefore, representations based on the ZMVFNS remain approximations to which
one may refer for specific applications. Furthermore, it applies only for the asymptotic case
Q2 ≫ m2

h.

For the description of data one would like to have a smooth description of the structure
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Figure 1.14. Comparison of F c2 computed in different schemes to H1 and ZEUS data: GMVFNS in
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lines). The vertical dotted line denotes the position of mc = 1.43 GeV. Taken from Ref. [19].

functions at both large and low values of Q2, which is called the general mass variable
flavor number scheme (GMVFNS). Here, a smooth interpolation is provided by the BMSN
scheme [116, 19] given by

F h,BMSN
2 (nf + 1) = F h,exact2 (nf ) + F h,ZMVFNS

2 (nf + 1)− F h,asymp
2 (nf ) , (1.8)

where exact corresponds to [100, 101], asymp to its asymptotic form for Q2 ≫ m2
h, and

ZMVFNS to the value in the zero mass variable flavor scheme. In Fig. 1.14 the transition is
shown for values of x between 0.00018 and 0.03 for the kinematics at HERA according to
(1.8) (see Ref. [120] for phenomenological variants of the GMVFNS).

1.7.4 The massive NNLO corrections and the running mass

The radiative corrections to the massive Wilson coefficients are known to be sizable. In
particular, near the production threshold s ≃ 4m2

h, where large Sudakov double logarithms
αks ln

2k(1 − 4m2
h/s) dominate at each order, one may wish to apply resummations; see

Refs. [121, 122, 123] for details.
Another aspect at higher orders concerns the definition of the heavy quark mass, since

it is a scheme dependent quantity. It is of particular interest to investigate which choice
of scheme leads to the best convergence of the perturbative series. Upon conversion of the
conventionally used on-shell (pole) mass for heavy quark DIS to the running mass mh(µ) in
the MS-scheme, one observes a considerable improvement of scale stability and convergence
of the perturbative expansion. The latter aspect is demonstrated in Fig. 1.15. Here one uses
the Wilson coefficients to NLO and refers to the approximate result valid in the threshold
region [121, 122, 123] to give an estimate for the NNLO value, see Ref. [124].
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Figure 1.17. The 1-σ error bands (shaded area) for our NNLO 4-flavor (left panel) and 5-flavor (cen-
tral and right panels) s, c, and b quark distributions in comparison to the corresponding MSTW2008
NNLO PDFs [22] (dashed lines); from Ref. [19].

The phenomenological impact of the mass scheme re-definition was checked for the
ABKM fit of Ref. [19]. In a variant of this fit [124] the heavy-quark electro-production
was considered in the running mass scheme and with the approximate NNLO corrections
taken into account. mc was fitted to the DIS data simultaneously with the PDG world
average [3] added to the fit as an additional constraint. In this way the value of mc(mc) =
1.18±0.06 GeV was obtained. The corresponding predictions for the semi-inclusive structure
function F cc2 are in good agreement with the preliminary HERA data in a wide kinematical
region, cf. Fig. 1.16. This result gives an additional justification of the validity of the FFNS
up to Q2 ∼ 1000 GeV2, i.e., in the entire kinematic range relevant for an EIC.

1.7.5 Heavy-flavor PDFs

For applications at high-energy hadron colliders, schemes with 4- and 5-light flavors need
to be considered. The necessary charm- and bottom PDFs are generated perturbatively.
In Fig. 1.17 the results for the s, c, and b quark flavors are shown at NNLO accuracy as
determined in two global fits to the world data [19, 22]. The 1-σ error bands correspond
to the analysis of [19]. The central values of the MSTW08 distributions turn out to lie
below those found in the ABKM09 analysis for the c and b quark distributions in the
whole kinematic range of HERA due to the smaller gluon density [22]. The strange quark
distribution still exhibits large errors; see also Sec. 1.5. Measurements at the EIC are
expected to considerably improve both the strange and charm quark densities thanks to the
much higher luminosities than at HERA.
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1.8 F2,L(charm) at an EIC

Elke C. Aschenauer, Marco Stratmann

Section 1.7 gave an outline of the theoretical status of heavy flavor contributions to DIS
structure function and a comparison to HERA data. The mass mh of the heavy quark
introduces extra theoretical complications including the need for a smooth prescription to
cover both the threshold (Q ≃ mh) and the asymptotic (Q ≫ mh) region, the scheme used
for mh (on-shell or MS), and the actual value of mh used in the calculations.

Detailed experimental results from the EIC, in particular, for the so far unmeasured
charm contribution to FL, will help to refine the current theoretical understanding. In
the entire kinematic domain of the EIC one expects the FFNS to be applicable for F c2 ;
see Sec. 1.7. Differences between the exact, massive FFNS results, and the ZMVFNS are
expected to be much more pronounced for F cL, see, e.g., Fig. 7 in [114], than for F c2 shown
in Fig. 1.14.

The extraction of F cL requires a Rosenbluth separation and should proceed along very
similar lines as discussed already in Sec. 1.6. The extra experimental complication is the
requirement to detect a charm quark in the final state. A quantitative feasibility study is
still ongoing. We note that the detection of charmed mesons is important also for other
physics topics. Therefore the design of the detector foresees to have particle identification
for pions and kaons to fully reconstruct charmed mesons via their Kπ decay channel. In
addition, a micro-vertex detector is expected to provide a vertex resolution of 5µm to
separate charmed mesons from B- and other mesons by measuring a displaced decay vertex.
Using such techniques for a measurement of FL requires to detect a second decay lepton
with a displaced vertex in addition to the scattered lepton. This, together with good lepton
identification, should provide a high charmed meson detection efficiency. The required
luminosities for a precise measurement of F c2,L will scale with the achieved charm detection
efficiency of the EIC detectors and the smaller reduced cross section for charm as compared
to the fully inclusive σr studied in Sec. 1.6. To illustrate the relative size of F cL and F c2 we
present in Fig. 1.18 some theoretical expectations at NLO accuracy based on the ABKM
set of PDFs [19]; see Sec. 1.7 for details.
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Figure 1.18. Expectations for F c2,L(x,Q
2) in bins of Q2 using the ABKM set of PDFs [19].
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1.9 Probing Intrinsic Charm at the EIC

Marco Guzzi, Pavel Nadolsky, Fredrick Olness

In the variable flavor number (VFN) factorization scheme [126, 127, 68], heavy quark
flavors are actively included in the PDF evolution via gluon splitting to a heavy quark pair
g → QQ̄. While the heavy quark PDF fQ(x, µ) is often taken to vanish below the mass
threshold (µ < mQ), there is the possibility that the proton contains non-vanishing heavy
quark constituents even for scales below mQ; this component of the heavy quark PDF is
identified as the intrinsic parton distribution [56, 57, 128, 129], in contrast to the extrinsic
distribution generated by gluon splitting g → QQ̄.

While we can introduce intrinsic parton distributions for both charm and bottom quarks,
we will focus here on the intrinsic charm (IC). Operationally, the total charm PDF is then
composed as fc(x, µ) = f extc (x, µ) + f intc (x, µ). For the extrinsic component, we generally
take the boundary condition f extc (x, µ) = 0 for µ < mc, i.e., we do not need to assume an
initial functional form for f extc , as it is determined purely by the gluon evolution.

Conversely, for the IC component f intc we do need to assume a functional form. Here,
we consider two typical shapes of f intc at the initial scale µ = mc, assuming mc = 1.3 GeV.

• In the BHPS model [56, 57, 130], the intrinsic charm is concentrated at large x.

• In sea-like models [129], the intrinsic charm is spread over all x values.

Sample distributions of IC PDFs were obtained in a global QCD fit of hadronic data [129].
We display them in Fig. 1.19. In these models, the momentum fraction carried by the charm
can be varied in some range. Roughly, an intrinsic momentum fraction of 2% or 3% is at
the outer limit of what is allowed in the context of a global fit.

Figure 1.19. Left, middle: charm PDFs for the BHPS model, at µ = 2 and 100 GeV. The upper
dashed curve is for a momentum fraction of 2%, and the lower for 0.57%. The shaded band is the
CTEQ6.5 PDF uncertainty. Right: charm PDFs for the sea-like model. The upper curve is for a
momentum fraction of 2.4%, and the lower for 1.1%. Figs. are taken from [129].

For heavy quark production in the threshold region (µ ∼ mQ), the magnitude of the
intrinsic component will be large on the relative scale compared to the extrinsic contribution.
At higher µ scales, the DGLAP evolution will increase the extrinsic component via g → QQ̄
splitting. However, the distinctive shape of the BHPS distribution, with its characteristic
large-x enhancement, remains clearly evident even at much higher scales µ≫ mc.

We now consider two different c.m.s. energies for an EIC [131] and investigate the
degree to which one can distinguish the IC component based on measurements of the charm
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Figure 1.20. Charm contribution to the reduced NC e−p DIS cross section at
√
s = 45 and 105 GeV.

For each IC model, curves for charm momentum fractions of 1% and 3.5% are shown. For comparison
we display the number of events dNe/dx for 10 fb−1, assuming perfect charm tagging efficiency.

contribution to the DIS cross section. Alternatively, the IC can be searched for by measuring
the longitudinal structure function FL or angular distributions [132]. In Fig. 1.20 we display
the reduced cross section σr,c for semi-inclusive DIS charm production at an EIC. The
reduced charm cross section is defined as in Eq. (1.6). The probed ranges of y are displayed
in the figures.

The number of events for a conservative integrated luminosity L = 10 fb−1 has been
computed as dNe/dx = L〈dσc/dx〉 where 〈dσc/dx〉 is the average cross section in a Q bin
of size 0.15 GeV, evaluated at NLO accuracy. The shaded band represents the error on the
cross section induced by the CTEQ6.6 PDF uncertainty [43].

For both BHPS and sea-like IC, we observe that the cross sections significantly exceed the
nominal CTEQ6.6 values. While a momentum fraction of 3.5% is easily distinguished, even
the intrinsic charm models with 1% can be resolved with moderate integrated luminosities.
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1.10 Status of Helicity-Dependent PDFs and
Open Questions to be Addressed at an EIC

Rodolfo Sassot, Marco Stratmann

1.10.1 Introduction

Helicity-dependent or polarized PDFs (pPDFs) tell us precisely how much quarks and
gluons with a given momentum fraction x tend to have their spins aligned with the spin
direction of a nucleon in a helicity eigenstate. Their knowledge is essential in the quest
to answer one of the most basic and fundamental questions in hadronic physics, namely
how the spin of a nucleon is composed of the spins and orbital angular momenta of its
constituents.

The nucleon spin structure can be best understood in high-energy scattering experiments
where quarks and gluons behave as almost free particles at scales µ≫ ΛQCD. The relevance
of pPDFs or research in spin physics in general is reflected in more than a dozen vigorous
experimental programs in the wake of the unexpected finding that only very little of the
proton spin is actually carried by its three valence quarks almost twenty-five years ago.
The experiments have measured with increasing precision various observables sensitive to
different combinations of quark and gluon polarizations in the nucleon. This progress was
matched by advancements in corresponding theoretical higher order calculations in the
framework of pQCD and phenomenological analyses of available data. Potentially large
sea quark and/or gluon polarizations were initially thought to be ways to account for the
“missing” proton spin, but at the same time, both turned out to be challenging to access
experimentally.

The most comprehensive global fits include all available data taken in spin-dependent
DIS, semi-inclusive DIS (SIDIS) with identified pions and kaons, and proton-proton colli-
sions. They allow for extracting sets of pPDFs consistently at NLO accuracy along with
estimates of their uncertainties [25, 26]. Contributions from the orbital angular momenta of
quarks and gluons completely decouple from such type of experimental probes and need to
be quantified by other means. Here, transverse momentum-dependent PDFs or generalized
PDFs appear to be the most promising approaches which will be discussed elsewhere in
Chapters 2 and 3, respectively.

Despite the impressive progress made in the past couple of years both experimentally
and theoretically many fundamental questions related to the proton’s helicity structure still
remain unanswered and shall be summarized below; addressing them and providing answers
is a prime target for an EIC.

Present fixed-target experiments suffer from their very limited kinematic coverage in x
and Q2, which is insufficient to precisely study, for instance, QCD scaling violations for the
polarized DIS structure function g1(x,Q

2) which in turn can be linked to the x dependence
of the polarized gluon density ∆g(x). There are numerous other opportunities for an EIC
to further our understanding of the nucleon spin structure which will be listed below and
discussed in some details in Secs. 1.11, 1.12, and 1.13.

1.10.2 Current status of global pPDF fits - baseline for EIC projections

Unlike unpolarized PDF fits, where a separation of different quark flavors is obtained
from inclusive DIS data taken with neutrino beams, differences in polarized quark and
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Figure 1.21. COMPASS results [133, 134] for SIDIS spin asymmetries on a deuteron (left) and
proton target (right) compared to DSSV and DSSV+ fits (see text).

antiquark densities are at present determined exclusively from SIDIS data and hence require
knowledge of fragmentation functions. Recently published SIDIS data from the COMPASS
collaboration [133, 134] extend the coverage in x down to about x ≃ 5 × 10−3, almost an
order of magnitude lower than the kinematic reach of the HERMES data used in the DSSV
global analysis of 2008 [25, 26]. For the first time, the new results comprise measurements
of identified pions and kaons in the final state taken with a longitudinally polarized proton
target. Clearly, these data can have a significant impact on fits of pPDFs and estimates of
their uncertainties.

In particular, the COMPASS kaon data will serve as an important check of the validity
of the strangeness density obtained in the DSSV analysis, which instead of favoring a
negative polarization as in most fits based exclusively on DIS data, prefers a vanishing
or perhaps even slightly positive ∆s in the measured range of x. One reason for concern is
the dependence on fragmentation functions. Even though pion fragmentation functions are
rather well constrained [74] by data, kaon fragmentation functions suffer from much larger
uncertainties, and this could explain the unexpected result for ∆s obtained in the DSSV
analysis.

Figure 1.21 shows a comparison between the new SIDIS spin asymmetries from COM-
PASS [133, 134] and the DSSV fit of 2008 [25, 26]. Also shown is the result of re-analysis
at NLO accuracy based on the updated data set. This fit, henceforth called “DSSV+”,
will serve as baseline pPDFs when quantifying the potential impact of projected EIC data
on our knowledge of the nucleon spin structure in Sec. 1.11. The differences between the
original and the updated fit are hard to notice for both identified pions and kaons. In terms
of χ2 values, the original DSSV analysis amounts to 392 units for the original set of 467
data points used in the fit [74]. Adding both deuteron and proton data from COMPASS (88
points) it goes up to 456 and drops by about 4 units upon refitting (DSSV+), which is not
really a significant improvement for a PDF analysis in view of non-Gaussian theoretical un-
certainties. Recall that in the DSSV analysis a ∆χ2 ≃ 9 (corresponding to ∆χ2/χ2 = 2%)
was tolerated as a faithful, albeit conservative estimate of PDF uncertainties.

In Fig. 1.22 we compare the individual sea quark densities obtained in the original and
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Figure 1.22. DSSV and DSSV+ sea quark pPDFs and uncertainty bands at Q2 = 10GeV2. Also
shown is ∆g. The vertical lines indicate the x region constrained by RHIC pp data.

updated DSSV analyses. As can be seen, except for ∆s, the new central fits fall well within
the ∆χ2 = 1 uncertainty bands of DSSV. The gluon distribution is hardly affected by
the new SIDIS data. For DSSV+ we only give the new uncertainty bands (dashed lines)
referring to the ∆χ2/χ2 = 2% tolerance criterion.

Although it may seem that the new SIDIS data have little impact on the fit, this is not the
case if one studies individual χ2 profiles in more detail. Figure 1.23 shows the contributions
to ∆χ2 from various data sets against variations of the truncated first moments for ∆ū and
∆d̄ in the range 0.001 ≤ x ≤ 1. Compared to the original DSSV fit one notices a trend
towards smaller net polarization as the best fit values shift towards zero. This is induced
by the new COMPASS SIDIS data. Both pions and kaons pull in the same direction and
to a common smaller best fit value. There is, however, some mild tension with older SIDIS
sets, but this is well within the tolerance of the fit and most likely caused by the different
x ranges covered by the different data sets. In addition, one finds a significant reduction in
the uncertainties, as determined by the width of the χ2 profiles at a given ∆χ2.

A much debated feature of the strangeness pPDF obtained in the DSSV fit is its unex-
pected small value at medium-to-large x which, when combined with a node at intermediate
x, still allows for acquiring a significant negative first moment at small x, in accordance
with expectations from SU(3) symmetry (hyperon decay constants F and D) and fits to
DIS data only (see, e.g., Ref. [23]). To investigate the possibility of a node in ∆s(x) further
we present in Fig. 1.24 the χ2 profiles for two different intervals in x: 0.001 ≤ x ≤ 0.02
and 0.02 ≤ x ≤ 1. Again, the new COMPASS SIDIS data have quite some impact on the
profiles but the central value for the combined range, 0.001 ≤ x ≤ 1, does not shift from its
original DSSV value.

The profiles in Fig. 1.24 clearly show that for 0.001 ≤ x ≤ 0.02 the result for ∆s is
a compromise between DIS and SIDIS data, the latter favoring much less negative values.
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For 0.02 ≤ x ≤ 1 everything is determined by SIDIS data and all sets consistently ask for
a small, slightly positive strange quark polarization. There is no hint of a tension with DIS
data as they do not provide a useful constraint at medium-to-large x. We note that at low
x, most SIDIS sets give indifferent results except the new COMPASS data which extend
towards the smallest x values so far and actually do show some preference for a slightly
negative value for ∆s. This exemplifies the need for measurements at small x. Clearly,
all current extractions of ∆s from SIDIS data show a significant dependence on kaon FFs,
see, e.g., Ref. [133, 134]. Better determinations of DK(z) are highly desirable, but should
be possible with forthcoming data from B-factories, DIS multiplicities, and LHC data. We
also notice that in the range x & 0.001 the hyperon decay constants, the so-called F and
D values, do not play a significant role in constraining ∆s as can be deduced from their
relative contribution to ∆χ2 in Fig. 1.24. Computations of SU(3) breaking effects in axial
current matrix elements [135, 136], and, more recently, also first lattice results for the first
moment of ∆s + ∆s̄ [137] point towards a sizable breaking of SU(3) symmetry. To study
its validity of one needs to probe ∆s(x) at smaller values of x at an EIC.
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An interesting recent development is that the LSS group produced an update of their
pPDF fit using for the first time DIS and SIDIS data simultaneously [28]. As in the DSSV
analysis they also utilize DSS fragmentation functions [74]. Their functional form is also
very similar to the one used in DSSV and DSSV+. As in their previous analyses they
carefully include target mass corrections and phenomenological higher twist corrections for
inclusive DIS data. Nevertheless, their obtained pPDFs are very similar to the best fit
of DSSV shown in Fig. 1.22. Their strange quark polarization also changes sign as in
DSSV but is overall slightly smaller in magnitude. LSS finds non negligible higher twist
corrections to inclusive DIS data, however, these conclusions are not fully shared by another
recent analysis of polarized DIS data [23]. Ref. [23] also provides an extraction of αs from
polarized DIS data. There are also interesting first attempts to perform a pPDF analysis
based on neural networks [138, 139] similar to successful global fits of unpolarized data [47].
This would provide independent estimates of pPDF uncertainties not biased by the choice
of a particular functional form.

1.10.3 Open Questions

The status of pPDFs outlined above will likely not change much until the time of EIC
operations. Most of the remaining, compelling open questions in spin physics related to
pPDFs will be still with us and can be only addressed by extending the kinematic coverage
to smaller values of x; see the items listed below.

Existing experiments, like PHENIX and STAR at RHIC, will continue to add data in
the next couple of years. Parity-violating, single-spin asymmetries for W boson produc-
tion should reach a level where they help to constrain ∆u, ∆ū, ∆d, and ∆d̄ at large x,
0.07 ≤ x ≤ 0.4 at scales Q ≃ MW much larger than typically probed in SIDIS [140]. Mea-
surements of double spin asymmetries for di-jets in pp collisions at 500GeV should improve
the current constraints on ∆g(x) and extend them towards somewhat smaller values of x.
The strangeness polarization is, however, very hard to access in polarized pp collisions. In
the future, JLab12 will add very precise DIS data at large x. They will allow us to chal-
lenge ideas like helicity retention [141, 142] which predict that ∆f(x)/f(x) → 1 as x → 1.
Currently, only ∆u/u exhibits this trend, while ∆d/d remains negative up to x ≃ 0.6.

We expect an EIC to make significant contributions on the following topics:
Polarized gluon density ∆g(x): precise data for the DIS structure function F2 in a

broad kinematic range in x and Q2 from HERA provide the world’s best and theoretically
cleanest constraint on the unpolarized gluon density; see Sec. 1.3. One of the most important
results of HERA was to establish the strong rise of the gluon density at small x which could
not be anticipated from previous fixed-target results.

Figure 1.25 summarizes the current situation for polarized DIS. The kinematic coverage
is limited to the fixed-target regime. There are no data below x ≃ 0.005, and the lever-arm
in Q2 is very limited, in particular, for the smallest x values. As a consequence, ∆g(x) is
basically unconstrained at small x as is reflected in the large uncertainty band shown in
Fig. 1.22. There are theoretical arguments that ∆g(x) ≃ xg(x) at small x [141] but they
cannot be verified experimentally due to the lack of data

The fact that current RHIC data favor a very small gluon density in 0.05 . x . 0.2
[25], perhaps with a node, also greatly complicates the determination of the first moment,∫ 1
0 ∆g(x,Q2)dx, which enters in the fundamental proton spin sum rule in its light-cone gauge
formulation [143, 144]. Since contributions to the moment largely cancel in the measured
x range, the unmeasured small x region may contribute significantly even up to one unit of
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~.
Precise measurements of the structure function g1(x,Q

2) in a wide kinematic range will
be a flagship measurement for an EIC. The polarized gluon density is strongly correlated
with QCD scaling violations, dg1(x,Q

2)/d lnQ2 ≃ −∆g(x,Q2), i.e., a large positive ∆g at
small x is expected to drive g1 towards large negative values for x ≃ 10−(3÷4). A precise DIS
measurement will also constrain the quark singlet density ∆Σ(x,Q2) and its first moment,
i.e., the total quark spin contribution to the proton spin, much better.

Complete flavor separation: given the significant impact present SIDIS data already
have in global analyses of pPDFs, it is easy to imagine that an EIC with its extended
kinematic coverage can turn SIDIS measurements into a precision tool for detailed studies
of ∆u, ∆ū, ∆d, ∆d̄, ∆s, and ∆s̄. For instance, a precise determination of a possible
asymmetry in the light quark sea, ∆ū(x) −∆d̄(x) will challenge expectations from model
calculations. Again, current QCD fits have revealed rather complicated functional forms
with possible nodes for the quark densities which need to be studied more precisely.

Prerequisites are a detector with excellent particle ID in an as large as possible portion
of phase space and an improved theoretical knowledge of FFs, in particular, for kaons. For
the latter, significant progress will be made by the time the EIC turns on. In any case,
there will be also plenty of opportunities to further constrain them at an EIC if necessary.

Novel electroweak probes in DIS: At large enough Q2 and with the envisioned
luminosities of up to 1034 cm−2s−1 an EIC has the unique opportunity to access polarized
electroweak structure functions via charged and neutral current DIS measurements. These
novel probes depend on various combinations of polarized quark PDFs and provide an
alternative way of separating different quark flavors for x & 10−2. Prerequisites are both
electron and positron beams to fully exploit charged current (CC) DIS, i.e., the pPDF
combinations probed in the exchange of W− and W+ bosons. Also, one needs to be able
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to reconstruct x and Q2 from the final state hadrons in the absence of a scattered lepton
in CC DIS.

Strangeness polarization, ∆s−∆s̄, and SU(3) symmetry: As mentioned already,
the surprisingly small strangeness density determined from SIDIS data has triggered a lot
of discussions recently. It is certainly of outmost importance to precisely map ∆s(x) and
∆s̄(x) down to sufficiently small values of x to reliably determine their first moments. If
SU(3) symmetry is approximately valid, one expects a significantly negative first moment
for strangeness; if, on the other hand, SU(3) symmetry is badly broken at a 20÷ 30% level,
∆s(x) can remain small and perhaps even slightly positive down to small x. Ideas have been
put forward that ∆s(x) and ∆s̄(x) may have opposite polarizations which could explain
the smallness of ∆s+∆s̄ in DIS but would result in a potentially sizable ∆s−∆s̄.

At an EIC there are different strategies to determine ∆s and ∆s̄. The most promising
one is through SIDIS production of charged kaons. Once K+ and K− yields are known
with high precision and uncertainties for kaon FFs are well understood one can attempt an
extraction of ∆s(x) and ∆s̄(x) in a large range of x. Alternatively, one can study charm
production in CC DIS with a polarized proton target. If one has electron and positron
beams available, the yields of D and D̄ mesons should be related to ∆s(x) and ∆s̄(x),
respectively.

Heavy flavor contributions to g1: for presently available data, any contribution
from heavy quarks, i.e., charm and bottom, can be safely ignored. From HERA we know,
however, that at sufficiently small values of x and large enough Q2, charm quarks can
contribute as much as 20÷ 25% to a measurement of F2. It is important to determine the
charm contribution to g1 at small x experimentally and to properly include it in future
global analyses. Since gc1 is mainly driven by photon-gluon-fusion it can be also a viable
probe of ∆g in the small x region.

Bjorken sum rule: the Bjorken sum rule is certainly one of the best known quantities
in perturbative QCD. Corrections up to O(α4

s) have been calculated [32]. There is also a
nontrivial connection to Adler’s D(Q2) function defined in e+e− annihilation through the
generalized Crewther relation [145, 32] involving the QCD β function which incorporates
the deviation from the limit of exact conformal invariance. It is certainly important and
legitimate to ask to what level of precision an EIC can verify this fundamental sum rule.

Since the Bjorken sum rule relates the moments of the g1 structure functions for protons
and neutrons, it first of all requires an “effective neutron target” such as Helium-3. Perhaps
the biggest challenge is then to develop a polarimeter to control its polarization with high
accuracy. Most likely this will be the limited factor for a measurement of the Bjorken sum.

In addition, the sum rule involves the first moments of g1, i.e., one has to worry about
possible extrapolation uncertainties for x → 0. However, since the Bjorken sum is a non-
singlet quantity, contributions from the small x region should be under control up to a
1÷ 2% once a measurement down to x ≃ 10−4 can be performed. At this level of accuracy
one may also expect contributions to matter which break isospin symmetry.
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1.11 Opportunities in Spin Physics at an EIC

Elke C. Aschenauer, Rodolfo Sassot, Marco Stratmann

Here, we demonstrate how an EIC can address the fundamental open questions concern-
ing the proton’s helicity structure raised in the previous Section. A detailed, quantitative
discussion of novel electroweak effects in polarized DIS can be found in Secs. 1.12 and 1.13

1.11.1 Scaling violations in inclusive DIS and their impact on ∆g(x)

A precise determination of the polarized gluon distribution ∆g(x,Q2) in a broad kine-
matic regime is a primary goal for the EIC. Current determinations of ∆g suffer from both
a limited x coverage and fairly large theoretical scale ambiguities in polarized pp collisions
for inclusive (di)jet [146, 147] and pion production [148, 149]. Several channels are sensitive
to ∆g in ep scattering at collider energies such as DIS jet [150, 151] or charm [152, 153, 154]
production but QCD scaling violations in inclusive polarized DIS have been identified as
the golden measurement.

The inclusive structure function g1(x,Q
2) is the most straightforward probe in spin

physics and has been determined in various fixed-target experiments at medium-to-large
values of x in the last two decades. It is also the best understood quantity from a theoret-
ical point of view. Unlike for most other processes, full NNLO corrections of the relevant
hard scattering coefficient functions are available [15], and partial results for the polarized
splitting functions at NNLO have been reported in [14] recently. A consistent framework
up to NNLO accuracy will be in place by the time of first EIC operations and is required in
order to limit the size of residual theoretical scale uncertainties to the anticipated unprece-
dented level of precision for a polarized DIS experiment. To achieve the latter, systematic
uncertainties need to be controlled extremely well which imposes stringent requirements
on the detector performance, acceptance, and the design of the interaction region. Neces-
sary, on-going studies comprise the detection of scattered electrons down to small momenta
of O(0.5GeV) to access small x, the required resolution in momentum and angle of the
scattered lepton, and the unfolding of QED radiative corrections, see Sec. 7.3.

For studying scaling violations dg1(x,Q
2)/d logQ2 efficiently, it is not only essential

to have good precision but also to cover the largest possible range in Q2 for any given
fixed value of x. The accessible range in Q2 is again linked (via the inelasticity y) to the
capabilities of detecting electrons in an as wide as possible range of momenta and scattering
angles. For a detailed discussion of the kinematic coverage at the EIC see Sec. 7.3.

Figure 1.26 highlights the main motivation for a measurement of g1 at the EIC. The
significant uncertainty in ∆g(x,Q2) at x . 0.01 shown in Fig. 1.22 translates into a large
spread of predictions for the behavior of g1 at small x. The spin-dependent scale evolution is
such that dg1(x,Q

2)/d logQ2 at low x is strongly correlated with the negative of ∆g(x,Q2),
i.e., a positive gluon distribution drives g1 at small x to more and more negative values
as Q2 increases, and vice versa. Hence, a precision measurement of g1 and its logarithmic
scale dependence will determine ∆g(x,Q2) at small x, hereby dramatically reducing the
extrapolation uncertainties of the integral

∫ 1
0 ∆g(x,Q2)dx entering the proton spin sum

rule. Depending on the shape of ∆g(x,Q2) in the unmeasured region, it is currently still
possible to accommodate up to one unit of ±~ at small x [25, 26], i.e., twice the proton
spin! Having determined the functional form of ∆g(x,Q2) down to about 10−4, even extreme
extrapolations to x→ 0 are not expected to contribute anymore significantly to the integral
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Figure 1.26. Spread of predictions for g1(x) induced by the current uncertainty in ∆g(x).

∫ 1
0 ∆g(x,Q2)dx.

To quantify the impact of polarized DIS measurements on our knowledge of the gluon
density we have performed a series of global QCD analyses based on realistic pseudo-data
for various c.m.s. energies at a first stage of eRHIC: 5 GeV electrons on 50, 100, 250, and 325
GeV protons. The simulations are based on the PEPSI Monte Carlo [155] using the GRSV
“std” set of polarised PDFs [24]. The statistical precision of the data sets for 100 − 325
GeV protons corresponds to about two months of running at the anticipated luminosities
for eRHIC with an assumed operations efficiency of 50%. For 5 × 50GeV an integrated
luminosity of 5 fb−1 was assumed. Demanding a minimum Q2 of 1GeV2, W 2 > 10GeV2,
the depolarization factor of the virtual photon to be D(y) > 0.1, and 0.1 ≤ y ≤ 0.95, the
highest

√
s ≃ 70 ÷ 80GeV allows one to access x values down to about 2 × 10−4. As can

be seen from the kinematic plots in Sec. 7.3, the lever-arm in Q2 more and more diminishes
if smaller x values are probed. For instance, choosing Q2

min = 2GeV2 would limit the x
range to x & 4 × 10−4 at the first stage of eRHIC. Clearly, one wants to utilize Q2 values
as low as possible in a QCD analysis but once actual EIC data become available one needs
to systematically study how far down Q2

min can be pushed before the pQCD framework
breaks down. We plan to investigate the impact of the Q2

min cut on constraining ∆g based
on analyses with the pseudo-data. At small enough x one may observe also deviations from
standard DGLAP evolution as we will discuss briefly below. A full eRHIC with up energies
of up to 30 GeV electrons on 325 GeV protons is certainly desirable as it would cover the
most interesting kinematic region around x = 10−4 at larger values of Q2.

The l.h.s. of Fig. 1.27 shows the x and Q2 coverage for one of the simulated data sets
for the spin asymmetry A1. The statistical uncertainties are in general way too small to be
visible. For the smallest x and Q2 values, the expected size of the asymmetries is of the
order of a few times 10−3, which sets the scale for the required experimental precision. On
the r.h.s. of Fig. 1.27 we show the Q2 dependence of the structure function g1 for various
bins in x. As can be seen, combining the data sets for the different c.m.s. energies extends
the coverage in x and Q2. We note that present fixed-target data, cf. Fig. 1.25, all fall in
the lower right corner of the plot but have some overlap with the projected EIC data.

The pseudo-data for the spin asymmetry A1 have been added to a global QCD fit
of helicity-dependent PDFs based on the DSSV framework [25, 26]. We have used the
projected uncertainties to randomize the pseudo-data by one sigma around their central
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Figure 1.27. left: generated pseudo-data for A1 in bins of Q2 for 5 × 250GeV collisions; right: g1
as a function of Q2 for fixed x for 5 GeV electrons on three different proton energies.
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Figure 1.28. χ2 profiles for the truncated x integral of ∆g (l.h.s.) and uncertainty bands for x∆g
referring to ∆χ2/χ2 = 2% (r.h.s.) with and without including the generated EIC pseudo-data in
the fit.

values determined by the DSSV set of PDFs. To demonstrate the impact of the generated
EIC data on ∆g, we show on the l.h.s. of Fig. 1.28 the χ2 profile for the first moment of ∆g
truncated to the range 10−4 ≤ x < 1 where EIC DIS data with Q2 > 1GeV2 can potentially
constrain its value. As can be inferred from the plot, the fit based on all presently available
DIS, SIDIS, and RHIC pp data set (labeled as “DSSV+” and described in the previous
Section) only very marginally constrains the integral. Adding in the projected data for
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5 × 250 GeV, shown in Fig. 1.27, already greatly improves the χ2 profile. Including all
four EIC data sets determines the integral very well; recall that the width of the profile
determines the uncertainty for a given, tolerated increase ∆χ2. To achieve such a level of
accuracy, the data sets with the highest

√
s ≃ 70 ÷ 80GeV are most critical in the fit as

they probe the smallest x values.
Even more impressive is the reduction of the ambiguities on the x shape of ∆g(x,Q2)

shown on the r.h.s. of Fig. 1.28. The currently completely undetermined shape for x . 0.01
can be mapped precisely to an accuracy of about ±10% (or better) for & 10−4. Below ≈
2×10−4 the shown ∆g(x,Q2) and its uncertainties are not constrained by the projected EIC
data and merely result from an extrapolation of the used functional form. We note that since
one needs to control all sources of uncertainties extremely well it might be advantageous
to measure and analyze polarized cross sections instead of spin asymmetries traditionally
used so far. This should greatly simplify the theoretical analysis as one does not need any
information on unpolarized PDFs or the ratio of σL/σT anymore. There are also first,
very interesting attempts to analyze polarized DIS data within the methodology of neural
networks [138, 139], which provides a less biased way to estimate PDF uncertainties than
standard approaches based on pre-defined functional forms.

As was mentioned above, one expects to find deviations from DGLAP evolution at
sufficiently small values of x. In contrast to the unpolarized case, the dominant contribution
of gluons mixes with quarks also at x ≪ 1. From DGLAP evolution one expects for the
small x behavior of gluons and quarks

∆q(x,Q2),∆g(x,Q2) ≃ exp
[
const× αs ln(Q

2/µ2) ln(1/x)
]1/2

(1.9)

assuming for simplicity a fixed coupling αs. In [156, 157] it was demonstrated that this
simple behavior can strongly underestimate the rise at small x due to other potentially
large double logarithmic contributions of the type αs ln

2(1/x)n in the n-th order of αs
which are beyond the standard DGLAP framework. This gives rise to a power-like behavior
of g1 at small x of the form g1(x,Q

2) ∼ (1/x)O(αs). There are qualitative arguments that
in the polarized case the relevance of these logarithms in 1/x is larger than the difference
between DGLAP and BFKL evolution in the unpolarized case [156, 157]. However, more
detailed quantitative studies are still lacking, and it remains to be seen if the kinematic
reach of an EIC is large enough to actually observe deviations from DGLAP in polarized
DIS. Clearly, any such estimate will strongly depend upon the initial input distributions,
and eventually one needs data to clarify the relevance of small x enhancements. Finally,
we note that in Ref. [158] the leading small x logarithms were combined with DGLAP
evolution, and some effects of running coupling were addressed in [159].

1.11.2 Charm Contribution to g1

As discussed in Sec. 1.7 in the context of unpolarized DIS structure functions, the
contributions from heavy flavors require a special theoretical framework. For the kinematic
regime covered at the EIC it is expected that effects of the finite heavy quark mass play
an important role and should not be neglected. This is, of course, particularly relevant not
too far from threshold, i.e., for Q2 less than a few times m2

h.
For all presently available DIS data, the charm contribution to g1 can be safely neglected

and, hence, is usually not included in any of the QCD analyses except for the fit presented
in Ref. [23]. The relevant coefficient functions for γ∗g → cc̄X have been calculated only to
LO accuracy [152] so far which is not sufficient for the anticipated experimental precision.
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Figure 1.29. LO expectations for gc1 (l.h.s.) and Ac1 (r.h.s) for the Q
2 = 10GeV2, mc = 1.35GeV, and

using the DSSV and GRSV “std” sets of PDFs. The shaded band corresponds to the ∆χ2/χ2 = 2%
uncertainty estimate of DSSV.

The computation of the NLO corrections is, however, work in progress and results should
become available for more detailed quantitative studies soon.

For spin dependent DIS the heavy quark contributions are expected to be smaller than
in the helicity-averaged case but, of course, will very much depend on the currently unknown
size of ∆g(x,Q2) at small x. There is also an interesting constraint on the gluonic Wilson
coefficient for heavy quark production, demanding a vanishing first moment when regulated
dimensionally or with a quark mass [160, 161]. This leads to a non-trivial oscillating pattern
for gc1 depending on the sign of ∆g which will look rather different in the case that ∆g itself
changes sign within the x range probed.

Figure 1.29 shows some expectations for the spin asymmetry Ac1 for DIS charm produc-
tion (r.h.s.) and the charm contribution to the structure function g1 (l.h.s.) both computed
at LO accuracy with two different polarized gluon distributions. For a small ∆g with a node,
as in the best fit of DSSV, the charm contribution turns out to be at most at the percent
level even at collider kinematics, and the corresponding spin asymmetry is most likely too
small, O(few×10−5), to be measured directly. For a larger gluon distribution at small x, as
in the GRSV fit, or for a gluon within the current uncertainty band of DSSV, asymmetries
can be significantly larger, reaching O(few × 10−3), and at x = 10−3 and Q2 ≃ 10GeV2

charm quarks can contribute about 10÷ 15% to the inclusive g1. The experimental aspects
for detecting charmed mesons have beed discussed already in Sec. 1.8 and apply also here.

1.11.3 Remark on the Bjorken sum rule

The Bjorken sum rule

∫ 1

0
dx
[
gp1(x,Q

2)− gn1 (x,Q
2)
]
=

1

6
CBj

[
αs(Q

2)
]
gA (1.10)

is not only one of the most fundamental relations in QCD but presumably also one of the
best known quantities in pQCD. Corrections up to O(α4

s) have been calculated [162, 31, 32].
Given the anticipated precision of DIS measurements at the EIC, it is natural to ask what
can be achieved concerning the Bjorken sum. The major obstacle is, of course, the need for
an effective, longitudinally polarized neutron beam. One conceivable option would be to run
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with 3He but developing a method to measure its polarization to the required percent level
is certainly an extremely challenging R&D task requiring novel ideas. From the theoretical
side it might be advantageous to analyze the data not in terms of PDFs but directly on the
structure function level with the help of so called “physical anomalous dimensions” [163].
This reduces not only the number of parameters but also theoretical scale uncertainties.

∫
xmin

1

∆q3(x,Q2) dx

∆q3(Q
2)
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Figure 1.30. The truncated (“running”) x integral for the non-singlet combination ∆q3 related to
the Bjorken sum normalized to the full first moment for two values of Q2.

From present fixed target experiments the sum rule is currently verified to about 10%,
which sets the target for any future measurement to the 1÷2 percent level. One of the cur-
rent limitations is the extrapolation uncertainty from the unmeasured small x region. Since
the Bjorken sum probes a non-singlet (NS) quark combination, the small x uncertainties
are considerably less severe than for ∆g(x,Q2), but to reduce them to a level of about 2%,
measurements of gp,n1 down to x ≃ 10−4 are required. This is illustrated in Fig. 1.30 where
we show the “running” x integral for the relevant NS quark combination ∆q3 normalized to
its full first moment, assuming the functional form from the DSSV analysis. At the required
1 ÷ 2% level of accuracy one might start to see deviations from (1.10) due to isospin and
charge symmetry violations. Very little is known about these effects, and, if experimentally
feasible, measurements could reveal genuine new insights into the hadronic structure.

The fundamental relation (1.10) between a high-energy measurement of DIS structure
functions and a low-energy quantity like the axial charge gA by itself warrants an experi-
mental exploration at the EIC. From a more theoretical perspective one might argue that
since O(α4

s) corrections are available, a precision measurement of the Bjorken sum can be
turned into one of the most accurate determinations of αs. One can easily convince oneself,
however, that this does not work out. Changing αs by about one percent, translates only in
a 0.1% change of the Bjorken sum, which is impossible to resolve experimentally. Perhaps
more interesting is the non-trivial connection of the Bjorken sum rule to the Adler D(Q2)
function which naturally appears, for instance, in the e+e− annihilation into hadrons [164].
These two, seemingly unrelated quantities are connected through the generalized Crewther
relation [145, 32]. For large enough Q2, the Adler function can be expanded as a power
series in αs like CBj

[
αs(Q

2)
]
in (1.10), and results are available up to O(α4

s) as well [165].

58



Figure 1.31. Projected spin asymmetries for pion and kaon production in SIDIS for beam energies
of 5× 250 GeV and various bins in Q2.

The Crewther relation then states for the NS part of the D function that

D[αs(Q
2)]CBj [αs(Q

2)] = 3

[
1 +

πβ(αs)

αs
K[αs(Q

2)]

]
(1.11)

where β denotes the QCD beta function, and the first four terms in the expansion of
K[αs(Q

2)] are known. The term proportional to β in (1.11) describes the deviation from
the limit of exact conformal invariance of QCD [145, 166]. We also note that since the
Bjorken sum rule can be measured down to small values of Q2 it provides a way to define
an effective strong coupling constant [167, 168] which is by construction gauge and scheme
invariant and approaches the standard running of αs in the perturbative domain.

1.11.4 Opportunities in semi-inclusive DIS

As has been mentioned in Sec. 1.10, the flavor separation of polarized PDFs in current
fits is largely based on pion and kaon yields in SIDIS. An EIC can easily extend the existing
kinematic coverage in the same way as for inclusive DIS. Prerequisites for exploiting SIDIS
as a precision tool at the EIC, such as good particle identification and well constrained
fragmentation functions, have been already discussed in Sec. 1.5 for the unpolarized case.

Figure 1.31 shows projected data for the longitudinal spin asymmetry in SIDIS with
identified pions and kaons in the same Q2 bins as used for inclusive DIS studies in Fig. 1.27.
The simulation is based on the PEPSI Monte Carlo [155] using the GRSV “std” set of
polarised PDFs [24]. The following cuts have been applied to model some detector and
acceptance effects: Q2 > 1GeV2, 0.1 < y < 0.95, photon depolarization factor D(y) > 0.1,
W 2 > 10GeV2, 0.2 < z < 0.8, pH > 1.5GeV, and 1◦ < θH < 179◦. The momentum cut
on the detected hadron H is placed to ensure to be above the PID Cherenkov threshold.
The statistical precision reflects one month of running at the luminosities anticipated for
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the first stage of eRHIC. Again, these measurements will be limited by systematic uncer-
tainties, which have to be addressed in detail. In addition to the sources of systematic
uncertainties present for inclusive DIS, the detector performance for the identification of
different produced hadron species is most critical for SIDIS. Additional sets of data have
been generated for other combinations of electron and proton beam energies. They are
currently being implemented into the same global QCD analysis framework used to analyze
the projected inclusive DIS data above. Plots similar to those for the χ2 profile of the
truncated x integral and the x dependent uncertainty bands for ∆g(x,Q2) in Fig. 1.28 will
be prepared to quantify the impact of SIDIS data on our knowledge of helicity-dependent
quark densities. We expect that all light quark and anti-quark flavors, i.e., ∆u, ∆ū, ∆d,
∆d̄, ∆s, and ∆s̄, can be determined with a precision close to the one obtained for ∆g(x,Q2)
in Fig. 1.28.

Although knowledge of individual quark and anti-quark flavors is in principle not re-
quired for an understanding of the proton spin sum rule, where only the total quark singlet
∆Σ enters, it would provide deeper insight into the question why the observed total quark
polarization is considerably smaller than in naive quark models. Here, it is essential to
understand in detail how sea quarks are polarized, i.e., whether they have a preference for
spinning “against” the direction of the proton spin thereby diluting the total quark polar-
ization. Current QCD fits [25, 26] start to reveal rather complicated patters of polarization
at medium-to-large x with possible sign changes but the statistical precision and kinematic
reach of the fixed-target data is not sufficient for any definitive conclusions.
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Figure 1.32. x(∆ū −∆d̄) at Q2 = 10 GeV2 along with the uncertainty bands from DSSV, results
from earlier global fits, and predictions from the chiral quark soliton model [169, 170].

To give an example, Fig. 1.32 shows the current significance of a possible asymmetry
in the light quark sea, ∆ū(x) − ∆d̄(x). Given the well-established pronounced difference
between ū and d̄ in the spin-averaged case, a precise determination of ∆ū(x)−∆d̄(x) is of
of particular interest. Different patterns of symmetry breaking in the light anti-quark sea
polarizations have been predicted qualitatively by a number of models of nucleon structure.
For instance, within the large-Nc limit of QCD as incorporated in the chiral quark soliton
model [169, 170, 171, 172] one expects |∆ū − ∆d̄| > |ū − d̄|. In addition, charged kaon
data should help to clarify issues related to SU(3) symmetry and the polarized strangeness
density ∆s(x,Q2) by providing sufficient input to determine its first moment reliably.
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1.12 Electroweak Structure Functions at the EIC

Abhay Deshpande, Krishna Kumar, Felix Ringer, Seamus Riordan, Swadhin Taneja,
Werner Vogelsang

1.12.1 Motivation and Introduction

The use of charged leptons to probe the structure of nucleons through electroweak
interactions has proven to be an invaluable tool in our exploration of the strong force.
Experiments on deep inelastic scattering (DIS) ep → eX, which dominantly proceeds via
the exchange of a virtual photon between the electron and the nucleon, have established the
existence of quarks and provided detailed studies of the short range aspects of the strong
coupling.

It is well known that neutral current (NC) interactions can also be mediated by the
Z-bosons of the weak interactions, and their interference with the photon. This gives rise
to parity violating effects, which offer complementary access to nucleon structure. This
has been a theme at parity violating electron scattering experiments, both at fixed target
facilities [173, 3] and at HERA [174, 175]. For an unpolarized target, the NC parity violating
asymmetry is given by

Abeam ≡ σR − σL
σR + σL

, (1.12)

where σR (σL) denotes the cross section for right- (left-) handed electrons. For fixed-target
experiments, where the virtuality Q of the exchanged boson is typically much smaller than
the Z-boson mass MZ , only γZ-interference is relevant, and one obtains

Abeam ∼ GFM
2
Z

2
√
2πα

Q2

Q2 +M2
Z

≃
Q2≪M2

Z

10−4Q2[GeV2] , (1.13)

with the Fermi constant GF and the fine structure constant α. At modern fixed target
facilities, measured asymmetries were typically of the order of 10−4 or less [173]. At HERA,
on the other hand, with its enormous kinematic reach in Q2, also contributions by pure
Z-exchange play a role [174].

Charged current (CC) interactions in DIS lepton scattering measurements have been per-
formed at HERA in e±p collisions [174] and at various neutrino scattering experiments [176].
They are inaccessible at fixed target charged lepton beam facilities where Q2 ≪M2

W .
An EIC provides a number of advantages in the study of structure functions through

electroweak interactions over previous and existing facilities. As the asymmetries and rel-
ative likelihood of Z0 and W± exchange monotonically increase with Q2, larger c.m.s.
energies are more favorable for such measurements. Additionally, advances in accelerator
and source technologies should provide luminosities on the order of ∼ 1034 cm−2 s−1, two
orders of magnitude higher than what was available at HERA. A new feature will be the
ability for bunch-by-bunch variation of the sign of the longitudinal polarization of both the
electron and hadron beams. A broader Q2 and y acceptance than at fixed target facilities,
and variable beam energy, also allow for separation of the various structure functions. High
precision is possible over a broad range in Bjorken-x, 0.01 . x . 0.4, whereas fixed target
facilities typically are sensitive only to x > 0.1.

Polarized Hadrons

Arguably the most important feature at the EIC is the availability of polarized 1H,
and potentially 2H and 3He, beams with rapid polarization flips, which offers access to
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electroweak spin structure functions that may provide additional constraints on polarized
PDFs. The counterpart of Abeam in (1.12) with polarized protons has never been measured
before, and neither have spin asymmetries in CC interactions. Both would in principle be
accessible at the EIC.

The theoretical study of electroweak spin-dependent structure functions dates back to
the seventies [177, 178, 179, 180, 181, 182, 183, 184, 185]. Renewed interest arose in the
nineties in the context of a possible polarized ep program at HERA [186, 187, 188, 189,
190, 191, 192, 193, 194, 195, 196, 197, 198], and later in terms of studies for a neutrino fac-
tory [199]. Parity-violating spin structure functions were shown to contain rich information
on polarized PDFs. For example, as we shall discuss in more detail in the next section, for
CC interactions via W− exchange in the parton model, two structure functions gW

−

1 and
gW

−

5 contribute to the spin asymmetry [196, 197]:

AW
−

=
2bgW

−

1 + agW
−

5

aFW
−

1 + bFW
−

3

, (1.14)

where a = 2(y2 − 2y + 2), b = y(2− y), and

gW
−

1 (x) = ∆u(x)+∆d̄(x)+∆c+∆s̄(x) , gW
−

5 (x) = −∆u(x)+∆d̄(x)−∆c+∆s̄(x) . (1.15)

In Eq. (1.14), FW
−

1 and FW
−

3 are the corresponding unpolarized CC structure functions.
Extraction of gW

−

1 and gW
−

5 hence offers new and independent constraints on the quark and
anti-quark helicity distributions, with gW

−

1 measuring singlet contributions, while gW
−

5 is a
flavor non-singlet. If additionally positrons and polarized neutrons are available, which is
possible at the EIC, one could obtain a full flavor decomposition of the nucleon polarized
quark and anti-quark sector. For instance, for proton scattering gW

−

1 + gW
+

1 provides the
full quark singlet distribution ∆Σ, whose first moment gives the quark and anti-quark
spin contribution to the proton’s spin. Likewise, gW

−

5 + gW
+

5 determines the “valence”

distributions ∆q − ∆q̄. Adding neutrons, one has, for example, gW
+,p

5,p − gW
+,n

5,n = ∆u +

∆ū− (∆d+∆d̄), which satisfies a sum rule equally fundamental as the Bjorken sum rule:

∫ 1

0
dx
[
gW

+,p
5 − gW

+,n
5

]
=

(
1− 2αs

3π

)
gA , (1.16)

where we have included the first-order QCD correction [193]. NC structure functions offer
independent insights into nucleon structure. For example, for the γ-Z interference contri-
bution, the structure function g1 becomes to good approximation gγZ1 ∝ ∆u+∆ū+∆d+
∆d̄+∆s +∆s̄ and thus again probes the full quark and anti-quark singlet. The structure
function g5, on the other hand, probes the valence densities: gγZ5 ∝ 2∆uv +∆dv.

We present a few first studies of the prospects for measurements of electroweak spin
structure functions in CC and NC scattering at an EIC. These are not meant to present an
exhaustive assessment of all the opportunities the EIC would provide in this area.

1.12.2 Electroweak Deep Inelastic Scattering

Structure Functions and Parton Model Expressions

In the determination of cross sections and asymmetries, we follow closely the PDG review [3].
The spin-averaged DIS cross section for Q2 ≫M2, where M is the mass of the nucleon, is

62



given by

d2σi

dxdy
=

2πα2

xyQ2
ηi

[
Y+F

i
2 ∓ Y−xF

i
3 − y2F iL

]
, (1.17)

where i is for NC or CC and Y± = 1 ± (1 − y)2. We have introduced the longitudinal
structure function F iL = F i2 − 2xF i1, which vanishes to lowest order according to the Callan-
Gross relation. The NC structure functions for e±N scattering can be represented as the
sums of the photon, Z0, and interference contributions:

FNC
2 = F γ2 − (geV ± λgeA)ηγZF

γZ
2 + (geV

2 + geA
2 ± 2λgeV g

e
A)ηZF

Z
2 (1.18)

and
xFNC

3 = −(geA ± λgeV )ηγZxF
γZ
3 + [2geV g

e
A ± λ(geV

2 + geA
2)]ηZxF

Z
3 . (1.19)

Here and above, the sign ± is commensurate to the lepton charge. We have

ηγ = 1; ηγZ =

(
GFM

2
Z

2
√
2πα

)(
Q2

Q2 +M2
Z

)
; ηZ = η2γZ , (1.20)

and geV = −1
2 + 2 sin2 θW , geA = −1

2 . λ = ±1 is the electron/positron helicity.
The spin-averaged structure functions can be written as

[
F γ2 , F

γZ
2 , FZ2

]
= x

∑

q

[
e2q, 2eqg

q
V , g

q
V
2 + gqA

2
]
(q + q̄),

[
F γ3 , F

γZ
3 , FZ3

]
=

∑

q

[
0, 2eqg

q
A, 2g

q
V g

q
A

]
(q − q̄) , (1.21)

where eq is the fractional electric charge of the quark, g
q
V = ±1

2 −2eq sin
2 θW , and gqA = ±1

2 ,
with the + sign for up-type quarks and the − sign for down-type quarks.

For Q2 ≪M2
Z , the pure Z contribution can be neglected, and one finds in this limit

Abeam =
GFQ

2

2
√
2πα

[
geA
F γZ1
F γ1

+ geV
Y−
2Y+

F γZ3
F γ1

]
. (1.22)

For the case of a polarized target, there are similar spin dependent structure functions.
The difference ∆σ of cross sections for the two nucleon helicity states is

d2∆σi

dxdy
=

8πα2

xyQ2
ηi

[
Y+xg

i
5 ± Y−xgi1 − y2giL

]
, (1.23)

where again i is for NC or CC and where giL = gi4 − 2xgi5. We note that, like FL, the latter
quantity vanishes to O(α0

s) [178]. The NC spin dependent structure functions are

gNC
5 = −(geV ± λgeA)ηγZg

γZ
5 + (geV

2 + geA
2 ± 2λgeV g

e
A)ηZg

Z
5 ,

gNC
1 = λgγ1 − (geA ± λgeV )ηγZg

γZ
1 + (2geV g

e
A ± λ(geV

2 + geA
2))ηZg

Z
1 . (1.24)

Their components can be written as
[
gγ1 , g

γZ
1 , gZ1

]
=

1

2

∑

q

[
e2q , 2eqg

q
V , g

q
V
2 + gqA

2
]
(∆q +∆q̄),

[
gγ5 , g

γZ
5 , gZ5

]
=

∑

q

[
0, eqg

q
A, g

q
V g

q
A

]
(∆q −∆q̄). (1.25)
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The spin asymmetry for scattering an unpolarized lepton off a polarized nucleon is then
given by

AL = ηγZ

[
geV
gγZ5
F γ1

∓ Y−
Y+

geA
gγZ1
F γ1

]
. (1.26)

In the CC case, we have

ηCC = (1± λ)2ηW =
(1± λ)2

2

(
GFMW

4πα

Q2

Q2 +M2
W

)2

. (1.27)

For W− exchange (electron scattering), the structure functions (assuming four active fla-
vors) are in the parton model:

FW−2 = 2x(u+ d̄+ s̄+ c), FW−3 = 2(u+ d̄+ s̄+ c),

gW−1 = ∆u+∆d̄+∆s̄+∆c, gW−5 = −∆u+∆d̄+∆s̄−∆c. (1.28)

For W+ exchange, one replaces u ↔ d and s ↔ c. The spin asymmetries for electron and
positron scattering then take the simple parton model forms

AW− =
∆u+∆c− (1− y)2(∆d̄+∆s̄)

u+ c+ (1− y)2(d̄+ s̄)
, AW+ =

(1− y)2(∆d+∆s)−∆ū−∆c̄

(1 − y)2(d+ s) + ū+ c̄
. (1.29)

By measuring over a range in y, one can perform a separation of the ∆u + ∆c, ∆d + ∆s
quark or anti-quark combinations.

Next-to-leading Order QCD Corrections

The NLO QCD corrections to the spin-dependent structure functions have been computed
in Refs. [192, 193]. To NLO, the expression for a given structure function can be cast into
the generic form [199]

gNLO
1 (x,Q2) = ∆Cq,1 ⊗ gLO1 + fΣ∆Cg ⊗∆g ,

gNLO
4 (x,Q2)

2x
= ∆Cq,4 ⊗

[
gLO4
2x

]
,

gNLO
5 (x,Q2) = ∆Cq,5 ⊗ gLO5 , (1.30)

where the symbol ⊗ denotes a convolution, and gLOi is the LO (parton model) expression for
the respective structure function. The coefficient functions to NLO in the MS scheme can be
found in [192, 193]. The factor fΣ in Eq. (1.30) is the sum over the coefficient of each quark
or anti-quark distribution in the LO expression for g1. For example, for the electromagnetic
gγ1 with four flavors, fΣ = 10/9, while for gW

−

1 one has fΣ = 4. Needless to say that when
including the NLO corrections in the calculation of the structure functions, one also has to
perform the evolution of the polarized PDFs to NLO [12, 200, 13]. For the most part of our
study, we will only use the LO expressions for the structure functions, which are expected
to be entirely sufficient for estimating the sensitivities at an EIC. We will, however, briefly
investigate the typical size of the NLO corrections in Figs. 1.36 and 1.40 below.
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Figure 1.33. Total NC and CC cross sections for Q2 > 1 GeV2 as functions of the ep
√
s.

1.12.3 Measurements of Parton Distribution Functions

In the following, we will present estimates for rates and spin asymmetries for electroweak
DIS at an EIC. For the spin-averaged case, we use the CTEQ6.5 [201] unpolarized PDFs.
For the helicity PDFs we use the ones of [25]. We note that the latter do not contain a
charm quark distribution.

Basic kinematics and machine considerations

Proposed EIC parameters allow for electron energies of 5 − 30 GeV and ion energies
of 50 − 325 GeV. Figure 1.33 shows the spin-averaged NC and CC total cross sections for
electron and positron scattering, as functions of the ep c.m.s. energy

√
s. We have integrated

over all Q2 > 1 GeV2, based on a simple theoretical LO calculation. One can see that the
cross section of course rises with energy, but relatively mildly so. Therefore, measurements
of electroweak structure functions may well be feasible in collisions at energies significantly
lower than those at HERA.

The upper two plots in Figure 1.34 show distributions of the CC cross section in log(Q2)
and log(x), respectively, at three different c.m.s. energies. One can see that the largest
statistical weight would be at x ∼ 0.1 and Q2 ∼ 1000 GeV2, which is a consequence of
the W -propagator factor in Eq. (1.27). Binning in x and Q2 of course allows to investigate
more detailed distributions, see below. For NC interactions, the γ-exchange contribution
dominates the spin-averaged cross section and strongly pushes the Q2 distribution towards
Q2 → 0 (see center row of the figure). Taking the parity-violating electron beam-helicity
difference of cross sections, however, essentially singles out the γZ-interference contribution.
For this piece, which of course is much smaller than the full spin-averaged cross section,
the Q2 distribution levels off towards Q2 → 0, as follows from the expressions in Sec. 1.12.2
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Figure 1.34. Top row: Distributions of the CC spin-averaged cross section in Q2 (left) and x (right).
We have applied the cuts Q2 ≥ 1 GeV2 and 0.1 ≤ y ≤ 0.9. Center row: same for the NC case.
Bottom row: Same for the NC parity-violating electron beam-helicity difference of cross sections.
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Figure 1.35. Left: Total number of CC events for 20×250 e−p scattering for an integrated luminosity
of 10 fb−1. Right: Binned NC event rate as function of the electron scattering angle, for 20 × 325
e−p collisions at L = 1× 1033 /s/cm2.

and as shown in the bottom row of Fig. 1.34.
In CC electron scattering, e−p → νeX, the neutrino remains undetected. To identify a

CC event and to reconstruct x and Q2, the final-state hadrons must then be reconstructed
instead. The detectors must hence be optimized to detect resulting hadronic jet formation.
There will likely be some additional detection and reconstruction efficiency associated with
this type of analysis. The discussion of the specific requirements is beyond the scope of this
study, and we will assume that this reconstruction is possible. In practice, CC measurements
could be performed simultaneously with the NC ones, though at a reduced duty factor if
the electron helicity is flipped, as the interaction is purely V − A. We also assume that
polarized positron beams would be available at an EIC.

For the following analysis, we will consider configurations of Ee[GeV]×Eion[GeV] with
20 × 325 and 20 × 250. For each of these, a luminosity of about ∼ 1 × 1034 /s/cm2 was
considered, with estimates for machine availabilities, detector acceptance and efficiency, and
beam polarization. Based on an expected five year run time, we consider a realistic effective
integrated luminosity of 100 fb−1 for NC processes and 10 fb−1 for CC. For the studies below,
a Monte Carlo simulation framework was developed to evaluate rates and asymmetries of
both the NC and CC processes. No detector responses have yet been included, and a
full azimuthal acceptance was assumed. In all analyses we consider a minimum scattered
electron energy of 2 GeV within 3◦ < θ < 177◦ scattering angle. The smaller integrated
luminosity for CC studies is because of a factor of 2 loss due to helicity flips and also because
efficiency of hadron jet and kinematic reconstruction has not yet been studied.

Of practical importance is to evaluate how well a separation of the structure functions
can be done at individual points in x, though it remains for a future Monte Carlo study to
evaluate the x resolution after reconstruction. We bin all data in 20 x bins logarithmically
spaced from 10−5 to 1. When binned in Q2, we use 20 bins from 2 to 5× 104 GeV2. These
Q2 bins were also used in determining any y dependence. Figure 1.35 (left) shows the total
number of events expected for CC interactions in e−p scattering at

√
s = 141 GeV and

L = 10 fb−1, binned in x.
Typical rates in NC scattering are up to 1 kHz, as shown in the right part of Fig. 1.35 for√

s = 161 GeV. The highest rate occurs in the forward direction of the electron beam. Here,
pipeline electronics will likely be necessary in order to avoid significant deadtime effects.
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Figure 1.36. CC spin dependent structure functions gW
−

1 , gW
−

5 , and gW
−

4 /2x, at Q2 = 100 GeV2.

The dashed lines show the LO results (the one for gW
−

4 /2x is not shown in this case, since it

coincides with that for gW
−

5 ), while the solid curves are NLO. For comparison, we also show the
electromagnetic gγ1 .

Polarized Parton Distributions from CC Interactions

As follows from Eq. (1.29), CC processes in electron scattering off polarized targets offer
a unique method to extract combinations of ∆u+∆c and ∆d̄+∆s̄. With positron beams,
one could also extract ∆d+ ∆s and ∆ū +∆c̄. For the present analysis, we have assumed
a 100% polarized electron/positron source. As mentioned before, we have assumed only
10 fb−1 integrated luminosity, making our estimates somewhat conservative.

In Fig. 1.36 we show the spin structure functions gW
−

1 , gW
−

5 , and gW
−

4 /2x, at Q2 =
100 GeV2, using the PDFs of [25]. Results are shown both at LO (dashed) and at NLO
(solid). One observes that the NLO corrections are well under control. To guide the eye,
also the ordinary electromagnetic structure function gγ1 is shown. Figure 1.37 (left) displays
the asymmetry AW− for CC e−~p scattering, as function of x. Different data points at same
x correspond to different bins in Q2. As mentioned above, we have chosen here 20 bins in
Q2, spaced logarithmically from 2 GeV2 to 5000 GeV2. The lower asymmetries correspond
to the lower bins in Q2. Thanks to the simple structure of the LO expressions for the cross
sections, the asymmetries in CC interactions become very large in the valence region, much
larger than those in the NC case to be discussed below. On the other hand, as we saw in
Figs. 1.34 and 1.35, event rates are much more suppressed at lower Q2 and therefore x. The
right part of Fig. 1.37 gives the resulting values for the relative uncertainty δAW−/AW−

of the asymmetry. Here we have summed over all Q2 bins. The results shown look very
promising, with better than 10% measurements appearing feasible all the way down to
x ∼ 10−2. It is worth keeping in mind that relative polarimetry uncertainties at an EIC
are also expected to be at the 0.5 − 1% level for electrons and 2 − 3% level for hadrons,
so that these might become the dominant sources of uncertainty in the regions where the
statistical δAW−/AW− is very small, especially at high x.

Using Eq. (1.29), the asymmetries give direct access to the polarized quark and anti-
quark distributions. As we discussed, higher-order QCD corrections (and also Cabibbo-
suppressed contributions) will somewhat modify the expressions in Eq. (1.29). However, for
a first estimate use of Eq. (1.29) as a means to gauge the sensitivity to the distributions
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Figure 1.37. Left: spin asymmetry for CC e−~p scattering, as function of x for various bins in Q2.
Right: resulting relative uncertainties of the asymmetry.

is justified. The additional contributions will not make a qualitative difference and can be
systematically included in future studies. If furthermore full knowledge of the unpolarized
parton distributions is assumed, then extraction of the sums of the two up-type quarks and
down-type anti-quarks can be performed by a linear fit in (1− y)2. The results of such fits
are shown for electron and positron running in Figs. 1.38 and 1.39, respectively. We note
that if a polarized deuterium or 3He beam were available, additional opportunities would
arise; e−~n scattering would probe the combinations ∆u+∆d+ 2∆c and ∆d̄+∆ū+ 2∆s̄.
At larger x where the sea quarks are suppressed relative to the valence quarks, e−~p and
e−~n scattering could be used to separate the valence polarizations.

Structure Functions and Polarized PDFs from NC Interactions

Again we first show the spin-dependent structure functions; see Figure 1.40. As the
contributions from pure Z-exchange are small, we only consider the electromagnetic gγ1 , and

the γ-Z interference contributions gγZ1 and gγZ4,5 , whose expressions were given in Eq. (1.25).
The left part of Fig. 1.41 shows the parity-violating spin asymmetry in Eq. (1.22),

obtained for a polarized lepton beam scattering off an unpolarized proton beam, as function
of x in various different Q2 bins. The lower (upper) asymmetries correspond to Q2 ∼ 2 GeV2

(Q2 ∼ 4000 GeV2). As one can see, typical asymmetries range from 10−4 to 0.1. The right
part of the figure gives the resulting values for the relative uncertainty δAbeam/Abeam of the
asymmetry. Here we have summed over all Q2 bins and assumed an integrated luminosity of
L = 100 fb−1. The relative uncertainty is found to be near 2% over a relatively wide range
in x; the relative electron polarization uncertainty achievable with modern polarimetry
techniques should be better than this.

According to Eq. (1.22), measurement of the asymmetry Abeam gives access to F γZ1 and

F γZ3 . Figure 1.42 presents the expected relative uncertainties for these structure functions,
corresponding to the results shown in Fig. 1.41. Figure 1.43 shows the corresponding result
for the case of ~e−D scattering, for the structure function F γZ1 . Due to the suppression

by the electron vector coupling, the uncertainty of F γZ3 is about an order of magnitude

worse than that of F γZ1 . The sensitivity is maximized in the region of x ∼ 0.01 − 0.4. The
approved PVDIS experiment using the SoLID spectrometer in Hall A at Jefferson Lab [202]
anticipates achieving an extraction of Abeam with relative accuracy ≈ 0.5− 1% over several
bins in x in the range of 0.2 ≤ x ≤ 0.7, both from proton and deuterium targets. The
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Figure 1.38. Top: LO extraction of polarized quark and anti-quark distributions from the spin
asymmetry for CC e−~p scattering. Bottom: Corresponding relative uncertainties of the extracted
distributions.
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Figure 1.39. Same as Fig. 1.38, but for e+~p scattering.
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Figure 1.40. NC spin-dependent structure functions for γ-Z interference, at Q2 = 100 GeV2, calcu-
lated at LO (dashed) and NLO (solid), using the polarized PDFs of [25].
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Figure 1.41. Left: Parity violating NC spin asymmetries for polarized electrons on unpolarized pro-
tons, binned logarithmically in x and Q2. Right: Resulting relative uncertainties of the asymmetry.
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Figure 1.42. Relative uncertainties of F γZ1 (left) and F γZ3 (right) extracted from NC ~e−p scattering.
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Figure 1.43. Same as left part of Fig. 1.42, but for ~e−D scattering.
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Figure 1.44. Same as Fig. 1.41, but for unpolarized electrons on polarized protons.

products of the quarks’ electric charges and their vector charges are approximately equal
for up-type and down-type quarks, eug

u
V ≈ edg

d
V ≈ 0.1. Therefore, one has from Eq. (1.21)

that F γZ1 ∝ u+ ū+d+ d̄+ s+ s̄, both for proton and deuterium. On the other hand, for the
corresponding products of the charges and axial charges one finds eug

u
A ≈ 2edg

d
A, and hence

in the valence region F γZ3 ∝ 2uv + dv for protons and ∝ uv + dv for deuterium. While F γZ3
could thus give a clean separation of the u and d valence distributions, its contribution to
the beam asymmetry is unfortunately suppressed.

Of significant interest are measurements of gγZ1 and gγZ5 , which contain complementary

information on the polarized PDFs. Similarly to what we discussed for the case of F γZ1 ,

one finds that to a good approximation gγZ1 ∝ ∆u + ∆ū + ∆d + ∆d̄ + ∆s + ∆s̄, which
would in principle make this structure function an complementary probe of the quark and
anti-quark singlet and spin contribution to the proton spin. Furthermore, gγZ5 offers probes

of the valence regime. According to Eq. (1.23), gγZ1 and gγZ5 may be accessed by flipping the
proton helicity while leaving the electron polarization unchanged. The corresponding spin
asymmetries, obtained after summing over the electron helicities, are unfortunately overall
much smaller than their counterparts with polarized electron and unpolarized proton. They
are shown in Fig. 1.44, along with the their expected relative uncertainties, computed again
for L = 100 fb−1. The best sensitivity is in the valence quark region, x > 0.1. Even
here, it remains at the 10% level. This directly translates into similar uncertainties for the
structure functions gγZ1 and gγZ5 , which are shown in Fig. 1.45. In the valence region, where
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Figure 1.45. Structure functions gγZ1 and gγZ5 (top) and their relative uncertainties resulting from
Fig. 1.44 (bottom).

sea quarks are irrelevant, we have gγZ1 ∝ ∆uv + ∆dv and gγZ5 ∝ 2∆uv + ∆dv, which may
provide a separation of ∆u and ∆d.

Finally, assuming perfect knowledge of ∆u and ∆d and their anti-quark distributions
from other sources, one might ask if an extraction of ∆s +∆s̄ from gγZ1 and gγZ5 could be
possible. This quantity, and in particular its integral, is a key ingredient to nucleon spin
structure and for understanding why quarks and anti-quarks combined appear to carry little
of the proton spin. Constraints on ∆s+∆s̄ are presently available from an SU(3) symmetry
analysis of hyperon β-decays, and from kaon production in semi-inclusive DIS, which are
both inflicted with sizable uncertainties and in fact show some tension (for discussion,
see [26]). The result for the extraction of ∆s+∆s̄ from electroweak DIS at the EIC is shown
in Fig. 1.46. As can be seen, a non-zero measurement would be challenging for the assumed
100 fb−1 integrated luminosity. Nevertheless, this measurement might become interesting
if independent methods of extracting ∆s + ∆s̄ were to provide surprising results. If this
measurement is deemed sufficiently interesting and important, larger integrated luminosities
will indeed help, since the measurement will continue to remain statistics limited, provided
relative hadron polarization errors can be kept at the 3% level or better.

1.12.4 Summary

We have performed a basic analysis of the potential of an EIC in terms of measurements
of structure functions in electroweak NC and CC scattering. Precise measurements of the
CC functions FW1 , FW3 , gW1 , and gW5 become feasible with a relatively modest integrated
luminosity. These measurements will greatly aid the flavor decomposition of polarized and
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Figure 1.46. Results for the x(∆s+∆s̄) distribution extracted from the AL spin asymmetry under
the assumption that all other helicity distributions are known.

unpolarized PDFs in the region x & 0.01. NC structure functions become accessible with
good precision at high integrated luminosities. Measurements of F γZ1 and F γZ3 seem to be
of limited use in improving present or approved measurements. At the highest luminosities
and center of mass energies, gγZ1 and gγZ5 become accessible; these structure functions have
never before been measured. The combined analysis of the new CC and NC structure
functions with electrons and positrons as well as with polarized protons and neutrons at
these highest luminosities could potentially open a new window into precision QCD tests of
the spin structure of the nucleon; this will be the focus of future experimental and theoretical
investigations.
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1.13 Charged Current Charm Production and the Strange
Sea

Marco Stratmann

1.13.1 Basic idea

The leading order contribution to CC charm production in e+p DIS is given by the
O(α0

s) parton model process W+s′ → c, where s′ denotes the Cabibbo-Kobayashi-Maskawa
(CKM) “rotated” combination s′ ≡ |Vcs|2 s+ |Vcd|2 d. Due to the smallness of |Vcd|2 [3] the
process is expected to be essentially sensitive to the strange sea content. Only at large x,
where quark sea contributions are less relevant, the |Vcd|2 suppression is balanced by the
valence enhancement of the well-known d(x) density. Likewise, in e−p DIS, the process
W−s̄′ → c̄ predominantly probes the anti-strange density s̄(x). With a polarized proton
beam one can access also ∆s(x) and ∆s̄(x).

Current determinations of s(x) rely mainly on fixed-target neutrino scattering off nuclear
targets with potentially large uncertainties, see Fig. 1.9 in Sec. 1.5. Much less is known
about the longitudinally polarized ∆s(x) so far, see Sec. 1.10. Due to the limited luminosity
and charm detection efficiency, charm production in CC DIS could not be studied at HERA.
CC DIS would provide an independent way to extract the unpolarized and polarized strange
sea distributions at much larger scales, typically Q ∼ MW , than probed in semi-inclusive
kaon production, cf. Sec. 1.5. On the downside, such a measurement requires also a positron
beam, though not polarized.

Next-to-leading order QCD corrections also complicate the simple picture for CC charm
production and may deteriorate the sensitivity to strangeness. Apart from the O(αs) correc-
tions to the LO processW+s′ → c, the genuine NLO, gluon induced subprocessW+g → cs̄′

has to be taken into account as well. It contributes significantly to the charm production
cross section in certain regions of phase space and hence dilutes the sensitivity to the strange
sea. In addition, a proper theoretical calculation also needs to take into account the mass of
the produced heavy (charm) quark, as was also discussed in the context of F c2,L in Sec. 1.7.
In order to make contact with experiment, a fully inclusive calculation [203, 111] is not
entirely sufficient, and one should compute also the momentum z spectrum of the detected
charmed D mesons. In the unpolarized case this was achieved in [204]. The corresponding
polarized results can be found in Ref. [205]. Imposing a lower cut zmin on the D meson
momentum fraction was shown to considerably reduce gluon-initiated NLO contributions
and enhance the sensitivity to the strange sea.

Concerning the mass mc of the charm quark, it turns out that the naive “rescaling
prescription” [206], i.e., s(x) → s(ξ) where ξ ≡ x(1+m2

c/Q
2), applies also at NLO accuracy

as it allows for a consistent factorization of all initial-state collinear singularities.

1.13.2 Sensitivity to the Strange Sea

So far, detailed phenomenological studies have been provided only for HERA kinematics
[205], and they still need to be updated for EIC kinematics. However, these projections
are sufficient to demonstrate the idea of the measurement and give a rough estimate of the
size of cross sections and spin asymmetries. From the studies of inclusive CC electroweak
DIS structure functions in Sec. 1.12 we already know that such measurements appear to be
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Figure 1.47. The z integrated polarized cross section for CC charm production in e−p and e+p
collisions and the corresponding spin asymmetry AD for (a,b): 0 < z < 1, (c,d): 0.2 < z < 1, using
the GRSV “std” and “val” sets of PDFs. Projected uncertainties are for 70% polarization, 100%
charm detection efficiency, and an integrated luminosity of 5 fb−1.

feasible at an EIC despite its lower c.m.s. energy than HERA even with moderate integrated
luminosities of about 10fb−1.

As an example, Fig. 1.47 shows the sensitivity of CC charm (D meson) production in
e−p and e+p collisions at

√
S = 300GeV, Q2 > 500GeV2, and 0.01 ≤ y ≤ 0.9, to the

choice of ∆s. The momentum fraction of the detected D meson has been integrated using
zmin = 0 (upper row) and 0.2 (lower row). The GRSV valence set [24] has a very small
positive ∆s(x) in the relevant region x & 0.01, roughly comparable to what is nowadays
obtained from fixed target SIDIS data, e.g., in the DSSV analysis [25, 26]; see Sec. 1.10.
On the contrary, the GRSV standard set has a sizable negative strangeness polarization as
favored by fits including only inclusive DIS data [23]. Other PDFs, in particular the gluon
density, are very similar in both GRSV sets. Note that ∆s(x) = ∆s̄(x) is assumed in all
current polarized PDF analyses due to the lack of data constraining them separately.

The solid and dashed lines in Fig. 1.47 show the results for e−p scattering for GRSV
standard and valence PDFs, respectively. Within the projected statistical uncertainties,
obtained for 70% proton polarization, 100% charm detection efficiency, and an integrated
luminosity of 5 fb−1, differences in ∆s̄(x) can be easily resolved. The dot-dashed and dotted
lines show the results for a corresponding measurement with positron beams. Having results
for bothW− andW+ exchange, one should be able to study a possible asymmetry in ∆s(x)−
∆s̄(x). The results presented here need to be backed up with more detailed simulations of
CC charm production for EIC kinematics.
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1.14 Photoproduction Processes at an EIC

Hubert Spiesberger, Marco Stratmann

The production of hadronic final states in ep collisions is dominated by photoproduction
where the electron is scattered by a small angle producing photons of almost zero virtuality
(Q2 ≃ 0). At LO of pQCD, the dominant process for the production of high-pT hadrons,
jets, or heavy quarks is often photon-gluon fusion, γg → qq̄. Here, the photon interacts
directly with a gluon from the nucleon. Besides this so-called “direct” photoproduction
channel, the scattering can proceed also via “resolved” processes. In this case, the photon
acts as a source of partons which interact with the partons in the nucleon through any of
the standard 2 → 2 LO QCD hard scattering processes such as gg → gg or qq̄ → qq̄. The
large number of possible subprocesses can make the resolved contribution sizable in certain
regions of phase space. Examples for a direct and a resolved process are shown in Fig. 1.48.

At LO, the two interaction mechanisms in Fig. 1.48 both contribute at O(αemαs) but
otherwise appear to be independent. Starting from NLO, however, the separation into
direct and resolved contributions becomes factorization scheme dependent. This is due to
soft and collinear singularities appearing in a perturbative approach. These singularities
have to be identified and consistently factorized into non-perturbative PDFs of the nucleon
and the photon. This procedure is not unique, and it is therefore important that the direct
and resolved parts are treated together consistently. Only their sum is an experimentally
meaningful and measurable cross section. For a theoretical review on photoproduction, see,
e.g., Ref. [208].

The differential cross section for electron-nucleon scattering, dσeN , at a c.m.s. energy√
s is related to the photoproduction cross section dσγN through

dσeN (
√
s) =

∫ ymax

ymin

dy feγ(y) dσγN (y
√
s) . (1.31)

Here, feγ is the energy spectrum of the exchanged photon which in the Weizsäcker-Williams
approximation is given by

feγ(y) =
αem
2π

[
1 + (1− y)2

y
ln

(1− y)Q2
max

y2m2
e

+ 2(1− y)

(
ym2

e

(1− y)Q2
max

− 1

y

)]
. (1.32)

The photon flux feγ depends y = Eγ/Ee. Qmax and the range ymin ≤ y ≤ ymax are
determined by cuts in the experimental analysis. Typically, a lower cut ymin = O(0.1) is

Figure 1.48. Example of a gluon-initiated direct and resolved contributions to photoproduction at
LO (taken from Ref. [207]).
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applied in order to exclude low-mass hadronic final states, and an upper limit on y, e.g.,
ymax = 0.7 ÷ 0.9, is used to reduce the kinematic range where radiative corrections are
expected to be large.

The photoproduction cross section is then obtained as the sum of its direct and resolved
parts, dσγN = dσdirγN + dσresγN , as convolutions ⊗ of the appropriate partonic hard scatter-
ing cross sections dσab with the PDFs fa/γ(xγ) and fb/N (xN ) of the photon and nucleon,
respectively, at a factorization scale µf , i.e.,

dσresγN =
∑

a,b

fa/γ(xγ , µf )⊗ fb/N (xN , µf )⊗ dσab(xγ , xN , µf ) . (1.33)

dσdirγN can be obtained from (1.33) by replacing the photon PDFs by a δ-function and
considering only photon-parton scattering processes dσγb in the sum.

The resolved process is accompanied by a hadronic remnant of the photon which carries
the fraction 1− xγ of the photon energy. At LO, the presence of a hadronic remnant could
be used to distinguish different event topologies for the two mechanisms. In addition, for
two-jet final states xγ can be reconstructed experimentally from the measured transverse
momenta and rapidities of the jets. It is customary to define

xobsγ ≡
(
Ejet1

T e−η
jet1

+ Ejet2
T e−η

jet2
)
/ (2yEe) . (1.34)

However, at higher orders of pQCD, initial- and final-state radiation of additional partons
will also give rise to hadrons emitted in the direction of the incoming photon. Moreover,
non-perturbative hadronization may contribute to the appearance of hadrons in the same
kinematic region. Both effects lead to a reduction of the experimentally determined value of
xγ . Therefore a unique separation of the direct and resolved parts is not possible anymore.
Nevertheless, the variable xγ can still be used to define kinematic regimes where direct
(large xγ) or resolved (small xγ) contributions dominate.

At HERA, photoproduction has been used to test pQCD and the presence of both direct
and resolved photon processes for final-states comprising hadrons, jets, prompt photons,
and heavy quarks. Generally, the data are well described by NLO calculations in regimes
expected to be dominated by the direct process. Kinematic regions where resolved processes
are sizable are somewhat less well described; for a review see, e.g., [209]. This is mainly due
to the fact that the photon PDFs needed for the calculation of the resolved contribution
are significantly less well constrained by data than the partonic structure of protons. Only
data for inclusive DIS off a quasi-real photon target, i.e., γ∗(Q2)γ scattering in e+e− [210],
have been used in fits of photon PDFs so far, see, e.g., [211]. No attempts have been made
to perform global analyses or to quantify uncertainties at a level similar to current fits of
proton PDFs. Any additional, more precise data are therefore of vital importance for an
improved understanding of the theoretical description of photoproduction processes and a
reliable determination of photon PDFs. The latter are of great phenomenological relevance
at a possible future linear e+e− collider to describe processes involving quasi-real photons.

The next two sections show some examples how an EIC can contribute to further our
knowledge of photoproduction processes both in unpolarized and in polarized electron-
proton scattering.
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1.15 Expectations for Charm Quark Photoproduction

Hubert Spiesberger

The description of heavy quark production in the framework of perturbative QCD is
complicated due to the presence of several large scales, like the transverse momentum pT
of the produced charmed meson, the momentum transfer Q in DIS, or the mass of the
produced heavy hadron. Depending on the kinematic range considered, the mass mc of
the charm quark may have to be taken into account. Different calculational schemes (see,
e.g. [212, 213], and references therein) have been developed to obtain predictions from
pQCD, depending on the specific kinematical region and the relative importance of the
different scales.

In the case of relatively small transverse momentum, pT . mc, the fixed-flavor number
scheme (FFNS) is usually applied. Here one assumes that the light quarks and the gluon
are the only active flavors and the charm quark appears only in the final state. The charm
quark mass can explicitly be taken into account together with the pT of the produced heavy
meson; this approach is therefore expected to be reliable when pT and m are of the same
order of magnitude.

In the complementary kinematical region where pT ≫ mc, calculations are usually based
on the zero-mass variable-flavor-number scheme (ZM-VFNS) where mc = 0 and the charm
quark acts as an active parton with its own PDF; see also Sec. 1.7. The charmed meson is
produced not only by fragmentation from the charm quark but also from the light quarks
and the gluon. The fragmentation process is described with the help of scale-dependent
fragmentation functions (FFs), D(z, µ), which determine the probability that the produced
heavy meson carries the fraction z of the momentum of the parton it is produced from. The
predictions obtained in this scheme are expected to be reliable only in the region of large
pT since all terms of the order m2

c/p
2
T are neglected in the hard scattering cross section.

A unified scheme that combines the virtues of the FFNS and the ZM-VFNS is the
so-called general-mass variable-flavour-number scheme (GM-VFNS) [212, 213]. In this ap-
proach the large logarithms ln(p2T /m

2
c) are factorized into the PDFs and FFs and summed

to all orders by the well-known DGLAP evolution equations. At the same time, mass-
dependent power corrections are retained in the hard-scattering cross sections, as in the
FFNS. In order to conform with standard MS factorization, finite subtraction terms must
be supplemented to the results of the FFNS. As in the ZM-VFNS, one has to take into ac-
count processes with incoming charm quarks, as well as light quarks and gluons in the final
state which fragment into the heavy meson. It is expected that this scheme is valid not only
in the region p2T ≫ m2

c , but also in the kinematic region where pT is only a few times larger
than mc. The basic features of the GM-VFNS are described in Ref. [214]. Analytic results
for the required hard scattering cross sections can be found in Refs. [213, 215, 216, 217].

Next, we present theoretical predictions [214] for the photoproduction of D∗-mesons
in ep scattering at the EIC. We assume an experimental analysis with Qmax = 1GeV in
Eq. (1.32). Since the cross section is dominated by low Q2, our results should not depend too
strongly on the precise value of Qmax. The relevant direct and resolved hard scattering cross
sections are calculated at NLO accuracy. For the photon PDFs we use the parametrization
of Ref. [218] with the standard set of parameter values, and for the proton PDF we have
chosen the CTEQ6.5 set [201]. For the FFs we use the Global-GM set of Ref. [219] based
on a fit to the combined Belle [220], CLEO [221], ALEPH [222], and OPAL [223, 224] data.
We choose the renormalization and factorization scales to be equal and use µr = µf = mT ,
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Figure 1.49. dσ/dη for the production of D∗ mesons at the EIC for two settings of beam energies
integrated over transverse momenta 3 GeV ≤ pT ≤ 5 GeV. The different curves are explained in
the text.

where mT =
√
m2
c + p2T is the transverse mass and mc = 1.5 GeV. In Ref. [214] we studied

scale uncertainties for photoproduction at HERA, as well as ambiguities due to various
possible choices for input variables, such as the proton and photon PDFs, the D∗ FFs, and
the dependence on mc.

In our calculation of the differential cross section dσ/dη (where η is the rapidity of the
observed heavy meson, D∗±) we use Ep = 325 GeV and consider two choices for the energy
of the electron beam: Ee = 5 GeV (left panel of Fig. 1.49) and Ee = 30 GeV (right panel).
The transverse momentum pT is integrated over the range 3 < pT < 5 GeV. The results
show that the higher electron beam energy would lead to an increase of the cross section
by roughly a factor of three and the rapidity distribution is shifted towards the backwards
region, as expected.

The figure shows a split-up of the total cross section into contributions from different
subprocesses. From top to bottom, the curves correspond to the total cross section (full line),
the direct contribution (long dashed), the total resolved part (dotted), the contribution due
to charm in the photon (dash-dot-dotted) and charm in the proton (long double-dashed),
and, finally, the part due to resolved subprocesses with light partons in the initial state.
The direct contribution, which is sensitive mainly to the gluon distribution in the proton,
is dominating throughout the shown range of pT and η. The resolved part is mainly due
to the charm content of the photon, in particular, at negative rapidities. Here one may
hope that measurements at an EIC, in particular, for the option with the highest

√
s, will

contribute to a better determination of the photon PDFs.
The total cross sections for charm production at an EIC are not very different from those

measured at HERA; however, an increase in the precision of corresponding measurements
can be expected due to the higher luminosity. Apart from providing a better testing-ground
for pQCD, one may expect that the experimental information will contribute to an improved
determination of the charm content of the proton and, perhaps, the charm FFs.
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1.16 Polarized Photoproduction at an EIC

Barbara Jäger, Marco Stratmann

The framework for photoproduction outlined in Sec. 1.14 can be readily extended to lon-
gitudinally polarized ep collisions by replacing all unpolarized hard scattering cross sections
and PDFs with their helicity-dependent counterparts. The energy spectrum of circularly
polarized photons is given by [225]

∆feγ(y) =
αem
2π

[
1− (1− y)2

y
ln
Q2

max(1− y)

m2
ey

2
+ 2m2

ey
2

(
1

Q2
max

− 1− y

m2
ey

2

)]
. (1.35)

The polarized beams available at an EIC offer unique opportunities for studying the spin
structure of circularly polarized photons in photoproduction processes. Such measurements
could yield also valuable, complementary information on the gluon helicity density of the
proton as we shall demonstrate below.

To study the sensitivity of an EIC to the parton content of polarized photons, which is
completely unmeasured so far, we consider two extreme models [226] based on the current
knowledge of the unpolarized fγ(x, µ0) [211] and the positivity constraint |∆fγ(x, µ0)| ≤
fγ(x, µ0). In the “minimal” scenario we assume ∆fγ(x, µ0) = 0 at a scale µ0 ≃ 1GeV and
we saturate the bound in the “maximal” scenario, i.e., ∆fγ(x, µ0) = fγ(x, µ0).

We present results of NLO calculations for single-inclusive jet photoproduction at a
c.m.s. energy of

√
s = 100GeV. In order to compute the cross section for jet production,

an algorithm has to be specified describing the formation of jets by the final-state partons
produced in the hard scattering. A frequently adopted choice is to define a jet as the
deposition of the total transverse energy of all final-state partons that fulfill (η − ηi)2 +
(φ − φi)2 ≤ R2, where ηi and φi denote the pseudo-rapidities and azimuthal angles of the
particles and R the jet cone aperture. We work in the so-called “small-cone approximation”
[227, 228, 229, 230, 231] which can be considered as an expansion of the jet cross section
in terms of R of the form A logR + B + O(R2). Neglecting O(R2) pieces, the evaluation
and phase-space integration of the partonic cross sections can be performed analytically.
This approximation has been shown [231, 232, 233, 147] to account extremely well for jet
observables up to cone sizes of about R ≈ 0.7 in related pp-scattering reactions by explicit
comparison to calculations that take R fully into account.

Figure 1.50 presents our results [234] for the expected NLO double-spin asymmetry AjetLL
for single-inclusive jet photoproduction at

√
S = 100 GeV for two different choices of proton

helicity densities [24, 25] and the two extreme sets of polarized photon densities introduced
above. In (1.35) we chose Q2

max = 1 GeV2 and the range of photon energies is limited to
0.2 ≤ y ≤ 0.85; see also Sec. 1.14. The jet transverse momentum is integrated over for
pT > 4 GeV, and the factorization and renormalization scales are chosen to be pT .

For single-inclusive observables, the rapidity-differential cross sections and the spin
asymmetry are particularly interesting, since the relevant ranges of momentum fractions
of the partons in the photon and the proton are related to the rapidity of the observed jet.
As explained, e.g., in Ref. [235], if counting positive rapidity in the forward direction of
the proton, large momentum fractions xγ ≃ 1 are probed at large negative values of η. In
this region, the direct contribution is expected to be largest and the photon structure is
dominated by the purely perturbative “pointlike” QED part [226] which does not depend
on the unknown non-perturbative input. As can be seen in Fig. 1.50, measurements of AjetLL
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Figure 1.50. Pseudo-rapidity dependence of the NLO QCD spin asymmetry for single-inclusive jet
photoproduction at

√
S = 100 GeV integrated over pT > 4 GeV for two different choices of proton

helicity PDFs and two extreme sets of polarized photon densities. Taken from Ref. [234].

for negative η can provide valuable information on the proton’s spin structure, in particular,
the gluon helicity density due to the dominance of gluon-induced processes. On the other
hand, at large positive rapidities, AjetLL is particularly sensitive to the parton content of the

resolved photon, xγ ≪ 1, as is also exemplified in the figure. The size of AjetLL increases if
the lower cut for the jet transverse momentum is raised to larger values. The range in pT
where jets can be reliably reconstructed at an EIC still needs to be investigated in detail.

If one has determined the proton helicity PDFs from elsewhere, see Sec. 1.11, the
prospects for learning about the parton content of polarized photons are excellent. We
note that the latter may become relevant in estimates of photon induced cross sections at a
future linear collider if the lepton beams will be longitudinally polarized. Resolved photon
contributions also complicate current extractions of ∆g(x, µ) in polarized-lepton nucleon
scattering experiments at fixed-target energies [236, 237]. We have estimated the expected
size of statistical uncertainties in case of the related single-inclusive pion photoproduction
at an EIC in Ref. [238]. Measurements appear to be feasible already with very moderate
integrated luminosities of a few fb−1 thanks to the sizable cross sections for small Q2.

We note that other promising observables, like di-jet production where one has a better
control of the range of xγ probed, see Sec. 1.14, or heavy quark production still need to be
studied. Some theoretical results and simulations, mainly for HERA energies, can be found
in Refs. [235, 239, 225].
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2.1 Introduction and Chapter Summary

Mauro Anselmino, Andreas Metz, Peter Schweitzer

The exploration of the internal structure of the nucleon in terms of quarks and gluons,
the fundamental degrees of freedom of Quantum Chromodynamics (QCD), has been and
still is at the frontier of hadronic high energy physics research. After four decades of Deep
Inelastic Scattering (DIS) experiments of high energy leptons off nucleons, our knowledge of
the nucleon structure has made impressive progress. To leading order in the electromagnetic
coupling constant αQED ∼ 1

137 the lepton with initial momentum l interacts via one photon
exchange with the quarks inside the nucleon. By observing the momentum l′ of the lepton
in the final state one obtains information about the quark and gluon content of the nucleon.

This information is encoded in the Parton Distribution Function (PDF) fa1 (x,Q
2) where

x = Q2/(2P · q) is the fraction of the nucleon momentum P which is carried by the parton
with Q2 = −q2 and q = l−l′. This PDF can be interpreted as the number density of partons
of type q inside the nucleon, carrying a momentum fraction x. Similar information has been
obtained about the number density of longitudinally polarized partons inside longitudinally
polarized nucleons, the helicity distribution ga1(x,Q

2). The successful prediction of the scale
(Q2) dependence of the PDFs is one of the great triumphs of QCD.

However consolidated our understanding of the nucleon structure from DIS experiments
is, it is basically one-dimensional. From DIS we ‘only’ learn about the longitudinal motion
of partons in a fast moving nucleon or, which is equivalent, about their momentum distribu-
tions along the light-cone direction singled out by the hard momentum flow in the process
(i.e., in DIS, of the virtual photon). In DIS the nucleon is seen as a bunch of fast-moving
quarks, antiquarks and gluons, whose transverse momenta are not resolved. A fast moving
nucleon is Lorentz-contracted but its transverse size is still about 1 fm, which is a large
distance on the strong interaction scale.

It makes therefore sense to ask questions like: how are quarks spatially distributed inside
the nucleon? How do they move in the transverse plane? Do they orbit, and carry orbital
angular momentum? Is there a correlation between orbital motion of quarks, their spin and
the spin of the nucleon? How can we access information on such spin-orbit correlations, and
what will this tell us about the nucleon? Recent theoretical progress has put many of these
questions on a firm field-theoretical basis. We do not know all answers, yet, but we have now
a much better idea on how to get them. The past decade has also witnessed tremendous
experimental achievements which lead to fascinating new phenomenological insights into
the structure of the nucleon.

The above questions address two complementary aspects of the nucleon structure: the
description of quarks in the transverse plane in momentum space and in coordinate space.
The field-theoretical tools adequate to describe the former are the Transverse Momentum
Dependent Parton Distribution Functions (TMD PDFs, or, shortly, TMDs). The field-
theoretical objects tailored to describe the spatial distributions of quarks in the transverse
plane are the Generalized Parton Distributions (GPDs), which are discussed in chapter 3.1.
The focus of this chapter is on the TMDs, their theoretical properties and phenomenological
implications.

Several fascinating topics are related to the study of TMDs:

• 3D-imaging. The TMDs depend on the intrinsic motion of partons inside the nucleon
and allow the reconstruction of the nucleon structure in momentum space. Such an
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information, when combined with the analogous information on the parton spatial
distribution from GPDs, leads to a complete 3-dimensional imaging of the nucleon.

• Orbital motion. Most TMDs would vanish in the absence of parton orbital angular
momentum. The possibility of learning about the orbital motion of quarks inside a
nucleon emerges from the study of TMDs.

• Spin-orbit correlations. Most TMDs and related, observable, azimuthal asymmetries,
are due to couplings of the transverse momentum of quarks with the nucleon (or the
quark) spin. Spin-orbit correlations, similar to those in hydrogen atoms, can therefore
be studied.

• QCD gauge invariance and universality. The origin of some TMDs and the related
spin asymmetries, when considered at partonic level, reveal fundamental properties
of QCD, mainly its color gauge invariance. This interpretation leads to expect some
clear differences, between TMDs, in different processes (universality breaking). A test
of such ideas is crucial for our understanding of QCD at work.

2.1.1 What are TMDs?

The ‘simplest’ TMD is the unpolarized function f q1 (x, k⊥) which describes, in a fast
moving nucleon, the probability to find a quark carrying the longitudinal momentum frac-
tion x of the nucleon momentum, and a transverse momentum k⊥ = |k⊥|. It is formally
related to the collinear (‘integrated’) PDF by

∫
d2k⊥ f

q
1 (x, k⊥) = f q1 (x) (notice that, for

brevity, the dependence of TMDs and PDFs on auxiliary scales is often not indicated).
This and other quark TMDs are defined in terms of the unintegrated quark-quark cor-

relator [240, 241]

Φqij(x,k⊥,S)η =

∫
dz−d2z⊥
(2π)3

eik·z〈P ,S | ψ̄qj (0)Wη(0, z)ψ
q
i (z) |P ,S〉

∣∣∣
z+=0

, (2.1)

in which the gauge link operator Wη(0, z) ensures the color gauge invariance of the matrix
element. Wη(0, z) depends on a path. Factorization theorems give the prescription along
which path the positions 0 and z of the quark fields have to be connected, and the index
η indicates that strictly speaking Wη(0, z) depends on the process, as it will be further
discussed. The light-cone coordinates are defined as aµ = (a−, a+,a⊥) with a± = 1√

2
(a0 ±

a3) and a⊥ = (a1, a2).
The power and rich possibilities of the TMD approach arise from the simple fact that k⊥

is a vector, which allows various correlations with the other vectors involved: the nucleon
momentum P and the nucleon spin S. A systematic description of the information content
of the correlator was initiated in [242, 243, 244]. Of particular importance are ‘leading-twist’
TMDs, i.e. TMDs which enter in observables without power suppression. In this context, a
TMD or observable is said to be twist-t if its contribution to a cross section is suppressed by
the factor (M/Q)t−2 [245] in addition to kinematic overall factors (M represents a generic
hadronic scale including the transverse momentum.).

The leading-twist TMDs are associated with the large + component of the nucleon
momentum (in a frame where the nucleon moves fast). For a spin 1

2 particle like the
nucleon there are 8 leading-twist TMDs, namely (we suppress the η process dependence
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label)

1

2
tr
[
γ+ Φq(x,k⊥,S)

]
= f q1 (x, k⊥)−

εjk kj⊥ S
k
T

M
f⊥q1T (x, k⊥), (2.2)

1

2
tr
[
γ+γ5 Φ

q(x,k⊥,S)
]

= SL g
q
1L(x, k⊥) +

k⊥ · ST
M

gq1T (x, k⊥), (2.3)

1

2
tr
[
iσj+γ5 Φ

q(x,k⊥,S)
]

= SjT h
q
1(x, k⊥) + SL

kj⊥
M

h⊥q1L(x, k⊥)

+
(kj⊥ k

k
⊥ − 1

2 k
2
⊥ δ

jk)SkT
M2

h⊥q1T (x, k⊥) +
εjk kk⊥
M

h⊥q1 (x, k⊥).(2.4)

Dirac structures other than those above yield higher twist TMDs [246, 247]. TMDs of
antiquarks and gluons are defined similarly in terms of correlators analogous to (2.1). The
notation used in Eqs. (2.2)–(2.4) follows [243, 244, 245], where the common subscript 1 is
used to indicate twist-2 TMDs. (Notice that in the TMD literature also a different notation

is often used, in which, for instance, ∆Nfq/p↑(x, k⊥) = −(2k⊥/M) f⊥q1T (x, k⊥). We refer to
[248] for an overview.)

The leading twist TMDs (2.2–2.4) have partonic interpretations. The gamma-structures
signal the quark polarizations. γ+ describes unpolarized quarks, thus Eq. (2.2) gives the
number density of unpolarized quarks inside an unpolarized (first term) or transversely
polarized (second term) proton. γ+γ5, which appears in Eq. (2.3), singles out longitudinally
polarized quarks, either in a longitudinally (first term) or transversely polarized (second
term) proton. Finally, in Eq. (2.4), the gamma-factor i σ+jγ5 selects transversely polarized
quarks inside transversely polarized (first and third terms), longitudinally polarized (second
term) or unpolarized (fourth term) protons.

2.1.2 Partonic interpretation and properties of the TMDs

As they are the central focus of interest in this Chapter, let us further elaborate on the
leading order TMDs and their partonic interpretation. We also introduce the Transverse
Momentum Dependent Fragmentation Functions (TMD FFs). The TMDs contain informa-
tion on the longitudinal and transverse (or intrinsic) motion of quarks and gluons inside a
fast moving nucleon. When adding the spin degree of freedom they link the parton spin
(say a quark, sq) to the parent proton spin (S) and to the intrinsic motion (k⊥). The
correlator (2.1) restricted to leading twist defines the most general spin dependent TMD,
which we denote by f q1 (x,k⊥; sq,S), and may depend on all possible combinations of the
pseudo-vectors sq,S and the vectors k⊥,P which are allowed by parity invariance. At
leading order in 1/Q, there are eight such combinations, leading to the eight independent
TMDs in Eqs. (2.2–2.4).

A similar correlation between spin and transverse motion can occur in the fragmentation
process of a transversely polarized quark, with spin vector sq and three-momentum kq, into a
hadron with longitudinal momentum fraction z and transverse momentum P⊥ (with respect
to the quark direction); such a mechanism is called the Collins effect [249] and appears in
the fragmentation function via a sq · (kq × P⊥) term. For a quark fragmentation into a
spinless hadron there are two independent leading-twist transverse momentum dependent
fragmentation functions.

We briefly list here the eight leading-twist Transverse Momentum Dependent Partonic
Distributions of a proton and the two Fragmentation Functions (for a final spinless hadron),
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which are the main objects in our investigation of the nucleon momentum structure.

• fa1 (x, k⊥) is the unpolarized, k⊥ dependent distribution of parton a inside a proton.
Its integrated version is the usual PDF measured in DIS. Common notations are
q(x) =

∫
d2k⊥ f

q
1 (x, k⊥), and g(x) =

∫
d2k⊥ f

g
1 (x, k⊥) for quarks of flavor q and gluons

respectively.

Most experimental and theoretical efforts have so far been dedicated to q(x,Q2) and
g(x,Q2); these are by now the best known partonic distributions, and the comparison
of the predicted Q2 dependence with data has been a great success for perturbative
QCD.

• ga1L(x, k⊥) (or simply ga1) is the unintegrated helicity distribution: the difference
between the number density of partons a with the same and opposite helicity of
the parent proton. Common notations for the integrated helicity distributions are
∆q(x) =

∫
d2k⊥ g

q
1L(x, k⊥) for quarks and similarly ∆g(x) for gluons. See the relevant

discussions in section 1.10.

The ∆q(x)’s are not so well known as the corresponding q(x), as they require polarized
DIS, but have been measured by several experiments. The least known of the helicity
distributions is the gluon one, ∆g(x), despite some attempts to measure it.

• hq1(x, k⊥) is the analogue of the helicity distribution, for transverse nucleon spin, i.e.
the transversity distribution. The integrated version has several notations in the
literature ∆⊥q(x) = hq1(x) =

∫
d2k⊥ h

q
1(x, k⊥) for quarks of flavor q. There is no

transversity distribution for gluons in a spin 1
2 hadron.

The unpolarized, the helicity and the transversity distributions are the only three
independent PDFs which survive in the collinear limit, k⊥ = 0. The transversity
distribution is chiral-odd and needs to be coupled to another chiral-odd quantity to
be observed. So far only one extraction of the u and d quark transversities is available
in the literature [250], obtained by a combined fit of SIDIS and e+e− data.

A good knowledge of the transversity distributions for quarks and antiquarks would
allow computation of the tensor charge, given by

∫ 1
0 dx [hq1(x)− hq̄1(x)], a non pertur-

bative quantity for which lattice and model computations exist.

• f⊥a1T (x, k⊥) is the Sivers function [251], appearing in the distribution of unpolarized
partons a inside a polarized proton. It links the parton intrinsic motion to the proton
spin:

fa1 (x,k⊥;S) = fa1 (x, k⊥)−
k⊥
M

f⊥a1T (x, k⊥) S · (P̂ × k̂⊥) . (2.5)

The Sivers function offers new information and plays a crucial role in our understand-
ing of the nucleon structure. Its observation, already confirmed, is a clear indication
of parton orbital motion; the opposite values for u and d quarks is argued to be linked
to the nucleons’ anomalous magnetic moments; its very origin and expected process
dependence are related to fundamental QCD effects. Due to its importance the Sivers
TMD for quarks will be discussed at length in Sec. 2.2 and for gluons in Sec. 2.3.
Theoretical issues concerning f⊥a1T , its origin and relation with basic QCD properties
like the color gauge links and color gauge invariance will be treated in Sec. 2.4.
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• h⊥q1 (x, k⊥) is the Boer-Mulders function [244], appearing in the distribution of polar-
ized quarks q inside an unpolarized proton:

f q1 (x,k⊥; sq) =
1

2
f q1 (x, k⊥)−

k⊥
2M

h⊥q1 (x, k⊥) sq · (P̂ × k̂⊥) . (2.6)

This function has the striking peculiarity that it might give unexpected spin effects
even in unpolarized processes, as it singles out polarized quarks from unpolarized
protons and neutrons. It will be discussed in Sec. 2.5.

• The remaining three TMDs, ga1T (x, k⊥), h
⊥q
1L (x, k⊥) and h

⊥q
1T (x, k⊥) are related to dou-

ble spin correlations in the PDFs; respectively, the amount of longitudinally polarized
partons in a transversely polarized proton, of transversely polarized quarks in a lon-
gitudinally polarized proton, and of transversely polarized quarks in a transversely
(but in a different direction) polarized proton. Neglecting higher-twist terms, some
approximate relationships with the other TMDs can be obtained [252]. They will
briefly be discussed in Sec. 2.6.

• Da
1(z, P⊥) (also denoted as Dh/a) is the unpolarized, P⊥ dependent, parton a fragmen-

tation function (into a hadron h). Its integrated version Da
1h(z) =

∫
d2P⊥Da

1(z, P⊥)
is the usual FF.

• H⊥q1 (z, P⊥) is the Collins function [249], describing the fragmentation of a polarized
quark into a spinless (or unpolarized) hadron:

Dq
1(z,P⊥; sq) = Dq

1(z, P⊥) +
P⊥
zMh

H⊥q1 (z, P⊥) sq · (p̂q × P̂⊥) . (2.7)

The Collins effect has been observed by several experiments and is well established. It
is considered as a universal property of the quark hadronization process and it plays
a crucial role in many spin effects. Its chiral-odd nature makes it the ideal partner
to access chiral-odd TMDs like the transversity distribution and the Boer-Mulders
function. All these will be discussed in Sec. 2.5.

2.1.3 How do we obtain information on TMDs?

Our guiding experiments involve again lepton-nucleon scattering at high energy, with
the difference, with respect to the usual DIS, that one observes in the final state a hadron
in addition to the scattered lepton, ℓ(l) + N(P ) → ℓ(l′) + h(Ph) +X, the so-called Semi-
Inclusive Deep-Inelastic Scattering (SIDIS). In this case the hadron, which results from the
fragmentation of a scattered quark, ‘remembers’ the original motion of the quark, including
the transverse one, and offers new information.

In general, SIDIS depends on six kinematic variables. In addition to the variables for
inclusive DIS, x, y = (P ·q)/(P · l), and the azimuthal angle φS describing the orientation of
the target spin vector for transverse polarization, one has three variables for the final state
hadron, which we denote by z = (P · Ph)/(P · q) (longitudinal hadron momentum), PhT
(magnitude of transverse hadron momentum), and the angle φh for the orientation of P hT

(see also Fig. 2.1). In the one-photon exchange approximation, the SIDIS cross section can
be decomposed in terms of structure functions [242, 247, 254, 255] where, largely following
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Figure 2.1. Illustration of the kinematics, especially the azimuthal angles, for SIDIS in the target
rest frame [253]. P hT and ST are the transverse parts of P h and S with respect to the virtual
photon momentum q = l− l′.

the notation of [247], one has

dσ

dxB dy dφS dzh dφh dP
2
hT

∝
{
FUU,T + ε cos(2φh)F

cos 2φh
UU

+ S‖ ε sin(2φh)F
sin 2φh
UL + S‖ λℓ

√
1− ε2 FLL

+ |S⊥|
[
sin(φh − φS)F

sin(φh−φS)
UT,T + ε sin(φh + φS)F

sin(φh+φS)
UT

+ ε sin(3φh − φS)F
sin(3φh−φS)
UT

]

+ |S⊥|λe
√

1− ε2 cos(φh − φS)F
cos(φh−φS)
LT + . . .

}
. (2.8)

In Eq. (2.8), ε is the degree of longitudinal polarization of the virtual photon which can be
expressed through y [247], S‖ denotes longitudinal target polarization, and λe is the lepton
helicity. The structure functions FXY (X and Y refer to the lepton and the nucleon, respec-
tively: U = unpolarized; L, T = longitudinally, transversely polarized) merely depend on
x, z, and PhT . The third subscript FXY,T specifies the polarization of the virtual photon.
By choosing specific polarization states and weighting with the appropriate azimuthal de-
pendence, one can extract each structure function in (2.8) as pioneering experiments have
already unambiguously shown.

For TMD studies one is interested in the kinematic region defined by

PhT ≃ ΛQCD ≪ Q , (2.9)

for which the structure functions can be written as certain convolutions of TMDs. In this
region, the components in Eq. (2.8) appear at leading order when expanding the cross section
in powers of 1/Q, while additional ones show up at sub-leading order [242, 247, 254, 255].
Measuring the structure functions in Eq. (2.8) allows one to obtain information on all eight
leading quark TMDs. To be specific, one has (for a spinless final state hadron) [247, 255],

FUU ∼
∑

q

e2q f
q
1 ⊗Dq

1 F
cos(φ−φS)
LT ∼

∑

q

e2q g
q
1T ⊗Dq

1 (2.10)

FLL ∼
∑

q

e2q g
q
1L ⊗Dq

1 F
sin(φ−φS)
UT ∼

∑

q

e2q f
⊥q
1T ⊗Dq

1 (2.11)

F
cos(2φ)
UU ∼

∑

q

e2q h
⊥q
1 ⊗H⊥q1 F

sin(φ+φS)
UT ∼

∑

q

e2q h
q
1T ⊗H⊥q1 (2.12)

89



F
sin(2φ)
UL ∼

∑

q

e2q h
⊥q
1L ⊗H⊥q1 F

sin(3φ−φS)
UT ∼

∑

q

e2q h
⊥q
1T ⊗H⊥q1 , (2.13)

where eq is the charge of the struck quark in units of the elementary charge. Notice that
the four chiral-even TMDs couple to the well known unpolarized fragmentation function
D1, while the chiral-odd TMDs couple to the (chiral-odd) Collins function H⊥1 . In the

subsequent sections the major focus will be on F
sin(φ−φS)
UT containing the Sivers function.

The factorized expressions for the structure functions in Eqs. (2.10)-(2.13) hold in this
form in the parton model approximation. If loop corrections are included, one not only
obtains a nontrivial higher order term describing the hard scattering part of the process but
also a leading-twist contribution arising from soft gluon emission (soft factor) [240, 256, 257,
258, 259, 260]. In the case of inclusive DIS such soft gluon effects cancel between real and
virtual radiative corrections, but they survive in the SIDIS cross section for PhT ≃ ΛQCD.
While the hard coefficient enters the structure functions in a simple multiplicative way, the
soft factor gets convoluted with the parton distributions and the fragmentation functions.
The presence of uncanceled soft gluon emission also requires to somewhat generalize the
field-theoretical definition of TMDs given above. More details about this point will be
presented in Sec. 2.4.

Almost all existing analyses of TMD-observables are based on the parton model ap-
proximation. This is sufficient for getting a good first idea about the general features of
the TMDs and also at the present stage of the data, which often are plagued by consider-
able uncertainties. However, precision studies will be necessary to reveal features of QCD
dynamics. The parton model approach will then be no longer appropriate, and one will
have to deal with soft gluon effects, especially when high quality data from the EIC become
available that will cover a large kinematic range.

2.1.4 Gauge invariance, universality, and beyond

Local gauge invariance is the underlying principle of the Standard Model of Particle
Physics. In the case of QCD it is the SU(3) gauge invariance associated with the color degree
of freedom of the quarks which matters. This color gauge invariance plays a particularly
crucial role for TMDs. Here a brief introduction to this topic is given, while especially in
Sec. 2.4 more details about this very active and fascinating field can be found.

As discussed in Sec. 2.1.1, in order to have a gauge invariant definition of TMDs a
gauge link (Wilson line) has to be inserted between the two quark fields showing up in the
correlator in Eq. (2.1). This is not specific for TMDs but applies also to, e.g., ordinary
PDFs. However, two features are unique in the case of TMDs: first, certain TMDs are
non-zero only if the Wilson line is taken into account [261, 262, 263, 264]. Second, the
Wilson line depends on the process, which leads to a nontrivial universality behavior of
TMDs [262].

The mere existence of two TMDs depends on the presence of the Wilson line — the
Sivers function f⊥1T and the Boer-Mulders function h⊥1 . They are also denoted as naive time-
reversal odd (T-odd) functions. (This term is not related to real violation of T-invariance
but, roughly speaking, is associated with a nontrivial phase at the amplitude level of a
process.)

The Wilson line is automatically generated when carrying out factorization. In the
case of SIDIS, it arises due to the exchange of (infinitely many) gluons between the active
struck quark and the remnants of the target. Since in DIS these exchanges happen after the
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virtual photon strikes the quark one also talks about final state interactions (FSI). On the
other hand, for the Drell-Yan process, there exist corresponding gluon exchanges before the
photon-quark interaction, which we call initial state interactions (ISI). As a consequence,
the Wilson-lines for the two processes are running along different paths. This in turn
endangers the universality (process-independence) of TMDs, which is a crucial prerequisite
for factorization being of any practical use.

Although the paths of the Wilson lines are different, the TMDs for both processes can
be related by using the parity and time-reversal transformation [262]. One finds that the six
T-even TMDs are actually universal, while the T-odd TMDs are non-universal. However,
this non-universality is well under control and ‘merely’ consists of a sign change [262],

f⊥1T
∣∣
DY

= −f⊥1T
∣∣
DIS

, h⊥1
∣∣
DY

= −h⊥1
∣∣
DIS

. (2.14)

In other words, the predictive power of factorization is maintained. The experimental check
of this sign change is currently one of the outstanding topics in hadronic physics.

We are now in a position to further motivate why the study of the Sivers effect should
play a central role in the EIC science case. First, the Sivers function not only tells us
something about the three-dimensional structure of the nucleon, a particular spin-orbit cor-
relation, etc. Its physics is also intimately related to the gauge invariance of QCD. Second,
existing data for non-zero transverse single-spin asymmetries in SIDIS and in proton-proton
collisions can be explained on the basis of the Sivers effect. In other words, the physics of
FSI/ISI is the key to describing these asymmetries (which can be as large as 40%) in QCD.
Third, according to our present knowledge, in SIDIS the Sivers function is easier to measure
than the Boer-Mulders function. Fourth, the check of the predicted sign reversal in (2.14),
strictly speaking, is more direct for f⊥1T than for the chiral-odd h⊥1 . In the latter case input
from models is required.

Quite some progress was made in recent years to further elucidate this physics associated
with the underlying gauge structure of QCD. In particular, for hadron-hadron collisions with
hadronic final states the presence of both ISI and FSI may unable any kind of (standard)
TMD-factorization [265, 266, 267, 268, 269, 270, 271, 272]. The consequences of a breakdown
of TMD-factorization are far-reaching. For instance, in such a case also the so-called QCD
resummation technique [273], which is widely used whenever there is more than one physical
momentum scale in a process, becomes questionable. Moreover, if the sign reversal of the
Sivers function in Eq. (2.14) is not confirmed by experiment, the general procedure of
applying QCD to hard scattering processes may have to be revisited. Further striking
developments in this rather new field can be expected, and only the close interplay between
lepton-nucleon scattering and hadronic collisions will allow us to fully explore this physics,
as is also obvious from the relations (2.14).

2.1.5 TMDs and orbital angular momentum

The helicity PDFs ga1 (x) are still not well known, especially in the sea quark and gluon
sector, but by now one fact seems clear: the spin of quarks and gluons accounts only for a
part of the nucleon spin. A substantial fraction of the nucleon spin must be due to orbital
angular momentum (OAM). It is important to keep in mind that in gauge theories there is
no unique decomposition of the nucleon spin into contributions due to the spin and OAM of
quarks and gluons [143, 274]. Nevertheless it is possible [274, 275] to learn about OAM from
GPDs which describe the dynamics of partons in the transverse plane in position space.
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TMDs provide complementary information on the dynamics of partons in the transverse
plane in momentum space, and one naturally expects TMDs to teach us about parton OAM.
That the OAM of partons plays an important role is well known: in the light-cone wave
function of the nucleon components with OAM Lz 6= 0 must be present in order to have
a non-zero anomalous magnetic moment [276, 277], and the situation is similar for several
other quantities [278]. Model calculations have also shown that the leading twist TMDs

f⊥q1T , g
q
1T , h

⊥q
1 , h⊥q1L , h

⊥q
1T and many sub-leading twist TMDs would vanish without different

components in the nucleon wave function with ∆Lz 6= 0. But although OAM seems to
play a crucial role also for many TMDs, so far no rigorous connection between the OAM
contribution of partons and the nucleon spin could be established.

2.1.6 Further important topics

In this subsection some further important aspects about TMDs are briefly discussed;
more details will be presented in the other Sections of this TMD Chapter.

Models and lattice QCD

Model calculations have had a particularly strong impact on the TMD field. It suffices
to recall the calculations in the quark-diquark model [261] which helped to establish the
existence of the Sivers effect within QCD and the TMD factorization framework [262].
Models may allow to see more clearly the relevant aspects of TMDs which are obscured
in the much more complicated QCD dynamics. We encountered one promising instance
of that above, in Sec. 2.1.5. Model results have, however, also very practical applications.
Nearly nothing is known about most of the TMDs. Models provide information on the
sign and magnitude of TMDs, or possible (model) relations among different TMDs. This
information can be applied to make predictions for the planned experiments, and in this
way help to better explore the opportunities of the available and planned facilities. The
importance of model studies is discussed in Sec. 2.4.

Lattice QCD is in principle a powerful approach. What can be handled presently in
lattice studies are calculations of the matrix element in the integrand of the correlator in
Eq. (2.1), i.e., TMDs in Fourier-space. Most readily accessible is information on x-integrated
TMDs such as

∫
dx f q1 (x, k⊥) [279, 280]. The caveat is that lattice results presently available

have been obtained with a simplified gauge-link in the correlator (2.1). This simplified
gauge-link differs from the link-geometry dictated by factorization in a particular scattering
process. Investigations with more realistic gauge-links are ongoing.

Gluon TMDs

In addition to the eight TMDs for quarks, there also exist eight TMDs for gluons [248,
281, 282]. The most prominent one is the unpolarized gluon TMD, which is a widely used
ingredient of many calculations in high-energy processes. Because of the initial and final
state interactions, the universality of this object is nontrivial and has attracted renewed
interest lately [283]. Moreover, linearly polarized gluons for an unpolarized nucleon can,
in principle, be explored through, e.g., heavy quark pair production in ℓ p-collisions [284].
A particularly important role is played by the Sivers function for gluons, which will be
discussed in quite some detail in Sec. 2.3. Experimentally, the sector of gluon TMDs is
largely unexplored so far, and the EIC could provide extremely valuable information in this
respect.
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Moments of TMDs

Momentum moments of some of the TMDs are of particular interest because of their
relation to certain collinear 3-parton correlators, which appear in the QCD-description of,
e.g., SIDIS structure functions at large PhT ≃ Q or weighted asymmetries (see Sec. 2.2).
For instance, in the case of the Sivers function one can consider the moment [264, 285]

f
⊥(1)
1T (x) ≡

∫
d2k⊥

k 2
⊥

2M2
f⊥1T (x,k

2
⊥) = π TF (x, x) , (2.15)

where TF represents a quark-gluon-quark correlator. These correlation functions were also
introduced in the literature to describe the single-spin asymmetries in hard scattering pro-
cesses in the collinear factorization framework [286, 287, 288, 289]. Equation (2.15) is a
model-independent result which allows one to relate different observables. A corresponding

relation holds for the Boer-Mulders function [264, 285]. Also the moments g
(1)
1T and h

⊥(1)
1L

can be expressed through collinear 3-parton correlators [290].

Integrated/weighted observables

In Sec. 2.1.3 leading-twist soft gluon effects were mentioned. Such effects can cancel
if the components in Eqs. (2.8) are integrated upon the transverse momentum PhT of the
hadron. For instance, a cancellation occurs for the unpolarized structure function FUU ,

and also for the term associated with F
sin(φh−φS)
UT which is related to the Sivers effect [291].

In the latter case the integration needs to be done with a proper weight factor (a more
elaborate account on this topic will be given in Sec. 2.2). Such weighted observables are
therefore rather attractive from a theoretical point of view. They depend on moments of
the TMDs just discussed above and as such provide additional complementary information.
The EIC would be ideal for seriously studying these interesting observables.

Structure functions from low to high transverse momenta

While at low PhT the SIDIS structure functions can be described by means of TMD-
factorization, for PhT ≃ Q collinear factorization is the appropriate framework. Recently,
a lot of progress has been made to understand the quantitative relation between TMD-
factorization on the one hand and collinear factorization on the other in the region ΛQCD ≪
PhT ≪ Q where both approaches apply [292, 293, 294, 295, 296, 297]. An extended discus-
sion of these aspects, with a focus on the EIC, will also be given in Sec. 2.2.

Higher twist TMDs

The focus of present research is on the leading-twist TMDs. However, there is also a
lot of important information encoded in twist-3 TMDs, which contain detailed information
on the quark-gluon correlators. Experimentally, such twist-3 effects can be explored by
measuring sub-leading structure functions appearing in the general decomposition of the
SIDIS cross section (2.8) [242, 247, 254, 255]. In fact, the first clear single-spin phenomena
in SIDIS, which crucially vitalized the field, were sub-leading twist observables. Although
studied in numerous works, these first data on single-spin asymmetries in SIDIS remain
basically unexplained. Some aspects of the interesting topic of higher twist TMDs will be
discussed in more detail in Sec. 2.6.
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Deliverables Observables What we learn Phase I Phase II

Sivers + unp. SIDIS with Tran. Quant. Interf. valence+sea 3D Imaging of

TMD quarks polarization/ion; Multi-parton & quarks, overlap quarks & gluon;

and gluon di-hadron (di-jet) Spin-Orbit with the fixed Q2 (P⊥) range

heavy flavor correlations target exp. QCD dynamics

Chiral-odd SIDIS with Tran. 3rd basic quark valence+sea Q2 (P⊥) range

functions: polarization/ion; PDF; novel quarks, overlap for detailed

Transversity; di-hadron hadronization with the fixed QCD dynamics

Boer-Mulders production effects target exp.

Table 2.1. Science Matrix for TMD physics: 3D structure in transverse momentum space: golden
measurements (upper part) and silver measurements (lower part).

2.1.7 TMDs and the EIC

Despite the tremendous progress in understanding TMDs and the related physics, with-
out a new lepton-hadron collider many aspects of this fascinating field will remain untouched
or at least on a qualitative level. Existing facilities either suffer from a much too restricted
kinematic coverage or from low luminosity or from both. Based on the present status of
research we see the following potential in an EIC:

• clean quantitative measurements of TMDs in the valence region due to high luminosity,
and ability to go to sufficiently large Q2 in order to suppress potential higher twist
contaminations. Primordial orbital motion is expected for valence quarks.

• related to the wide kinematic coverage and the high luminosity, ability to provide
multi-dimensional representations of the observables, which is basically impossible on
the basis of current experiments.

• production and possible observation of jets with significantly larger particle multiplic-
ities, allowing for the study a larger variety of hadronic final states.

• first access to TMDs for antiquarks.

• (first) access to TMDs for gluons, for instance through dihadron correlations, dijet
correlations, or semi-inclusive production of quarkonium.

• systematic study of perturbative QCD techniques (for polarization observables). Tests
and studies of QCD evolution properties of TMDs.

We strongly believe that the EIC will bring our knowledge of the partonic structure of
the nucleon to an entirely new level. Keeping in mind deeply QCD rooted effects, like the
(potential) sign-change of the Sivers function, the EIC can be expected to stimulate further
developments in the application of perturbative QCD to other hard scattering processes.
A series of “golden” and “silver” measurements are outlined in table 2.1. The significance
of these points is further enhanced by newly planned (polarized) Drell-Yan experiments,
which will study complementary physics aspects.
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2.2 Sivers function

Christine Aidala, Elke Aschenauer, Alessandro Bacchetta, Thomas Burton, Leonard
Gamberg, Delia Hasch, Min Huang, Zhong-Bo Kang, Yuji Koike, Bernhard Musch,
Alexei Prokudin, Xin Qian, Gunar Schnell, Kazuhiro Tanaka, Anselm Vossen, Feng
Yuan

We choose the example of the Sivers function to illustrate the physics case for TMD
distributions at the EIC. This function incorporates all new facets and intriguing physical
aspects of TMD distributions outlined in the introduction and discussed in more detail in
the following sections. We start this discussion with a brief review of the peculiarities of
the Sivers function thereby illustrating the crucial role TMDs play in our understanding of
the nucleon structure.

The Sivers function f⊥a1T (x, k⊥), appearing in the distribution of unpolarized partons a
inside a polarized nucleon:

fa1 (x,k⊥;S) = fa1 (x, k⊥)−
k⊥
M

f⊥a1T (x, k⊥) S · (P̂ × k̂⊥) (2.16)

describes the correlation between the momentum direction of the struck parton and the
spin of its parent nucleon and is hence related to the orbital motion of partons inside
the nucleon. This correlation generates a dipole pattern in the transverse k⊥-plane. We
illustrate this fascinating aspect of certain TMDs in providing a three-dimensional imaging
of the nucleon in momentum space by choosing a specific configuration for the vectors
involved in Eq. (2.16). Taking for example P̂ ≡ P

|P| = (0, 0,−1) and the spin of the proton

along the y direction, so that S = (0, 1, 0) and the transverse momentum of the parton
k⊥ = (k⊥x, k⊥y, 0), yields a typical “dipole” modulation of the distribution:

fa1 (x,k⊥;S) = fa1 (x, k⊥) +
k⊥x
M

f⊥a1T (x, k⊥) . (2.17)

The f1 term provides an axially symmetric contribution, while the second term containing
f⊥1T gives rise to the dipole pattern. A superposition of both effects results in a distribution
that is shifted away from the center (distorted) in the k⊥-plane as shown in fig. 2.2. This
distortion turns out to be of opposite sign for up and down quarks.

The Sivers function manifests the importance of initial and final state interaction effects
in hard scattering processes as the presence of these effects is required for the existence
of a non-zero Sivers function. Their inclusion in the TMD factorization approach yields a
peculiar breaking of the universality of the Sivers function. As introduced in sec. 2.1.4 and
detailed in sec. 2.4.1, this non-universality is well under control and ‘merely’ consists of a sign
change of the Sivers function when appearing in the Drell-Yan process as compared to DIS.
The experimental verification of this sign change is currently one of the outstanding topics
in hadronic physics and presents a crucial test for our understanding of hadron production
in high-energy reactions. We will therefore briefly review the prospects for measurements
of the Sivers effect in Drell-Yan in sec. 2.2.3.

A further intriguing aspects of the Sivers function is its connection to the orbital an-
gular momentum in the nucleon. A non-zero quark Sivers function involves a transition
between initial and final nucleon states that differ by one unit of orbital angular momen-
tum. This property together with the potential for a three-dimensional imaging, puts the
Sivers function in close relation to the GPD E discussed in chapter 3. In particular, it
was proposed that there is a dynamical relation called “chromodynamic lensing”, where
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Figure 2.2. Spin density in the transverse-momentum plane for unpolarized quarks in a transversely
polarized nucleon, as described by the Sivers function. The left panel is for up quarks and the right
one for down quarks. The model calculation of Ref. [298] was used.

the spatial distortion of the transverse quark distribution (in a transversely polarized pro-
ton) leads to a distortion in transverse momentum distribution described by the Sivers
function [299, 300, 301].

2.2.1 What do we know so far from experiments?

Though the Sivers function was first suggested to explain the surprisingly large single-
spin asymmetries measured in pp collisions, our guiding experiments for obtaining unam-
biguous information about this function, and most of the other TMDs, involve high-energy
lepton-nucleon scattering with the observation of one or more hadrons in coincidence with
the scattered lepton (semi-inclusive DIS). In addition, model calculations of TMDs, dis-
cussed in sec. 2.4, guide Ansätze for global fits of TMD parameterizations and provide an
interpretation of the various aspects of TMDs.

In this section, after a brief review of the results from pp collisions, we will summarize
available semi-inclusive DIS measurements of observables related to the Sivers effect and
present phenomenological extractions of the Sivers function from data. The following section
will then highlight the potential of an EIC for a detailed and systematic exploration of the
various aspects of the quark Sivers functions illustrative of TMDs in general.

Transverse-spin effects in proton-proton collisions

Historically, the surprisingly large left-right asymmetries observed in hadronic reactions
with transversely polarized protons initiated the idea about a transverse momentum depen-
dence of quark distributions in polarized protons. The pioneering measurements [302, 303]
of these large (up to 0.3-0.4 in magnitude) transverse-spin asymmetries in inclusive for-
ward production of pions in pp collisions p↑p → π + X, have been extensively confirmed
by experiments at FermiLab [304, 305, 306, 307, 308] and at RHIC (BNL) at much higher
center-of-mass energies of up to

√
s = 200 GeV [309]. The observation of such asymmetries

was frequently quoted as a puzzle or challenge for theory. In fact, for a long time, transverse
single-spin asymmetries were assumed to be negligible in hard scattering processes [310].
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The work of [251] introduced a transverse momentum dependent quark distribution, now
termed the Sivers function, which provides a mechanism for the observed asymmetries that
does not vanish at high energies.

A rich variety of single-spin asymmetries for identified hadrons (π±, π0,K±, p, p̄) mea-
sured over a wide kinematic range is now available from the BRAHMS, PHENIX and STAR
experiments at RHIC (BNL) [311, 312, 313, 314, 315, 316, 317, 318]. The results exhibit
a general pattern: sizable asymmetries are measured at forward-rapidity and for positive
Feynman xF > 0.3 which increase in magnitude with increasing xF and PhT . In contrast,
for negative xF and at mid-rapidity all asymmetries are found to be consistent with zero.

Several mechanisms have been suggested to explain these asymmetries. At large values
of PhT collinear factorization involving twist-3 distributions can be applied. However, the
intrinsic prediction of a 1/PhT fall-off has yet to be confirmed. An alternative approach
using a generalized parton model that takes intrinsic transverse momentum dependences
into account has been used to describe existing data, achieving a fairly successful description
of the observed asymmetries for pion production in pp collisions [319]. If less inclusive
measurements are performed, with an observed soft momentum scale in addition to a hard
scale, one can attempt to describe the data using a TMD approach in pQCD. However, as
discussed in sec. 2.4.1, the presence of both initial and final state interactions in hadron-
hadron collisions may prevent any kind of (standard) TMD-factorization. More insight
might be gained regarding the intricate color structure of pp reactions for example by
measuring di-jet production. In di-jet production both large scales (e.g., jet pT ) and small
scales (e.g., ∆pT of nearly back-to-back jets) can be observed. To assess factorization
breaking due to color interactions in pp collisions, the experimental measurements can be
compared to calculations using TMDs extracted from DIS and Drell-Yan, for which TMD-
factorization has been demonstrated. Little experimental information currently exists on
these processes, but they are part of the physics program at RHIC.

Many questions still need to be answered, but it is clear that for a strict assessment
of whether the TMD Ansatz is indeed possible and appropriate to describe results from
hadronic collisions, more precise parameterizations of the Sivers function and, hence, more
precise data on the Sivers effect in a well-understood process like DIS is needed.

Semi-inclusive Deep-Inelastic Scattering

In semi-inclusive DIS, the Sivers function leads to single-spin asymmetries in the distri-
bution of hadrons in the azimuthal angles illustrated in fig. 2.1. The azimuthal modulations
of the SIDIS cross section are given in Eq. (2.8). The Sivers effect manifests itself as a
sin(φh−φS) modulation and requires transverse polarization of the target nucleon. The ad-
ditional information provided by the azimuthal angle φS of the transverse component of the
target-proton spin about the virtual photon direction allows for an unambiguous extraction
of the Sivers effect. Experimentally, the so-called Sivers amplitude 2〈sin(φh−φS)〉hUT [253],

which projects out the structure function F
sin(φh−φS)
UT,T in Eq. (2.8) for a specific hadron h,

is extracted from the asymmetry

AhUT (φh, φS) ≡
1

|ST |
dσh(φh, φS)− dσh(φh, φS + π)

dσh(φh, φS) + dσh(φh, φS + π)
, (2.18)

where the subscript U indicates an unpolarized lepton beam and T a transversely polarized
target nucleon. This amplitude has so far been extracted by three polarized fixed-target
experiments as summarized in Tab. 2.2. From these measurements, fig. 2.3 shows a selection
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experiment (laboratory)
√
s in GeV target type hadron types references

COMPASS (CERN) 18 deuteron h±, π±,K±,K0 [320, 321]

proton h± [322]

proton π±,K± prelim. [323]

HERMES (DESY) 7.4 proton π± [324]

proton π±, (π+ − π−), π0,K± [325]

HallA (JLab) 3.5 neutron π± prelim. [326]

Table 2.2. Summary of currently available measurements of Sivers asymmetry amplitudes from
lepton-nucleon DIS experiments, their center-of-mass energy, transversely polarized target type, and
analyzed hadron types.

of results that are significantly non-zero and help in determining the shape of the Sivers
function. All other asymmetry amplitudes listed in Tab. 2.2 are small or consistent with
zero.

The results have so far been interpreted in the parton model as a convolution of dis-
tribution and fragmentation functions, where the Sivers amplitude can be approximated
by

2〈sin (φh − φS)〉hUT (xB , y, zh, PhT ) = −
∑

q e
2
q f
⊥q
1T (x, k

2
⊥)⊗W Dq

1(z, P
2
⊥)∑

q e
2
q f

q
1 (x, k

2
⊥)⊗Dq

1(z, P
2
⊥)

. (2.19)

Here the sums run over the quark flavors, the eq are the quark charges, and f1(x, k
2
⊥) and

D1(z, P
2
⊥) are the spin-independent quark distribution and fragmentation functions, respec-

tively. The symbol ⊗ (⊗W) represents a (weighted) convolution integral over intrinsic and
fragmentation transverse momenta, k⊥ and P⊥ respectively, as explicitely given in (2.21).

A qualitative picture of the Sivers function can already be derived from the measured
asymmetry amplitudes. The non-zero results shown in fig. 2.3 are obtained with a proton
target. As scattering off u quarks dominates these data due to the charge factor, the
positive Sivers amplitudes for π+ and K+ suggest a large and negative Sivers function for
up quarks. This is supported by the positive amplitudes of the pion difference asymmetry,
which originates mainly from the difference (f⊥dv1T −4f⊥uv1T ) in the Sivers functions for valence
down and up quarks and is dominated by the contribution from valence u quarks. The
vanishing amplitudes for π− require cancellation effects, e.g. from a d quark Sivers function
opposite in sign to the u quark Sivers function. Such cancellation effects between Sivers
functions for up and down quarks are supported by the vanishing asymmetry amplitudes
extracted from deuteron data by the COMPASS collaboration. An interesting facet of the
data shown in fig. 2.3 is the magnitude of the K+ amplitudes, which are nearly twice as
large as those of the π+. Again, on the basis of u quark dominance, one might naively
expect that the π+ and K+ amplitudes should be similar. Their difference in size may thus
point to a significant role of other quark flavors, e.g. sea quarks.

Phenomenological analyses of HERMES and COMPASS data [327, 328, 329, 330, 331,
332], confirm the picture drawn above as discussed in the following. So far, only the analysis
of Ref. [327] makes use of a subset of the most recent data listed in Tab. 2.2 and all fits have
yet to be updated for the results from proton data from COMPASS and the first neutron
data from HallA.
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Figure 2.3. Sivers amplitudes for π+, K+ and the pion-difference (as denoted in the panels) from
HERMES [325] and for π+ and K+ from COMPASS [323] measured with a proton target. Inner
error bars present statistical uncertainties and full error bars the quadratic sum of statistical and
systematic uncertainties. Note that the average kinematics in each bin differs for HERMES and
COMPASS.

Phenomenological extractions and models of the Sivers function

The strong impact and success of model calculations and lattice QCD on the TMD field
is discussed in detail in sec. 2.4 and sec. 4.1, respectively. Models provide information on the
magnitudes and signs of TMDs and guide Ansätze for global fits of TMD parameterizations.
For example, from chiral models [333] and the QCD limit of a large number of colours (large
Nc limit) [334] a Sivers function for up and down quarks of equal size but with opposite
sign (f⊥u1T = −f⊥d1T ) is predicted.

Phenomenological analyses provide extractions of TMDs from data. As discussed in
sec. 2.1.3, existing analyses of TMD observables are so far based on the parton model
approximation, where the measured amplitudes of the SIDIS cross section in Eq. (2.8), are
expressed as convolutions of distribution f q and fragmentation functions Dq. For the Sivers
amplitude it reads

F
sin(φh−φS)
UT,T ∝

∑

q

e2q f
⊥q
1T (x, k

2
⊥)⊗W Dq

1(z, P
2
⊥) (2.20)

where ⊗W is defined as

⊗W ≡
∫
d2k⊥ d

2P⊥ δ
(2) (zk⊥ + P⊥ − PhT ) W , (2.21)

with the kinematic factor W depending on the involved transverse momenta. This convolu-
tion can be resolved by either employing a particular model for the transverse momentum
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Figure 2.4. Up and down quark Sivers distributions extracted from HERMES (and for the full line
also from COMPASS) data using three different parameterizations [329, 330, 331] (see text). The
left and right panels show, respectively, the first and the 1/2 moment. The curves indicate the
1-sigma regions of the various parameterizations. None of three parameterizations makes use of the
latest experimental results listed in Tab. 2.2.

dependence or by integrating over the transverse momentum PhT using a proper weight
factor in the extraction of the asymmetry amplitudes which involves PhT , building for ex-
ample 2〈PhT

Mp
sin (φh − φS)〉hUT . The latter approach is very attractive but experimentally

challenging for measurements at current fixed target facilities as it requires full PhT cover-
age, which cannot be obtained at any of the existing experiments. An EIC would be the
ideal facility to study such weighted asymmetries and to seriously explore the advantages
of these observables, as further discussed in sec. 2.2.7.

An intuitive and common Ansatz for the transverse momentum dependence of distri-
bution and fragmentation functions, which provides an analytic solution of (2.21), is a
Gaussian distribution like

f⊥q1T (x, k
2
⊥) = f⊥q1T (x)

1

π〈k2⊥〉
exp

(
− k2

⊥
〈k2⊥〉

)
, Dq

1(z, P
2
⊥) = Dq

1(z)
1

π〈P 2
⊥〉

exp

(
− P 2

⊥
〈P 2
⊥〉

)

(2.22)
with typical values for 〈k2⊥〉 and 〈P 2

⊥〉 of 0.2 to 0.3 GeV2.
The Sivers function was among the first to be extracted from data, as it couples to

the usual unpolarized fragmentation function Dq
1. This fragmentation function is reason-

ably well parameterized [335, 336] using precise data from electron-positron annihilation
into charged hadrons and, most recently, also from single-hadron production in pp colli-
sions and semi-inclusive DIS [74], which provide complementary information on the flavour
dependence of the fragmentation process.

Figure 2.4 shows the extraction of the up and down quark Sivers distributions using three
different parameterizations for the Sivers function [329, 330, 331], presenting k⊥-moments
defined as

f (1)(x) ≡
∫
d2k⊥

k2
⊥

2M2
f(x, k2⊥) and f (1/2)(x) ≡

∫
d2k⊥

|k⊥|
2M

f(x, k2⊥) . (2.23)

The parameterization from Ref. [329] (full line) is based on a combined fit to previous
HERMES and COMPASS data, while the other two fit HERMES data only but describe
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Figure 2.5. The Sivers function for u quarks extracted from recent experimental data [327]. Vertical
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range for the chosen parameterization. The dashed blue lines indicate the positivity bound.

the COMPASS data well when using the obtained parameters to calculate the asymmetries
for COMPASS kinematics. All three extractions use the parameterization from Ref. [335]
for the unpolarized fragmentation function. The two curves of each set indicate the 1-sigma
regions of the various parameterizations, taking into account solely statistical uncertainties
of the data sets employed in the fit. The three approaches describe the HERMES Sivers
asymmetries equally well. The differences in size and shape of the extracted Sivers up
and down quark distributions hence reflect the model dependence of the fit results. The
parameterization of [331] imposes the constraint from the large Nc limit, which results in the
symmetric parametrization of up and down Sivers distributions, shown in the left panel of
fig. 2.4 with dashed lines. None of the extractions involve parameterizations for sea quarks
as they could not be constrained by the data used in the fits.

However, the recent, surprisingly large, Sivers asymmetry amplitudes for K+ measured
by HERMES, which were found to be nearly twice as large as those of the π+, might hint
at a possibly important role of sea quarks. In Ref. [327], the sensitivity of these data to sea
quark contributions was tested. A fit including Sivers functions for only up and down quarks
was compared with a second fit that allowed also for sea quark contributions (ū, d̄, s, s̄) to
the Sivers amplitude. Both fits describe the data with equally good χ2, demonstrating that
their precision is not yet good enough to independently constrain the Sivers function for six
quark flavours. In this analysis, the usage of new parameterizations of the fragmentation
functions from Ref. [74] was essential for obtaining a good description of the kaon data.

The available parameterizations of the Sivers function for up and down quarks [327,
328, 331, 332] agree, within their large uncertainties, with calculations based on a light-
cone model [298] and on a diquark spectator model [337, 338], while predictions based on
the bag model [339] appear to be too small in magnitude for both the up and down quark
Sivers function (see also sec. 2.4).

Open issues in extractions of the Sivers function

Figure 2.5 illustrates our current knowledge of the Sivers function. So far, only the
up and down quark Sivers functions can be constrained with relatively large uncertainties
within the range 0.004 < x < 0.5 using basic parameterizations for their shapes.

The precision of current data permits neither constraints of the Sivers functions for
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sea quarks nor an employment of more flexible functional forms, which would also allow
for a sign change as suggested by a spectator model (see fig. 2.22 in sec. 2.4). The band
in fig. 2.5 represents the 2-sigma range for the chosen parameterization and reflects the
precision of the data, but does not account for model uncertainties or for variations of the
functional form of the parameterizations. Also not estimated so far, is any uncertainty
stemming from the Gaussian Ansatz used to resolve the convolution in (2.21). For example,
the average value, 〈k2⊥〉, of the quark intrinsic transverse momentum used in this Ansatz
might be flavour dependent, and both 〈k2⊥〉 and 〈P 2

⊥〉 dependent on the energy scale. The
latter is particularly relevant for the fragmentation functions, which are extracted from data
collected at much higher energy than the available SIDIS asymmetry data used in the fits.
The EIC would provide both TMD observables at substantially higher scale than any fixed
target DIS experiment and unique data sets of hadron production for a flavour tagging in
the fragmentation process and a study of its transverse momentum dependence.

At this stage of analysis, also specific known issues of experimental data are ignored.
For example, the limited precision of currently available SIDIS data usually allows only
for presenting the results as a function of one kinematic variable while integrating over
the others within the experimental acceptance. Hence, the asymmetry amplitudes from a
specific experiment, presented for different kinematic variables are correlated. Moreover,
the experimental acceptance usually does not provide a full coverage in PhT . Thus, the
’unweighthed’ asymmetry amplitudes extracted as function of x or z present only partial
PhT moments in contrast to theoretical considerations. A fully differential analysis of SIDIS
data, which requires high statistic datasets, would resolve these issues.

Turning our essentially qualitative picture of the Sivers function and the related physics
into a quantitative description, which goes beyond the tree-level approximation, requires
new facilities providing high precision polarized data over a wide kinematic range as dis-
cussed in the following section.

2.2.2 The Sivers function at the EIC

A systematic and detailed study of the Sivers function, and TMDs in general, can only be
performed on the basis of precise spin- and azimuthal-asymmetry amplitude measurements
in semi-inclusive DIS over a wide kinematic range. The availability of experimental results
that are fully differential in the kinematic variables x, Q2, z and PhT would be a great
asset for phenomenological analyses, as they permit testing the underlying perturbative
QCD techniques and assumptions. Particle identification over the full momentum range
and measurements with both proton and (effective) neutron targets would allow for a full
flavour separation of the distribution functions under study.

Planned experiments at the upcoming JLab12 facility aim at providing high precision
semi-inclusive DIS data in the valence quark region at relatively low Q2, taken with trans-
versely polarized neutrons (HallA) [340], protons and deuterons (CLAS12) [341]. The ex-
pected high luminosities should allow for fully differential extractions of the relevant az-
imuthal and transverse-spin asymmetries. The kinematic range of JLab12 experiments
will be complementary to COMPASS measurements [342], partially overlap with those of
HERMES, and provide data in the so-far unexplored high-x region.

The kinematic coverage of these experiments is compared in fig. 2.6 with the coverage of
an EIC for an energy setting of

√
s = 50 GeV. As discussed in sec. 7.1 and sec. 7.2, the ability

to vary the energy of both the electron and proton (ion) beams at the EIC provides variable
energy in the range

√
s = 15− 65 GeV or

√
s = 45− 200 GeV depending on the realization
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Figure 2.6. [color online] Kinematic coverage in x and Q2 for the EIC for an energy setting of√
s = 50 GeV compared to the coverage of COMPASS, HERMES and future JLab12 experiments

represented by the red, purple and black hatched areas, respectively.

options under discussion. This ability puts the EIC in the unique position of accessing
the valence region at much larger Q2 than current and near-future experiments (thereby
suppressing potential higher twist contaminations) while also accessing low x down to values
of about 10−5, where sea quarks and gluons could be studied in detail. The expected high
luminosity will allow for a fully differential analysis over almost the whole wide kinematic
range. In this section we will illustrate this potential for fully differential analyses of TMD
observables and test the sensitivity to sea quark distributions. The unique features of the
EIC for access to TMDs for gluons, a study of the evolution properties of TMDs, and of the
transition from low to high transverse momenta will be discussed, using the Sivers function
as an example, in secs. 2.3, 2.4.2 and 2.2.5, respectively.

Generation of pseudo-data

The projections presented in the following for the Sivers asymmetry where estimated
using either modified existing Monte Carlo generators or standard parameterizations of the
unpolarized parton distribution and fragmentation functions. Events were generated for
Q2 > 1 GeV2, 0.01 < y < 0.9 and 0.1 < z < 0.9, over the full kinematically allowed range in
x. At this stage no cuts were applied on the scattered electron or produced hadron. Events
were divided into four-dimensional (x, Q2, z, PhT ) bins and the mean asymmetry in each
bin was evaluated. Full acceptance in azimuth was assumed and statistical uncertainties
of
√

2/N were assigned in each bin. More details about the simulations can be found
in [343]. For all projections shown in the following, no losses due to detector acceptance
were applied, but an overall operational efficiency of 50% was assumed. The transverse
proton beam polarization is set to 70%. No estimate of systematic uncertainties is applied.

Most of the projections will be given for an integrated luminosity of 4 fb−1 or 30 fb−1.
These statistics would be achieved in approximately one week to one month (4 fb−1) or
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Figure 2.7. Projected accuracy for π+ production in semi-inclusive DIS off the proton for a particular
PhT and z range as indicated in the figure. The position of each point is according to its Q2 and x
value, within the range 0.05 < y < 0.9. The projected event rate, represented by the error bar, is
scaled to the (arbitrarily chosen) asymmetry value at the right axis. The blue squares, black triangles
and red dots represent the

√
s = 140 GeV,

√
s = 50 GeV and

√
s = 15 GeV EIC configurations,

respectively. Event counts correspond to an integrated luminosity of 30 fb−1 for each of the three
configurations.

one month to six month (30 fb−1) for luminosities ranging from 1 × 1034 cm−2s−1 to 3 ×
1033 cm−2s−1. Therefore the statistical precision in the figures presented here should be
understood as that achievable in a relatively brief period of operation for an EIC.

Four-dimensional mapping of the phase space

The great potential of the EIC for obtaining a fully differential mapping of almost the
entire phase space relevant for TMD studies is illustrated in figs. 2.7 and 2.8. A wide x
and Q2 range can be mapped using different beam energies. The projected accuracy for
single π+ production is given for a four-dimensional binning in the kinematic variables x,
Q2, z and PhT , using three different energy configurations for the EIC (

√
s = 15, 50 and 140

GeV) and an integrated luminosity of 30 fb−1 for each configuration. Events are selected
for 0.05 < y < 0.9 and W 2 > 5 GeV2. For a clearer view and explanation of the presented
projections, we show in fig. 2.7 one of the panels from fig. 2.8 corresponding to a specific z
and PhT range. In both figures, the position of each point is according to its x and Q2 value
(abscissa and left ordinate, respectively) and each panel is for a specific z and PhT bin as
indicated in the figure. The projected event rate is represented by the error bar scaled with
respect to the (arbitrarily chosen) asymmetry value given at the right ordinate.

The simulations demonstrate that a four-dimensional mapping of TMD observables for
pions over the whole phase space of main interest, meaning PhT values of up to about 1 GeV,
could be achieved in about 3-5 month of running for each energy configuration. Kaon rates
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Figure 2.8. Four-dimensional representation of the projected accuracy for π+ production in semi-
inclusive DIS off the proton. Each panel corresponds to a specific z bin with increasing value from
left to right and a specific PhT bin with increasing value from top to bottom, with values given
in the figure. The position of each point is according to its Q2 and x value, within the range
0.05 < y < 0.9. The projected event rate, represented by the error bar, is scaled to the (arbitrarily
chosen) asymmetry value at the right axis. Blue squares, black triangles and red dots represent the√
s = 140 GeV,

√
s = 50 GeV and

√
s = 15 GeV EIC configurations, respectively. Event counts

correspond to an integrated luminosity of 30 fb−1 for each of the three configurations.

are typically a factor 4-5 lower than those for pions and a similar quality of data can be
achieved within a correspondingly longer running time.

The strategy for a full flavour separation of the Sivers distribution, and TMD distribu-
tions in general, involves both pion and kaon identification over almost the whole momentum
range and measurements with proton and effective neutron targets. For the latter, the us-
age of polarized 3He ions is foreseen for both EIC concepts. Compared to the projections
shown in fig. 2.8, the dilution factor of 1/3 has to be compensated with higher luminosities
(respectively longer running times). The resulting different phase space for the neutron
measurements compared with the proton case due to the Z/A factor entering the momen-
tum distribution and the expected lower center-of-mass energy (by about 2/3) because of
the different rigidities of the beams can be compensated to a large extent by using the
different beam energy settings.

In addition, valuable and necessary information about the transverse momentum de-
pendence of the fragmentation process will be obtained from the same data using a fully
differential extraction of the individual hadron multiplicities.

Sensitivity to sea quarks

Among the unique features of the EIC is its sensitivity for an exploration of the Sivers
function for sea quarks, which are expected to play an important role in the lower x region.
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Figure 2.9. Simulated Sivers asymmetry amplitudes for π+, obtained with an energy of
√
s = 140

GeV, as a function of x in bins in z, PhT and for a single bin in Q2 as given in the panels. Closed
blue (open black) dots correspond to (non-)zero Sivers functions for sea quarks. Error bars represent
the projected accuracy corresponding to an integrated luminosity of 4 fb−1.

We investigate this sensitivity by generating two sets of events, one with and one without
contributions from sea quarks. As the Sivers distribution is essentially unknown, it was
parameterized via a constant multiplied by the unpolarized PDF with independent constants
for u, d and sea quarks. The Sivers asymmetry is returned by the generator on an event-
by-event basis. The unpolarized PDFs of [82] and the fragmentation functions of [74] were
used.

In both cases, the same parameterization for up and down quark Sivers functions was
used, which were set equal to 25% of the unpolarized distribution, but with opposite sign,
i.e. f⊥u1T (x) = −0.25fu1 (x) and f

⊥d
1T (x) = 0.25fd1 (x). In the first data set, the Sivers functions

for sea quarks were also set to 25% of the corresponding unpolarized distribution. In the
second data set the sea quark Sivers distributions were fixed to zero. This allowed for a
comparison of the case in which the sea quark Sivers function was significant compared to
that of the valence quarks with the case of a vanishing sea quark contribution.

Figure 2.9 shows the asymmetry amplitudes for π+, obtained with an energy of
√
s = 140

GeV, for a single bin in Q2 as a function of x, binned in z and PhT as indicated in the panels.
Open black dots represent the case of non-zero Sivers functions for sea quarks and closed blue
dots the case of vanishing contributions. Error bars correspond to an integrated luminosity
of 4 fb−1, already yielding sufficient precision to resolve small resulting differences in the
asymmetry. Because of their different quark content, kaon production is expected to have a
higher sensitivity to sea quark contributions. Figure 2.10 shows the asymmetry amplitudes
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Figure 2.10. Simulated Sivers asymmetry amplitudes for K+, obtained with an energy of
√
s = 140

GeV, as a function of x in bins in z, PhT and for a single bin in Q2 as given in the panels. Closed
blue (open black) dots correspond to (non-)zero Sivers functions for sea quarks. Error bars represent
the projected accuracy corresponding to an integrated luminosity of 4 fb−1.

for K+ where indeed both scenarios are more distinct. As for π+, the estimate is based on
an integrated luminosity of 4 fb−1 and obtained with an energy of

√
s = 140 GeV.

The study demonstrates that even a relatively brief running of the EIC provides the
potential to distinguish zero and non-zero Sivers functions for sea quarks. Note that these
parameterizations are intended not as a prediction of what asymmetries will actually be
seen at an EIC, but as an indicator of sensitivity given the expected statistical precision.

Impact of the EIC

The EIC will be the unique facility for exploring the Sivers function (and TMDs in
general) for sea quarks and the gluon, to study the evolution properties of TMD distributions
and to investigate experimentally the transition from low to high transverse momenta. As
discussed in sec. 2.2.1, our current knowledge is restricted to an essentially qualitative
picture of the Sivers function. Available data permit to constrain parameterizations for up
and down quarks only, employing relatively simple functional forms.

We illustrate the expected impact of data from the EIC using the parameterization from
Ref. [327] as an arbitrarily chosen model of the Sivers function. This parameterization,
denoted theori = F (xi, zi, P

i
hT , Q

2
i ;a0) with the M parameters a0 = {a01, ..., a0M} fitted to
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Figure 2.11. [color online] Comparison of the precision (2-σ uncertainty) of extractions of the Sivers
function for u quarks (left) and d quarks (right) from currently available data [327] (grey band) and
from pseudo-data generated for the EIC with energy setting of

√
s = 45 GeV and an integrated

luminosity of 4 fb−1 (dark grey band around the red line). The uncertainty estimates are for the
specifically chosen underlying functional form (see text for details).

existing data, serves to generate a set of pseudo-data in each kinematic bin i

f(valuei; theori, σ
2
i ) =

1√
2πσ2i

e−(valuei−theori)
2/2σ2i . (2.24)

In each xi, Q
2
i , zi and P ihT bin, the obtained values, valuei, for the Sivers function are

distributed using a Gaussian smearing with a width σi corresponding to the simulated
event rate at an energy of

√
s = 45 GeV obtained with an integrated luminosity of 4 fb−1.

For illustration of the obtainable statistical precision the event rate for the production of
π+ in semi-inclusive DIS was used.

This new set of pseudo-data was then analysed like the real data in Ref. [327]. Figure 2.11
shows the result for the extraction of the Sivers function for u and d quarks. The central
value of f⊥u1T , represented by the red line, follows by construction the underlying model.
The 2-sigma uncertainty of this extraction, valid for the specifically chosen functional form,
is indicated by the dark grey area, which is hardly seen around the red line. This precision,
obtainable with an integrated luminosity of 4 fb−1, is compared with the uncertainty of
the extraction from existing data, represented by the light grey band and shown before in
fig. 2.5.

Remembering that the event rate of the generated pseudo-data is achievable in a brief
period of operation for an EIC, the impressive impact of the EIC on studies of TMDs is
greatly illustrated.

2.2.3 TMDs in Drell-Yan processes

One of the intriguing facets of the Sivers effect is its peculiar breaking of universality,
as discussed in secs. 2.1.4 and 2.4. The symmetry properties of QCD require a reversal of
sign of the Sivers function when appearing in the Drell-Yan process, the production of di-
lepton pairs in the collision of two hadrons, as compared to DIS. The important test of this
fundamental QCD prediction remains outstanding, its invalidation would have profound
consequences for our understanding of high-energy reactions involving hadrons. It is thus
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Figure 2.12. The correlation of the quark and antiquark momentum fractions, x1 and x2, in Drell-
Yan for different rapidity bins in proton-proton collisions at

√
s = 500 GeV.

not surprising to see the Drell-Yan process appear as a milestone measurement in the update
for the future spin program at RHIC [344].

The Drell-Yan process with unpolarized hadrons has been studied at numerous fixed-
target experiments [345, 346, 347, 348, 349]. There are several proposals for future polarized
Drell-Yan measurements, either at fixed-target experiments (CERN, FermiLab, GSI, and
J-Parc), but also at colliders (BNL, GSI). So far no measurement exists for Drell-Yan
with transverse hadron polarization to isolate the Sivers effect, unlike the case for the
related mechanism of the Boer-Mulders function. Being a naive-T-odd distribution the
latter also involves a reversal of sign when going from DIS to Drell-Yan. For the Boer-
Mulders function data from the Drell-Yan process exist. In particular the violation of the
Lam-Tung relation [350] is a substantial hint of the Boer-Mulders effect, as discussed in
sec. 2.5.2. However, being also a chiral-odd distribution, presents an additional challenge
for experimental measurements and their interpretation, given that a second, presently
poorly constrained, chiral-odd function is needed. In the case of Drell-Yan the other chiral-
odd function is a second Boer-Mulders function, making it especially tricky to look for the
sign change between Drell-Yan and DIS.

Among the proposed measurements of the Sivers effect in Drell-Yan two have timescales
of a few years from now. One is an experiment set at IP2 of RHIC (BNL) where transversely
polarized “beam” protons will interact with effectively unpolarized “target” protons1 [344].
At the COMPASS experiment at CERN it is not the beam—in this case consisting of
pions—that will be polarized but the target [342]. This configuration is the theoretically
more challenging one of the two as the partonic structure of the pion enters besides the
structure of the proton.

The choice of measuring Drell-Yan single-spin asymmetries at a collider like RHIC has
various advantages. Among others, the asymmetries depend only weakly on the partonic
momentum x2 of the (anti)quark in the unpolarized nucleon. When integrated over x2 the
cross section increases with the center-of-mass energy

√
s as one can reach lower values of

x2 where anti-quarks are more abundant. Furthermore, it is easier to differentiate between
“forward” and “backward” production at a collider allowing easy access to the valence
region of the (transversely polarized) beam nucleon. In fig. 2.12, we show the correlation
of the quark and antiquark momentum fractions, x1 and x2, in the Drell-Yan (DY) process

1The proton beams at IP2 are transversely polarized but due to rapid spin flips they can be spin balanced
to get unpolarized protons.
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Figure 2.13. Sivers asymmetries for the Drell-Yan process at RHIC, as a function rapidity for√
s = 500 GeV [351].

for different rapidity bins in proton-proton collisions at
√
s = 500 GeV. The plot assumes

an invariant mass range of the DY lepton pair between the J/ψ and the Upsilon. To
select DY at masses below the J/ψ and/or at rapidities below 2.0 will be experimentally
extremely challenging due to the dominance of the QCD 2 → 2 processes (> 108). The
expected single-spin asymmetry, AN , is presented in fig. 2.13 as a function of rapidity, y, for√
s = 500 GeV and integrated over the range 4÷9 GeV in the invariant mass of the di-lepton

pair [351]. The estimate makes use of a recent “DIS” Sivers function parameterization from
fits to COMPASS and HERMES data [332]. Asymmetries of this size should be readily
measurable with a limited data set. Nevertheless, one should keep in mind that the change
of sign applies to the flavor-dependent Sivers function. For a stringent test of this sign
change it is therefore of utter importance not only to measure the Sivers effect in DIS and
Drell-Yan, but to perform a flavor-decomposition of the Sivers effect as well. In pp collisions
one will be mainly sensitive to the u-quark Sivers function due to the charge factor. Using
pion beams one can vary the sensitivity to the various quark flavors via the choice of the
pion charge as the valence anti-quark flavor in the pion will either be an anti-u or an anti-d.
This will help in a subsequent flavor decomposition of the Sivers effect in Drell-Yan.

2.2.4 Single-spin asymmetry in the collinear factorization: Twist-three
mechanism

The quark Sivers function discussed in the last subsection is also closely related to
the twist-3 quark-gluon-quark correlation functions in the collinear factorization approach
which can generate large single spin asymmetries in hard scattering process, in particular,
in inclusive hadron production in pp collisions. The single-transverse spin asymmetry in
the process like pp → πX is among the simplest spin observables in hadronic scattering.
One scatters a beam of transversely polarized protons off unpolarized protons and measures
the numbers of pions produced to either the left or the right of the plane spanned by the
momentum and spin directions of the initial polarized protons. Measurements of single-spin
asymmetries in hadronic scattering experiments over the past three decades have shown
spectacular results. Large asymmetries of up to several tens of percents were observed at
forward (with respect to the polarized initial beam) angles of the produced pion. Despite the
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conceptual simplicity of AN , the theoretical analysis of single-spin asymmetries in hadronic
scattering is remarkably complex. The reason for this is that the asymmetry for a single-
inclusive reaction like pp → πX is power-suppressed as 1/ℓ⊥ in the hard scale set by
the observed large pion transverse momentum. Power-suppressed contributions to hard-
scattering processes are generally much harder to describe in QCD than leading-twist ones.
In the case of the single-spin asymmetry, a complete and consistent framework could be
developed [286, 288, 289, 352]. It is based on a collinear factorization theorem at non-
leading twist that relates the single-spin cross section to convolutions of twist-three quark-
gluon correlation functions for the polarized proton with the usual parton distributions
for the unpolarized proton and the pion fragmentation functions, and with hard-scattering
functions calculated from an interference of two partonic scattering amplitudes: one with a
two-parton initial state and the other with a three-parton initial state.

In the following, we briefly describe the collinear factorization formalism for the twist-
3 single-spin-dependent cross section in the semi-inclusive deep inelastic scattering, ep →
ehX. This factorization applies when the transverse momentum of the final state hadron is
large compared to the non-perturbative scale ΛQCD. The usual leading twist spin-average
cross section for this process can be schematically written as

dσ ∼
∑

a,b

fa(x, µ)⊗Dh/b(z, µ) ⊗ σ̂ab(x, z,Q, µ), (2.25)

where fa(x, µ) and Dh/b(z, µ) (a, b = q, q̄, g) are, respectively, the parton density in the

nucleon and the fragmentation function for b→ h, convoluted with the hart part σ̂ab. The
twist-3 cross section relevant for SSA in ep↑ → ehX takes the factorized form,

dσtw3 ∼
∑

a,b

G(3)
a (x1, x2, µ)⊗Dh/b(z, µ)⊗ σ̂ab1 (x1, x2, z,Q, µ)

+
∑

a,b

δfa(x, µ)⊗D
(3)
h/b(z1, z2, µ)⊗ σ̂ab2 (x, z1, z2, Q, µ), (2.26)

where ⊗ represents the appropriate convolution, similarly as the twist-2 factorization for-

mula (2.25), with the relevant momentum fractions x1,2, z, x, z1,2 integrated over. G
(3)
a (x1, x2, µ)

is the twist-3 distribution function in the transversely-polarized nucleon p↑, andD(3)
h/b(z1, z2, µ)

is the twist-3 fragmentation function for the hadron h; the latter function is chiral-odd, com-
bined with the chiral-odd transversity distribution δfa(x, µ) for p

↑. (In the TMD approach,
the first term in (2.26) is described in terms of the Sivers function, and the second term is
described using the Collins function.) These twist-3 distribution and fragmentation func-
tions describe the multi-parton correlations in the nucleon and in the fragmentation process,
respectively, and thus provides us with an opportunity to reveal the more detailed inter-
nal structure of hadrons beyond the parton-model picture. Each twist-3 function has its
own logarithmic scale dependence, which differs from that of the twist-2 functions; for the
corresponding µ-dependence, see section (2.4.3).

For G
(3)
a (x1, x2, µ) with a = q in (2.26), two independent quark-gluon correlation func-

tions, GF (x1, x2) and G̃F (x1, x2), participate. They are defined as dimensionless, real,
Lorentz-scalar functions in terms of nucleon matrix element associated with the gluon field
strength tensor Fαβ as well as the quark field ψ on the light-cone [352, 353]. Similarly,

the twist-3 purely gluonic correlation functions O(x1, x2) and N(x1, x2) as G
(3)
g (x1, x2, µ) in

(2.26), are defined through the gauge-invariant lightcone correlation of three field-strength
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tensors [354]. Thus, a complete set of the twist-3 correlation functions in the transversely-
polarized nucleon is now provided by GF (x1, x2), G̃F (x1, x2), O(x1, x2) and N(x1, x2), tak-
ing into account all symmetry constraints in QCD. We note that the twist-3 correlation

functions, TF (x1, x2), T
(f,d)
G (x, x), etc., used in the literature [355, 356, 357] can be ex-

pressed by the above correlation functions.
Another origin of SSA is in the fragmentation process for the final hadron, as represented

in terms of the twist-3 fragmentation function D
(3)
h/b(z1, z2, µ) of (2.26), which is also defined

as a multi-parton light-cone correlation function (see [297]).
For SIDIS, ep→ ehX, the large transverse-momentum PhT of the hadron h should come

from a perturbative mechanism, i.e. from the recoil from the hard (unobserved) final-state
partons. Then, the factorization formula (2.26) is derived in the LO perturbative QCD,
manifesting their gauge invariance at the twist-3 level, and a practical procedure to calculate
the relevant partonic hard part σ̂abi is provided in [352, 354, 297]: an extra gluon, which
emanates from nonperturbative multi-parton correlation and carries the momentum fraction
x2 − x1, participates in the partonic hard scattering. The coupling of this gluon allows an
internal propagator in the partonic subprocess to be on-shell, and this produces the required
imaginary phase. The results for those partonic subprocesses imply [352, 358, 359],

d5σtw3

dxBdQ2dzhdP
2
hT dφh

= sin(φh − φS)F
sin(φh−φS) + sin(2φh − φS)F

sin(2φh−φS)

+sinφS F
sinφS + sin(3φh − φS)F

sin(3φh−φS) + sin(φh + φS)F
sin(φh+φS),(2.27)

with the azimuthal angles φh and φS of PhT and S⊥, respectively, measured from the
lepton plane; the five azimuthal dependences in (2.26) are similar as those in the TMD
approach. Here, each structure function F sin(··· ) is expressed in a factorized form, convoluted
with GF (x, x) and dGF (x, x)/dx. The similar twist-3 effects from GF and G̃F have been
investigated for SSA in Drell-Yan and direct photon productions, and hadron production
in pp collisions.

Charm production in SIDIS and pp collisions is useful to study the twist-2 gluon distri-
butions in the nucleon, since the cc̄-pair creation through the photon-gluon or gluon-gluon
fusion is their driving subprocess. Likewise, the three-gluon correlation functions can be
probed by SSA in these processes. From this point of view, the three-gluon contribution to
SSA in D-meson production processes, ep↑ → eDX and p↑p → DX, have been studied in
[356, 357, 354, 360]. For both processes, the twist-3 cross sections for SSA can be derived
entirely as the gluonic pole contribution leading to x1 = x2, and thus receive the contribu-
tions O(x, x), O(x, 0), N(x, x) and N(x, 0) (and their derivatives) [354, 360]. The result for
ep↑ → eDX has five azimuthal dependences like in (2.27) [354].

So far, RHIC at BNL reported a significant amount of data of AN for p↑p → hX
(h = π,K, η,D, J/Ψ). Given that the NLO QCD in collinear factorization can provide
a reasonable description of the corresponding unpolarized cross section, we expect that
one can apply the above twist-3 formalism to analyze the AN data [289, 355, 361]. The
complete LO QCD formula for AN from the twist-3 quark-gluon correlation functions to
p↑p → hX has been derived: It consists of the contribution associated with GF (x, x) and
dGF (x, x)/dx (G̃F (x, x) = 0) [355], and the contribution [362] associated with GF (x, 0)
and G̃F (x, 0). Phenomenological analysis of RHIC data shows that both contributions are
important, although the main contribution comes from the GF (x, x) contribution [289, 355],
the GF (x, 0) (G̃F (x, 0)) contribution also plays an important role, and the combination of
both contributions provides a reasonable description of the RHIC data, shedding light on
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Figure 2.14. Left: kinematics for D-meson events showing the momentum vs. polar angle distri-
bution for the electron and D (or equivalently D̄) meson in the laboratory frame. Right: Projected
accuracy for transverse single-spin asymmetries from single D meson production using an energy of√
s = 50 GeV and an integrated luminosity of 370 fb−1.

the behavior of GF and G̃F [361]. There are also some initial efforts to calculate the twist-3
fragmentation contribution to AN [363]. Global analysis of RHIC and future EIC data is
expected to reveal more details on the role of the multi-parton correlations, including the
three-gluon correlation functions.

The potential of the EIC for measuring transverse single-spin asymmetries in charm pro-
duction is illustrated in fig. 2.14. In the simulation, based on the PYTHIA event generator,
the main decay channel for D mesons, D → π+K−, with a branching ratio of 3.8± 0.1% is
investigated. Events are selected for PhT > 1 GeV and Q2 > 1 GeV within 0.05 < y < 0.9
and 1.86 < MD < 1.87. The signal-to-background ratio for the reconstructed D mesons
strongly depends on the detector resolution. In this study, we assume a momentum resolu-
tion of 0.8% · p

10 GeV and a resolution of the polar and azimuthal angles of 0.3 mrad and
1 mrad, respectively. The resulting resolution of the reconstructed invariant mass of the
D meson is 1.8 MeV yielding an overall signal-to-background ratio of about 1.6 to 1. The
overall detection efficiency for this triple coincidence process is assumed to be 60%. The
polarization of the proton beam is set to 80%.

The projected accuracy for measuring transverse single-spin asymmetries in single D
meson production is shown in fig. 2.14 (right) as a function of z for different regions in Q2,
x and PhT , as indicated in the figure, together with model calculations of the asymmetry
from Ref. [356]. An energy of

√
s = 50 GeV and an integrated luminosity of 370 fb−1

were used. The study demonstrates a very promising feasibility of extracting observables
involving charm production. It will significantly benefit from higher energies up to

√
s = 200

GeV.
In summary, the twist-3 collinear factorization framework provides us with a systematic

way for describing SSA in the region of large transverse-momentum PhT of the final hadron,
and is thus complementary to the TMD description of SSA which is valid in the low PhT
region. For the twist-3 distribution functions in the transversely-polarized nucleon, relevant
to SSA, there are two independent quark-gluon correlation functions and the two indepen-
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dent three-gluon correlation functions, all of which are process-independent. Twist-3 cross
section formulae for SSA are available for many important processes, which can be used for
confronting with the RHIC and EIC data and may serve to reveal multi-parton correlation
effects in QCD hard processes.

2.2.5 Unifying the Mechanisms for the Sivers effect

Recent developments have shown that the TMD approach and the collinear factorization
approach can be unified to describe the Sivers effect for the single transverse-spin asym-
metries in semi-inclusive DIS. The TMD approach covers the kinematic region PhT ≪ Q
where Q ≫ ΛQCD, while the twist-3 approach covers the large PhT region, PhT ≫ ΛQCD.
A natural question here is whether the two mechanisms give rise to equivalent (or consis-
tent) SSA in the overlapping region, ΛQCD ≪ PhT ≪ Q. To address this issue, we first
recall the relation between the Sivers function f⊥1T (x, k⊥) and the quark-gluon correlation
function GF (x, x) [364]:

∫
dk2
⊥ k

2
⊥f
⊥
1T (x, k⊥) = πM2

NGF (x, x), which indicates that the two
mechanisms are closely related.

A more explicit relation for the SSA in the two approaches has also been derived for the
Sivers cross section, F sin(φh−φS) in (2.27) [292, 294, 295]: In the TMD approach, F sin(φh−φS)

is expressed in terms of the Sivers function f⊥1T (x, k⊥). In the large k⊥-region, relevant to
ΛQCD ≪ PhT ≪ Q, the k⊥-dependence of f⊥1T (x, k⊥) can be generated perturbatively, such
that f⊥1T (x, k⊥) is expressed as the convolution of the corresponding perturbative coefficient

functions with the nonperturbative correlation functions GF and G̃F . By inserting this
form of f⊥1T (x, k⊥) into the TMD factorization formula for F sin(φh−φS), one obtains the

cross section written in terms of GF and G̃F , and this expression turns out to be identical
to the leading PhT behavior of the twist-3 mechanism for F sin(φh−φS) in the overlap region
ΛQCD ≪ PhT ≪ Q. From these studies, the two mechanisms for single-spin asymmetries
represent a unique QCD effect over the entire PhT region. The same equivalence was also
shown for the SSA in the Drell-Yan process. It should be noted that the sign of the Sivers
function changes from SIDIS to the Drell-Yan case, while the twist-3 quark-gluon correlation
functions are process-independent. The connection between the two mechanisms is also
consistent with such process-(in)dependence [293].

The contribution from the twist-3 fragmentation function in (2.26) gives rise to the struc-
ture function F sin(φh+φS) in (2.27), and dominates the leading PhT behavior of F sin(φh+φS)

compared to that from the quark-gluon correlation functions. This leading PhT behavior
in F sin(φh+φS) turns out to be identical to the corresponding contribution from the Collins
function in the TMD approach, similarly as the above equivalence for F sin(φh−φS) [297].

These are nontrivial and important results, which demonstrate that we indeed have a
unique picture for single transverse-spin asymmetries in DIS and hadronic collisions. The
discussion can be further generalized to other structure functions in SIDIS as well.

To analyze the general power behavior of the structure functions, it is important to real-
ize that the power expansions are done in two different ways in the above two descriptions.
At low qT , first we expand in (qT /Q)n−2 and neglect terms with n bigger than a certain
value (so far, analyses have been carried out only up to n = 3, i.e., twist-3). To study the
behavior at intermediate qT we further expand in (M/qT )

k. Vice versa, at high qT we first
expand in (M/qT )

n (also in this case, analyses are available up to n = 3, i.e., twist-3). To
study the intermediate-qT region, we further expand in (qT /Q)k−2. We can encounter two
different situations:
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• Type-I observables, where the leading terms at high and low transverse momentum
have the same behavior. For instance,

F (qT , Q) = A

[
qT
Q

]0 [M
qT

]2
+B

[
qT
Q

]2 [M
qT

]2
+ . . . , (2.28)

where the term A is leading in both the low- and high-qT calculations. In this case, the
calculations at high and low transverse momentum must yield exactly the same result
at intermediate transverse momentum [273, 292]. If a mismatch occurs, it means that
one of the calculations is incorrect or incomplete.

• Type-II observables, where the leading terms at high and low transverse momentum
have different behavior. For instance,

F (qT , Q) = A′
[
qT
Q

]0 [M
qT

]4
+B′

[
qT
Q

]2 [M
qT

]2
+ . . . . (2.29)

where the first term is leading and the second term sub-leading in the low-qT cal-
culation, whereas the reverse holds in the high-qT calculation. In this case, if the
calculations at high and low transverse momentum are performed at their respective
leading order, they describe two different mechanisms and will not lead to the same
result at intermediate transverse momentum. In order to “match”, the calculations
should be carried out in both regimes up to the sub-subleading order. We could call
this situation an “expected mismatch”, since it is simply due to the difference between
the two expansions.

In Tab. 2.3 we list the power behavior of the structure functions at intermediate trans-
verse momentum, as obtained from the limits of the low-qT and high-qT calculation. For
details of the calculation, we refer to [296]. The structure functions with a “yes” or “no” in
the last column of Tab. 2.3 are type-I observables, where on the basis of power counting we
know that two calculations describe the same physics and should therefore exactly match.
In these cases, the high-qT calculation describes the perturbative tail of the low-qT effect.
The two mechanisms need not be distinguished. Using resummation it should be possible to
construct expressions for these observables that are valid at any qT . Six of these structure
functions have been calculated explicitly.

For the functions identified as type-II in the last column of Tab. 2.3, the low-qT and
high-qT calculations at leading order pick up two different components of the full structure
function. They therefore describe two different mechanisms and do not match. For such
type-II observables, if one aims at studying the leading-twist contribution from transverse
momentum distributions, some considerations have to be kept in mind:

• the leading contribution from the high-qT calculation (often referred to as a pQCD
or radiative correction) is a competing effect that has to be taken into account [365,
366, 367];

• qT -weighted asymmetries enhance the high-qT mechanism and thus are not appropri-
ate to extract type-II TMDs;

• it is at present impossible to construct an expression that extends the high-qT cal-
culation to qT ≈ M , since this requires a smooth merging into unknown twist-4
contributions, which most probably cannot be factorized (see also Ref. [368]);
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structure low-qT high-qT exact

function power power match

FUU,T 1/q2T 1/q2T yes

F cos 2φh
UU 1/q4T 1/Q2 type II

F sin 2φh
UL 1/q4T (type II)

FLL 1/q2T 1/q2T yes

structure low-qT high-qT exact

function power power match

F
sin(φh−φS)
UT,T 1/q3T 1/q3T yes

F
sin(φh+φS)
UT 1/q3T 1/q3T yes

F
sin(3φh−φS)
UT 1/q3T 1/(Q2 qT ) type II

F
cos(φh−φS)
LT 1/q3T (yes)

Table 2.3. Behavior of SIDIS structure functions in the region M ≪ qT ≪ Q, as deduced from
the low-qT calculation based on TMD factorization and the high-qT calculation based on collinear
factorization. Empty fields indicate that no calculation is available. The last column indicates
whether the expressions match exactly, do not match exactly, or should not be expected to match.
In parentheses: expected answers based on analogy, rather than actual calculation.

• it is desirable from the experimental point of view to build observables that are least
sensitive to the effect of radiative corrections.

We stress that the above considerations apply not only to semi-inclusive DIS, but also to
Drell-Yan and e+e− annihilation [369], which have been already used to extract the Boer–
Mulders and Collins functions [367, 370].

In summary, at the moment there is the hope to build descriptions of the structure
functions that go from low to high transverse momentum for the five structure functions
with a “yes” in the last column of Tab. 2.3.

2.2.6 From low to high transverse momentum

Based on the above results, we can write down a unique formula for the transverse
momentum dependence. Following the procedure of [273], the differential cross section for
the spin dependent SIDIS process can be written as,

d∆σ(S⊥)
dydxBdzhd2PhT

=
d∆σTMD

dydxBdzhd2PhT
+

(
d∆σCO

dydxBdzhd2PhT
− d∆σCO

dydxBdzhd2PhT
|PhT≪Q

)
,(2.30)

which is valid in the whole transverse momentum region at leading power of 1/Q2. In the
above equation, the first term comes from the TMD factorization formalism, and the second
term from the collinear factorization, CO, with the twist-three quark-gluon correlations
contributions. The second term will dominate the SSA at large transverse momentum, and
its qT -dependence can be calculated from perturbative QCD. On the other hand, at low
transverse momentum PhT ≪ Q, the second term vanishes, because the two contributions
are exactly the same in this limit, and cancel each other out. Experimentally, if we can
study the transverse momentum dependence of the SSA for a wide range, we shall explore
the transition from the perturbative region to the nonperturbative region.

The potential of the EIC for a study of this transition is illustrated in fig. 2.15, which
shows the projected accuracy for single π+ production for a four-dimensional binning in
the kinematic variables x, Q2, z and PhT , using three different energy configurations for
the EIC (

√
s = 15, 50 and 140 GeV) and an integrated luminosity of 120 fb−1 for each

configuration. Events are selected for 0.05 < y < 0.9 and W 2 > 5 GeV2 and for the z
range of 0.30 < z < 0.35, as example. An overall detection efficiency of 50% and a beam
polarization of 70 % are assumed. The position of each point is according to its x and Q2
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Figure 2.15. Four-dimensional representation of the projected accuracy for single π+ production in
semi-inclusive DIS off the proton focussing on the transition region from low to high PhT (qT ≈
PhT /zh) as indicated in the panels. The position of each point is according to its Q2 and x value for
a specific bin in z of 0.30 < z < 0.35 and within the range 0.05 < y < 0.9. The projected event rate,
represented by the error bar, is scaled to the (arbitrarily chosen) asymmetry value at the right axis.
Blue squares, black triangles and red dots represent the

√
s = 140 GeV,

√
s = 50 GeV and

√
s = 15

GeV EIC configurations, respectively. Event counts correspond to an integrated luminosity of 120
fb−1 for each of the three configurations.

value (abscissa and left ordinate, respectively) and each panel is for a PhT bin as indicated
in the figure. The projected event rate is represented by the error bar scaled with respect to
the (arbitrarily chosen) asymmetry value given at the right ordinate. The parameterization
of Ref. [371] was used to simulate the cross section in the transition region. The simulation
demonstrates that the transition region qT ≈ PhT /zh ∼ 4÷ 8 GeV can be explored in great
detail. Energies up to

√
s = 200 GeV and longer running times will allow for exploring even

higher values of PhT .
The most important example to study the transition between low and high transverse

momentum and the role of resummation is the structure function FUU,T . The double-
longitudinal structure function FLL is the only other example where the theoretical frame-
work has been developed at the same level [372].

Fig. 2.16 shows an example of resummation results for DIS at a high-energy EIC op-
tion. These results give us an idea of the extension of the region of intermediate transverse
momentum (and therefore also of the regions of high and low transverse momentum). This
extension obviously depends on experimental kinematics, in particular on Q2. As a lower
boundary of this region we can consider the values of qT where the nonperturbative com-
ponent of the Sudakov factor becomes relevant. As an upper boundary we can consider the
values of qT for which the fixed-order cross section becomes comparable to the resummed
cross section. From fig. 2.16 we can estimate that the intermediate-transverse-momentum
region corresponds to 4 GeV . qT . 8 GeV.

A lot remains to be done to better pin down the nonperturbative Sudakov factors, their
functional form, their flavor dependence, and their errors. This should be a high-priority
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Figure 2.16. Unpolarized SIDIS cross section for EIC kinematics from Ref. [372]. Shown are: the
fixed-order result, the resummation results with different high-b regularizations and different values
of the nonperturbative Sudakov factor.

task for the EIC. The same is true for the doubly-longitudinally polarized case, where the
nonperturbative components are unknown.

To conclude this section, we mention that the same program of resumming radiative con-

tributions should be pursued also for the Sivers, Collins, and F
cos(φh−φS)
LT structure functions.

At the moment the only discussion of similar topics is done in sec. 9 of Ref. [369]. However,
we can expect developments in this direction in the near future and hope to obtain an
expression of the above-mentioned structure functions that includes transverse-momentum
resummation and describes the physics in the whole transverse-momentum spectrum.

2.2.7 Weighted Asymmetries

Currently, experimental studies in semi-inclusive DIS have limited access to single-spin
asymmetries at large transverse momentum, and most of the data are in the low transverse
momentum region, where the TMD formalism dominates. In phenomenological studies, in
order to compare with the experimental data, one has to make model assumptions for the
transverse momentum dependence of the distribution and fragmentation functions. How-
ever, there is a class of observables that does not require detailed model assumptions about
transverse momentum dependence. These are transverse momentum weighted single-spin
asymmetries, which transform the convolutions in the factorized cross section into simple
products [244, 373].

Staying for the moment in the framework of collinear factorization, an example for a
weighted differential cross section at leading order in αs is

∫
d2PhT

PhT
zhMP

sin(φh − φS)
d∆σTMD(S⊥)

dxBdydzhd2 ~PhT
= σ0

∑

q

e2q
gs

2MP
T qF (x)D(z) , (2.31)

where eq is the electric charge for a quark of flavor q, and where TF (x) is the Qiu-Sterman
matrix element of the quark-gluon correlation function, and has been defined above. With
the standard choice of PhT -weights w1 = PhT /zhMP for the numerator and w0 = 1 for the
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denominator, the PhT -weighted Sivers-asymmetry thus becomes

〈 PhT
zhMP

sin(φh − φS)〉UT

〈1〉UU
=

1
Q4

(
1− y + y2

2

)
xB
2MP

∑
q e

2
qgsT

q
F (x)D(z)

1
Q4

(
1− y + y2

2

)
xB
∑

q e
2
qf1(x)D(z)

. (2.32)

We can go beyond the above leading order results and establish a collinear factorization for-
malism for the weighted single transverse spin dependent cross section. A similar study has
been performed for the Drell-Yan lepton pair production process, where a next-to-leading
order perturbative corrections have been obtained [291]. We expect similar calculations for
SIDIS shall appear soon.

Recently, a generalization to employ Bessel functions as weights wn ∝ Jn(|PhT |BT ) has
been suggested [374]. The Sivers asymmetry with generalized weights reads

〈2J1(|PhT |BT )
zMBT sin(φh − φs)〉UT

〈J0(PhTBT )〉
=

− 2

1
Q4

(
1− y + y2

2

)∑
q e

2
q f̃
⊥(1)q
1T (x, z2B2

T ) D̃(z,B2
T )

1
Q4

(
1− y + y2

2

)∑
q e

2
q f̃1(x, z

2B2
T ) D̃1(z,B2

T )
, (2.33)

where now f̃
⊥(1)q
1T , f̃ q1 and D̃ are TMDs and TMD FFs Fourier transformed with respect

to transverse momentum. In the asymptotic limit BT → 0, we recover the conventional
weighted asymmetry Eq. (2.32), and the Fourier transformed TMDs and FFs can be iden-
tified with the moments in that equation.

An important advantage of the generalized weights is that a non-zero choice of the
parameter BT can reduce the sensitivity to large transverse momenta. This property also
applies to the Fourier transformed TMDs and TMD FFs entering the asymmetries. The new
approach thus avoids the problem of divergent k⊥-integrals that affects moments of TMDs
and TMD FFs. Additionally, the analysis in Ref. [374] shows that soft factors appearing
beyond tree level cancel out of the weighted asymmetry.

We conclude that an EIC presents a unique opportunity to obtain the necessary coverage
and resolution in PhT to explore the nucleon spin structure in the language of weighted
asymmetries.
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2.3 Transverse polarization effects with gluons

Daniël Boer, Stanley J. Brodsky, Piet J. Mulders, Cristian Pisano, Markus Diehl,
Bo-Wen Xiao, Feng Yuan

The gluon Sivers function shares the same characteristic features as its counterpart in
the quark sector, the quark Sivers function, as discussed in the last section. Among the
important information we can obtain from this distribution is the spin-orbit correlation of
gluons inside the nucleon, which will help us to understand the gluon spin contribution
to the proton spin. The EIC is the unique machine to map out in much detail the gluon
distribution, including the spin-dependent and spin-averaged transverse momentum depen-
dent distributions. In this section, we will focus on the gluon Sivers function. The study
of this distribution is strongly related to other measurements such as the gluon GPDs and
the unintegrated gluon distributions of nucleon/nucleus at small-x.

Various processes in DIS can be used to probe the transverse momentum dependent
gluon distributions, such as heavy quark and quarkonium production. Also the dijet/di-
hadron correlation has been proposed as a promising probe for the gluon Sivers function
and other TMD gluon distributions.

In Ref. [375], it was suggested to use the dijet-correlation to study the gluon Sivers
function in pp collisions. However, because of both initial and final state interaction effects
involved in pp scattering, the factorization of this process is shown to be broken (see detailed
discussions in next section). On the other hand, for the DIS processes, because only one
hadron is involved in the initial state, the dijet-correlation process could be factorized in
the same spirit as the semi-inclusive hadron production discussed in the previous sections.

We consider here the dijet/quark-antiquark production in DIS

γ∗N↑ → H1(k1) +H2(k2) +X , (2.34)

where N represents the transversely polarized nucleon, H1 and H2 are the two final state
particles with momenta k1 and k2, respectively. We are interested in the kinematic region
where the transverse momentum imbalance between them is much smaller than the individ-
ual transverse momenta: k⊥ = |k1T + k2T | ≪ PJT where PJT is defined as (k1T − k2T )/2.
This is referred to as the (back-to-back) correlation limit. An important advantage of tak-
ing this correlation limit is that we can apply the power counting method to obtain the
leading order contribution of k⊥/PJT where the differential cross section directly depends
on the TMD gluon distribution. As illustrated in Fig. 2.17, with transverse spin in the
dijet plane, the correlation between the two jets will lead to a preferred direction in the
transverse plane. This will signal the gluon Sivers effect if the process is dominated by the
gluonic subprocesses.

As demonstrated in Ref. [283], the TMD gluon distribution in the quark-antiquark jet
correlation in the DIS process of (2.34) follows the original gluon distribution definition of
Ref. [241],

xf g1 (x, k⊥) =

∫
dξ−d2ξ⊥
(2π)3P+

eixP
+ξ−−ik⊥·ξ⊥〈P |F+i(ξ−, ξ⊥)L†ξL0F

+i(0)|P 〉 , (2.35)

where Fµν is the gauge field strength tensor Fµνa = ∂µAνa−∂νAµa − gfabcAµbAνc with fabc the
antisymmetric structure constants for SU(3), and the gauge-link follows the similar defini-
tion as that for the quark distribution but in the adjoint representation. The physics behind
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Figure 2.17. Back-to-back dijet correlation can be used to probe the TMD gluon distributions.

this factorization is the following. The virtual photon scatters on the nucleon target and
produces a quark-antiquark pair through the partonic process γ∗g → qq̄. In the correlation
limit, the quark-antiquark pair stays close in the coordinate space, and act as a color-octet
object, which effectively behaves like a single gluon. In particular, the net effect of the final
state interactions between the nucleon target and the quark-antiquark pair is exactly the
same antisymmetric structure fabc as in the TMD gluon definition of Eq. (2.35). This is
totally different from the analogous QED process where the final state interactions cancel
out completely with the fermion-antifermion pair.

In the following, we will present some recent phenomenological studies on the gluon
TMDs from the quark-antiquark correlation in DIS processes. We expect more interesting
results shall be obtained in the near future.

2.3.1 The gluonic Sivers effect in dihadron production

The production of a pair of hadrons with high transverse momenta in DIS is sensitive to
the transverse-momentum dependent gluon distribution. In particular, it has a transverse
target spin asymmetry due to the gluon Sivers function. The relevant parton-level subpro-
cess is γ∗g → qq̄, and to eliminate contributions from γ∗q → qg and γ∗q̄ → q̄g we focus on
charm production.

As a straight forward generalization of the unpolarized case recently studied in [283],
the cross section for the dijet/cc̄ production from a nucleon with transverse polarization S⊥
can be written as

dσγ
∗
T,Lp→cc̄+X

dz d2k1T d2k2T
=
Hγ∗T,Lg→cc̄

zz̄

[
f g1 (x, k⊥) +

(S⊥ × k⊥)3

M
f g⊥1T (x, k⊥)

]
. (2.36)

Here, f g1 is the usual gluon TMD, f g⊥1T the gluon Sivers distribution and z̄ = 1− z. Again,
we are interested in the back-to-back correlation limit. The gluon momentum fraction is
then given by x/xB ≈ 1 + (P 2

JT +m2
c)/(zz̄Q

2), where mc is the charm quark mass. The
hard-scattering cross sections Hγ∗T,Lg→cc̄ for transverse and longitudinal photons depend on
P 2
hT , Q

2, z and mc and can be found in [283].
It may be possible to study the cross section (2.36) experimentally through the produc-

tion of two heavy-quark jets, but the interpretation of this process requires a quantitative
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understanding of the relative transverse momentum between a reconstructed jet and the
heavy quark it originates from. As an alternative, we consider here the production of two
heavy hadrons, e.g. D mesons. Its cross section reads

dσγ
∗
T,Lp→h1h2+X

dz1 dz2 d2Ph1T d
2Ph2T

=

∫ 1−z2

z1

dz
Hγ∗T,Lg→cc̄

z2z̄2

∫
d2λ1T d

2λ2T

[
f g1 (x, k⊥)

+
(S⊥ × k⊥)3

M
f g⊥1T (x, k⊥)

]
Dh1/c

(z1
z
,
z1
z
λ1T

)
Dh2/c̄

(z2
z̄
,
z2
z̄
λ2T

)
, (2.37)

where

k1T = λ1T +
z

z1
Ph1T , k2T = λ2T +

z̄

z2
Ph2T . (2.38)

Here h1 is the hadron containing a c quark and h2 the one containing a c̄, with Ph1T , Ph2T
denoting their transverse momenta and z1, z2 their momentum fractions w.r.t. the virtual
photon. The fragmentation functions D(z, P⊥) depend on the momentum fraction z and
the relative transverse momentum P⊥ of the hadron with respect to the quark or antiquark.

The parton-level variables k1T , k2T and z are not directly measurable, but a detailed
analysis of the kinematics [376] reveals that they can be partly determined from the hadronic
final state. In particular, one can define variables k′⊥, P

′
T and z′ that are measurable and

closely related to k⊥ = k1T + k2T , PT = (k1T − k2T )/2 and z, respectively. The cross
product (S⊥ × k⊥) in (2.37) gives rise to an angular modulation

dσγ
∗p→h1h2+X

dk′ dφS,k′
≈ A(k′⊥) +B(k′⊥) sin(φSk′ + γ) , (2.39)

where φSk′ is the azimuthal angle between S⊥ and k ′⊥. The coefficient B(k′) depends on
the gluon Sivers function, as well as the phase γ.

To estimate the possible size of the Sivers asymmetry, we follow [377] and assume

f g⊥1T (x, k⊥) =
2σM

k2⊥ + σ2
f g1 (x, k⊥) , f g1 (x, k⊥) =

e−k
2
⊥/σ

2

πσ2
f g1 (x) (2.40)

with σ = 800MeV and the integrated gluon distribution f g1 (x) from MSTW 2008 [22].

This Ansatz saturates the positivity bound k⊥
M

∣∣f g⊥1T (x, k⊥)
∣∣ ≤ f g1 (x, k⊥) at k⊥ = σ and

undershoots it for all other values of k⊥. We consider the production of D meson pairs
and take a fragmentation function D(z, P⊥) = D(z) e−P

2
⊥/σ

2
/(πσ2) with the same Gaussian

width as in (2.40). We take D(z) ∝ zα(1 − z)β eγz(1−z) with α = 2.86, β = 1.57, γ = 5.66,
which gives a fair description of the D0 spectrum observed in e+e− annihilation [221, 220].
In Fig. 2.18 we show the transverse target spin asymmetry

A(k′⊥, φSk′) =
dσ(k′⊥, φSk′)− dσ(k′⊥, φSk′ + π)

dσ(k′⊥, φSk′) + dσ(k′⊥, φSk′ + π)
(2.41)

for the process γ∗p → D0D̄0 +X summed over transverse and longitudinal photon polar-
ization. We find that the phase shift γ in (2.39) is tiny. The asymmetry is found to be
sizable with our Ansatz, which suggests that DIS production of heavy meson pairs at EIC
has good sensitivity to the gluon Sivers function.
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Figure 2.18. The transverse target asymmetry (2.41) for γ∗p → D0D̄0 + X . The kinematics is
specified by W = 100GeV, Q2 = 16GeV2, z1 = z2 = 0.3, 0.25 < z′ < 0.75 and 5GeV < P ′

T <
40GeV.

2.3.2 Probing the linear polarization of gluons in unpolarized hadrons

Gluons inside unpolarized hadrons can be linearly polarized provided they have a non-
zero transverse momentum. The simplest and theoretically safest way to probe this TMD
distribution of linearly polarized gluons is through cos 2φ asymmetries in heavy quark pair or
dijet production in electron-hadron collisions. Future EIC or LHeC experiments are ideally
suited for this purpose. Here we estimate the maximum asymmetries for EIC kinematics.

Linearly polarized gluons in an unpolarized hadron, carrying a light-cone momentum
fraction x and transverse momentum k⊥ w.r.t. to the parent’s momentum, are described by
the TMD h⊥ g1 (x, k⊥) [281, 284, 378]. Unlike the quark TMD h⊥ q1 of transversely polarized
quarks inside an unpolarized hadron (also frequently referred to as Boer-Mulders function)

[244], h⊥ g1 is chiral-even and T -even. This means it does not require initial or final state

interactions (ISI/FSI) to be non-zero. Nevertheless, as any TMD, h⊥ g1 can receive contribu-
tions from ISI or FSI and therefore can be process dependent, in other words, non-universal,
and its extraction can be hampered in non-factorizing cases.

Thus far no experimental studies of h⊥ g1 have been performed. As recently pointed out,

it is possible to obtain an extraction of h⊥ g1 in a simple and theoretically safe manner, since

unlike h⊥ q1 it does not need to appear in pairs [284]. Here we will discuss observables that

involve only a single h⊥ g1 in semi-inclusive DIS to two heavy quarks or to two jets, which al-
low for TMD factorization and hence a safe extraction. The corresponding hadroproduction
processes run into the problem of factorization breaking [272, 284].

Again, we consider heavy quark production, e(ℓ)+h(P )→e(ℓ′)+Q(k1)+Q̄(k2)+X, where
the four-momenta of the particles are given within brackets, and the heavy quark-antiquark
pair in the final state is almost back-to-back in the plane perpendicular to the direction of
the exchanged photon and hadron. The calculation proceeds along the lines explained in
Refs. [378, 379]. We obtain for the cross section integrated over the angular distribution of
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Figure 2.19. Upper bounds of the asymmetry ratio R in equation (2.44) as a function of |PJT | at
different values of Q2, with y = 0.01 and z = 0.5.

the back-scattered electron e(ℓ′):

dσ

dy1 dy2 dy dxB d2k⊥ d2PJT
=

α2αs
πsM2

T

(1 + yxB)

y5xB

(
A+

k2
⊥

M2
B cos 2φ

)
δ(1 − z1 − z2) .(2.42)

The kinematics are the same as in the last subsection with the heavy quark mass MQ,
M2
iT ≈ M2

T = M2
Q + P 2

JT and the rapidities yi for the quark momenta along photon-target
direction. The azimuthal angles of k⊥ and PJT are denoted by φ⊥ and φT , respectively,
and φ ≡ φ⊥ − φT . The functions A and B depend on y, z(≡ z2), Q

2/M2
T ,M

2
Q/M

2
T , and k2

⊥.
The angular independent part A involves only the unpolarized TMD gluon distribution f g1 ,

while the magnitude B of the cos 2φ asymmetry is determined by h⊥ g1 (x, k⊥). Since h
⊥ g
1 is

completely unknown, we estimate the maximum asymmetry that is allowed by the bound
[284]

|h⊥ g(2)1 (x)| ≤ 〈k2⊥〉
2M2

f g1 (x) , (2.43)

where the superscript (2) denotes the n = 2 transverse moment (defined as f (n)(x) ≡∫
d2k⊥

(
k2
⊥/2M

2
)n

f(x,k2
⊥)). The maximal (absolute) value of the asymmetry ratio

R =

∣∣∣∣
∫
d2k⊥ k2

⊥ cos 2(φ⊥ − φT ) dσ∫
d2k⊥ k2

⊥ dσ

∣∣∣∣ =
∫
dk2
⊥ k4

⊥ |B|
2M2

∫
dk2
⊥ k2

⊥A
(2.44)

is depicted in Fig. 2.19 as a function of |PJT | at different values of Q2 for charm (left
panel) and bottom (right panel) production, where we have selected y = 0.01, z = 0.5,
and taken M2

c = 2 GeV2, M2
b = 25 GeV2. Such large asymmetries, together with the

relative simplicity of the suggested measurement (polarized beams are not required), would

probably allow an extraction of h⊥ g1 (x, k⊥) at the EIC (or LHeC).

124



2.4 Theory Highlights

Igor O. Cherednikov, Piet J. Mulders, Barbara Pasquini, Ted Rogers, Peter
Schweitzer, Nicolaos G. Stefanis, Jian-Wei Qiu

The candidates for the golden measurement at the EIC are the spin-dependent Sivers
function f⊥1T , as well as the unpolarized quark distribution f1. The proposed silver candi-
dates are the transversity, the Boer-Mulders, and the Collins functions. All these objects
are transverse-momentum dependent parton densities that describe the inner structure of
hadrons by taking into account the longitudinal and the transversal partonic degrees of
freedom.

In the last few years, there has been tremendous progress on the theory developments
for the transverse momentum dependent parton distributions. In particular, there have
been intensive investigations on the QCD factorization and the associated universality of
the TMD parton distributions in various hard processes; the energy scale dependence for
the TMD distributions and related quark-gluon correlation functions. In this section, we
will highlight these developments.

2.4.1 Gauge-links, TMD-factorization, and TMD-factorization breaking

In this section, we discuss some basic features of transverse momentum dependent parton
distribution functions. In hard processes, parton distribution functions and fragmentation
functions are expressed as matrix elements of nonlocal combinations of quark or gluon
fields. In the collinear situation that all transverse momenta of partons are integrated over
in the definitions, the nonlocality is in essence light-like. These correlation functions are
convoluted with the squared amplitude for the partonic subprocess (in essence the partonic
cross section) of a hard process. When the transverse momenta of partons are involved,
the non-locality in the matrix elements includes a transverse separation, and a transverse
momentum dependent (TMD) factorization theorem is needed. In all cases the definitions
of the non-perturbative functions include gluon contributions resummed into gauge-links
(or Wilson lines) that bridge the nonlocality.

It is important to realize that the appearance of the gauge-links is a consequence of the
systematic resummation of extra gluon contributions in the derivations of factorization, so
their structure is dictated by the requirements of factorization.

In processes like ℓ + H −→ ℓ′ + h + X (semi-inclusive DIS), ℓ + ℓ̄ −→ h1 + h2 + X
(annihilation process) or H1 + H2 −→ ℓ + ℓ̄ + X (Drell-Yan process) one has, at leading
power in the hard scale, a simple underlying hard process, which is a virtual photon (or
weak boson) coupling to a parton line. The color flow from the hard part to collinear or
soft parts is simple. Additional gluons with polarizations collinear to the parton momenta
are resummed into gauge-links, which exhibit the interesting behavior that for transverse
momentum dependent functions they bridge the transverse separation between the non-
local field combinations at lightcone past or future infinity. Which gauge-link is relevant in
a particular non-perturbative function depends on the color flow in the full process. For a
quark distribution function one has a link via (future) lightcone +∞ if the color flows into
the final state, and a link via (past) lightcone −∞ if the color is annihilated by another
incoming parton.

QCD factorization theorems are central to understanding high energy hadronic scat-
tering cross sections in terms of the fundamentals of perturbative QCD. In addition to
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providing a practical prescription for order-by-order calculations, derivations of factoriza-
tion provide a solid theoretical underpinning for concepts like PDFs and FFs which are
crucial in the quest to expand the basic understanding of hadronic structure. The most
natural first attempt at a TMD-factorization formula is simply to extend the classic parton
model intuition familiar from collinear factorization. For the semi-inclusive deep inelastic
scattering (SIDIS) cross section, for example, the cross section might be written schemati-
cally as

dσ ∼ |H|2 ⊗ Φ(x,k⊥)⊗D(z,P⊥) δ
(2)(qT + k⊥ − P⊥). (2.45)

Here Φ(x,k⊥) is the TMD PDF while D(z,P⊥) is the TMD FF, with the usual probability
interpretations, and |H|2 represents the hard part. The momentum qT is the small momen-
tum sensitive to intrinsic transverse momenta, k⊥ and P⊥, carried by the colliding proton
and the produced hadron. The ⊗ symbol denotes all relevant convolution integrals, and the
x and z arguments are the usual longitudinal momentum fractions.

In a perturbative derivation of factorization, a small-coupling perturbative expansion
of the cross section is analyzed in terms of “leading regions”, and the sum is shown order-
by-order to separate into the factors of Eq. (2.45). The precise field theoretic definitions
of the correlation functions, Φ(x,k⊥) and D(z,P⊥), should emerge naturally from the
requirements of factorization. In the hard part |H|2, all propagators must be off-shell by
order the hard scale Q so that asymptotic freedom applies, and small-coupling perturbation
theory is valid, with non-factorizing higher-twist contributions suppressed by powers of
Q. Such factorization theorems are well-established for inclusive processes that utilize
the standard integrated correlation functions (see [380] and references therein), but TMD-
factorization theorems involve other subtleties, particularly with regard to the definitions
of the TMD PDFs and FFs and their associated gauge-links.

In cases where there is a more complex color flow such as is often the case when the
underlying hard process involves multiple color flows and/or if the incoming partons are
gluons, this can potentially lead to a more complex gauge-link structure including traced
closed loops or looping gauge-links. For situations in which only one TMD correlation
function is studied, these structures have been examined in [265, 267, 381, 382] for two-to-
two partonic subprocesses. In situations that involve several TMD functions, factorization
using separate TMD functions fails completely.

To understand the issues that arise in defining TMDs, it is instructive to start with a
review of the definition of the standard integrated quark PDF. It is

f(x;µ) = F.T. 〈p| ψ̄(0, w−,0t)γ+V[0,w](uJ)ψ(0)|p〉 , (2.46)

where “F.T.” stands for the Fourier transform from coordinate space to momentum space.
The above definition contains UV divergences which must be renormalized. This gives
dependence on an extra scale µ, and ultimately results in the well-known DGLAP evolution
equations for the integrated PDF. For a gauge invariant definition, the PDF must contain a
path ordered exponential of the gauge field that connects the points 0 and (0, w−,0t). This
is the gauge-link and its formal definition is

V[0,w](uJ) = P exp

(
−igta

∫ w−

0
dλuJ · Aa(λuJ)

)
. (2.47)

The path of the gauge-link is determined by the light-like vector uJ = (0, 1,0t). That
is, the gauge-link follows a straight path connecting 0 and (0, w−,0t) along the exactly
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(a) (b)

Figure 2.20. (a) Target-collinear gluons in a graph for SIDIS. (b) Factorization of extra gluons into
gauge-link contributions.

light-like minus direction. In Feynman graph calculations, the contribution from the gauge-
link corresponds to the so-called “eikonal factors,” which have definite Feynman rules that
follow naturally from factorization proofs. After a sum over graphs, and the application of
appropriate approximations and Ward identity arguments, extra collinear gluons like those
shown in Fig. 2.20(a) for SIDIS factor into gauge-link contributions. In Fig. 2.20(b), the
eikonal factors are shown as gluon attachments from the target-collinear bubble to a double
line.

The most natural first try at extending the PDF definition in Eq. (2.46) to the TMD case
is to simply leave the integration over transverse momentum in the TMD PDF definition
undone. That is, instead of Eq. (2.46) one may try

Φ(x,kt) = F.T. 〈p| ψ̄(0, w−,wt)γ
+U[0,w](uJ )ψ(0) |p〉. (2.48)

The separation is now 0 and (0, w−,wt) — it has acquired a transverse component and the
Fourier transform is now in both w− and wt. As a result, the structure of the gauge-link
U[0,w](uJ) must also be modified from the simple straight light-like V[0,w](uJ) gauge-link of
Eq. (2.46). The eikonal attachments on either side of the cut in Fig. 2.20 still give minus-
direction Wilson lines, but now in order to have a closed link there must also be a small
transverse detour at light-cone infinity. This detour arises naturally from boundary terms
that are needed as subtractions to make higher twist contributions gauge invariant [263, 264].

The gauge-link structure in Eq. (2.48), with its two exactly light-like legs and a transverse
link at infinity is commonly cited as the gauge-link that is necessary for the definition of
the TMD PDFs. However, there are a number of further subtleties, and we will find that
the definition needs to be modified. One complication is that rapidity divergences, which in
collinear factorization would cancel in the sum of graphs, remain uncanceled in the definition
of the TMD correlation functions. Rapidity divergences correspond to gluons moving with
infinite rapidity in the direction opposite the containing hadron, and remain even when
infrared gluon mass regulators are included. (For a more complete review of these and
related issues, see for example [259, 383].) The most common way to regularize the light-
cone divergences is to make the gauge links slightly non-light-like. In the coordinate space
picture, the gauge-link therefore becomes more like the tilted hook shape. This introduces
a new arbitrary rapidity parameter – the “tilt” of the gauge-link. A generalization of
renormalization group techniques is needed to recover predictability in the factorization
formula. A system of evolution equations for the TMD case was developed by Collins, Soper
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and Sterman (CSS) and has been successfully applied to specific processes [240, 241, 273].
A complete treatment of TMD-factorization involves soft gluons, which give rise to an

extra “soft factor” S(q) in the factorization formula of Eq. (2.45). The TMD-factorization
formula then becomes

dσ ∼ |H|2 ⊗ Φ(x,k⊥)⊗D(z,P⊥)⊗ S(hT ) δ
(2)(qT + k⊥ − P⊥ − hT ). (2.49)

The soft factor describes the role of gluons with nearly zero center-of-mass rapidity. One
difficulty with the usual presentation of the CSS formulation is that the explicit appearance
of a soft factor seems somewhat counter to the basic parton model intuition wherein all non-
perturbative effects are associated with functions for each external hadron with simple and
specific probabilistic interpretations. A natural hope is that, with an appropriate sequence
of redefinitions, the role of the soft gluons can be absorbed into the definitions of the PDFs
and FFs. The recent work of Collins [384] has shown how this is possible. Indeed, this
treatment of the soft factor is necessary for a completely correct factorization derivation
with fully consistent definitions for the correlation functions.

While the CSS formalism has been implemented for specific spin independent processes
(see, for example, [385]), much work remains to be done in tabulating and classifying the
TMDs. This is especially true for cases that involve spin. Work in this direction has been
started in [260].

TMD-factorization breaking

The discussion has focussed on situations where factorization is known to hold. There
are also, however, situations where TMD-factorization is now known to break down [265,
267, 268, 270, 271, 272, 381, 382]. The key issue is the failure of the usual Ward identity
arguments that ordinarily allow eikonalized gluons to be factorized and identified with a
particular gauge-link structure in the definitions of the TMDs. A hint of what leads to
TMD-factorization breaking is already suggested by the well-known overall relative sign flip
in the Sivers function for SIDIS as compared to the Drell-Yan (DY) process [261, 262]. The
difference comes because in the SIDIS TMD-factorization formula, the gauge link in the
Sivers function is future pointing, whereas it is past pointing in the DY case. At the level
of Feynman graphs, the difference can be seen in the fact that the “extra” gluons which
contribute to the gauge-link attach before the hard scattering in one case, and after the
hard scattering in the other. This illustrates that the direction of the flow of color through
the eikonal lines is a critical factor in the definition of the correlation functions.

In the more complicated hadro-production processes, H1 +H2 → H3 +H4 +X, where
H3 and H4 may be either jets or hadrons, a reasonable first approach would be to trace
the flow of color through the eikonal factors and use analogous arguments to what we
used for SIDIS and DY in the previous section. One finds that the resulting structures
are not simply the future or past pointing gauge-links familiar from SIDIS or DY, but
rather are complicated and highly process dependent objects [265, 267, 381, 382]. That this
corresponds (at least) to a breakdown of universality is most directly seen in an explicit
spectator model calculation. For example, one may consider an Abelian scalar-quark /
Dirac spectator model with multiple flavors as in [270]. Then, in addition to the standard
gauge-link attachments, there are extra gluon attachments that do not cancel in a simple
Ward identity argument, and which give contributions that are not consistent with having
a simple gauge-link like what is found SIDIS or DY (opposite pointing).
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Therefore, it is clear that there is at least a violation of universality in the hadro-
production of hadrons. The natural next approach to try is to maintain a basic factorization
structure, but to loosen the requirement that the TMDs be universal, resulting in a kind
of “generalized” TMD-factorization formalism. That is, the cross section might still be
expected to factorize order-by-order into a hard part and well-defined, albeit non-universal,
matrix elements for each separate external hadron [268]. However, a careful order-by-order
consideration of multiple gluons in the derivation of TMD-factorization shows that even
this is not possible [272]. If, for example, one extends the model of [270] to allow the
gluons to carry color (while still considering a hard part that involves only the exchange of
a colorless boson) then it is straightforward to see that the flow of color spoils the possibility
of factorizing the graph into TMD PDFs with separate gauge-links for each TMD, regardless
of what kind of gauge-link geometries are allowed. Therefore, the problem with factorization
in the hadro-production of hadrons is more than just a problem with universality – separate
correlation functions cannot even be defined in a way that is consistent with factorization.

The root of the problem is a failure of Ward identity arguments, which normally allow
“extra” gluons to be factorized after a sum over graphs. The Ward identity arguments are
only valid after an appropriate sequence of contour deformations on the momentum inte-
grals. In the case of hadro-production of hadrons the necessary deformations are prohibited.
In other cases where the direction of color flow may at first appear to pose a problem for
factorization (such as in e + p → h1 + X and e + p → h1 + h2 + X), the necessary con-
tour deformations are possible and factorization holds. (See the explanation in chapter 12
of [384].)

To summarize, we list the status of TMD-factorization for various well-known processes
with a check mark for processes where factorization appears to be valid and !! where it has
been shown to fail:

X Semi-inclusive DIS (e+ p→ h1 +X).

X Drell-Yan (up to overall minus signs for some spin-dependent TMDs).

X Back-to-Back hadron or jet production in e+e− annihilation.

X Back-to-back hadron or jet production in DIS (e+ p→ h1 + h2 +X).

!! Hadro-production of back-to-back jets or hadrons (H1 +H2 → H3 +H4 +X).

In cases where TMD-factorization is valid, there is still much work left to be done (and
much potential insight to be gained) in terms of implementing the evolution of precisely
defined TMDs [260]. Much already exists for the case of unpolarized scattering, but even
here the most complete and formal identification of evolution effects with separate TMDs
has only recently been clarified in [384]. For polarization dependent functions, it is also
important to include evolution, but to date there has been very little work that accounts
for evolution in actual fits to data.

Finally, the experimental search for TMD-factorization breaking effects opens the possi-
bility of new and exciting insights into the transverse dynamics of hadronic collisions. The
breakdown of TMD-factorization in the hadro-production of hadrons implies that unex-
pected and exotic correlations between partons in different hadrons can exist. Calculations
that allow for experiments to distinguish between factorization and factorization-breaking
scenarios are therefore very important, and a quantitative understanding of factorization
(via the methods of [283], for example) are part of the next step toward understanding
hadronic structure in high energy collisions.
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2.4.2 Evolution of transverse-momentum-dependent densities

Much of the success of QCD collinear factorization relies on our ability to calculate the
short-distance partonic dynamics in QCD perturbation theory order-by-order in powers of
αs and the universality as well as the scale evolution of the non-perturbative collinear par-
ton distribution and correlation functions. With its dependence on the parton’s transverse
momentum, TMDs carry much richer information on the partonic structure of a hadron
than what collinear PDFs could provide. Like the case of collinear factorization, the pre-
dictive power of the TMD factorization formalism also requires our ability to calculate the
short-distance dynamics and the evolution of TMDs. However, the theoretical framework
for calculating the evolution of TMDs and radiative corrections to short-distance dynamics
has not been fully established. All existing parameterizations of TMDs are extracted from
SIDIS data at relatively low Q2. The available hard scale Q2 at a future EIC is expected
to be much larger. The TMDs, like PDFs, depend on the momentum scale Q2 where they
are probed. Understanding the Q2 dependence of the TMDs is crucial for testing the TMD
factorization formalism and for extracting correct information on the partonic structure of
hadrons at the EIC. However, the Q2-dependence of TMDs in the existing TMD factoriza-
tion formalism is very different from the factorization scale µ2F dependence of the PDFs. The
factorization scale is not a physical scale. Any factorized physical cross section should not be
sensitive to the choice of the factorization scale. The perturbatively calculated factorization
scale dependence of PDFs is necessarily compensated by the same scale dependence in the
high order short-distance partonic dynamics. On the other hand, the TMDs in the existing
proved TMD factorization formalism are effectively physical quantities. They are connected
to a physical observable by a partonic scattering cross section without strong interaction
and a soft factor which can be absorbed into the redefinition of TMDs [384]. Unlike the
DGLAP evolution equation of PDFs, the Q2-dependence of TMDs cannot be derived by a
simple renormalization group equation. The Q2-dependence of TMDs was systematically
studied in the context of the transverse momentum (qT ) distribution of the Drell-Yan pro-
cess and the two-jet momentum imbalance in e+e− collisions [273]. The Q2-dependence
was derived by resumming ln2(Q2/q2T )-type large logarithms perturbatively in the impact
parameter bT -space (a Fourier transform of the parton’s transverse momentum space). The
CSS formalism was extended to SIDIS [386, 387] as well as spin observables [257, 388]. With
the proof that the soft factor of the TMD factorization formalism could be absorbed into
the redefinition of TMDs [384], the CSS resummation formalism was recently applied to
the TMDs directly [260]. Within the CSS formalism, it is not the Q2-dependence of TMDs
that is derived but rather the Q2-dependence of the Fourier transformed TMDs at small b⊥.
In order to obtain the Q2-dependence of TMDs, one has to perform the Fourier transform
from the impact parameter b⊥-space to the parton’s transverse momentum kT -space. The
procedure of Fourier transform requires necessarily input from the nonperturbative large
b⊥ region, which could significantly reduce the predictive power of the TMDs [389]. Various
treatments/models for the extrapolation into the large b⊥ region have been proposed to fit
the existing data [385]. For the precision study of TMDs at the EIC, it is very important
to examine the universality of the nonperturbative extrapolation to the large b⊥ region and
its dependence on the observed kinematic variables; and most important, the predictive
power of the formalism [389]. In order to understand the Q2-dependence of spin-dependent
TMDs, a careful generalization of the CSS resummation formalism to k⊥-dependent TMDs
is needed [388], which is necessary for the study of asymmetries generated by the TMDs at
the EIC.

130



2.4.3 QCD Evolution for the Correlation Functions

As introduced in Sec. 2.2, a collinear factorization formalism at twist-3 is relevant for
describing the SSAs of high PhT particle production. Even though the phenomenological
applications of this approach have been successful, the theoretical calculations so far have
been mainly limited to the “bare” parton model, that is, to the zeroth order of pertur-
bation theory without any QCD corrections. These leading order (LO) calculations have
some disadvantages: they strongly depend on the choice of the renormalization as well as
the factorization scale, while the physically observed SSAs should not depend on the choice
of these scales. The strong dependence on the choice of these scales is an artifact of the LO
perturbative calculation, and a significant cancellation of the scale dependence between the
leading and the next-to-leading (NLO) contribution is expected from the QCD factoriza-
tion theorem. As demonstrated by many examples, NLO contributions are typically very
important in hadronic processes, and often offer a more comprehensive test of the relevant
QCD factorization formalism.

To move forward to the NLO QCD dynamics, it is necessary to study the evolution
(or the scale dependence) of the universal long distance distributions and to evaluate the
perturbative short-distance contribution beyond the LO. The evolution equation of the
twist-3 distribution functions have been derived by different groups [290, 291, 390, 391].
Recently the evolution equations for the twist-3 fragmentation functions have also become
available [392]. A first NLO calculation for the short-distance hard part function has been
presented in [291].

As emphasized in Sec. 2.3, there are close connections between the twist-3 collinear fac-
torization formalism and the TMD factorization formalism. The twist-3 correlation func-
tions are closely related to the relevant TMD functions. Even though the Collins-Soper
evolution equations have been derived for all the leading-twist TMD functions [393], these
evolution equations are available in b-space (b is conjugate to the transverse momentum k⊥).
How these evolution equations are transformed into the scale (or energy) dependence of the
SSAs (thus leading to a similar Collins-Soper-Sterman transverse momentum resummation)
is not yet fully understood.

The evolution equations of twist-3 distribution functions, particularly for the so-called
soft-gluonic-pole correlation functions have been derived in [290, 291, 390, 391]. Among

them, TF (x1, x2) and T
(σ)
F (x1, x2) are the most discussed ones and they are related to the

Sivers and Boer-Mulders functions [264]:

TF (x, x) = −
∫
d2k⊥

|k⊥|2
Mp

f⊥1T (x, k
2
⊥)|DIS,

T
(σ)
F (x, x) = −

∫
d2k⊥

|k⊥|2
Mp

h⊥1 (x, k
2
⊥)|DIS, (2.50)

where Mp is the nucleon mass. The evolution equations for both TF (x, x) and T
(σ)
F (x, x)

have the following generic form:

∂T (x, x, µ2)

∂ lnµ2
=
αs
2π

∫
dx′

x′

[
A(ξ̂)T (x′, x′, µ2) +B(x, x′)T (x, x′, µ2)

]
, (2.51)

where T represents either TF or T
(σ)
F , and ξ̂ = x/x′. As can be seen in (2.51), the evolution

equation for the diagonal correlation function (x1 = x2 = x) is not a closed equation since
it also depends on the off-diagonal piece (the B(x, x′) term). The diagonal A(ξ̂) terms are
typically similar to the relevant twist-2 splitting kernel: for TF , it is the same as the q → q
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splitting kernel for the unpolarized distribution functions; for T
(σ)
F , it is the same as the

splitting kernel for the transversity distribution. It might be worth pointing out that there
are some discrepancies for the evolution equation of TF in the literature: Ref. [391] contains
additional contributions compared to [290, 291, 390]. One additional piece corresponds to
a contribution from the mixing between a gluon state and quark-antiquark state, which
are missing in [290, 291, 390] and could be easily reproduced. Another term [−NcTF (x, x)]
seems difficult to reconcile at the moment, and further study is needed to resolve this
discrepancy.

Similarly, one could study the evolution of the three-gluon correlation functions. For
an initial effort, see [390]. They receive contributions from themselves, as well as from
the quark-gluon correlation functions TF . Even though our information on three-gluon
correlation functions is very scarce, one can not rule out the possibility that they might
be large since they could be generated through the QCD radiation from the quark-gluon
correlation. It is also worth pointing out that we now have data from PHENIX on the SSA
of J/Ψ [313], which turns out to be non-zero and gives some indication that three-gluon
correlation functions might be sizable. It has been suggested that open charm production
in a future Electron Ion Collider (EIC) with broader kinematics could be used to unravel
the three-gluon correlation functions.

Within the same method, one could study the evolution equations for the twist-3 frag-
mentation functions. The two most important ones are related to the first transverse-
momentum-moment of the Collins function H⊥1 (z, z2k2⊥) and the polarizing fragmentation
function D⊥1T (z, z

2k2⊥) [297, 394]:

Ĥ(z) = −z3
∫
d2k⊥

|k⊥|2
Mh

H⊥1 (z, z2k2⊥), T̂ (z) = −z3
∫
d2k⊥

|k⊥|2
Mh

D⊥1T (z, z
2k2⊥), (2.52)

with both H⊥1 and D⊥1T from the convention in [243]. These twist-3 fragmentation functions

belong to the more general two-argument fragmentation functions denoted as ĤF (z, z1) and
T̂F (z, z1), for details on the operator definitions, see [392]. The evolution equation for Ĥ(z)
takes the following generic form (same form for T̂ (z)):

∂Ĥ(zh, µ
2)

∂ lnµ2
=
αs
2π

∫
dz

z

[
A(ẑ)Ĥ(z, µ2) +

∫
dz1
z21

PV

(
1

1
z − 1

z1

)
B(zh, z, z1)ĤF (z, z1, µ

2)

]
,

(2.53)

where ẑ = z/zh, and in the case of Ĥ(zh, µ
2), A(ẑ) is the same as the evolution kernel for

the transversity distribution; while for T̂ (zh, µ
2), A(ẑ) is the same as the q → q splitting

kernel for the unpolarized fragmentation function.
We have reviewed the evolution equations for the twist-3 distribution and fragmentation

functions. Particularly for those related to the first transverse-momentum-moment of the
Sivers and Boer-Mulders function, and Collins and polarizing fragmentation function. These
evolution equations are generally not a closed set of equations. However, the diagonal
pieces are very similar to those appearing in the evolution of leading-twist distribution and
fragmentation functions. For the Sivers function and polarizing fragmentation function,
this piece is the same as for the unpolarized distribution functions. For the Boer-Mulders
function and Collins function, this piece is the same as for transversity. The evolution
equations of these functions will transform into the scale dependence of the spin observables,
which could be studied at EIC. With a wide coverage in x and Q2, EIC offers a great
opportunity to study these scale dependences - a direct test of QCD dynamics.
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2.4.4 Non-perturbative studies of TMDs in effective approaches

TMDs are matrix elements of certain non-local QCD light-front operators in hadron
states and can only be calculated using non-perturbative frameworks. Several low-energy
QCD-inspired models have been employed. Although they all have in common that they
strongly oversimplify the complexity of the QCD dynamics in hadrons, studies in different
models based on often complementary assumptions, help to unravel non-perturbative as-
pects of TMDs. Insights into non-perturbative properties are of particular interest when
confirmed in various models. The practical value of model results is that they can be used
to predict new observables, or to guide educated Ansätze for fits of TMD parameterizations.
Especially in the context of TMDs one should not underestimate the conceptual importance
of model calculations. Model calculations demonstrated the existence of effects [261], paved
the way towards an understanding of universality in the fragmentation process [395], estab-
lished new TMDs [396, 397], see [398] for a review. The distinction of T-even and T-odd
TMDs is important also from the point of view of modeling. In order to model the former it
is sufficient to use a model with explicit quark degrees of freedom. In contrast, the modeling
of T-odd TMDs requires the explicit presence of gauge-field degrees of freedom.

In the following we will briefly review TMD models, though a detailed classification of
all models in which TMDs have been studied would go far beyond the scope of this section.

Models of TMDs

An interesting model is QCD in themulticolor limit, i.e. one works with Nc → ∞ instead
of Nc = 3 colors. In the large-Nc limit the nucleon can be described as a classical soliton of
the chiral field [399]. Also for Nc → ∞ QCD cannot be solved (in 3 + 1 dimensions). But
certain symmetry properties of the soliton field are known [399] and can be used to derive
relations which compare the relative magnitudes of different flavor combinations [334],

(fu1 + fd1 ) ≫ |fu1 − fd1 | , |f⊥u1T − f⊥d1T | ≫ |f⊥u1T + f⊥d1T | ,
|gu1 − gd1 | ≫ |gu1 + gd1 | , |g⊥u1T − g⊥d1T | ≫ |g⊥u1T + g⊥d1T | ,
|hu1 − hd1| ≫ |hu1 + hd1| , |h⊥u1L − h⊥d1L | ≫ |h⊥u1L + h⊥d1L | ,

|h⊥u1 + h⊥d1 | ≫ |h⊥u1 − h⊥d1 | , |h⊥u1T − h⊥d1T | ≫ |h⊥u1T + h⊥d1T | , (2.54)

where the not indicated arguments of the TMDs scale with Nc as x ∼ 1/Nc and k⊥ ∼ N0
c .

Analogous relations hold for antiquarks [334]. In (2.54) the respectively ‘large’ flavor combi-
nations are one order in Nc enhanced compared to the ‘small’ ones. For known distribution
functions the hierarchies in (2.54) are roughly supported in nature [400]. The large-Nc

prediction [334] also proved useful as a guideline for a first extraction of the Sivers function

from SIDIS [328]. Conclusions about gluon TMDs can also be drawn. For instance, f⊥g1T is
predicted to be one order in Nc suppressed with respect to the quark Sivers distributions
[328], which seems supported by phenomenology [401, 402].

The first quark model to give practical results on T-even TMDs was the quark-diquark
spectator model [403]. The basic idea of this model is to make a spectral decomposition
of the correlation function which defines the TMDs, and to evaluate it in the spectator
approximation, i.e. by truncating the sum over intermediate states to a single on-shell
spectator with definite mass. The spectator can have the quantum numbers of a scalar
(spin 0) isoscalar or axial-vector (spin 1) iso-vector diquark, and it plays the role of an
effective particle which effectively takes into account non-perturbative effects related to the
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sea and gluon content of the nucleon. The nucleon-quark-diquark coupling is described by
an effective vertex which may contain a model-dependent form factor. This class of models
with various vertex functions and different choices for the axial-vector diquark polarization
states have been used extensively in literature [337, 404, 405, 406]. These results for TMDs
can also be interpreted in terms of overlap of light-cone wave functions (LCWFs) for the
diquark [407]. The advantage of the spectator model is that the complicated many-particle
system can be effectively treated by a simple two-particle technique. However, the price
to pay is that basic properties like the momentum and quark-number sum rules cannot be
satisfied simultaneously, since the number of quarks “seen” in the spectator model is only
one. This fundamental limitation can be resolved only by considering the diquark not as
an elementary particle, but as formed by two quarks which play the role of active particles
(see, e.g., ref. [408]).

A different approach consists in exploiting LCWFs to model the three-quark structure of
the nucleon. The three-quark LCWFs encode the bound state quark properties of hadrons,
including their momentum, spin and flavor correlations, in the form of universal process-
and frame-independent amplitudes. Such amplitudes have also the important property to
be eigenstates of the total quark orbital-angular momentum Lqz [278, 407] and therefore,
allow for mapping in a transparent way the multipole pattern in k⊥ associated with each
TMD [409, 410]. In particular, f q1 , g

q
1L and hq1 describe monopole distributions with ∆Lqz = 0

between the initial and final nucleon states, with f q1 , g
q
1L containing S,P and D wave

contributions, and hq1 only S and P waves. The other twist-2 T-even TMDs are non-diagonal
in the orbital angular momentum, with gq1T and hq1L describing dipole distributions due to

the interference of S−P and P−D waves, and h⊥q1T being related to a quadrupole shape due
to a transfer of two units of orbital angular momentum [411, 301]. Two phenomenologically
successful models were used to compute the quark LCWFs: the light-cone constituent quark
model (LCCQM) [409] and the chiral quark-soliton model (χQSM) [412, 413, 414, 415]. In
the LCCQM one describes the baryon state in terms of three free on-shell valence quarks.
The three-quark state is however not on-shell, i.e. M 6= ∑

i ωi, where ωi is the energy of
free quark i and M is the physical mass of the bound state. The motion of the quarks
inside the nucleon is described by a momentum-dependent function which is assumed to
have a simple analytical expression, with free parameters fitted, e.g., to the anomalous
magnetic moments and the axial charge of the nucleon. In the χQSM quarks are not free
but bound by a relativistic chiral mean field (semi-classical approximation). This field
creates a discrete level in the one-quark spectrum and distorts at the same time the Dirac
sea. Despite the different model assumptions in LCCQM and χQSM, it turns out that the
corresponding LCWFs are very similar in structure. It should be noticed that the χQSM
naturally incorporates higher Fock states and it has been applied to describe the unpolarized
TMD for both quark and antiquarks [416].

A different model used to compute TMDs is the bag model. In its simplest version it
describes the nucleon as three non-interacting massless quarks confined inside a sphere. This
is therefore the only quark model discussed so far which incorporates confinement, which is
modeled by the bag boundary condition, i.e. in some sense the boundary condition mimics
gluons [418]. All twist-2 and twist-3 T-even TMDs were studied in this model in [419],
and a complete set of linear and non-linear relations among them was derived. Another
remarkable insight was that the bag model strongly supports the Gaussian k⊥-dependence
of TMDs observed in phenomenology [420].

A physical picture nearly “opposite” to the bag model is provided by the covariant
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Figure 2.21. Results for hq1(x) (left panels), h
⊥(1)q
1L (middle panels) and h

⊥(1)q
1T (right panels) as

functions of x within different models at low scales for up (upper panels) and down quarks (lower
panels). Dashed curves: spectator model of ref. [403]. Dotted curves: bag model of ref. [417]. Solid
curves: light-cone constituent quark model of ref. [298].

parton model [421, 422, 423]. In this approach the partons are free, and assumed to be
described in terms of 3D spherically symmetric momentum distributions in the nucleon rest
frame. Compliance of the model with relations derived from QCD equations of motion
allows the existence of only two such covariant momentum distributions: one describes
unpolarized and the other polarized quarks. All twist-2 TMDs are described in terms
of these two covariant distributions. This also implies relations among TMDs discussed
in [421]. The most interesting aspect of the model is that the symmetry of the covariant
momentum distributions tightly connects longitudinal and transverse parton momenta. As
a consequence, it is possible to predict the x- and k⊥-dependence of TMDs from the x-
dependence of known PDFs [423]. Interestingly, also this model supports the Gaussian
k⊥-dependence. An important feature is that the covariant parton model yields results
which refer to a large scale. Other parton model approaches in the context of TMDs were
discussed in [424, 425, 426].

TMDs in the non-relativistic limit were studied for an arbitrary number of colors Nc in
[421]. In this context we recall the popular non-relativistic model prediction hq1(x) = gq1(x).
The non-relativistic model makes similar predictions for other TMDs. In particular, it
naturally explains why in many models the integrated pretzelosity function, h⊥q1T (x), is so
large compared to other TMDs.

Results for selected T-even TMDs computed within different models are shown in
Fig. 2.21. In order to model T-odd TMDs one needs to invoke also gauge-boson degrees of
freedom. We shall devote a separate section to that. But before that we discuss relations
among TMDs.

In QCD all TMDs are independent functions. However, in a large class of quark mod-
els [409, 403, 405, 413, 414, 415, 419, 421, 422, 423] there appear relations among different
TMDs. In fact, certain relations, the so-called ‘LIRs’ (‘Lorentz-invariance relations’) must
hold in any consistent quark model framework without gauge-field degrees of freedom. The
14 T-even leading- and subleading-twist TMDs can be expressed in terms of 9 independent
‘quark-nucleon scattering amplitudes’ which implies the relations [243, 427] (see [428] for a
review).
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T-odd TMDs

T-odd TMDs emerge from the gauge-link structure of the parton correlation functions
which describe initial/final-state interactions (ISI/FSI) via soft-gluon exchanges between
the struck parton and the target remnant. Here we will summarize the status of model
calculations for the two leading-twist T-odd TMDs, namely the Sivers function f⊥1T and
the Boer-Mulders function h⊥1 . Both these functions require orbital angular momentum in
the nucleon, since they involve a transition between initial and final nucleon states whose
orbital angular momentum differ by ∆Lqz = ±1. Following the first calculation which explic-
itly predicted a non-zero Sivers function within a scalar-diquark model [261], more refined
calculation of the T-odd TMDs were performed in the spectator models with both scalar
and axial-vector diquark [337, 404, 429, 430, 431, 432, 433, 434]. Other model calculations
include the bag model [339, 435, 436], the non-relativistic constituent quark model [437]
and a light-cone constituent quark model [298]. Within all these models, the FSI/ISI are
approximated by taking into account only the leading contribution due to the one-gluon
exchange mechanism. As a result, the final expressions for the T-odd functions are pro-
portional to the strong coupling constant, which plays the role of a global normalization
factor with different values depending on the intrinsic hadronic scale of the model. Mean-
while, we also notice that it may be not appropriate to use a perturbative coupling for these
non-perturbative calculations. A non-perturbative approach was studied in refs. [438, 439],
where T-odd distributions were obtained from the non-perturbative chromomagnetic quark-
gluon interaction induced by instantons. A complementary approach is also to take into
account the physics of the FSI/ISI by constructing augmented LCWFs which incorporate
the rescattering effects by acquiring an imaginary (process-dependent) phase [440]. Finally
we remark that an interesting way to circumvent the no-go theorem concerning the mod-
eling of T-odd TMDs in chiral quark models [441] was discussed in [333] where the role of
gluons is played by a ‘hidden vector-meson gauge symmetry’.

Recently, interesting studies were presented, which go beyond the one-gluon exchange
approximation by resumming all order contributions [338, 442, 443]. This is achieved us-
ing approximate relations between TMDs and GPDs. In particular, the T-odd TMDs are
described via factorization of the effects of FSIs, incorporated in a so-called “chromody-
namics lensing function”, and a spatial distortion of impact parameter space parton distri-
butions [444, 299, 300]. While such relations are fulfilled from lowest order contributions in
spectator models [282, 300], they are not expected to hold in general [445, 446]. However,
the interesting novelty in the approach of refs. [338, 442, 443] is the calculation of the lensing
function using non-perturbative eikonal methods which permit to take into account higher
order gluonic contributions from the gauge-link.

A non trivial constraint in modeling or fitting the Sivers function is given by the Burkardt
sum rule [447]. This sum rule is related to momentum conservation, which requires that the
first transverse-momentum moment of the Sivers function, i.e. the net transverse momentum
due to final state interactions, should vanish. In the bag model this sum rule is violated
by a few percent [339, 435], since the bag states are not good momentum eigenstates.
Analogously, the non-relativistic calculation in constituent quark models leads to a small
violation of the sum rule. In spectator models, the sum rule is expected to be fulfilled only
when taking into account both the quark and the diquark as explicit degrees of freedom [432].
On the other side, it was proven to hold in light-cone constituent quark models [298].

In fig. 2.22 the results from different models for the first transverse-momentum moment
of the Sivers and Boer-Mulders functions are compared with phenomenological parametriza-
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Figure 2.22. Results for the (1)-moments of the quark Sivers (upper panels) and Boer-Mulders (lower
panels) functions as function of x. The different curves correspond to the results after (approximate)
evolution from the model scale to Q2 = 2.5 GeV2. Solid curves: light-cone constituent quark model
of ref. [298]. Dashed curves: spectator model of ref. [337]. Dotted curves: bag model of ref. [339, 436].
In the case of the Sivers function, the lighter and darker shaded areas indicate statistical uncertainties
of the parameterizations of ref. [332] and [328, 331]. For the Boer-Mulders function the dashed-dotted
curves are the results of the phenomenological parametrization of refs. [366, 367].

tions [328, 332, 331], valid at an average scale of Q2 = 2.5 GeV2, extracted by a fit to
available experimental data for pion and kaon production in semi-inclusive deep inelastic
scattering. The model results are evolved from the corresponding hadronic scale to Q2 = 2.5
GeV2, by employing those evolution equations which seem most promising to be able to
simulate the correct evolution, which is presently not available. In particular, we evolved
the (1)-moment of the Sivers function by means of the evolution pattern of the unpolarized
parton distribution, while for the (1)-moment Boer-Mulders function we used the evolution
pattern of the chiral-odd transversity. Within the large error bar, the results of both the
LCCQM and spectator model for the Sivers function are compatible with the parameter-
izations for both up and down quark, although the shapes of the distributions and the
magnitude of the up- and down-quark contributions are quite different. On the other hand,
the bag model predicts much smaller results, for both the Sivers and Boer-Mulders func-
tions. In all the models the Boer-Mulders function has the same sign for both the up and
down contributions, confirming theoretical expectations [334, 448]. Furthermore, the up
and down contributions to the Boer-Mulders function are expected to have the same order
of magnitude within the available parametrizations [366, 367, 370, 449]. This is confirmed
from the predictions of the LCCQM and bag model, while it is at variance with the specta-
tor model where the up distribution is more than twice bigger than the down distribution.
However, we note that the available data do not allow yet a full fit of h⊥1 with its x and k2⊥
dependence and the available phenomenological parameterizations are only first attempts
to extract information on this distribution. New experimental data will play a crucial role
to better constrain these analyses.
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2.5 Chiral-odd partonic densities

Harut Avakian, Alessandro Bacchetta, Andreas Metz, Marco Radici

Half of the leading-twist TMDs are denoted by the letter h, which means that they
describe the distribution of transversely polarized partons. In the helicity basis for a spin
1
2 nucleon, where the unpolarized distribution f1 and the helicity distribution g1 have their
well known probabilistic interpretation, transverse polarization states are given by linear
combinations of positive and negative helicity states. Since helicity and chirality are the
same at leading twist [245], they are called chiral-odd distributions.

One of the four leading-twist chiral-odd TMDs, the transversity distribution h1, sur-
vives the integration upon transverse momentum. From the experimental point of view,
transversity is quite an elusive object. In any observable the chiral-odd transversity needs
to be coupled to a chiral-odd nonperturbative partner. In SIDIS, as discussed in Sec. 2.1,
h1 can appear in the leading-twist part of the cross section together with the chiral-odd
Collins fragmentation function H⊥1 , which can be determined separately, e.g., by measuring
azimuthal asymmetries of the distribution of back-to-back pions in two-jet events in electron-
positron annihilations, i.e. e+e− → π+π−X [250, 369]. Another promising approach to ac-
cess transversity is semi-inclusive production of pion pairs, ep↑ → e′(π+π−)X [450], where
the chiral-odd partner of h1 is represented by the chiral-odd Dihadron Fragmentation Func-
tion (DiFF) H<)

1 [451].
Among the remaining chiral-odd quark distributions, the so-called Boer-Mulders func-

tion attracted great interest from both experiment and theory. It shares some common
features as the quark Sivers function discussed in Sec. 2.2. In this section, we will dedi-
cate one subsection to briefly describe this function, including the unique opportunity of
exploring it using unpolarized hadrons.

2.5.1 The quark transversity distribution

At leading twist, three collinear distribution functions are needed to describe the quark
distribution in the nucleon. Transversity is a leading-twist collinear PDF and enjoys the
same status as f1 and g1 [452, 418]. An important difference between h1 and g1 is that in
spin-12 hadrons there is no gluonic function analogous to transversity. The most important
consequence is that hq1 for a quark with flavor q does not mix with gluons in its evolution
and it behaves as a non-singlet quantity; this has been verified up to NLO, where chiral-odd
evolution kernels have been studied so far [453, 454, 455].

The tensor charge of the nucleon is defined as the sum of the Mellin moments δq(Q2) =∫
dx
[
hq1(x,Q

2)− hq1(x,Q
2)
]
. Contrary to the axial charge — which is related to gq1(x,Q

2)

— it has a nonvanishing anomalous dimension: it evolves with the hard scale Q2 [418]. It
has been calculated on the lattice [456] and in various models [408, 457, 458, 459, 460], and
was found to be sizable. For a more comprehensive review, we refer to Ref. [461].

The extraction of transversity is of fundamental interest for obtaining a complete de-
scription of the nucleon structure even for the case when internal transverse momenta are
integrated over. To achieve this goal, it is crucial to cover the widest possible range in
(x,Q2), to measure the related asymmetries differential in the relevant kinematic variables
and to be able to perform a flavor separation.
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experiment (laboratory)
√
s in GeV target type hadron types references

COMPASS (CERN) 18 deuteron h±, π±,K±,K0 [320, 321]

proton h± [322]

proton π±,K± prelim. [323]

HERMES (DESY) 7.4 proton π± [324]

proton π±, π0,K± [462]

HallA (JLab) 3.5 neutron π± prelim. [326]

Table 2.4. Summary of currently available measurements of Collins asymmetry amplitudes from
lepton-nucleon DIS experiments, their center-of-mass energy, transversely polarized target type, and
analyzed hadron types.

The Collins effect

As discussed in Sec. 1, at tree-level and leading-twist, the SIDIS F
sin(φh+φS)
UT structure

function of Eq. (2.8) can be described as a convolution between the transversity hq1T and

the Collins fragmentation function H⊥ q1 , i.e.,

F
sin(φh+φS)
UT ∼

∑

q

e2q h
q
1T ⊗H⊥q1 . (2.55)

In order to project out the structure function F
sin(φh+φS)
UT,T in Eq. (2.8), the so-called Collins

amplitude 2〈sin(φh + φS)〉hUT for a specific hadron h is extracted from the asymmetry

AhUT (φh, φS) ≡
1

|ST |
dσh(φh, φS) + dσh(φh, φS + π)

dσh(φh, φS) + dσh(φh, φS + π)
, (2.56)

where the subscript U indicates an unpolarized lepton beam and T a transversely polarized
target nucleon. The azimuthal angles are illustrated in Fig. 2.1. This amplitude has so
far been extracted by three polarized fixed-target experiments as summarized in Table 2.4.
From these measurements, Fig. 2.23 shows a selection of results that are significantly non-
zero and help in determining both the shape of transversity and the relative size and sign
of the Collins fragmentation function. All other asymmetry amplitudes listed in Table 2.4
are small or consistent with zero.

For the second unknown in Eq. (2.55), the Collins fragmentation function, model cal-
culations are available [382, 463, 464, 465, 466, 467, 468, 469]. However, for a model-
independent extraction of transversity from the SIDIS asymmetry amplitudes we need to
determine the Collins function from an independent source. This is represented by the
measurement of azimuthal asymmetries in the distribution of back-to-back pions in two-jet
events in electron-positron annihilations, i.e. e+e− → π+π−X [470].

The relevant vectors and angles involved in e+e− annihilations leading to back-to-back
jets are depicted in Fig. 2.24 (left panel). The following asymmetry can be measured [250,
369]

A12(z1, z2, θ2, φ1+φ2) = 1+
sin2 θ

1 + cos2 θ
cos(φ1+φ2)

∑
q e

2
q H
⊥ (1) q
1 (z1)H

⊥ (1) q
1 (z2)

∑
q e

2
q D

q
1(z1)D

q
1(z2)

. (2.57)
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average kinematics in each bin differs for HERMES and COMPASS and the sign of the COMPASS
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Pioneering measurements of this spin-dependent fragmentation function have been per-
formed by the BELLE Collaboration (KEK) [472, 471]. Experimentally, double ratios of
asymmetries for like-sign (L), unlike-sign (U) and any charged (C) pion pairs are built in
order to cancel (to a large extent) contributions from the experimental acceptance and
radiative effects. The resulting asymmetries, AUL and AUC , are then sensitive to differ-
ent combinations of the favored and unfavored Colllins fragmentation functions as given
in [471]. These asymmetries are presented in Fig. 2.24 as function of z2 for four bins of z1
for the light quarks (u, d, s), where z1 and z2 are for a hadron in each of the back-to-back
jets.

The experimental results shown in Figs. 2.23 and 2.24 are striking. First, they clearly
demonstrate that the Collins effect as a manifestation of chiral-odd and näıve T-odd mech-
anisms is different from zero and not suppressed, both in SIDIS and in e+e− annihilations.
Second, the results for oppositely charged pions (hadrons) in Fig. 2.23 suggest a very pe-
culiar feature for the Collins fragmentation function. As scattering off u quarks dominates
these data due to the charge factor, the large magnitude of π− amplitudes being of similar
size than the π+ ones but having opposite sign, can only be understood if the disfavored
Collins function H⊥unfav

1 is large and of opposite sign to the favored one. Opposite signs
for the favored and unfavored Collins functions are also supported by the different size of
AUL and AUC asymmetries from BELLE in Fig. 2.24. They can be understood in light of
the string model of fragmentation [463] (and also of the Schäfer–Teryaev sum rule [473]).
If a favored pion is created at the string end by the first break, an unfavored pion from the
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next break is likely to inherit transverse momentum in the opposite direction.
The extraction of transversity and Collins functions from available data faces the same

issues as discussed for the Sivers function in Sec. 2.2.1 for resolving the convolution in
Eq. (2.55) and the same strategies are applied here. Employing the Gaussian Ansatz in
Eq. (2.22) both transversity and Collins function have been extracted [250, 474] from (part
of) the experimental data discussed before. The new COMPASS proton or Hall-A neutron
data are not yet included in this fit. The results of this global analysis are presented in
Fig. 2.25 for u and d transversity distributions (left panel) and favored and unfavored Collins
fragmenation functions (right panel). The decrease in the presented uncertainties for the
specifically chosen parametrization, which is the same as in [250, 474], is due to the new
BELLE and HERMES data. The extracted favored and unfavored Collins functions confirm
the features discussed before.

Dihadron Fragmentation Functions

A complementary approach to transversity is provided by semi-inclusive two-hadron
production, ep↑ → e′(h1 h2)X, where the two unpolarized hadrons with momenta P1 and P2

emerge from the fragmentation of the struck quark. The underlying mechanism differs from
the Collins mechanism in that the transverse spin of the fragmenting quark is transferred to
the relative orbital angular momentum of the hadron pair. Consequently, this mechanism
does not require transverse momentum of the hadron pair and collinear factorization applies.

Dihadron fragmentation functions were introduced in Ref. [475] and studied for the
polarized case in Refs. [450, 476, 477]. The decomposition of the SIDIS cross section in terms
of quark distributions and dihadron fragmentation functions was carried out to leading twist
in Ref. [451] and to sub-leading twist in Ref. [478].

The kinematics is similar to the one in single-hadron SIDIS except for the final hadronic
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Figure 2.25. Left: transversity xhq1(x) for u (upper panel) and d (lower panel) quarks. Right: the

normalized Collins functions
√
2H

⊥ (1/2)
1 (z)/D1(z) for favored (upper panel) and unfavored (lower

panel) fragmentation. The light grey band represents the uncertainty for the extraction in Ref. [250]
and the dark grey band from the updated analysis [474]. Blue lines indicate the Soffer and positivity
bound for transversity and Collins function, respectively.

state, where now z = z1 + z2 is the fractional energy carried by the hadron pair and we
introduce the vectors Ph = P1 + P2 and R = (P1 − P2)/2 (see Fig. 2.26), together with the
pair invariant mass Mh, which must be considered much smaller than the hard scale (e.g.,
P 2
h =M2

h ≪ Q2). We shall often use the quantity [479],

|R| = 1

2

√
M2
h − 2 (M2

1 +M2
2 ) + (M2

1 −M2
2 )

2 , (2.58)

where P 2
1 =M2

1 , P
2
2 =M2

2 and R2
T is related to M2

h [479].
In analogy with the Collins function, the expression for unpolarized hadrons (h1, h2)

produced by a transversely polarized quark reads

Dh1h2/q↑(z,M
2
h ,RT ) = Dq

1(z,M
2
h)−H<) q

1sp(z,M
2
h)

S⊥ q · (p̂×RT )

Mh
. (2.59)

Choosing p̂ ‖ ẑ and S⊥ q ‖ ŷ, a positive H<) q
1sp means that hadron h1 is preferentially emitted

along −x̂ and hadron h2 along x̂.
Since RT = R sin θ, where in the c.m. frame of the hadron pair θ is the angle between

P1 and the direction of Ph in the laboratory frame (for more details, see refs. [479, 480, 481,
482]), the relevant asymmetry that should be measured in SIDIS is

A
sin(φR+φS) sin θ
UT ≡ 2

∫
d cos θdφRdφS sin(φR + φS) [dσ(φR, φS)− dσ(φR, φS + π)] / sin θ∫

d cos θdφRdφS [dσ(φR, φS) + dσ(φR, φS + π)]

∼ |R|
Mh

∑
q e

2
q h

q
1(x) H

<) q
1 sp(z,M

2
h)∑

q e
2
q f

q
1 (x)D

q
1(z,M

2
h)

. (2.60)

As in the single-hadron production case, transversity can be extracted from the asymme-
try (2.60) only if the unknownH<)

1sp is independently determined from the e+e− annihilation
producing, in this case, two hadron pairs: e+e− → (π+π−)jet1 (π+π−)jet2X with kinematics
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Figure 2.26. Kinematics for the production of two hadrons (left) and for the e+e− →
(π+π−)jet1 (π

+π−)jet2X process (right).

depicted in Fig. 2.26 (right). The relevant signal is similar to that of the Collins function,
except that each transverse polarization of the quark-antiquark pair is now correlated to
the azimuthal orientation of the plane formed by the momenta of the corresponding hadron
pairs, suggesting that H<)

1 is related to the concept of handedness of the jet containing a
specific pair [483, 484, 485].

The leading-twist cross section of this process contains many terms [485], among which

there is one involving the product of H<) q
1sp for the quark q and of H

<) q
1 sp for the q partner,

weighted by cos(φR + φR). Thus, we can properly weight the cross section and extract this
contribution by defining the so-called Artru–Collins azimuthal asymmetry [485, 482]

Acos(φR+φR)(cos θ2, z,M
2
h , z,M

2
h) =

sin2 θ2
1 + cos2 θ2

π2

32

|R| |R|
MhMh

∑
q e

2
qH

<)q
1 sp(z,M

2
h)H

<)q
1 sp(z,M

2
h)

∑
q e

2
qD

q
1(z,M

2
h)D

q
1(z,M

2
h)

,

(2.61)

where the dihadron fragmentation functions Dq
1 and H<) q

1 sp are the same universal functions
appearing in the SIDIS asymmetry of equation (2.60).

Pioneering measurements of A
sin(φR+φS) sin θ
UT from HERMES [481] gave evidence for a

non-zero dihadron fragmentation function H<) q
1 sp as shown in Fig. 2.27. The Mh dependence

does not exhibit any sign change and rules out the model of Ref. [476]: interference patterns
in semi-inclusive π+π− production are different from those in π+π− elastic scattering. Cal-
culations based on the spectator model [480, 486] are compatible with data. They, however,
overestimate the asymmetries if hq1 is taken from the parametrization [474] discussed in
Fig. 2.25. This estimate is presented in Fig. 2.27 by the grey band where the model H<) q

1 sp is
reduced by a factor α = 0.32± 0.06 in order to reproduce the magnitude of the asymmetry.

Preliminary SIDIS data are also available from the COMPASS Collaboration using trans-

versely polarized deuteron and hydrogen [487] targets. While A
sin(φR+φS) sin θ
UT is basically

vanishing on the deuteron, the proton data show a signal larger than the HERMES results
in Fig. 2.27, which might be due to different kinematics.

Last but not least, results from pioneering measurements of the Acos(φR+φR) asymmetry
related to the dihadron fragmentation function became recently available from the BELLE
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Figure 2.27. The spin asymmetry for the semi-inclusive production of a pion pair in deep-inelastic
scattering on a transversely polarized proton [481]. The grey band presents a fit to the data involving
the dihadron FF calculated in the spectator model of Ref. [480] and on the parametrization for h1
from Ref. [474].

Collaboration in Ref. [488].
For a real breakthrough of this promising approach to transversity, much more data over

wide kinematic range are needed. We only mention that the SIDIS cross section does now
depend on nine kinematic variables compared to six for the single-hadron case, which calls
even more for a multi-dimensional analysis for a bias-free extraction of the asymmetries.

Collins effect at EIC

The exploration of chiral-odd structures using the Collins effect is far from being com-
plete. Several aspects need to be significantly improved. The x dependence is largely
unconstrained due to the lack of SIDIS asymmetries outside the range 0.005<∼ x<∼ 0.3. The
antiquark and sea-quark content of transversity in the proton is completely unknown. To-
gether with the loose constraints on the x dependence, this missing piece of information
makes the calculation of the tensor charge still unsatisfactory. Also the transverse momen-
tum dependence of both the transversity and the Collins function has a significant degree of
arbitrariness. Lastly, the Q2 range of HERMES and COMPASS measurements is approxi-

mately the same: it would be desirable to study the A
sin(φh+φS)
UT (Q2) dependence in a wide

range of Q2.
All these remarks call for more data in order to enlarge the phase space and perform a

multi-dimensional analysis in all relevant kinematic variables simultaneously. An ambitious

program is planned at JLab12, that would aim for exploring A
sin(φh+φS)
UT in the valence

region with high luminosity [340, 341]. The EIC would be the ideal facility to carry out
this program over a uniquely wide range in x and Q2. This potential for a mapping of the
multi-dimensional phase-space in an unprecedented kinematic range is illustrated by the
studies presented in Sec. 2.2.2 and are equally valid for transversity.

The promising and complementary approach of extracting transversity with help of the
dihadron fragmentation function will even more profit from the high energy option of an
EIC. Fig. 2.28 shows the projected accuracy for semi-inclusive kaon pair production at an
energy

√
s = 140 GeV and for an integrated luminosity of 30 fb−1. The PYTHIA event

generator has been used to obtain the SIDIS event rate, and an overall detection efficiency
of 50% and beam polarization of 70% were assumed. Data are shown as function of x for
the various different z and MKK bins indicated in the panels. The invariant mass range of
the kaon pair, MKK , is chosen for the vicinity of the φ meson, which provides unique access
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Figure 2.28. Projected accuracy, represented by the error bars, for semi-inclusive kaon pair produc-
tion obtained with an energy of

√
s = 140 GeV for an integrated luminosity of 30 fb−1, as a function

of x in bins in z, MKK and for a single bin in Q2 as indicated in the panels.

to strange quark distributions.
Furthermore, the general picture obtained so far would significantly profit from data

available over a wide Q2 range which can only be provided by the EIC. This picture ob-
tained so far, is based on a tree-level analysis of transverse-momentum dependent azimuthal
(spin) asymmetries occurring at very different energies: while the average scale of SIDIS
experiments is approximately 2.5 GeV2, the BELLE measurement was performed at the
typical bottonium mass, i.e. Q2 ∼ 100 GeV2. Beyond tree level, the evolution effects with
running scale were included (at LO) only in the modification of the x and z dependence of
the various functions. At low P 2

hT /Q
2 (Q2

T /Q
2 for e+e− annihilation, where QT = |qT | is

the transverse momentum of the virtual photon), the correct Q2 dependence beyond tree
level of transverse-momentum dependent structure functions should be studied extending
the Collins–Soper–Sterman formalism mentioned in Sec. 2.2.6 [273]. A quantitative attempt
to go in this direction was presented in Ref. [369], where it was estimated that transverse-
momentum resummation produces a suppression of the tree level result by almost a factor
5 at BELLE energies. Therefore, the extraction of the Collins function using the tree level
formula could significantly underestimate its actual magnitude. In order to fit the available
SIDIS asymmetries, a larger H⊥1 would automatically imply a transversity smaller than that
one illustrated in Fig. 2.25.
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2.5.2 Boer-Mulders function

The Boer-Mulders function h⊥1 [244] can be considered as the counterpart of the Sivers
function f⊥1T : while f⊥1T describes the distribution of unpolarized quarks in a transversely
polarized target, h⊥1 describes the distribution of transversely polarized quarks in an un-
polarized target. Both functions are T-odd, and therefore vanish if the gauge-link is not
taken into account in their operator definition, which makes them somewhat unique among
the TMDs. Put it differently, their existence depends on the presence of initial and/or final
state interactions between the active partons of a process and the target remnants (see the
corresponding discussion in Sec. 2.4.1). It is expected that both TMDs change their sign
when going from SIDIS to the Drell-Yan process [262]. There is, however, one important
difference between them. The Sivers function is chiral-even, whereas the Boer-Mulders func-
tion is chiral-odd. Since the elementary interactions of the Standard Model do not change
the chirality (helicity) of fermions, one has to couple the Boer-Mulders function — like any
other chiral-odd object too — to another nonperturbative chiral-odd correlator in order to
generate a non-zero observable. This implies that h⊥1 , in general, is harder to measure than
f⊥1T .

On the other hand, in the case of the Boer-Mulders function no polarized target is
required, which makes this distribution rather attractive. In fact, it is believed that the
Boer-Mulders effect is essential for understanding data on the angular distribution of the
unpolarized Drell-Yan process [489]. To be more specific, the general structure of the Drell-
Yan cross section reads (see [490] and references therein)

1

σDY

dσDY
dΩ

=
3

4π

1

λ+ 3

(
1 + λ cos2 θ + µ sin 2θ cosφ+

ν

2
sin2 θ cos 2φ

)
, (2.62)

where the angles θ and φ characterize the orientation of the lepton pair in a dilepton rest
frame like the Collins-Soper frame [491]. What attracted particular attention is the so-called
Lam-Tung relation between the coefficients λ and ν [350, 492],

λ+ 2ν = 1 . (2.63)

This relation is exact if one computes the Drell-Yan process to O(αs) in the standard
collinear perturbative QCD framework. Even at O(α2

s) the numerical violation of (2.63)
is small [493]. However, data for π−N → µ− µ+X taken at CERN [345, 346] and at
Fermilab [494] were found to clearly violate the Lam-Tung relation. In particular, an unex-
pectedly large cos 2φ modulation of the cross section was observed. Various explanations of
this experimental result have been put forward, with the most favorable one being based on
intrinsic transverse motion of partons leading to the Boer-Mulders effect [489]. The product
of two Boer-Mulders functions — one for each initial state hadron — contributes to the
cos 2φ term in the cross section in (2.62) [489]. An ultimate understanding of the angular
distribution in (2.62), and thus also of the role played by the Boer-Mulders function, is of
crucial importance if one keeps in mind that, from a theoretical point of view, the Drell-Yan
process is the cleanest hard hadron-hadron reaction.

Several model calculations have been carried out for the Boer-Mulders function of both
the nucleon [282, 298, 337, 338, 404, 429, 435, 436] and the pion [443, 446, 495], where the
treatments for the nucleon comprise spectator models, the MIT bag model, and constituent
quark models. In the case of the nucleon two general features emerge: first, the Boer-
Mulders function comes out to be as large as the Sivers function or even larger. Second,
it has the same sign for up-quarks and down-quarks. This finding nicely agrees with a
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model-independent analysis according to which h⊥u1 = h⊥d1 to leading order of an expansion
in powers of 1/Nc, with Nc being the number of colors [334].

A lot of attention has been paid to an intuitive relation between the Boer-Mulders func-
tion and (a specific linear combination of) chiral-odd Generalized Parton Distributions in
impact parameter space [496, 497]. (This connection between two types of parton distri-
butions is the analogue of a corresponding relation involving the Sivers function which was
proposed earlier [444, 299].) The intuitive picture is compatible with the two general results
from model calculations discussed above. In particular, it also suggests a significant size for
the Boer-Mulders function in the valence region. In Quantum Field Theory one can make
such a relation quantitative in the framework of simple spectator models [282, 433, 300].
However, according to current knowledge, a general model-independent relation cannot
exist [445, 446].

The Boer-Mulders function describes the strength of a correlation between the transverse
momentum and the transverse spin of the active quark. This correlation generates a dipole
pattern in the transverse k⊥-plane — like the correlations associated with f1T , g1T , and h

⊥
1L

do. One way of visualizing the Boer-Mulders effect is by looking at the density

ρq
h⊥1

(k⊥, s⊥) =
∫
dx

1

2

[
f q1 (x,k

2
⊥) +

ǫij⊥s
i
⊥k

j
⊥

M
h⊥q1 (x,k 2

⊥)
]

(2.64)

describing the distribution of transversely polarized quarks in an unpolarized nucleon [298].
The quark polarization is specified by the spin vector s⊥. Note that the longitudinal
momentum fraction has been integrated over. In Eq. (2.64), the f1 term provides an axially
symmetric contribution, while the second term containing h⊥1 gives rise to the mentioned
dipole pattern. If both effects are superimposed, the resulting distribution is shifted away
from the center (distorted) in the k⊥-plane.

The Boer-Mulders function can also be studied in SIDIS and therefore at the EIC. In
this process it couples to the chiral-odd Collins fragmentation function H⊥1 [249] and gives
rise to a cos 2φh-modulation of the cross section. The pertinent structure function takes the
generic form

F cos 2φh
UU ∼

∑

q

e2q

(
h⊥q1 ⊗H⊥q1 +

C

Q2
f q1 ⊗Dq

1 + . . .

)
, (2.65)

where C is a kinematic factor. The second term on the right hand side of (2.65) is the
so-called Cahn effect [498, 499], which is also caused by intrinsic transverse parton motion.
It is a kinematic twist-4 contribution, i.e., it is suppressed by a factor 1/Q2 relative to
the first term. Theoretical estimates of this effect are still plagued by large uncertainties,
mainly related to the insufficient knowledge of the transverse momentum dependence of
f q1 and Dq

1. The explicit form of all potential additional (dynamical) twist-4 effects in
this structure function is presently not known. These considerations show that a reliable
extraction of the Boer-Mulders function from SIDIS requires data in a kinematic region for
which the (largely unknown) higher-twist contributions can be neglected. Since f q1 ≫ h⊥q1

and Dq
1 ≫ H⊥q1 , the suppression of the Cahn effect requires very large Q2.

The SIDIS structure function F cos2φhUU has already been measured by the CLAS Col-
laboration at JLab [500], the HERMES Collaboration at DESY [501], and the COMPASS
Collaboration at CERN [502]. More precisely, typically data are shown for the relevant

azimuthal asymmetry given by F cos 2φh
UU /FUU . However, due to the limited range in Q2 the

present SIDIS data allow at most a qualitative extraction of h⊥1 , as is also obvious from
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a first exploratory study [367]. Moreover, the Boer-Mulders function for antiquarks is not
at all constrained by the available data from SIDIS. Some information about antiquarks is
available from recent Fermilab data on proton-deuteron [348] and proton-proton [349] Drell-
Yan, though the uncertainties are again significant and not the least due to the presently
large uncertainties for the Boer-Mulders function of quarks [370, 503, 504].

Even without further detailed reasoning it is clear that a quantitative knowledge about
the Boer-Mulders function can only be obtained with data from new facilities. Measure-
ments of the structure function F cos 2φh

UU in the valence region in electroproduction of pions
and kaons compose an important part of the upgraded JLab program on TMD studies.
However, the Q2 range obtainable with JLab12 will not be sufficient to suppress the con-
tribution from the Cahn effect.

Only the unprecedented wide kinematic range of the EIC would provide clean measure-
ments of the Boer-Mulders function for valence and sea quarks, and will allow for studying
both, its Q2 evolution and transition behavior from low to high PhT .

Finally, there also exists a Boer-Mulders function for gluons, h⊥g1 , describing the distri-
bution of linearly polarized gluons in an unpolarized hadron [248, 281, 282]. In contrast to

the Boer-Mulders function for quarks, h⊥g1 is T-even. See the relevant discussions in Sec. 3.
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2.6 Overview on other TMDs

Harut Avakian, Alessandro Bacchetta, Andreas Metz, Peter Schweitzer

In previous Sections, we discussed the unpolarized TMD f1, the Sivers distribution f
⊥
1T ,

the transversity distribution h1, and the Boer–Mulders distribution h⊥1 . They have been
given more emphasis because at the present state of our knowledge they seem to be the
most attractive and promising for EIC studies.

Nevertheless, interesting physics is embodied also in all other TMDs. Only the com-
bination of information from all TMDs will fully explore the information contained in the
unintegrated quark correlator, and provide a complete picture of the parton structure of
the nucleon in transverse momentum space. This wealth of information may become one of
the biggest legacies of the EIC.

In this Section, we briefly discuss the leading-twist TMDs that have not been analyzed
in previous Sections and some of the sub-leading twist TMDs.

quark pol.

U L T

n
u

cl
eo

n
p

o
l.

U f1 h⊥1

L g1 h⊥1L

T f ⊥1T g1T h1 h⊥1T

quark pol.

U L T

n
u

cl
eo

n
p

o
l.

U f ⊥ g⊥ e h

L f ⊥L g⊥L hL eL

T fT , f ⊥T gT, g⊥T hT , h⊥T eT , e⊥T

(a) (b)

Table 2.5. Transverse momentum dependent (a) twist-2, (b) twist-3 distribution functions. The
U,L,T correspond to unpolarized, longitudinally polarized and transversely polarized nucleons (rows)
and quarks (columns). Functions in boldface survive transverse momentum integration. Functions
in gray cells are T-odd.

2.6.1 Other leading-twist TMDs

Table 2.5a summarizes the full list of leading-twist TMDs. The helicity distribution g1,
together with f1 and h1, survives integration over transverse momentum and has been al-
ready discussed extensively. Here we mention the importance of also studying its transverse
momentum dependence. It may be possible that the transverse momentum distribution
of quarks with spin antiparallel to the nucleon is different from that of quarks with spin
parallel to the nucleon as suggested by lattice calculations [280] shown in Fig. 2.29. The
structure function FLL, involving the transverse-momentum dependence of g1, is the only
one where transverse-momentum resummation studies have been carried out to a level sim-
ilar to FUU,T [372], but no extraction of the nonperturbative component has ever been
attempted. The EIC will be an ideal machine to address this question.

The chiral-odd T-even TMD h⊥1T appears in the SIDIS structure function F
sin(3φ−φS)
UT .

This function may be interpreted as the distribution of quarks with a polarization transverse
but orthogonal to that of a transversely polarized nucleon. The popular name “pretzelosity”
is due to the fact that this distribution has a quadrupole shape, vaguely reminiscent of a
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Figure 2.29. Ratio between the helicity distribution and the unpolarized distribution for up quarks
based on lattice QCD computations [280]: the significant k⊥ dependence of the two curves (cor-
responding to two different parameterizations) suggests that quarks with different spin orientation
have different transverse momentum distributions.

pretzel [411, 301]. This TMD has attracted a lot of interest in the literature recently
because of its possible connection with orbital angular momentum (see detailed discussion
in Sec. 2.4.4). It is also interesting that, in a number of nonperturbative models, h⊥1T is just
the difference between the quark helicity and the transversity distribution [419]. Moreover,
in simple spectator models of the nucleon it can be related to a particular linear combination
of chiral-odd generalized parton distributions [282]. In general, h⊥1T involves an interference
between light-cone wave function components that differ by two units of orbital angular
momentum. Preliminary data from COMPASS [505] and from HERMES [506] taken with
transversely polarized deuterons or protons, respectively, showed an effect compatible with
zero, however, within large experimental uncertainties.

The TMDs g1T and h⊥1L appear in the structure functions F
cos(φ−φS)
LT and F sin 2φ

UL , re-
spectively. The chiral-even (chiral-odd) g1T (h⊥1L) describes longitudinally (transversely)
polarized quarks in a transversely (longitudinally) polarized nucleon. Since both functions
link two perpendicular spin directions, they are sometimes named “worm-gear” functions.
Both functions are related to quark orbital motion inside nucleons. They represent the real
part of an interference between nucleon wave functions that differ by one unit of orbital
angular momentum, while the imaginary parts are related to the Sivers and Boer–Mulders
functions [278, 507]. Because of this, they appear in positivity bounds together with the
Sivers and Boer–Mulders function [507]. They do not depend on final-state interactions
and may offer cleaner insights into orbital angular momentum compared to the Sivers and
Boer–Mulders functions. Interestingly, these functions are the first TMDs that have been
computed on the lattice [279, 280]. The results (with the due caveats) indicate that they
are sizable, guv1T > 0, gdv1T < 0, and g1T ≈ −h⊥1L. These general findings also agree with some
model calculations, see Sec. 2.4.4.

Notice that due to their chirality properties, g1T couples through evolution to its analo-
gous function for gluons (named ∆GT in Ref. [281] and gg1T in Ref. [282]), while this is not
true for h⊥1L. This difference will be particularly relevant at the EIC, where gluons will play
an important role.

By exploring QCD equations of motion, and neglecting “pure twist-3” quark-gluon cor-
relators and current quark mass terms, one can express g1T (h⊥1L) in terms of g1 (h1)
(see, e.g., [243, 252, 427, 508] and references therein). This is similar in spirit to the clas-
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sic Wandzura–Wilczek approximation [509] for the twist-3 distribution function gqT (x) ≈∫ 1
x dy gq1(y)/y, (which is supported by the instanton QCD vacuum model [510, 511] and
lattice QCD [512, 513]). At an initial stage, it may be convenient to exploit such Wandzura–
Wilczek-type approximations, in order to make estimates for planned experiments [252, 508,
514]. In fact, existing data suggest that they are reasonable [508], even though at present
there are no compelling grounds for supporting their validity [515, 516, 517]. In the end,
these approximations should be tested and twist-3 effects should be extracted from the data,
as we will also argue in the next subsection.

2.6.2 Subleading-twist TMDs

Eight out of the 18 structure functions providing the complete description of the SIDIS
cross section are leading twist and were discussed in detail in previous sections. However, 10
structure functions are higher twist, where the underlying twist-classification follows [245]:
“an observable is twist-t if its effect is effectively suppressed by (M/Q)t−2.”

Higher twist functions, see Table 2.5b for a full list of twist-3 TMDs, are of interest for
several reasons. Their understanding is required not only to complete the description of
the SIDIS process. Besides being indispensable to correctly extract twist-2 parts from data,
the knowledge of higher twists will also offer important tools to access the physics of the
largely unexplored quark-gluon correlations which provide direct and unique insights into
the dynamics inside hadrons, see, e.g., [518]. The EIC, which will span a large Q-range,
will be an ideal tool to identify higher-twist effects, which fall off as powers of 1/Q.

Although suppressed with respect to twist-2 observables by 1/Q, twist-3 observables are
not small in the kinematics of fixed target experiments. Indeed, the first unambiguously
measured single spin phenomena in SIDIS which triggered important theoretical devel-
opments, were the sizable longitudinal target (Asinφ

UL ) and beam (Asinφ
LU ) spin asymmetries

observed at HERMES and JLab [519, 520, 521, 522, 523, 524]. Further data on twist-3 spin
asymmetries are underway [505, 525, 526]. In unpolarized SIDIS, the sizable twist-3 effects

(Acos φ
UU ) are known since EMC [527, 528], see also recent results from JLab, HERMES and

COMPASS [501, 529, 500, 530]. At high energies Acosφ
UU can be described in perturbative

QCD, and the unique possibilities of EIC could bridge [371] the gap to high energy data
[531, 532, 533, 534]. The understanding of the “matching” of the TMD formalism and the
large-pT collinear description is of fundamental importance, see Sec. 2.2.5 and references
therein.

The theoretical description of twist-3 observables is challenging. A good illustration
of this point is that in spite of the enormous dedicated theoretical and phenomenological
effort [396, 397, 465, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548,
549, 550, 551, 552, 553, 554, 555] to explain the first single spin phenomena in SIDIS,

Asinφ
UL and Asinφ

LU , these observables are still not understood. The theoretical challenge is
that presently it is not understood how to control light-cone divergences in SIDIS at 1/Q
order [555]. This does not necessarily mean there is no factorization, but it indicates that
possibly new techniques are needed to pave the way towards a factorization proof in SIDIS
at twist-3. If one assumes twist-3 TMD factorization, the phenomenological challenge is
that each twist-3 observable receives contributions from several unknown twist-3 TMDs or
fragmentation functions [247]. The situation simplifies in semi-inclusive jet production, a
promising process to study at EIC energies, which could provide valuable complementary
information on twist-3 TMDs [556].
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An important process which can provide independent information on twist-3 (and, of
course, also twist-2) TMDs are interference functions [451, 478, 479, 480, 476, 557, 558].
The advantage of this approach is that here collinear factorization applies, i.e. one cannot
access TMDs. However, those functions which “survive” the k⊥-integration of the quark
correlator can be studied, and this includes at the twist-3 ea(x), gaT (x), h

a
L(x). These

functions contribute to observables in convolution with specific interference fragmentation
functions, which can be inferred from azimuthal asymmetries in e+e− annihilations [485].

There is no doubt that experimental, phenomenological and theoretical efforts to go be-
yond twist-2 are worth. Twist-3 functions describe multiparton distributions corresponding
to the interference of higher Fock components in the hadron wave functions, and as such
have no probabilistic partonic interpretations. Yet they offer fascinating insights into the
nucleon structure [559]. The Mellin moment

∫
dxx2g̃aT (x) of the pure twist-3 piece in gaT

describes the transverse impulse the active quark acquires after being struck by the virtual
photon due to the color Lorentz force. The Mellin moment

∫
dxx2ẽa(x) of the pure twist-3

piece in ea(x) describes the average transverse force acting on a transversely polarized quark
in an unpolarized target after interaction with the virtual photon.

Twist-3 TMDs are closely related to projections of different combinations of the collinear
twist-3 correlation functions GF (x, x′) and G̃F (x, x′) discussed in Sec. 2.2.4, which are
involved in the evolution equations of twist-3 collinear PDFs [560, 561, 562, 563, 564, 565,
566], and play important roles also in derivations of the evolution equations for transverse
moments of TMDs [290, 291, 390, 391, 392], calculations of processes at high transverse
momentum [352], or calculations of the high transverse momentum tails of TMDs [292, 295].
Ultimately, through a global study of all of these observables, one could simultaneously
obtain better knowledge of twist-3 collinear functions and twist-2 TMDs, and at the same
time test the validity of the formalism. Gathering as much information as one can on the
quark-gluon-quark correlator is essential to reach this goal.
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Chapter 3

Three-dimensional structure of the
proton and nuclei: spatial imaging

Convenors and chapter editors:
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3.1 Spatial imaging of sea quarks and gluons: summary

V. Guzey, F. Sabatié, M. Burkardt

The internal landscape of the nucleon and nuclei in terms of the fundamental quarks
and gluons can be studied in different hard processes and can be characterized by differ-
ent quantities (distributions). Hard exclusive reactions such as deeply virtual Compton
scattering (DVCS) and exclusive production of mesons give an access to the aspects of the
hadron structure that are encoded in generalized parton distributions (GPDs) and dipole
amplitudes.

GPDs generalize the well-known form factors, distribution amplitudes and parton dis-
tributions and quantify various correlations/distributions of quarks and gluons in terms
of their momentum fractions and positions in the transverse plane. Thus, GPDs provide
a rigorous framework for studies of the three-dimensional parton structure of hadrons as
well as many additional important aspects of the hadron structure such as the parton an-
gular momentum and the related “spin puzzle”, spin and flavor content, the role of chiral
symmetry, and many more.

At the moment, our knowledge about GPDs is mostly limited to valence quark GPDs
(Hermes, Compass, Jefferson Lab 6 GeV and also Jefferson Lab 12 GeV in the near future)
and rather low precision data from HERA. A high-energy high-luminosity Electron-Ion Col-
lider (EIC) will be an ideal machine for the studies of hard exclusive reactions and sea quark
and gluon GPDs as summarised in table 3.1.

Deliverables Observables What we learn Requirements

sea quark and DVCS and J/ψ, ρ, φ transverse images of L ≥ 1034 cm−2s−1,

gluon GPDs production cross sect. sea quarks and gluons Roman Pots

and asymmetries in nucleon and nuclei; wide range of xB and Q2

total angular momentum; polarized e− and p beams

onset of saturation e+ beam for DVCS

sea and valence cross sections for flavor decomposition and L ≥ 1034 cm−2s−1

quark GPDs π+,K,K∗, ρ+ polarization of quarks Roman Pots

electroproduction in the transverse plane high Q2

range of beam energies

for σL/σT separation

Table 3.1. Science Matrix for Exclusive Processes at EIC.

(i) One essential aspect of the GPD program is obtaining the transverse image of quarks
and gluons in the nucleon/nucleus through the measurement of the t dependence of cross
sections of various exclusive processes (DVCS, production of J/ψ, φ, π, K, etc. mesons) in
a wide range of t. In the nucleon case, covering the interval 0 ≈ |t| ≤ 2 GeV2 will enable
one to map out the parton distributions in the transverse plane of the impact parameter b
down to as low as b ≈ 0.1 fm.
(ii) One area where an EIC shines is the large range in Q2 available in the full xB inter-
val. QCD evolution equations of GPDs, similarly to the PDF case, allow one to globally
fit the data using flexible parameterizations of GPDs and to extract accurate and model-
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independent information on GPDs. One also will use the large lever arm in Q2 to establish
the reaction mechanisms (scaling properties, higher twist effects).
(iii) Another clear advantage of an EIC is the availability of different polarizations for the
lepton and proton beams that allows one to fully disentangle the various GPDs from the
experimental observables. While DVCS is sensitive to singlet quark and gluon GPDs, other
exclusive diffractive processes (electroproduction of ρ, J/ψ, φ, etc.) and non-diffractive
processes (electroproduction of π+, K+, etc.) will allow one to access the spin and flavor
dependences of GPDs. Note that the non-diffractive processes push the requirements for
high luminosity much further than DVCS or other diffractive processes.
(iv) Exclusive processes with nuclei in a collider and, subsequently, the spatial image of sea
quarks and gluons in nuclei will be studied for the first time. All the processes mentioned
above will benefit from the high luminosity of an EIC (of the order of 1034 cm−2s−1) as well
as excellent detection capabilities and particle identification guaranteeing exclusivity.
The contributions below describe in detail various aspects of the rich program of spatial
imaging of sea quarks and gluons at an EIC. In conclusion, a high-energy high-luminosity
EIC, studying various deep exclusive processes through cross sections and polarization ob-
servables, would uniquely extend and complement our knowledge of the 3D partonic struc-
ture of the nucleon/nucleus to the sea of quarks and gluons.
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3.2 Basics of generalized parton distributions

Anatoly Radyushkin

3.2.1 Introduction

The fundamental physics to be accessed via the generalized parton distributions (GPDs)
[567, 274, 568, 569, 570, 571, 572] is the structure of hadrons. This is a rather general
statement, and we may want to have a more specific one. A classic example of such a
specific case is the search for the Higgs boson (HB) performed currently at the Large Hadron
Collider (LHC). The motivation for the search is that HB is supposed to be responsible for
generation of masses, in particular, quark masses. However, by far, the largest part of
visible mass is due to the nucleons, and out of 940 MeV of the nucleon mass, less than 30
MeV (current quark masses) may be related to HB. The remaining 97% of the nucleon mass
is due to gluons – which are massless! This is a characteristic illustration of the situation
in hadron physics:
i) All the relevant particles are already established, i.e., no “higgses” to find.
ii) The QCD Lagrangian is known.
iii) However, we still need to understand how QCD works, i.e., to understand hadronic
structure in terms of quark and gluon fields.

Projecting quark and gluon fields q(z1) , q(z2) , . . . onto hadronic states |p, s〉 gives
matrix elements:

〈 0 | q̄α(z1) qβ(z2) |M(p), s 〉 , 〈 0 | qα(z1) qβ(z2) qγ(z3)|B(p), s 〉 (3.1)

that can be interpreted as hadronic wave functions. In particular, in the light-cone (LC)
formalism [573], a hadron is described by its Fock components in the infinite-momentum
frame. For the nucleon, one can schematically write:

|P 〉 = Ψqqq|q(x1P, k1⊥)q(x2P, k2⊥)q(x3P, k3⊥)〉+ΨqqqG|qqqG〉+Ψqqqq̄q|qqqq̄q〉+ . . . , (3.2)
where xi are momentum fractions satisfying

∑
i xi = 1; ki⊥ are transverse momenta,∑

i ki⊥ = 0; Ψ are light-cone wave functions. In principle, solving the bound-state equation
H|P 〉 = E|P 〉 one should get the wave function |P 〉 that contains complete information
about the hadron structure. In practice, however, the equation (involving an infinite number
of Fock components) has not been solved yet in the realistic 4-dimensional case. Moreover,
the LC wave functions are not directly accessible experimentally.

The way out of this situation is the description of hadron structure in terms of phe-
nomenological functions. Among the “old” functions used for a long time we can list form
factors, usual parton densities, and distribution amplitudes. The “new” functions, general-
ized parton distributions (for reviews, see [574, 575, 576, 577]), are hybrids of form factors,
parton densities and distribution amplitudes. Furthermore, the “old” functions are limiting
cases of the “new” ones.

3.2.2 Form factors

The form factors are defined through matrix elements of electromagnetic (EM) and weak
currents between hadronic states. In particular, the nucleon electromagnetic form factors
are given by

〈 p′, s′ |Jµ(0) | p, s 〉 = ū(p′, s′)
[
γµF1(t) +

rνσµν

2mN
F2(t)

]
u(p, s) , (3.3)
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where r = p − p′ is the momentum transfer and t = r2. The electromagnetic current is
given by the sum of its flavor components:

Jµ(z) =
∑

f

ef ψ̄f (z)γ
µψf (z) . (3.4)

The nucleon helicity non-flip form factor F1(t) can also be written as a sum
∑

f efF1f (t). A
similar decomposition holds for the helicity flip form factor F2(t) =

∑
f efF2f (t). At t = 0,

these functions have well known limiting values. In particular, F1(t = 0) = eN =
∑

f Nfef
gives total electric charge of the nucleon (Nf is the number of valence quarks of flavor f) and
F2(t = 0) = κN gives its anomalous magnetic moment. The form factors are measurable
through elastic eN scattering.

p p

t

Figure 3.1. Elastic eN scattering in the one-photon exchange approximation.

3.2.3 Usual parton densities

The parton densities are defined through forward matrix elements of quark/gluon fields
separated by light-like distances. In particular, in the unpolarized case we have

〈 p | ψ̄a(−z/2)γµψa(z/2) | p 〉
∣∣
z2=0

= 2pµ
∫ 1

0

[
e−ix(pz)fa(x)− eix(pz)fā(x)

]
dx . (3.5)

In the local limit z = 0, the operators in this definition coincide with the operators con-
tributing into the non-flip form factor F1. Since t = 0 for the forward matrix element, we
obtain the sum rule for the numbers of valence quarks:

∫ 1

0
[fa(x)− fā(x)] dx = Na . (3.6)

The definition of parton densities has the form of the plane wave decomposition. This
observation allows one to give the momentum space interpretation: fa(ā)(x) is the probabil-
ity to find a (ā)-quark with momentum xp inside a nucleon with momentum p. The classic
process to access the usual parton densities is deep inelastic scattering (DIS) γ∗N → X.

Using the optical theorem, the γ∗N → X cross section is given by the imaginary part of
the forward virtual Compton scattering amplitude. The momentum transfer q is spacelike
q2 ≡ −Q2, and when it is sufficiently large, perturbative QCD factorization works. At the
leading order, one deals with the so-called handbag diagram, see figure 3.2.

Through simple algebra, 1
π Im 1/(q + xp)2 ≈ δ(x − xB)/2(pq), one finds that DIS mea-

sures parton densities at the point x = xB , where the parton momentum fraction equals
the Bjorken variable xB = Q2/2(pq). Comparing parton densities to form factors, we note
that the latter have a point vertex instead of a light-like separation and p 6= p′.
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Figure 3.2. Lowest order pQCD factorization for DIS.

3.2.4 Nonforward parton densities

“Hybridization” of different parton distributions is the key idea of the GPD approach.
As the first step, we can combine form factors with parton densities [578] and write the
flavor components F1a(t) of form factors as integrals over the momentum fraction variable
x:

F1a(t) =

∫ 1

0
[Fa(x, t)−Fā(x, t)] dx . (3.7)

In the forward limit t = 0, the new objects—nonforward parton densities Fa(ā)(x, t)
(NPDs)—coincide with the usual (“forward”) densities:

Fa(ā)(x, t = 0) = fa(ā)(x) . (3.8)

NPDs can be also treated as Fourier transforms of the impact parameter b⊥ distributions
f(x, b⊥) describing the variation of parton densities in the transverse plane [579, 580].

A nontrivial question is the interplay between x and t dependencies of Fa(ā)(x, t).
The simplest factorized ansatz Fa(x, t) = fa(x)F1(t) satisfies both the forward constraint,
Fa(x, t = 0) = fa(x), and also the local constraint (3.7). The reality may be more compli-
cated: light-cone wave functions with Gaussian k⊥ dependence

Ψ(xi, ki⊥) ∼ exp

[
− 1

λ2

∑

i

k2i⊥/xi

]
(3.9)

suggest that
Fa(x, t) = fa(x)e

x̄t/2xλ2 , (3.10)

where x̄ ≡ 1− x. Taking fa(x) from existing parametrizations and adjusting λ2 to provide
the standard value of the quark intrinsic transverse momentum 〈k2⊥〉 ≈ (300MeV)2 gives a
rather reasonable description of the proton form factor F1(t) in a wide range of momentum
transfers −t ∼ 1 − 10 GeV2 [578]. To comply with the Regge behavior, one may wish
to change ex̄t/2xλ

2 → x−α
′t, where α′ is the Regge trajectory slope. The modified Regge

ansatz,
Fa(x, t) = fa(x)x

−α′(1−x)t , (3.11)

allows one to easily fit electromagnetic form factors for the proton and neutron [581]. A
similar model was proposed in Ref. [582].

The same nonforward parton densities appear in the handbag diagrams for the wide-
angle real Compton scattering, see figure 3.3.
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t
P = ( p + p  ) / 2

xP

Figure 3.3. Form factor and wide-angle Compton scattering amplitude in terms of nonforward parton
densities.

The handbag contribution is approximately given by the product of a new form factor,
RaV (t), and the cross section of the Compton scattering off an elementary fermion (given by
Klein–Nishina expression):

dσ

dt
=

[
∑

a

e2aR
a
V (t)

]2
dσ

dt

∣∣∣∣
KN

with RaV (t) =

∫ 1

0

Fa(x, t)

x
dx . (3.12)

The predictions based on handbag dominance and NPDs [578, 583] are in much better
agreement with the existing data [584] than the predictions based on two-gluon hard ex-
change mechanism of asymptotic perturbative QCD: the predicted cross section is too small
in the latter case. The absolute normalization for predictions is settled by the form of the
nonperturbative functions (NPDs in the handbag approach and nucleon distribution am-
plitudes in the pQCD approach) which were fixed by fitting the F1 form factor data. Still,
when there is an uncertain overall factor, it is risky to make strong statements. Remarkably,
the perturbative QCD hard scattering mechanism and soft handbag mechanism give drasti-
cally different predictions for the polarization asymmetry ALL [583]. Experiment E-99-114
performed at Jefferson Lab [584] strongly favors handbag mechanism that predicts the
value close to the asymmetry for the scattering on a single quark.

3.2.5 Distribution amplitudes

Another example of nonperturbative functions describing the hadron structure are the
distribution amplitudes (DAs). They can be interpreted as light cone wave functions inte-
grated over transverse momentum, or as 〈0| . . . |p〉 matrix elements of light cone operators.
In the case of the pion, we have

〈 0 | ψ̄d(−z/2)γ5γµψu(z/2) |π+(p) 〉
∣∣
z2=0

= ipµfπ

∫ 1

−1
e−iα(pz)/2ϕπ(α) dα , (3.13)

with x1 = (1 + α)/2, x2 = (1 − α)/2 being the fractions of the pion momentum carried
by the quarks. The distribution amplitudes describe the hadrons in situations when the
pQCD hard scattering approach is applicable to exclusive processes. The classic example is
the γ∗γ → π0 transition; its amplitude is proportional to the 1/(1− α2) moment of ϕπ(α),
see figure 3.4, left. The predictions for the γ∗γ → π0 form factor based on two competing
models for the pion DA, the asymptotic ϕas

π (α) =
3
4(1 − α2) and Chernyak-Zhitnitsky DA

ϕCZ
π (α) = 15

4 α
2(1− α2) differ by factor of 5/3, and the hope was that this difference would

allow for an experimental discrimination between them. Indeed, the comparison with CLEO
and CELLO data for Q2Fγ∗γπ0(Q2) that extend to Q2 . 10 GeV2 favors DAs that are closer
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to ϕas(α). However, recent BaBar data covering the range up to Q2 ∼ 40 GeV2 show the
increase of Q2Fγ∗γπ0(Q2) for Q2 & 10 GeV2. To explain this increase, the scenarios were
proposed in which the pion DA does not vanish at the end-points, e.g., ϕflat

π (α) = 1.

α__________

α_____(1 +    )

(1 −     )(1 −     )

p

p

p

2

2

pp

Figure 3.4. Lowest-order pQCD factorization for γ∗γ → π0 transition amplitude and for the pion
electromagnetic form factor.

Another classic application of pQCD to exclusive processes is the pion electromagnetic
form factor, see figure 3.4, right. With the asymptotic pion DA ϕas

π (α), the hard pQCD
contribution to Fπ(Q

2) is (2αs/π)(0.7GeV2)/Q2, which is less than 1/3 of the experimental
value. Taking wider DAs formally increases the size of the one-gluon-exchange contribution,
but it is dominated then by the regions where the gluon virtuality is too small to be treated
perturbatively. So, in this case we deal with the dominance of the competing soft mechanism
which is described by nonforward parton densities, exactly in the same way as the proton
form factor F p1 (t) discussed in the previous section.

3.2.6 Hard electroproduction processes

An attempt to use perturbative QCD to extract new information about hadronic struc-
ture is the study of deep exclusive photon [274] or meson [569, 572] electroproduction
reactions. In the hard kinematics when both Q2 and s ≡ (p + q)2 are large while the mo-
mentum transfer t ≡ (p − p′)2 is small, one can use pQCD factorization which represents
the amplitudes as a convolution of a perturbatively calculable short-distance amplitude
and nonperturbative parton functions describing the hadron structure. The hard pQCD
subprocesses in these two cases have different structure, see figure 3.5. Since the photon
is a pointlike particle, the deeply virtual Compton scattering (DVCS) amplitude has the
structure similar to that of the γ∗γπ0 form factor: the pQCD hard term is of zero order in
αs (the handbag mechanism), and there is no competing soft contribution. Thus, we can
expect that pQCD works from Q2 ∼ 2GeV2. On the other hand, the deeply virtual meson
production process is similar to the pion EM form factor: the hard term has a O(αs/π) ∼ 0.1
suppression factor. As a result, the dominance of the hard pQCD term may be postponed
to Q2 ∼ 5− 10GeV2.

Figure 3.5. Lowest-order factorization for deeply virtual photon and meson production.
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One should also have in mind that the competing soft mechanism can mimic the same
power-law Q2-behavior (just like in case of pion and nucleon EM form factors). Hence,
a mere observation of a “right” power-law behavior of the cross section may be insuffi-
cient to claim that pQCD is already working. One should look at other characteristics of
the reaction, especially its spin properties, to make strong statements about the reaction
mechanism.

3.2.7 Deeply virtual Compton scattering and generalized parton distri-
butions

It is convenient to visualize DVCS in the γ∗N center-of-mass frame, with the initial
hadron and the virtual photon moving in opposite directions along the z-axis. Since the
momentum transfer t is small, the hadron and the real photon in the final state also move
close to the z-axis. This means that the virtual photon momentum q = q′ − xBp has the
component −xBp canceled by the momentum transfer r. In other words, the momentum
transfer r has the longitudinal component r+ = xBp

+, where xB = Q2/2(pq) is the DIS
Bjorken variable. One can say that DVCS has a skewed kinematics in which the final hadron
has the “plus” momentum (1− ζ)p+ that is smaller than that of the initial hadron. In the
particular case of DVCS, we have ζ = xB .

The parton picture for DVCS has some similarity to that of DIS, with the main difference
that the plus-momenta of the incoming and outgoing quarks in DVCS are not equal; they
are Xp+ and (X − ζ)p+, see figure 3.6. Another difference is that the invariant momentum
transfer t in DVCS is nonzero: the matrix element of partonic fields is essentially nonforward.

Thus, the nonforward parton distributions (NFPDs) Fζ(X, t) describing the hadronic
structure in DVCS depend on X (the fraction of p+ carried by the outgoing quark), ζ (the
skewness parameter characterizing the difference between initial and final hadron momenta),
and t (the invariant momentum transfer). In the forward r = 0 limit, we have a reduction
formula

Fa
ζ=0(X, t = 0) = fa(X) (3.14)

relating NFPDs with the usual parton densities. The nontriviality of this relation is that
Fζ(X, t) appear in the amplitude of the exclusive DVCS process, while the usual parton
densities are measured from the cross section of the inclusive DIS reaction.

Another limit for NFPDs is zero skewness ζ = 0, where they correspond to nonforward
parton densities: Fa

ζ=0(X, t) = Fa(X, t). The local limit relates NFPDs to form factors:

∫ 1

0
Fa
ζ (X, t)

dX

1− ζ/2
= F a1 (t) . (3.15)

The description in terms of NFPDs has the advantage of using the variables most close
to those of the usual parton densities. However, the initial and final hadron momenta are
not treated symmetrically in this scheme. Ji [274] proposed to use symmetric variables in
which the plus-momenta of the hadrons are (1+ξ)P+ and (1−ξ)P+, and those of the active
partons are (x+ ξ)P+ and (x− ξ)P+, P being the average momentum P = (p+ p′)/2, see
figure 3.6. In the simplified case of scalar fields, the GPD parametrization of the nonforward
matrix element is

〈P + r/2|ψ(−z/2)ψ(z/2)|P − r/2〉 =
∫ 1

−1
e−ix(Pz)H(x, ξ) dx +O(z2) . (3.16)
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Figure 3.6. Comparison of NFPDs and OFPDs.

To take into account the spin properties of hadrons and quarks, one needs four off-
forward parton distributions H,E, H̃, Ẽ, each of which is a function of x, ξ, and t. The
skewness parameter ξ ≡ r+/2P+ can be expressed in terms of the Bjorken variable, ξ =
xB/(2− xB), but it does not coincide with it.

Depending on the value of x, each GPD has 3 distinct regions. When ξ < x < 1,
GPDs are analogous to usual quark distributions; when −1 < x < −ξ, they are similar to
antiquark distributions. In the region −ξ < x < ξ, the “returning” quark has a negative
momentum and should be treated as an outgoing antiquark with momentum (ξ−x)P . The
total qq̄ pair momentum r = 2ξP is shared by the quarks in fractions r(1 + x/ξ)/2 and
r(1−x/ξ)/2. Hence, a GPD in the region −ξ < x < ξ is similar to a distribution amplitude
Φ(α) with α = x/ξ.

In the local limit, GPDs reduce to elastic form factors:

∑

a

ea

1∫

−1

Ha(x, ξ; t) dx = F1(t) ,
∑

a

ea

1∫

−1

Ea(x, ξ; t) dx = F2(t) . (3.17)

The E function, like F2(t), comes with the rµ factor. Hence, it is invisible in DIS described
by the forward r = 0 Compton amplitude. However, the t = 0, ξ = 0 limit of E exists:

Ea,ā(x, ξ = 0; t = 0) ≡ κa,ā(x) . (3.18)

In particular, its integral gives the proton anomalous magnetic moment κp,

∑

a

ea

1∫

−0

(κa(x)− κā(x)) dx = κp , (3.19)

while its first moment enters Ji’s sum rule for the total quark contribution Jq to the proton
spin:

Jq =
1

2

∑

a

1∫

−0

x [fa(x) + f ā(x) + κa(x) + κā(x)] dx . (3.20)

Note that only valence quarks contribute to κp, while Jq involves also sea quarks. Fur-
thermore, the values of κp,n (unlike ep,n ≡ F p,n1 (0)) strongly depend on dynamics, e.g.,
κN ∼ 1/mq in constituent quark models.
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3.2.8 Double distributions

To model GPDs, two approaches are used: a direct calculation in specific dynamical
models: bag model, chiral soliton model, light-cone formalism, etc., and a phenomenological
construction based on the relation of GPDs to usual parton densities fa(x),∆fa(x) and form
factors F1(t), F2(t), GA(t), GP (t). The key question in the second approach is the interplay
between x, ξ and t dependencies of GPDs. There are not so many cases in which the pattern
of the interplay is evident. One example is the function Ẽ(x, ξ, t) which is related to the
GP (t) form factor and is dominated for small t by the pion pole term 1/(t−m2

π). It is also
proportional to the pion distribution amplitude ϕπ(α) taken at α = x/ξ. The construction
of self-consistent models for other GPDs can be performed using an ansatz based on the
formalism of double distributions (DD) [585].

The main idea behind the double distributions is a “superposition” of P+ and r+ mo-
mentum flows, i.e., the representation of the parton momentum k+ = βP+ + (1 + α)r+/2
as the sum of a component βP+ due to the average hadron momentum P (flowing in the
s-channel) and a component (1 + α)r+/2 due to the t-channel momentum r, see figure 3.7.
In the simplified case of scalar fields, the DD parametrization reads

〈P − r/2|ψ(−z/2)ψ(z/2)|P + r/2〉 =
∫

Ω
F (β, α) e−iβ(Pz)−iα(rz)/2 dβ dα+O(z2) . (3.21)

Thus, the double distribution f(β, α) (we consider here for simplicity the t = 0 limit) looks
like a usual parton density with respect to β and like a distribution amplitude with respect
to α. The connection between the DD variables β, α and the GPD variables x, ξ is obtained
from r+ = 2ξP+, which results in the basic relation x = β + ξα. The formal connection
between DDs and GPDs is

H(x, ξ) =

∫

Ω
F (β, α) δ(x − β − ξα) dβ dα . (3.22)

αP − ( 1 −    ) r / 2

P − r / 2 P + r / 2

P + ( 1 +   ) r / 2

P − r / 2 P − r / 2 

α ββξξ( x +    ) P ( x −   ) P

ξ(1 +    ) P ξ(1 −    ) P

+

Figure 3.7. Comparison of GPD and DD descriptions.

The forward limit ξ = 0, t = 0 corresponds to x = β, and gives the relation between
DDs and the usual parton densities:

∫ 1−|β|

−1+|β|
Fa(β, α; t = 0) dα = fa(β) . (3.23)

The DDs live on the rhombus |α| + |β| ≤ 1 [denoted by Ω in (3.21) and (3.22)] and are
symmetric functions of the “DA” variable α: fa(β, α; t) = fa(β,−α; t) (“Munich” symme-
try [586]). These restrictions suggest a factorized representation for a DD in the form of
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a product of a usual parton density in the β-direction and a distribution amplitude in the
α-direction:

F (β, α) = f(β)h(β, α) , hN (β, α) ∼
[(1− |β|)2 − α2]N

(1− |β|)2N+1
,

∫ 1−|β|

−1+|β|
h(β, α) dα = 1 . (3.24)

To obtain usual parton densities from DDs, one should integrate (scan) them over the
vertical lines β = x = const. To obtain the GPD H(x, ξ) with nonzero ξ from DDs f(β, α),
one should integrate (scan) DDs along the parallel lines α = (x− β)/ξ with a ξ-dependent
slope. One can call this process the DD-tomography. The basic feature of GPDs H(x, ξ)
resulting from DDs is that for ξ = 0 they reduce to usual parton densities, and for ξ = 1
they have a shape like a meson distribution amplitude. A more complete truth is that such
a DD modeling misses terms invisible in the forward limit: meson-exchange contributions
and so-called D-term, which can be interpreted as σ-exchange. The inclusion of the D-term
induces nontrivial behavior in the central |x| < ξ region (for details, see [587]).

3.2.9 GPDs and the structure of hadrons

Hadronic structure is a complicated subject, and it requires a study from many sides
and in many different types of experiments. The description of specific aspects of hadronic
structure is provided by several different functions: form factors, usual parton densities,
distribution amplitudes. Generalized parton distributions provide a unified description: all
these functions can be treated as particular or limiting cases of GPDs H(x, ξ, t).

Usual parton densities f(x) correspond to the case ξ = 0, t = 0. They describe a hadron
in terms of probabilities ∼ |Ψ|2. However, QCD is a quantum theory: GPDs with ξ 6= 0
describe correlations ∼ Ψ∗1Ψ2. Taking only the point t = 0 corresponds to integration over
impact parameters b⊥ — information about the transverse structure is lost.

Form factors F (t) contain information about the distribution of partons in the trans-
verse plane, but F (t) involve integration over momentum fraction x — information about
longitudinal structure is lost.

A simple “hybridization” of usual densities and form factors in terms of NPDs F(x, t)
(GPDs with ξ = 0) shows that the behavior of F (t) is governed both by transverse and lon-
gitudinal distributions. GPDs provide adequate description of nonperturbative soft mech-
anism. They also allow to study transition from soft to hard mechanism.

Distribution amplitudes ϕ(x) provide quantum-level information about the longitudinal
structure of hadrons. In principle, they are accessible in exclusive processes at large momen-
tum transfer, when hard scattering mechanism dominates. GPDs have DA-type structure
in the central region |x| < ξ.

Generalized parton distributions H(x, ξ, t) provide a 3-dimensional picture of hadrons.
GPDs also provide some novel possibilities, such as “magnetic distributions” related to the
spin-flip GPD E(x, ξ, t). In particular, the structure of nonforward density E(x, ξ = 0, t)
determines the t-dependence of F2(t). Recent JLab data give F2(t)/F1(t) ∼ 1/

√−t rather
than 1/t expected in hard pQCD and many models — a puzzle waiting to be resolved. The
forward reductions κa(x) of E(x, ξ, t) look as fundamental as fa(x) and ∆fa(x): Ji’s sum
rule involves κa(x) on equal footing with f(x). Magnetic properties of hadrons are strongly
sensitive to dynamics providing a testing ground for models. Another novel possibility is the
study of flavor-nondiagonal distributions, e.g., proton-to-neutron GPDs accessible through
processes like exclusive charged pion electroproduction, proton-to-Λ GPDs (they appear in
kaon electroproduction), and proton-to-∆ GPDs — these can be related to form factors of
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proton-to-∆ transition (another puzzle for hard pQCD). The GPDs for N → N + soft π
processes can be used for testing the soft pion theorems and physics of chiral symmetry
breaking.

An interesting problem is the separation and flavor decomposition of GPDs. The DVCS
amplitude involves all four types of GPDs, H,E, H̃, Ẽ, so we need to study other processes
involving different combinations of GPDs. An important observation is that, in hard elec-
troproduction of mesons, the spin nature of produced meson dictates the type of GPDs
involved, e.g., for pion electroproduction, only H̃, Ẽ appear, with Ẽ dominated by the pion
pole at small t. This gives an access to (generalization of) polarized parton densities without
polarizing the target.

In summary, the structure of hadrons is the fundamental physics to be accessed via
GPDs. GPDs describe hadronic structure on the quark-gluon level and provide a three-
dimensional picture (“tomography”) of the hadronic structure. GPDs adequately reflect
the quantum-field nature of QCD (correlations, interference). They also provide new in-
sights into spin structure of hadrons (spin-flip distributions, orbital angular momentum).
GPDs are sensitive to chiral symmetry breaking effects, a fundamental property of QCD.
Furthermore, GPDs unify existing ways of describing hadronic structure. The GPD for-
malism provides nontrivial relations between different exclusive reactions and also between
exclusive and inclusive processes.
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3.3 GPDs and transverse nucleon structure at collider ener-
gies

C. Weiss

Generalized parton distributions (GPDs) have emerged as a key concept in nucleon
structure and the theory of high momentum–transfer processes in QCD. They unify the
traditional notions of parton densities and elastic form factors and describe the transverse
spatial distribution of quarks and gluons in a fast–moving hadron. A general introduction to
GPDs and hard exclusive processes is given in section 3.2. Here we summarize the properties
of GPDs at collider energies, where the parton picture can be combined with methods
specific to high–energy scattering (“small–x physics”). This includes the transverse spatial
structure of the nucleon at small x; gluon and quark imaging with hard exclusive processes
at ep colliders (HERA, EIC); the correspondence with the QCD dipole model and the role
of transverse nucleon structure in saturation at small x; and the application of GPDs to
high–energy pp collisions with hard processes (Tevatron, LHC).

GPDs are defined as the transition matrix elements of the QCD twist–2 operators be-
tween nucleon states of different momenta. They are functions of the longitudinal momen-
tum fractions of the partons, x and x′, and the invariant momentum transfer t, as well
as the resolution scale Q2 (see figure 3.8a). Of particular interest is the “diagonal” limit
x = x′, where the momentum transfer is in the transverse direction only, t = −|∆|2, and
the GPD can be regarded as the form factor of partons carrying longitudinal momentum
fraction x. Its two–dimensional Fourier transform

f(x, b,Q2) ≡
∫

d2∆

(2π)2
e−i(∆b) GPD(x, t = −∆2, Q2) (3.25)

describes the transverse spatial distribution of partons with momentum fraction x and thus
provides a “tomographic” image of the structure of the fast–moving nucleon (see figure 3.8b)
[580]. The coordinate b measures the distance from the transverse center–of–mass (CM),
defined as the average of the transverse positions of all constituents weighted with their
longitudinal momentum fractions. In general, the removal of a parton with momentum
fraction x changes the position of the CM, and this effect must be taken into account in
interpreting the coordinate distributions at x ∼ 1. At x≪ 1 however, the contribution of the
removed parton to the CM is negligible and one can think of the b–distributions of (3.25) as
referring to a fixed transverse center of the nucleon. This considerably simplifies the spatial
interpretation of GPDs at small x.

(a)

x

(b) (c)
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GPD

x’x

b

x x’

Figure 3.8. (a) GPD and partonic variables. (b) Transverse spatial distribution of partons. (c) QCD
evolution generates small x, x′ from the quasi–diagonal GPD at lower scale.
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Figure 3.10. A simulated measurement of ex-
clusive J/ψ electro-production with a medium–
energy EIC for an integrated luminosity of 100
fb−1. The expected statistical errors in the t–
dependence of the J/ψ dilepton cross section in
a fully differential measurement in W,Q2 and t
are shown. The values of x ≡ M2

J/ψ/W
2 in the

bins are indicated above the curves, correspond-
ing approximately to the x–values where the gluon
GPD is probed. Such measurements can image the
transverse distribution of gluons at x > 0.1 and ex-
plore the unknown t–dependence at |t| > 1GeV2.

Hard exclusive processes require a non–
zero longitudinal momentum transfer to the
nucleon and probe the GPDs at x − x′ ≡
2ξ 6= 0, where the “skewness” is related to
the Bjorken variable by ξ = xB/(2 − xB).
Models or additional assumptions are gen-
erally needed to extract the diagonal GPD
from the data. However, at xB ≪ 1 and
sufficiently large Q2 the “skewed” GPD can
approximately be reconstructed from the di-
agonal limit [592, 593]. In this case QCD
evolution generates the GPD with x and x′

from configurations at a lower scale with
momentum fractions x0, x

′
0 ≫ x, x′; be-

cause the difference of the parton momen-
tum fractions is preserved under evolution,
the lower–scale GPD is effectively evalu-
ated in the diagonal limit x0 − x′0 ≪ x0, x

′
0

(see figure 3.8c). This approximation allows
one to relate the measured t–dependence of
the differential cross sections directly to the
transverse structure of the nucleon at fixed
x.

The transverse spatial distribution of
partons changes with the momentum frac-
tion x and the scale Q2. The valence quarks
and gluons at x > 0.1 are concentrated at
small transverse distances b ≪ 1 fm, as can
be inferred from the nucleon axial form fac-
tor and exclusive processes at large x. Be-
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low x < Mπ/MN chiral dynamics gives rise to a distinct large–distance contribution to the
parton density at b ∼ 2/Mπ [594]. At even smaller values of x the nucleon’s transverse size is
expected to grow as a result of Gribov diffusion in the successive parton branchings building
up the small–x parton density. The transverse distribution also shrinks with increasing Q2

as a result of DGLAP evolution [595]. Overall, much interesting information on nucleon
structure and non-perturbative dynamics can be obtained from the study of the transverse
spatial distributions of quarks and gluons.

The transverse spatial distribution of gluons can be measured cleanly through exclusive
J/ψ photo– or electroproduction γ(∗)N → J/ψ + N , or electroproduction of φ mesons at
Q2 & 10GeV2 (see figure 3.9a). Measurements at HERA have confirmed the applicability
of QCD factorization, with corrections for the finite size of the produced meson, and tested
the universality of the gluon GPD; see [596] for a review. The data show that the nucleon’s
transverse gluonic radius at x < 0.01 is substantially smaller than the transverse charge
radius (see figure 3.9b). It increases only moderately with decreasing x, with a logarithmic
slope much smaller than that of the Pomeron trajectory, α′P = 0.25GeV−2, showing that
Gribov diffusion is suppressed for partons with virtualities ∼ few GeV2. Both observations
are of central importance for nucleon structure and small–x physics.

While the HERA experiments have provided basic information on the nucleon’s trans-
verse gluonic size at small x, many important questions remain unanswered:

• How are the gluons at x > 10−2 distributed in transverse space? Global PDF fits
indicate a substantial momentum density of gluons in that x-range at low scales
Q2 ∼ few GeV2. Knowledge of their spatial distribution would help to explain their
dynamical origin, one of the key issues of nucleon structure in QCD.

• Do singlet quarks and gluons have the same transverse distribution? This can be
studied by comparing the t–dependence of J/ψ and φ with ρ0 and γ electroproduction.
A larger radius for quarks than gluons is expected from non-perturbative effects [597].

• How are non-singlet sea quarks distributed in transverse space? The non-singlet sea
at x < 0.1 reveals non-perturbative QCD interactions (vacuum fluctuations, mesonic
degrees of freedom) in the nucleon. This component is probed in exclusive π,K, ρ+

or K∗ production — non–diffractive processes involving quantum number exchange.

• How does the nucleon’s gluon GPD behave at |t| ∼ few GeV2? The large–|t| behavior
of GPDs is important not only to obtain accurate images at small b, but also to
understand how soft Regge–like dynamics is connected to QCD at short distances.

• What is the probability for a nucleon to break up into a low–mass hadronic state
(MH ∼ few GeV) in an exclusive process at small xB? Such “diffractive dissociation”
reveals the quantum fluctuations of the nucleon’s gluon density – new information
going beyond the average densities described by the GPDs [598].

An EIC would enable a comprehensive program of transverse imaging of gluons and sea
quarks in the nucleon. Measurements of J/ψ photo– and electroproduction, as well as φ
meson electroproduction at Q2 > 10GeV2, would cleanly map the transverse distribution
of gluons, including the gluons at x > 0.1 (see the example in figure 3.10). They could also
explore the unknown t–dependence of the GPD at |t| > 1GeV2. Measurements of ρ0 and
γ production (DVCS) would provide additional information on the singlet quarks. With a
high–luminosity EIC, even the non–diffractive channels (π,K, ρ+,K∗) could be measured
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Figure 3.11. (a) Dipole picture of high–energy scattering in the target rest frame. (b) Multiparton
processes in high–energy pp collisions.

for the first time down to x ∼ 0.01, providing detailed information on the spatial distribution
of the non-singlet sea, including its spin and flavor composition (see section 3.12).

The QCD factorization theorem for hard exclusive processes at small x (figure 3.9a) is
equivalent to the dipole picture of exclusive processes in the nucleon rest frame in the leading
αs logQ

2 approximation [599]. The scattering amplitude for a dipole of size r with impact
parameter b is proportional to the b–dependent gluon density of (3.25) at a scale Q2 ≈ π2/r2

(see figure 3.3a). This correspondence relates GPDs to the dipole model phenomenology
of small–x physics [596]. In particular, the transverse spatial distribution of gluons is an
essential input to studies of the unitarity limit in hard processes at small x (“black–disk
regime”). It defines the spatial profile of the initial conditions of non-linear QCD evolution
equations leading to gluon saturation at small x. Detailed studies of saturation in the
dipole model have used the transverse gluonic size extracted from the HERA data (see
figure 3.9b) [600, 601]; better knowledge of the transverse profile would help to accurately
predict the x and b–dependence of the saturation scale.

The transverse distribution of partons also plays an important role in high–energy pp
collisions with hard processes. It determines the probability of hard parton–parton processes
as a function of the pp impact parameter. Using knowledge of the transverse distribution
of partons from ep scattering one can explain many features of the underlying event in pp
collisions with hard processes [591]. In particular, one can predict the rate of multiparton
processes (see figure 3.3b), which form a potentially large background to new physics events
at the LHC. The enhancement of such processes beyond their geometric probability signals
dynamical correlations between partons, the study of which represents a new frontier of
nucleon structure.
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3.4 How large can the distributions Eq and Eg be?

Markus Diehl

3.4.1 Positivity bounds

The generalized parton distributions E for quarks and gluons play a key role in the study
of nucleon structure through exclusive processes. In the following I focus on the case of zero
skewness, ξ = 0, where the physics interpretation is most intuitive and where constraints on
these distributions are most easily obtained. The density of unpolarized quarks in a proton
polarized along the x-axis is given by

qX(x,~b) = q(x, b2)− by

m

∂

∂b2
eq(x, b

2) , (3.26)

where m is the proton mass. The quarks have impact parameter ~b and move in the z-
direction with momentum fraction x. The term with

eq(x, b
2) =

∫
d2∆

(2π)2
e−i

~b~∆Eq(x, ξ = 0, t = −~∆2) (3.27)

quantifies the transverse shift of the density due to the proton polarization. The density
interpretation of (3.26) (together with its analog for longitudinal quark and proton polar-
ization) entails a positivity bound [602]:

b2

m2

[
∂

∂b2
eq(x, b

2)

]2
≤
[
q(x, b2) + ∆q(x, b2)

][
q(x, b2)−∆q(x, b2)

]
. (3.28)

The theoretical status of this bound is the same as for the positivity of unpolarized parton
densities and for the Soffer inequality: they hold in the parton model and are preserved by
leading-order DGLAP evolution to higher scales, but they can be violated by higher-order
evolution effects or at very low scales. Since so little is known about E, I suggest to use
(3.28) as a guide, with proper caution. A consequence of (3.28) is that (∂/∂b2) eq must

decrease faster with b than
√
q2 −∆q2. This has immediate consequences for parameteri-

zations: using Gaussian forms Eq ∝ eBet and
√
q2 −∆q2 ∝ eBqt for the momentum-space

distributions at ξ = 0, one must have Be < Bq, and with power laws Eq ∝ (1−t/M2
e )
−3 and√

q2 −∆q2 ∝ (1− t/M2
q )
−2, one must have 1/Me < 1/Mq, with equality of the parameters

not being allowed in either case. Starting from (3.28) one can also derive a bound [602] for
the integrated distribution:

eq(x) =

∫
d2b eq(x, b

2) = Eq(x, ξ = 0, t = 0) . (3.29)

That bound constrains the large x behavior of eq(x), but numerically turns out to be rather
weak for x below 0.5, see e.g. [603].

Analogous definitions and bounds apply to antiquark and gluon distributions eq̄ and eg.

3.4.2 Sum rules

An important constraint follows from the sum rule

κq =
1∫
0

dx [eq(x)− eq̄(x)
]
, (3.30)
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Figure 3.12. GPDs in the forward limit obtained in a phenomenological fit [582] to the nucleon
form factors. The first two panels correspond to two parameter sets giving a good fit. The valence
quark distributions uval = u − ū and dval = d− d̄ in the third panel are shown for comparison. All
distributions are shown at the scale µ = 2GeV.

where κq is the contribution of quark flavor q to the anomalous magnetic moment of the
proton. From the magnetic moments of proton and neutron one obtains κu−κd = 3.71 and
κu + κd + κs = −0.36. Under the reasonable assumption that κs is small compared with
κu and κd, these numbers imply that κu and κd are both large but have opposite signs and
largely cancel in the flavor sum. As a consequence, the functions eu,val(x) = eu(x) − eū(x)
and ed,val(x) = ed(x)− ed̄(x) must be large at least in some region of x. This is illustrated
in figure 3.12, which shows distributions obtained by fitting a model ansatz for u and d
quark GPDs to the electromagnetic nucleon form factors [582] (neglecting strange-quark
contributions). The fit suggests that eu,val and ed,val are of similar size as the unpolarized
valence distributions, whereas eu,val+ ed,val is small and poorly known, to the point that we
do not know whether it has zero crossings.

The second moments of e(x) appear in Ji’s angular momentum sum rules,

2Jq =
1∫
0

dxx
[
q(x) + q̄(x)

]
+

1∫
0

dxx
[
eq(x) + eq̄(x)

]
, 2Jg =

1∫
0

dxxg(x) +
1∫
0

dxxeg(x) ,

(3.31)

where they give “nontrivial” contributions in addition to the “trivial” ones from the mo-
mentum integrals of quarks and gluons (whose values are well known). Summed over all
partons, the momentum integrals add up to 1 and the angular momenta to 1

2 , so that

1∫
0

dxxesing(x) +
1∫
0

dxxeg(x) = 0 , (3.32)

where esing(x) =
∑

q [eq(x) + eq̄(x)]. Note that both (3.30) and (3.32) are exact relations in
QCD, in contrast to the positivity bound (3.28). The scale dependence of eg(x) and esing(x)
is governed by coupled DGLAP equations, with the same kernels as for the unpolarized gluon
and quark singlet distributions. With (3.32) one finds that to leading order in αs

1∫
0

dxxeg(x, µ) =

(
αs(µ)

αs(µ0)

)γ 1∫
0

dxxeg(x, µ0) , (3.33)
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where γ = 50/81 for nf = 3 and 56/75 for nf = 4 active flavors. All numbers in the
following refer to µ = 2GeV; the evolution of (3.33) to higher scales is rather slow.

With the distributions in [582] one finds that
∫
dxxesing has a very small valence part∫

dxx[eu − eū + ed − ed̄] between −0.042 and 0.068. A similar situation is found in lattice
calculations, which obtain a small contribution to

∫
dxx[eu + eū + ed + ed̄] from connected

graphs, with values between −0.077(16) and 0.015(11) for different extrapolations to the
physical quark masses [604].

Assuming that
∫
dxx[eu−eū+ed−ed̄] is indeed small (and barring the possibility of an

implausibly large es−es̄) we find that the sum
∫
dxxeg+

∫
dxxesea of second moments must

be small, where esea = 2
∑

q eq̄. This still leaves us with a number of possible scenarios:

1. both eg(x) and esea(x) are small (note that this does not exclude large eq̄(x) for
individual quark flavors: only the flavor sum must be small),

2. eg(x) and esea(x) are both large but have opposite signs,

3. both distributions are large but have nodes such that their second moments are small.

Scenario 2 is illustrated in figure 3.13, which shows two variants of model distributions
proposed in [605]. The absolute size of the distributions is limited by the bound (3.28) and
its analogs for eq̄ and eg, and the opposite signs of eg and esea ensure that (3.32) can be
fulfilled. We see that scenarios where both eg and esea are large cannot be ruled out with
our present knowledge. If the above model distributions are evolved to higher scales, eg
becomes even larger and steeper at small x [603].
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Figure 3.13. Two variants of model distributions eg and esing at µ = 2GeV from [605]. The
distributions of the quark singlet q sing =

∑
q(q + q̄) and the gluon are shown for comparison.

3.4.3 Exclusive processes

Up to now I discussed Eq, E q̄ and Eg at zero skewness ξ = 0, but in exclusive processes
like DVCS and meson production ξ is always nonzero. Nevertheless, experience from phe-
nomenology and models suggests that GPDs at ξ = 0 are closely enough related to those
at ξ 6= 0 to serve as a guide for their overall size, see e.g. [577, 606].

Note that even the large model distributions eg and esea in figure 3.13 result in small
values for the transverse target spin asymmetry AUT in exclusive ρ electroproduction [605].
This is in part due to cancellations in the sum over u and d quarks in this process (the
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same distributions give a larger asymmetry for ω production). Moreover, AUT in exclusive
meson production is proportional to Im(HE∗), whereH and E are the scattering amplitudes
associated with H and E distributions, respectively. Hence AUT is also small when both
amplitudes are large but have a small relative phase. The transverse target asymmetry
in DVCS is therefore of special importance, because the interference between Compton
scattering and the Bethe-Heitler process is linear in ImE .
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3.5 Imaging transverse distributions

Gerald A. Miller

3.5.1 Introduction

Much effort has gone into measuring electromagnetic form factors, which are related to
the charge and magnetization densities within the nucleons. The influence of relativistic
motion of the quarks within the nucleon causes the standard textbook interpretation of form
factors as three-dimensional Fourier transforms to be wrong [607]. The use of transverse
densities [608, 609] avoids various difficulties by working in the infinite momentum frame
and taking the spacelike momentum transfer to be in the direction transverse to that of the
infinite momentum. In this case, the different momenta of the initial and final nucleon states
are accommodated by using two-dimensional Fourier transforms and transverse charge and
magnetization densities are constructed from density operators that are the absolute square
of quark-field operators.

The transverse charge density is given by [608, 610]

ρ(b) =

∫
dx−ρ(x−, b) =

1

2π

∫
QdQJ0(Qb)F1(Q

2) , (3.34)

where ρ(x−, b) is the three dimensional spatial density.
The transverse charge densities are shown in [608, 609]. The interesting feature is that

the central neutron charge density is negative. An interpretation of this finding based on
the impact parameter distribution [580, 611] was presented in [612]. All models of these
quantities are based on the Drell–Yan–West relation, which connects large values of x with
large values of Q2. These models tell us that the d quarks that dominate deep inelastic
scattering from the neutron at large values of x dominate the neutron center. It is also
possible that the negatively charge pionic cloud may penetrate the center [613].

The transverse anomalous magnetization density is obtained from the matrix element
of the magnetization density operator 1

2
~b×~j, where ~j is taken in the z-direction:

ρM (b) =
sin2 φ

2M
b

∫
Q2dQ

2π
F2(Q

2)J1(Qb) . (3.35)

The integral
∫
d2bρM (b) gives the anomalous magnetic moment.

3.5.2 Realistic transverse images of the proton charge and magnetic den-
sities

The word “realistic” refers to the ability to know the uncertainty in the transverse
densities derived from experiment. The previously obtained transverse densities are derived
from various parameterizations of the form factors. A more detailed treatment is needed to
be able to extract uncertainties. The following discussion is based on the analysis [614].

The basic idea behind our approach is to use the observation that ρ(b) ≈ 0 for b ≥ R,
where R is a finite distance. Since the functions ρ and F are Fourier transforms, F is band-
limited. We proceed in the spirit of the Nyquist-Shannon sampling theorem and expand
the function ρ as

ρ(b) =

∞∑

n=1

1

2π

2

R2J1(Xn)2
F (Q2

n)J0

(
Xn

b

R

)
, (3.36)
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Figure 3.14. Plot of ρD (solid), 5 term approximation (red, long dash), 10 term approximation
(green, medium dash) and 15 term approximation (brown, short dash). From Ref. [614].

where Xn is the n-th zero of the regular cylindrical Bessel function of order 0, J0; Qn ≡
Xn/R and Xn ≈ (n+ 3/4)π. Equation (3.36) defines the so-called finite radius approxima-
tion (FRA). Using, for example, R = 3 fm and n = 10, Q2

n ≈ 4 GeV2. Thus, the measure-
ment up to Q2 = 4 GeV2 determines the first ten terms of the expansion. As an example,
let us consider the expansion (3.36) for the dipole form factor: FD(Q

2) = 1/(1 + Q2/Λ2)2

with Λ2 = 0.71 GeV2. The results shown in figure 3.14 indicate that relatively few terms
suffice to give an accurate representation.

The relationship between the FRA and the usual expansion into a complete set of
functions is examined in [614] where it is shown that the FRA is very accurate. The available
data set consists of ep scattering up to 31 GeV2 and GE,M are separately extracted for up
to 10 GeV2. The form factors GE and GM have been extracted from a global analysis of the
world’s cross section and polarization data, including corrections for two-photon exchange
corrections [615]. The analysis is largely identical to that of [616], although additional high
Q2 form factor results [617] have been included. In addition, the slopes of GE and GM at
Q2 = 0 were constrained in the global fit based on a dedicated analysis of the low Q2 data.
In writing GE(Q

2) = 1 − Q2R2
E/6, the value of RE was constrained to be 0.878 fm and

RM was constrained to be 0.860 fm. This is important in the extraction of the large scale
structure of the density. The fit is given in [614].

We then use the fit and uncertainties for GE and GM to extract F1 and F2, treating the
uncertainties in GE and GM as uncorrelated, yielding:

(dF1)
2 = (

1

1 + τ
)2(dGE)

2 + (
τ

1 + τ
)2(dGM )2 ,

(dF2)
2 = (

1

1 + τ
)2(dGE)

2 + (
1

1 + τ
)2(dGM )2 . (3.37)

For Q2 < 30 GeV2, we use dF1 above in the FRA to get dρ(b). For Q2 > 30 GeV2, we use
the FRA and take dF1 = ±|F1(fit)|. This corresponds to a maximum value of n = 30. The
resulting transverse charge density is shown in figure 3.15. The proton transverse charge
density is now very well known.

Our FRA technique can be exploited to image other quantities that depend on the
transverse position. Suppose there is a transverse quantity ρ(λ)(b) that is a two-dimensional
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Figure 3.15. (Color online) ρch (solid, blue) with error bands (short dashed, red). From Ref. [614].

Fourier transform of an experimental observable F (λ)(Q2) such that

ρ(λ)(b) =
1

2π

∫
QdQJλ(Qb)F

(λ)(Q2) . (3.38)

An example, discussed in detail in [614], is the magnetization density ρM . The index (λ) is
associated with a given number of units of the orbital angular momentum. The extraction
of ρ(λ)(b) is facilitated by using the expansion

ρ(λ)(b) =

∞∑

n=1

2

R2Jλ+1(Xλ,n)2
F (λ)(Q2

λ,n), Jλ

(
Xλ,n

b

R

)
, (3.39)

where Xλ,n is the n-th zero of the Bessel function of order λ; Qλ,n = Xλ,n/R. The re-
sult (3.39) can be used to relate accessible kinematic ranges with transverse regions.

3.5.3 Summary

Much data for form factors exist and JLab12 will further improve the data set. The
charge density is not a three-dimensional Fourier transform of GE . One can interpret
form factors as determining transverse charge and magnetization densities. The nucleon
transverse densities are known now to high precision. The new FRA technique can be
used for other quantities that depend on transverse position, in particular, for the exclusive
scattering amplitudes and generalized parton distributions discussed in this chapter.
Acknowledgments. I thank S. Venkat, J. Arrington, and X. Zhan for their extensive efforts
in producing the paper [614] on which this presentation is based. I also wish to thank
Jefferson Laboratory for its hospitality during a visit while this work was being completed.
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3.6 From transverse-momentum spectra to transverse im-
ages

Elke-Caroline Aschenauer, Markus Diehl, Salvatore Fazio

3.6.1 Imaging partons in the transverse plane

The principle of “parton imaging” using exclusive processes such as DVCS or hard
exclusive meson production is rather simple. The key variable to measure is the transverse
momentum transfer ~∆T to the target proton or nucleus in the γ∗-target c.m. The invariant
momentum transfer is then given by

t = −x
2m2 + ~∆ 2

T

1− x
with x =

Q2 +M2
V

Q2 +W 2
, (3.40)

where m is the target mass andMV the mass of the produced meson. For DVCS one should
omit MV , so that x coincides with the Bjorken variable. In the limit of large Q2 +M2

V ,
the γ∗p scattering amplitude is a linear combination of generalized parton distributions
convoluted with hard-scattering kernels. The distribution of partons in the transverse plane
is obtained by a Fourier transform w.r.t. ~∆T [580, 611]. In the simple case where the
unpolarized quark or gluon GPDs H i dominate the γ∗p cross section dσ/dt, the impact
parameter profile is

F (b, x,Q2) ∝ 1

(2π)2

∫
d2~∆T e

−i~b~∆T

√
dσ

dt
=

1

2π

∫ ∞

0
d∆T ∆T J0(b∆T )

√
dσ

dt
, (3.41)

where ∆T = |~∆T | and b = |~b|. For simplicity we drop the information from the absolute
size of the cross section in this contribution and focus our attention on the normalized
b-space profile, which satisfies

∫
d2b F (b, x,Q2) = 1. For polarization asymmetries and for

the interference term between DVCS and the Bethe-Heitler process, the extraction of the
relevant γ∗p amplitudes is more involved, but the principle of Fourier transforming these
amplitudes w.r.t. ~∆T remains the same.

In the present contribution, we estimate how accurately one can hope to determine
F (b, x,Q2) from cross section measurements for DVCS on the proton. Firstly, dσ/dt will
have statistical and systematic errors. Secondly, the range of ∆T in a measurement will be
restricted both from above and from below, so that an extrapolation is required in order to
perform the Fourier integral in (3.41).

3.6.2 Acceptance in transverse momentum

To achieve the precision discussed below for imaging partons in the impact parameter
space, it is critical to integrate from the beginning the detection of the scattered proton
into the detector and interaction region design. The scattered proton in exclusive reactions
is characterized by carrying almost the full beam momentum and a transverse momentum
∆T between several MeV and a few GeV, corresponding to very small scattering angles.
Figure 3.16 shows the relation between the longitudinal momentum of the protons and their
scattering angle for two different ep center-of-mass energies.

The commonly used method to detect these protons is to integrate “Roman pots” in the
machine lattice. The standard technologies for such detectors are silicon strip detectors or
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Figure 3.16. (Color online) The longitudinal momentum pz of the scattered proton in exclusive
reactions vs. its scattering angle θ for an ep center-of-mass energy of 15.5GeV (left) and 145GeV
(right).

scintillating fiber detectors. The acceptance for protons with the transverse momentum in
the MeV region is limited by the requirement that Roman pots must have a beam clearance
distance of 10 times the beam emittance. The upper transverse acceptance is given by
the apertures of the magnets that the protons have to transverse. For transverse momenta
above 1GeV, the proton can be detected in the main solenoidal detector. Details on the
solutions for the eRHIC and ELIC interaction region designs are given in section 7.3.

3.6.3 Precision of the measurement

A detailed simulation of DVCS events is described in section 3.9. To illustrate the
expected statistical accuracy of a measurement, we show dσ/dt for a selected bin of x and
Q2 in figure 3.17. The value of y in this bin ranges from 0.05 to 0.14. For bins with lower
x or lower Q2, the statistical errors are smaller, except for kinematics where the y > 0.01
cut applied in the simulation becomes relevant.

The t spectrum shown in the figure 3.17 was generated with an exponential dependence
dσ/dt ∝ exp(Bt) with B = 5GeV−2. An exponential fit to the generated spectrum gives
B = 5.02GeV−2 with an error below 1%. Data of this quality also allows one to explore
possible deviations from an exponential spectrum. To this end, we have also fitted to
dσ/dt ∝ exp(Bt − Ct2). This fit and its 1σ error band is shown in the figure and gives
B = (4.92±0.10)GeV−2 and C = (0.079±0.076)GeV−4. Although the relative uncertainty
on the extra parameter C is large, the term Ct2 in the exponential is small compared with
Bt in the fitted t range (as it should be for a spectrum generated with a pure exponential
law). The logarithmic t slope at |t| = 1.75GeV2 in this fit is (5.20 ± 0.18)GeV−2.

We conclude at this point that with the projected luminosity available at an EIC, the t
spectrum for the DVCS cross section will be dominated by systematic uncertainties and not
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Figure 3.17. (Color online) Generated t spectrum for the DVCS cross section in a selected bin of x
and Q2. The errors are statistical only and correspond to the integrated luminosity of 11.9 fb−1 for
|t| < 1GeV2 and to 151 fb−1 for |t| > 1GeV2. The curve represents a fit explained in the text.

by statistics, even if one measures differentially in x and Q2. Systematic uncertainties, for
instance due to momentum resolution, strongly depend on details of the experimental setup
and have not been studied yet. We note that the normalized b space profile F (b, x,Q2) is
not affected by errors on the overall luminosity and acceptance.

3.6.4 Uncertainty from the extrapolation in t

We now estimate the uncertainty in the impact parameter profile F (b) due to the lack
of knowledge of the scattering amplitude for all t. Since the projected statistical errors are
so small, we do not include them in this exercise.

For the extrapolation to large |t|, we assume a measured t-spectrum dσ/dt ∝ exp(Bt)
with B = 4GeV−2 up to |t|max = 1 or 2GeV2. Larger values of B give a smaller cross section
at high |t| and thus a smaller extrapolation uncertainty in the Fourier integral (3.41). In
turn, the statistical errors on the cross section at high |t| are then larger, so that in F (b)
there is a tradeoff between the uncertainties from the measured t spectrum and those from
its extrapolation.

To estimate the extrapolation uncertainty, we adopt a strategy similar to that in [618]
and assume different forms for the scattering amplitude (i.e., for

√
dσ/dt) at |t| > |t|max :

1. an exponential ∝ exp(Bt/2), labeled “exp” in figure 3.18,

2. a dipole form ∝
(
1 + |t|/M2

)−2
, labeled “dip”,

3. a modified dipole form ∝
(
1 + 0.05 |t|/M2

)−1(
1 + 0.45 |t|/M2

)−1
, labeled “mod dip”,

4. a modified exponential ∝ exp(−Dt2), labeled “mod exp”.

In each case we require the amplitude and its first derivative to be continuous at |t| = |t|max.
Note that in the measured t region, forms 2 to 4 would give unacceptable fits to the simulated
spectrum in figure 3.17. Forms 3 and 4 should be regarded as examples for functions falling
off especially slowly or especially fast and do not claim to be particularly realistic. When
performing the Fourier transform (3.41), we neglect the term x2m2 in (3.40), which is
justified in a large region of phase space.
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In figure 3.18 we show the resulting scattering amplitude (normalized to unity at ~∆T =
~0) and its Fourier transform F (b). We observe that the curves in b space are close together in
a wide region and rather quickly start to differ below a certain critical value bcr. For |t|max =
1GeV2, we find bcr ∼ 0.25 fm and an appreciable spread of F (b) at lower b. This would be a
serious limitation for studying the central region of the proton. Interesting physical effects
like the variation of F (b) with x or Q2 are typically expected to be only logarithmic (see,
e.g., the estimates in [619]) and hence require sufficiently precise measurements. Clearly,
there is a very significant gain of accuracy in impact parameter space if |t|max can be raised
from 1 to 2GeV2, i.e., if a scattered proton in the corresponding kinematics can be seen in
the main detector. We then find bcr ∼ 0.1 fm and a small uncertainty even at b = 0.

As an alternative scenario we assume a dipole form instead of an exponential t depen-
dence in the measured region,1 with a dipole mass M = 770MeV that gives the same
scattering amplitude at |t| = 1GeV2 as the exponential with B = 4GeV−2. The extrapola-
tion error is larger in the dipole scenario, but since the cross section decreases much more
slowly, it can be measured out to higher values of |t| before statistics becomes an issue.
We recall however that a description in terms of generalized parton distributions requires
|t| ≪ Q2+M2

V . As seen in figure 3.19, a measurement up to |t|max = 3.3GeV2 in the dipole
scenario gives a very precise F (b) down to bcr ∼ 0.1 fm. The extrapolation uncertainty at
lower b is larger than for |t|max = 2GeV2 in the exponential scenario.

Let us now investigate the extrapolation to small |t|. We assume again an exponential
cross section dσ/dt ∝ exp(Bt), but now with a larger slope B = 6.6GeV−2 in order to
maximize the importance of low |t| in the Fourier integral. We consider either 300MeV or
200MeV as minimum measured values of ∆T , and take the following extrapolations for ∆T

down to zero:

1. an exponential in t, labeled “exp” in figure 3.20,

2. a dipole form ∝
(
1 + |t|/M2

)−2
, labeled “dip”,

3. a linear function in t, labeled “lin”,

4. a monopole form ∝
(
1 + |t|/M2

)−1
, labeled “mono”,

5. an inverse square root ∝
(
1 + |t|/M2

)−1/2
, labeled “sqrt”.

We see in figure 3.20 that with a measurement down to ∆T = 300MeV, one has a rapidly
growing extrapolation uncertainty for b above about 1.25 fm. The situation dramatically
improves if one has to extrapolate only below ∆T = 200MeV. Repeating this study with a
dipole form in the measured region yields the same conclusion [621]. Whether a measure-
ment down to even lower ∆T can still improve the accuracy of b space images can only be
decided after an estimate of experimental uncertainties.

Let us recall the specific physics interest of the impact parameter profile of the proton
at very large b. This is the region where the dynamics of chiral symmetry breaking should
manifest itself. A description in terms of virtual pion fluctuations yields definite predictions,
such as a behavior F (b) ∝ b−1e−κb with κ ≈ 2mπ ≈ (0.7 fm)−1 at large b [594]. This
translates into a small |t| behavior given by the inverse square root law in point 5 (with
M2 = κ2). These predictions should be tested quantitatively.

1We note that the measurement of J/Ψ photoproduction at HERA [589, 620] strongly favors an expo-
nential t dependence at |t| below 1GeV2, but the behavior of exclusive hard scattering cross sections at
larger t is poorly known. For a conservative error estimate, we do not want to rule out a dipole behavior at
|t| > 1GeV2.
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Figure 3.18. (Color online) Examples for normalized amplitudes (left) with different extrapolations
to large |t|, together with their Fourier transforms to impact parameter space (right).
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Figure 3.19. (Color online) As in figure 3.18 but with a dipole form of the amplitude up to |t| =
3.3GeV2.
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Figure 3.20. (Color online) As in figure 3.18, but with extrapolation to small |t|, i.e. small ∆T . The
impact parameter profile F (b) is multiplied with b2 in order to make the large b behavior visible.

In summary, we find that with the parameters we have assumed, neither statistics nor
acceptance in t will seriously limit b space imaging at an EIC, with an accessible b range
from 0.1 fm up to 1.5 fm or larger. Detailed estimates of experimental uncertainties will be
necessary to assess the limiting factors of accuracy in this endeavor.
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3.7 GPDs from DVCS

Matthias Burkardt, Hikmat BC

3.7.1 Introduction

GPDs are linked to many processes and observables involving hadrons [622], but their
most intuitive application is in the context of Ji’s angular momentum decomposition (see
section 3.4) and in three-dimensional imaging (see section 3.6). Both involve GPDs in the
ξ = 0 limit (the ξ-dependence drops out in the Ji sum rule). At the same time, the DVCS
amplitude ADVCS provides direct access only to GPDs along the ”diagonal” x = ξ (through
the imaginary part of the DVCS amplitude) as well as to a convolution integral involving
GPDs (through the real part of ADVCS). In the leading order (LO) factorization, one finds

ℑmADVCS −→ GPD(+)(ξ, ξ, t) ,

ℜeADVCS −→
∫ 1
−1 dx

GPD(+)(x,ξ,t)
x−ξ . (3.42)

The ’(+)’ superscript in (3.42) emphasizes that DVCS is sensitive only charge-even (i.e.,
quark+antiquark) combinations of GPDs. Moreover, the accessible range in ξ is limited,
ξmin < ξ < ξmax. The lower limit ξmin is defined by the DIS kinematics. The upper limit
ξmax follows from the relation

− t =
4ξ2M2 +∆2

⊥
1− ξ2

, (3.43)

and the positivity of∆2
⊥. Thus, even in an idealized DVCS experiment (fixedQ2), where an-

gular dependencies as well as spin asymmetries have been used to disentangle different GPDs
and the proton and ’neutron’ targets have been used to accomplish the flavor decomposition,
one can at best expect a determination of the observables in (3.42) for ξmin < ξ < ξmax.
One of the key question in the context of DVCS is whether this information will allow an
unambiguous and model-independent extraction of GPDs.

3.7.2 Constraints on GPDs: polynomiality, dispersion relations and QCD
evolution

GPDs are not only constrained by DVCS, but also by DIS and form factor data. How-
ever, the form factor data constrains only charge-odd distributions and helps only in kine-
matical regimes where antiquark contributions are negligible. While DIS data is sensitive
to charge-even distributions, there is no DIS data that would constrain the forward (ξ = 0,
t = 0) limit of Eq(x, ξ, t).

Fortunately, multiple theoretical constraints exist that will be helpful in determining
GPDs from DVCS data. For example, Lorentz invariance implies the polynomiality condi-
tions on GPDs [274, 574]:

∫ 1

−1
dxxnGPD(x, ξ, t) = An,0(t) +An,2(t)ξ

2 + ...+An,n+1ξ
n+1 , (3.44)

where the highest power ξn+1 is only present when n is odd. These polynomiality conditions
imply that the dependence of GPDs on the variables x and ξ cannot be independent. This
imposes significant and rigorous constraints on any GPD extraction from DVCS data.
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Rigorous dispersion relations exist for the DVCS amplitude A(ν, t,Q2):

ℜeA(ν, t,Q2) =
ν2

π

∫ ∞

0

dν ′2

ν ′2
ℑmA(ν ′, t,Q2)

ν ′2 − ν2
+∆(t,Q2) , (3.45)

where ∆(t,Q2) is a possible subtraction that can be identified with the D-form factor [587].
In combination with the leading order (LO) factorization (3.42), this implies for GPDs

ℜeA(ξ, t,Q2) ∼
∫ 1

−1
dx
GPD(+)(x, ξ, t,Q2)

x− ξ
=

∫ 1

−1
dx
GPD(+)(x, x, t,Q2)

x− ξ
+∆(t,Q2) .

(3.46)
Although its derivation from dispersion relations is more physical, (3.46) was first derived
from polynomiality [574].

One of the consequences of (3.46) is that it allows to ’“condense” the information from
the DVCS amplitude (including the real part) into GPDs along the diagonal x = ξ plus the
D-form factor. However, it should be emphasized that this does not render measurements of
the real part of the DVCS amplitude redundant. Indeed, measurements of ℑmADVCS for a
given beam energy do not cover the whole region 0 < ξ < 1 that enters (3.46). This implies
that one can, for example, use ℜeA(ξ, t,Q2) at fixed Q2 to constrain GPD(ξ, ξ, t,Q2) for
the values of ξ that are not accessible directly through the measurement of ℑmA(ξ, t,Q2).
In summary, a DVCS experiment at fixed Q2 (large enough for GPD factorization to hold)
should in principle allow for the determination of GPDs along the diagonal x = ξ as well
as the D-form factor, which (through the polynomiality condition) impose some constraints
on GPDs for x 6= ξ.

Additional important constraints on GPDs come from their QCD evolution. The Q2

evolution equations can be ”diagonalized” by expanding GPDs in terms of Gegenbauer

polynomials C
3/2
n (x):

GPD(x, ξ, t,Q2) = (1− x2)
∞∑

n=0

C3/2
n (x)

n∑

m=0(even)

anm(ξ)Cn−m(ξ, t,Q2) , (3.47)

where anm(ξ) are known polynomials. The coefficients Ck(ξ, t,Q2) are a priori unknown,
but their Q2 evolution is known. This allows one (in principle) to determine Ck(ξ, t,Q2)
model independently. For this purpose, let us consider x = ξ, where GPDs can be measured
directly. Upon relabeling k = n−m, (3.47) reads

GPD(ξ, ξ, t,Q2) = (1− ξ2)

∞∑

k=0

Ck(ξ, t,Q2)fk(ξ) , (3.48)

where fk(ξ) =
∑∞

m=0(even) am+k,m(ξ)C
3/2
m+k(ξ) are known functions. For any fixed ξ, each

term in (3.48) evolves differently and, thus, a measurement over a wide range of Q2 should
allow for the determination of Ck(ξ, t,Q2) as well as the GPDs for x 6= ξ [via (3.47)]. At
an EIC with its wide Q2 range and high luminosity, it may be possible for the first time to
carry out a model-independent extraction of GPDs. More detailed numerical studies will
be required to quantify this expectation.

184



3.8 Accessing GPDs from experiment: potential of a high-
luminosity EIC

K. Kumerički, T. Lautenschlager, D. Müller, K. Passek-Kumerički, A. Schäfer,
M. Meškauskas

3.8.1 Introduction

Generalized parton distributions (GPDs) [567, 568, 569] have received much attention
from both the theoretical and experimental sides. This was triggered by the hope to solve
the “spin puzzle” that refers to the mismatch between the quark contribution to the proton
spin extracted from polarized DIS and the one given by the constituent quark model. We
view the “spin puzzle” first and foremost as a quest to quantify the partonic structure
of the nucleon in terms of quark and gluon angular momenta [274]. Furthermore, it has
been realized that GPDs allow for a three-dimensional imaging of nucleons and nuclei [623],
providing, in the zero-skewness case (ξ = 0), a probabilistic interpretation in terms of
partonic degrees of freedom [579]. In fact, GPDs build up a whole framework for description
of hadron structure [575, 576], with the “spin puzzle” being just one interesting aspect.

In phenomenology, GPDs are used for modeling elastic form factors and the description
of hard exclusive leptoproduction and even photoproduction. For hard exclusive processes,
factorization theorems have been proven in the collinear framework at twist-two level [572,
624]. In the last decade, various hard exclusive processes have been measured by the H1
and ZEUS collaborations (DESY) in the small xB region and by HERMES (DESY), CLAS
(JLAB), and Hall A (JLAB) in the moderate xB region in the fixed-target experiments.

Deeply virtual Compton scattering (DVCS) off nucleon is considered as the theoretically
cleanest process offering access to GPDs. Its amplitude can be parameterized by twelve
Compton form factors (CFFs) [625], which are given in terms of twist-two (including gluon
transversity) and twist-three GPDs. For instance, at leading order (LO), parity-even twist-
two CFFs, H and E , can be expressed through quark GPDs H and E:

{H
E

}
(xB , t,Q2)

LO
=

∫ 1

−1
dx

2x

ξ2 − x2 − iǫ

{
H

E

}
(x, η = ξ, t,Q2) , (3.49)

where both quark and anti-quark GPDs are defined in the region x ∈ [−ξ, 1]; xB =
2ξ/(1 + ξ). Similar expressions can be written for twist-two parity-odd CFFs H̃ and Ẽ ,
while for other CFFs they are a bit more intricate [625]. Analogous formulae hold for the
LO description of γ∗N →MN transition form factors (TFFs), measurable in deeply virtual
electroproduction of mesons (DVEM). Here, in addition to GPDs, the non-perturbative me-
son distribution amplitude enters, which describes the transition of a quark-antiquark state
into the final meson. This induces an additional uncertainty in the GPD phenomenology.

Let us briefly clarify which GPD information can be extracted from experimental mea-
surements. Neglecting radiative and higher twist-contributions, one might view the GPD
on the η = x cross-over line as a “spectral function”, which provides also the real part of
the CFF via the “dispersion relation” [626, 627, 628, 629]:

ℑmF(xB , t,Q2)
LO
= πF (ξ, ξ, t,Q2) , F = {H,E, H̃, Ẽ} , (3.50)

ℜe
{H
E

}
(xB , t,Q2)

LO
= PV

∫ 1

0
dx

2x

ξ2 − x2

{
H

E

}
(x, x, t,Q2)±D(t,Q2). (3.51)
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The GPD support properties ensure that (3.50) and (3.51) are in one-to-one correspondence
to the perturbative formula (3.49), where the subtraction constant D, which is related in a
specific GPD representation to the so-called D-term [587], can be calculated from either H
or E. However, we note that the “dispersion relation” (3.51) is given in terms of partonic
variables and compared to the dispersion relation formulated in physical variables it differs
by power suppressed contributions. To pin down the GPD in the outer region y ≥ η = x,
one might employ evolution. For instance, in the non-singlet case, the change of the GPD
on the cross-over line is governed by (the equation in the whole outer region is needed)

µ2
d

dµ2
F (x, x, t, µ2) =

∫ 1

x

dy

x
V (1, y/x, αs(µ))F (y, x, t, µ

2) , (3.52)

where V is the evolution kernel [567]. Unfortunately, a large enoughQ2 range is not available
in fixed target experiments. Hence, we must conclude that in such measurements, essentially
only the GPD on the cross-over line [thanks to (3.51), also outside of the experimentally
accessible part of this line [629]] and the subtraction constant D can be accessed. Moments,
such as those entering the spin sum rule, can only be obtained from a GPD model, fitted
to data, or more generally with help of some “holographic” mapping [629]:

{
F (x, η = 0, t,Q2), F (x, η = x, t,Q2)

}
=⇒ F (x, η, t,Q2) . (3.53)

Here, F (x, η = 0, t,Q2) are constrained from form factor measurements and, additionally,
GPDs H̃ (H) by (un)polarized phenomenological PDFs. Of course, a given ‘holographic’
mapping holds only for a specific class of GPD models.

3.8.2 GPD modeling

The implementation of radiative corrections, even including LO evolution (3.52), re-
quires to model CFFs or TFFs in terms of GPDs. This can be done in different represen-
tations, which should be finally considered as equivalent. However, for a specific purpose a
particular representation may be more suitable than the others.

Neglecting positivity constraints, we model GPDs by means of a conformal SL(2,R)
partial wave expansion, which can be written as a Mellin-Barnes integral [630]:

F (x, η, t, µ2) =
i

2

∫ c+i∞

c−i∞
dj
pj(x, η)

sin(πj)
Fj(η, t, µ

2) . (3.54)

Here, pj(x, η) are the partial waves given in terms of associated Legendre functions of
the first and second kind, and the integral conformal GPD moments Fj(η, t, µ

2) are even
polynomials in η of order j or j + 1. Other representations of GPDs based on the SL(2,R)
partial wave expansion include the so-called “dual” parameterization [631, 632, 633, 634].

In the Mellin-Barnes representation, the CFFs possess a rather convenient form, e.g.,
(3.49) can be rewritten in the following form [627, 635]:

{H
E

}
(xB , t,Q

2)
LO
=

1

2i

∫ c+i∞

c−i∞
dj ξ−j−1

[
i+ tan

(
πj

2

)]

× 2j+1Γ(j + 5/2)

Γ(3/2)Γ(j + 3)

{
Hj

Ej

}
(η = ξ, t,Q2)

∣∣∣
ξ=

xB
2−xB

. (3.55)

This integral is numerically implemented in an efficient routine in two different factorization
schemes, including the standard minimal subtraction (MS) one at next-to-leading order
(NLO) accuracy. Further advantages of this representation are:
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(i) The conformal moments evolve autonomously at LO.

(ii) One can employ conformal symmetry to obtain next-to-next-to-leading order (NNLO)
corrections to the DVCS amplitude [635, 636].

(iii) PDF and form factor constraints can be straightforwardly implemented. Namely,
Fj(η = 0, t = 0, µ2) are the Mellin moments of PDFs, Fj=0 are partonic contributions
to elastic form factors, Hj=1 and Ej=1 are the energy-momentum tensor form factors,
and for general j one immediately makes contact to lattice measurements.

To parameterize the degrees of freedom that can be accessed in hard exclusive reactions,
one can expand the conformal moments in terms of t-channel SO(3) partial waves expressed
in terms of the Wigner rotation matrices d̂j(η) (d̂j(η = 0) = 1) [637]. An effective GPD
model at given input scale Q2

0 is provided by taking into account three partial waves,

Fj(η, t) = d̂j(η)f
j+1
j (t) + η2d̂j−2(η)f

j−1
j (t) + η4d̂j−4(η)f

j−3
j (t) , (3.56)

which is valid for integral j ≥ 4. In the simplest version of such a model, one might introduce
just two additional parameters by setting the non-leading partial wave amplitudes to:

f j−kj (η, t) = skf
j+1
j (η, t) , k = 2, 4, . . .. (3.57)

Such a model allows us to control the size of the GPD on the cross-over line and its Q2-
evolution, see fig. 3.28. A flexible parameterization of the skewness effect in the large x
region requires to decorate the skewness parameters sk with some j dependence and for
more convenience one might replace Wigner‘s rotation matrices by some effective SO(3)
partial waves.

3.8.3 GPDs from hard exclusive measurements

Based on the experimental data set from the collider experiments H1 and ZEUS at
DESY, the fixed target experiment HERMES at DESY, and the Hall A, CLAS, and Hall C
experiments at JLAB, GPDs have been accessed from hard exclusive meson and photon elec-
troproduction in the last few years. Favorably, DVCS enters as a subprocess into the hard
photon electroproduction where its interference with the Bethe-Heitler (BH) bremsstrahlung
process provides variety of handles on the real and imaginary part of twist-two and twist-
three CFFs [625, 638]. However, switching from a proton to a neutron target allows only
for a partial flavor separation, which is much more intricate than in DIS. On the other
hand, DVEM can be used as a flavor filter, however, here one expects that both radia-
tive [639, 640, 641] and (non-factorizable) higher-twist contributions might be rather im-
portant. The onset of the collinear description remains here an issue which should be
explored.

For the DVCS process, the collinear factorization approach has been employed in a
specific scheme up to NNLO in the small xB region [627, 635, 636]. It turns out that
NLO corrections are moderate, while NNLO ones are becoming much smaller [627]. Ex-
perimentally, the unpolarized DVCS cross section has been provided by the H1 and ZEUS
collaborations [642, 643, 644, 645]. In the collider kinematics, the DVCS cross section is
primarily given in terms of two CFFs, H and E :

dσDVCS

dt
(W, t,Q2) ≈ πα2

Q4

W 2x2B
W 2 +Q2

[
|H|2 − t

4M2
p

|E|2
] (
xB, t,Q2

) ∣∣∣
xB≈ Q2

W2+Q2

. (3.58)
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Figure 3.21. Quark (a) and gluon (b) transverse profile function (3.59) forQ2 = 4GeV2 and x = 10−3

from a six parameter DVCS fit [646].

Although at a fixed scale and to LO accuracy the CFFs are given by (dominant sea) quark
GPDs, evolution will induce a gluonic contribution, too. Indeed, the experimental lever
arm 3GeV2 . Q2 . 80GeV2 is sufficiently large to access the gluonic GPD. In our fitting
procedure, the Mellin-Barnes integral was utilized within a SO(3) partial wave ansatz for
the conformal moments and good fits (χ2/d.o.f. ≈ 1) could be obtained at LO to NNLO
accuracy, exemplifying that flexible GPD models were at hand. From such fits, one can
then obtain the image of quark and gluon distributions. It is illustrated in figure 3.21 that
in impact space, the (normalized) transverse profiles,

ρ(b, x,Q2) =

∫∞
−∞d

2~∆ ei
~∆~bH(x, η = 0, t = −~∆2, Q2)

∫∞
−∞d

2~∆ H(x, η = 0, t = −~∆2, Q2)
, (3.59)

determined for dipole and exponential t-dependence of H, mainly differ for distances larger
than the disc radius of the proton, i.e., for b > 0.6 fm. Hence, the larger values of the

transverse widths,

√
〈~b2〉

sea
≈ 0.9 fm and

√
〈~b2〉

G
≈ 0.8 fm for the dipole ansatz, arise

from the long-range tail of the profile function, see the solid curves in figure 3.21. For an

exponential ansatz, we find slightly smaller values

√
〈~b2〉

sea
≈ 0.7 fm and

√
〈~b2〉

G
≈ 0.6 fm,

where the gluonic one is compatible with the analysis of J/ψ production [594]. Note that the
model uncertainty in the extrapolation of the GPD to t = 0 corresponds to the uncertainty
in the long-range tail. Moreover, the model uncertainty of the extrapolation into the region
−t > 1GeV2 is essentially canceled in the profile (3.59) normalized at b = 0.

We also note that at LO the gluonic GPD (as the gluonic PDF) is rather steep and
radiative corrections might provide a large GPD/PDF reparameterization effect, which will
be studied in more detail in the future. Our first successful LO description of DVCS within
a flexible GPD model [646] is in agreement with aligned-jet model considerations [647].
We also mention that an attempt has been undertaken to access the E CFF from the beam
charge asymmetry measurement [648], proportional to the combination ℜe

[
F1(t)H− t

4M2F2(t)E
]
.

Unfortunately, the size of the experimental uncertainties does not allow one to separate the
H and E contributions.

An approach analogous to the one employed for DVCS [627] is also suitable for LO and
NLO analysis of DVEM. Hence, one can simultaneously make use of DVCS and DVEM
measurements in a global fitting procedure, which is in progress.

GPD studies were also performed for the DVCS process in the fixed target kinematics
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to LO accuracy. In this region, relying on the scaling hypothesis, one might directly ask for
the value of the GPDs on their cross-over line. For instance, for valence quarks we use the
following generically motivated ansatz:

Hval(x, x, t) =
1.35 r

1 + x

(
2x

1 + x

)−α(t) (1− x

1 + x

)b(
1− 1− x

1 + x

t

Mval

)−1
, (3.60)

where r = limx→0H(x, x)/H(x, 0) is the skewness ratio; α(t) = 0.43 + 0.85 t/GeV2; b
controls the x → 1 limit and Mval controls the residual t-dependence, which we set to
Mval = 0.8GeV. For the forward limit q(x) = H(x, 0), we used the LO parameterization
of Alekhin [649]. The generic (−t)−2 fall-off at large −t for generalized form factors is
indirectly encoded in the Regge-trajectory and the residual t dependence is modeled by a
monopole form with an x-dependent cut-off mass. The subtraction constant (3.51) is taken
an a dipole form:

D(t) = d

(
1− t

M2
d

)−2
. (3.61)

In a first global fit [646] to hard exclusive photon electroproduction off unpolarized
proton, we took sea quark and gluon GPD models with two SO(3) partial waves at small x,
reparameterized the outcome from H1 and ZEUS DVCS fits at Q2 = 2GeV2, and employed
it in fits of fixed target data within the scaling hypothesis. To relate the CFFs with the
observables, we employed the BKM formulas [625] within the ‘hot-fix’ convention [650] and
used the Sachs parameterization for the electromagnetic form factors. Thereby, we utilized
the “dispersion relation” (3.50,3.51), where the ansatz (3.60) specifies a valence-like GPD on
the cross-over line. Besides the subtraction constant (3.61), we also included the parameter-
free pion-pole model for the Ẽ GPD [651] and parameterized the H̃ GPD rather analogously
to (3.60) with b = 3/2. For the fixed target fits, we chose two data sets resulting in two fits
(KM09a and KM09b). Out fit gives:

KM09a: bsea = 3.09 , rval = 0.95 , bval = 0.45 , d = −0.24 , Md = 0.5GeV ,

KM09b: bsea = 4.60 , rval = 1.11 , bval = 2.40 , d = −6.00 , Md = 1.5GeV .(3.62)

These values of the fit parameters are compatible with our generic expectations: the skew-
ness effect at small x should be small, i.e., r ∼ 1, the subtraction constant should be
negative [574, 652], and, according to counting rules [653], b should be smaller than the
corresponding β value of the relevant PDF [646, 654].

To improve the models that we just described, we now use a hybrid technique where
the sea quark and gluon GPDs are represented in terms of conformal moments, while, for
convenience, the valence quarks are still modeled in momentum fraction space and within
the “dispersion integral” approach. Also, the residue of the pion-pole contribution is now
considered as a parameter, and the Hall A data forces a roughly three times larger value
than expected from the model [651]. Optionally, we might also use the improved formulae
from [655] applicable for a longitudinally polarized target. The new parameters read:

KM10a: rval = 0.88 , Mval = 1.5GeV , bval = 0.40 , d = −1.72 , Md = 2.0GeV ,

KM10b: rval = 0.81 , Mval = 0.8GeV , bval = 0.77 , d = −5.43 , Md = 1.33GeV .(3.63)

Note that for the valence part of the H GPD, these results are qualitatively compatible
with those from the pure KM09 “dispersion relation” fits.
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Figure 3.22. Experimental measurements for fixed target kinematics (circles) labeled by data point

number n: A
(1)
BS (1-18), A

(0)
BC (19-36), A

(1)
BC (37-54) from [656]; A

(1)
BS (55-66) and Σ

(1),w
BS (67-70) are

derived from [657] and [658]. Model results are from the “dispersion-relation” fits KMO9a without
Hall A data [646] (squares, slightly shifted to the left) and KMO9b with the Hall A data (circles,
slightly shifted to the right), hybrid model fit KM10b (triangles-up), and a hand-bag prediction
GK07 from hard vector meson production (triangles-down, slightly shifted to the r.h.s.) [659].

We also performed an additional fit where we directly used the harmonics of beam spin
sums and differences measured by Hall A (fit KM10). The results of our two “dispersion-
relation” fits and three hybrid model fits are available as a computer program providing the
four-fold cross section of polarized lepton scattering on unpolarized proton for a given kine-
matics, see http://calculon.phy.hr/gpd/. Unlike “dispersion-relation” fits, the hybrid
model fits, where LO evolution of sea quark and gluon GPDs has been taken into account,
are suitable for estimates in the small xB region.

In figure 3.22 we confront our fit results (χ2/d.o.f. ≈ 1 w.r.t. the employed data sets)
to experimental data: KM09a (squares), KM09b (circles), and the hybrid model fit KM10b
(triangles-up) in which we now utilized the improved formulae set [655] and the Kelly form
factor parameterization [660]. We also include the predictions from the GK07 model [659]
(triangles-down), where we adopt the hypothesis of H dominance. Qualitatively, these pre-
dictions are consistent with a VGG2 code estimate, which tends to over-estimate the BSAs
[657, 656] and describes the BCAs from HERMES rather well without the D-term [661].
This is perhaps not astonishing, since the employed H GPD model relies on Radyushkin’s
DD ansatz, too. We would like to emphasize that at LO, the GK07 model is in reasonable
agreement with the H1 and ZEUS DVCS data (χ2/d.o.f. ≈ 2), essentially thanks to the
rather small and stable skewness ratio rsea of sea quarks.

Longitudinally polarized target data from CLAS [662] and HERMES [663] provide a
handle on H̃ [625], where the mean values of CFF fits [664] in the JLAB kinematics give
two to three times bigger H̃ contribution compared to our expectations (r

H̃
≃ 1, b

H̃
≃ 2).

These findings are one to two standard deviations away from our big H̃ ad hoc scenario
of the KM09b fit, which is indeed disfavored by the longitudinally polarized proton data.
We like to add that with our present hybrid model a reasonable global fit, such as KM10
above, is possible. In such a fit, the Hall A data require a rather large pion pole contribution,
inducing a large DVCS cross section contribution. Still, we have not included the transversal

2 VGG refers to a computer code originally written by M. Vanderhaeghen, P. Guichon, and M. Guidal.
To our best knowledge, the code for DVCS presently used by experimentalists employs a model that adopts
Radyushkin’s DD ansatz [574].
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Figure 3.23. ℑmH/π from different strategies: our DVCS fits [dashed (solid) curve excludes (in-
cludes) Hall A data from ”dispersion relation” KM09a (KM09b) [646] and hybrid KM10b (dash-
dotted) models], GK07 model from DVEM (dotted), seven-fold CFF fit [666, 667] with boundary

conditions (squares), H, H̃ CFF fit [664] (diamonds), smeared conformal partial wave model fit [668]
within H GPD (circles). The triangles result from our neural network fit, cf. figure 3.24.

target data from the HERMES collaboration [661] or the neutron data from Hall A [665].
So far we did not study model uncertainties or experimental error propagation, since

both tasks might be rather intricate. To illuminate this, in figure 3.23 we compare our
results for ℑmH(xB, t)/π with the results that do provide error estimates. The squares
arise from constrained least squares fits [666, 667] at given kinematic means of HERMES
and JLAB measurements on unpolarized proton, where the imaginary and real parts of
twist-two CFFs are taken as parameters. The huge size of the error bars shows the limited
accuracy with which H can be extracted from unpolarized proton data alone [625]. A pure
H GPD model fit [668] (circles) to JLAB data provides much smaller errors, arising from
error propagation and some estimated model uncertainties. All three of our curves are
compatible with the findings [666, 667] and the H GPD model analysis [668] of CLAS data.
However, for Hall A kinematics, the deviation of the two predictions that are based on
the H dominance hypothesis (the dashed curve and circles in the right panel) are obvious
and are explained by our underestimation of the cross section normalization by about 50%.
Moreover, the quality of fit [668], χ2/d.o.f. ∼ 1.7, might provide another indication that
CLAS and Hall A data are not compatible, when this hypothesis is assumed, see, e.g., the
two rightmost circles in the left panel for CLAS (xB = 0.34, t = −0.3GeV2, Q2 = 2.3
GeV2) and Hall A (xBj = 0.36, t = −0.28GeV2, Q2 = 2.3 GeV2). While the pure H and

H̃ CFF fit [664] (diamonds), including longitudinally polarized target data, is within error
bars inconsistent with the H dominated scenario [668] (circles), it (accidentally) reproduces
our dashed curve.

Another source of uncertainties are twist-three contributions and perhaps also gluon
transversity related contributions, which might be strongly affected by twist-four effects [669].

All this exemplifies that within (strong) assumptions and the present set of measure-
ments, the propagated experimental errors cannot be taken as an estimate of GPD uncer-
tainties. An error estimation in model fits might be based on twist-two sector projection
technique [625], boundaries for the unconstrained model degrees of freedom, and error prop-
agation in the twist-two sector. Alternatively, neural networks, already successfully used
for PDF fits [47], may be an ideal tool to extract CFFs or GPDs. In figure 3.24, we present
a first example in which, within the H-dominance hypothesis, H is extracted using a pro-
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Figure 3.24. Neural network extraction of ℜeH(xB, t)/π from BCA [656] and BSA [657] data.

cedure similar to the one of [670]. Here, 50 feed-forward neural nets with two hidden layers
were trained using HERMES BCA [656] and CLAS BSA [657] data. Hence, only the exper-
imental errors were propagated, which, in the absence of a model hypothesis, become large
for the t→ 0 extrapolation.

3.8.4 Potential of an electron-ion collider

A high luminosity machine in the collider mode with polarized electron and proton or
ion beams would be an ideal instrument to quantify QCD phenomena. It is expected that
such a machine, combined with designated detectors, would allow for precise measurements
of exclusive channels. Besides hard exclusive vector meson and photon electroproduction,
one might address the behavior of parity-odd GPDs H̃ (related to polarized PDFs) and Ẽ
via the exclusive production of pions even in the small x region. It is obvious from what
was said above that an access of GPDs requires a large data set with small errors. In the
following we would like to illustrate the potential of such a machine for DVCS studies, where
we also address the GPD deconvolution problem.

Let us remind that already the isolation of CFFs is rather intricate. For a spin-1/2 target,
we have four twist-two, four twist-three, and four gluon transversity-related complex valued
CFFs. The photon helicity non-flip amplitudes are dominated by twist-two CFFs, the
transverse–longitudinal flip amplitudes by twist-three effects, and the transverse–transverse
flip ones by gluon transversity. Hence, the first, second, and third harmonics w.r.t. the
azimuthal angle of the interference term are twist-two, twist-three, and gluon transversity
dominated, respectively. In an ideal experiment, assuming that transverse photon helicity
flip effects are negligible, cross section measurements would allow to separate the sixteen
quantities that are then given in terms of twist-two and twist-three CFFs. The reader might
find a more detailed discussion, based on a 1/Q expansion, in [625]. We also note that the
definition of CFFs is convention-dependent.

In a twist-two analyzes on unpolarized, longitudinally and transversally polarized pro-
tons, one might be able to disentangle the four different twist-two CFFs via the measurement
of single beam and target spin asymmetries. In figure 3.25, we illustrate that the beam spin
asymmetry for a proton target (solid curves),

A
(1)
BS ∝

√
tmin − t

2M
y

[
F1(t)H(ξ, ξ, t,Q2)− t

4M2
F2(t)E(ξ, ξ, t,Q2) + · · ·

]
, (3.64)
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Figure 3.25. KM10b model estimate for the DVCS beam spin asymmetry with a proton (solid) and
neutron (dashed) target. Left panel: ABS vs. φ for EN = 250 GeV, Ee = 5 GeV, xB = 5 × 10−3,

Q2 = 10 GeV2, and t = −0.2 GeV2. Right panel: Amplitude A
(1)
BS of the first harmonic vs. xBj at

t = −0.2 GeV2 for small xB (thin) [Ee = 30 GeV, Ep = 360 GeV, Q2 = 4 GeV2] and large xB
(thick) [Ee = 5 GeV, Ep = 150 GeV, Q2 = 50 GeV2] kinematics.

might be rather sizeable over a large kinematical region in which the lepton energy loss y
is not too small. Here the helicity conserved CFF H is the dominant contribution, while
E appears with a kinematic suppression factor t/4M2, induced by the helicity flip. For a
neutron target, the H contribution is suppressed by the accompanying Dirac form factor Fn1
(Fn1 (t = 0) = 0) and, hence, one becomes sensitive to the CFF E . Unfortunately, one also
has to worry about other non-dominant CFF contributions, indicated by the ellipsis. Note
that the asymmetry for the neutron (dashed curves in figure 3.25) might be underestimated
since we set in our model E(x, x, t,Q2) to zero.

For a longitudinally polarized target, the asymmetry

A
⇒(1)
TS ∝

√
tmin − t

2M

[
F1(t)H̃(ξ, ξ, t,Q2)− t

4M2
F2(t)ξẼ(ξ, ξ, t,Q2) + · · ·

]
(3.65)

is sensitive to the GPD H̃, while ξẼ and other GPDs might contribute to some extent.
Naively, one would expect that this asymmetry vanishes in the small xB region and might
be sizeable at xB ∼ 0.1, see the left panel of figure 3.26. Not much is known about the small
x behavior of H̃ and it might be even accessible at smaller values of xB, as illustrated by
the KM09b model with its big H̃ contribution (solid curve, the right panel of figure 3.26).
For a neutron target, the asymmetry becomes sensitive to the ξẼ GPD. Note that here the
factor ξ is annulled by a conventional 1/ξ factor in the definition of the Ẽ GPD.

Finally, we emphasize that a single spin asymmetry measurement with a transversally
polarized target provides another handle on the helicity-flip GPDs E and Ẽ. If the target
spin is perpendicular to the reaction plane, the asymmetry

A
⇑(1)
TS ∝ t

4M2

[
F2(t)H(ξ, ξ, t,Q2)− F1(t)E(ξ, ξ, t,Q2) + · · ·

]
, (3.66)

is dominated by a linear combination of the GPDs H and E. In the case when the target
spin is aligned with the reaction plane, the asymmetry

A
⇓(1)
TS ∝ t

4M2

[
F2(t)H̃(ξ, ξ, t,Q2)− F1(t)ξẼ(ξ, ξ, t,Q2) + · · ·

]
(3.67)
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Figure 3.26. DVCS longitudinal target spin asymmetry vs. φ for KM09a (dashed), KM09b (solid),
and KM10b hybrid (dash-dotted) models at Ee = 5 GeV, t = −0.2 GeV2, Q2 = 4 GeV2 within
Ep = 150 GeV, xBj = 0.1 (left) and Ep = 350 GeV, xBj = 0.01 (right).

Unfortunately, compared to the single beam spin (3.64) and longitudinal target (3.65)
asymmetries, the transversally ones are kinematically suppressed by an additional factor
∼ √−t/(2M) and, for a neutron target, in addition by the Dirac form factor F1(t).

Although the given formulae (3.64–3.67) are rather crude, they illustrate that a mea-
surement of single spin asymmetries would allow to access the imaginary part of the four
twist-two related CFFs. However, the normalization of these asymmetries depends to some
extent also on the real part of the twist-two related CFFs and the remaining eight ones.
Measurements of cross section differences would allow one to eliminate the normalization
uncertainty, and in combination with the harmonic analysis, one can separate to some ex-
tent twist-two, twist-three, and gluon transversity contributions. However, the extracted
harmonics might also be contaminated by DVCS cross section contributions which are bi-
linear in the CFFs. To get rid of these admixtures, one needs cross section measurements
with a positron beam. Forming differences and sums of cross section measurements with
both kinds of leptons, allows one to extract the pure interference and DVCS squared terms
and, thus, might allow one to quantify twist-three effects. Existing data indicate that these
effects are small as expected based on kinematic factors. However, even obtaining only an
upper limit is important for the determination of the systematic uncertainties of twist-two
CFFs.

We also emphasize that having both kinds of lepton beams available allows one to
measure the real part of CFFs. In figure 3.27, we show the beam charge asymmetry,

A
(1)
BC ∝ ℜe

[
F1(t)H(xBj, t,Q2)− t

4M2
F2(t)E(xBj, t,Q2) + · · ·

]
, (3.68)

for an unpolarized target, which is expected to be sizeable. For a proton target, this
asymmetry should possess a node in the transition from the valence to sea region(thick
solid curve, right panel). In our parameterization, the real part of the E CFF is determined
by the D subtraction term, which induces a sizeable asymmetry (thick dashed curve, right
panel), even for a neutron target.

The large kinematical coverage of the proposed high-luminosity EIC raises the question:
Can one utilize evolution, even at moderate xB values, to access GPDs away from their cross-
over line? Similarly to what has been done for the small xB region, we use the Mellin-Barnes
integral technique to address the problem. Taking different non-leading SO(3) partial waves
in the ansatz for the conformal moments (3.56,3.57), we build three different GPD models
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Figure 3.27. KM10b model estimate for the DVCS beam charge asymmetry with a proton (solid)
and neutron (dashed) target. Left panel: ABC vs. φ for EN = 250 GeV, Ee = 5 GeV, xB = 5×10−3,

Q2 = 10 GeV2, and t = −0.2 GeV2. Right panel: Amplitude A
(1)
BC of the first harmonic vs. xB at

t = −0.2 GeV2 for small xB (thin) [Ee = 30 GeV, Ep = 360 GeV, Q2 = 4 GeV2] and large xB
(thick) [Ee = 5 GeV, Ep = 150 GeV, Q2 = 50 GeV2] kinematics.

for valence quarks that provide almost identical CFFs, see the upper left panel in figure 3.28.
They are compatible with (3.60) from the ”dispersion-relation” fit KM09a (dotted curves).
We note that the different model behavior at large xB results only in a small discrepancy for
the real part of the CFF in the kinematics of interest. In the lower left panel of figure 3.28,
we illustrate that for fixed η, the x-shape of the three GPD models looks quite differently.
Compared to the minimalist model (dotted curve), a model with a negative next-to-leading
partial wave (solid) decreases the size of the GPD on the cross-over line η = x and generates
an oscillating behavior in the central region. The model with an alternating-sign SO(3)
partial wave expansion (dash-dotted) possesses more pronounced oscillation effects in the
central region or even nodes. In the third model (dashed curve), the reduction on the
cross-over line is reached within a next-to-next leading SO(3) partial wave. Note that the
GPDs in the region η ≪ x are governed by the x-behavior of the PDF analogues. In the
right panels, we demonstrate that for a large lever arm in Q2 (e.g., Q2 = 50 GeV2), the
evolution effects are important in the valence quark region. However, for CFFs (the upper
right panel), the discriminating power of evolution effects remains moderate even if the
GPD shapes look rather different.

3.8.5 Conclusions and summary

With all the theoretical tools sketched above plus those which are presently under devel-
opment, it is clear that our understanding of hadron structure will be revolutionized once
most of the diverse asymmetries are measured with percent or permille precision (depending
on the observable). At present, first steps have been undertaken to access GPDs from ex-
perimental data in the small xB region and in the fixed target kinematics providing us with
some insight into the GPD H. In particular, for DVCS in the fixed target kinematics, LO
model fits are compatible with least-square CFF fits and first results from neural networks
(assuming H dominance). The large uncertainties in extracting CFFs are mainly related to
the lack of experimental data. Thus, not only the extraction of the very desired E playing
an important role in the ”spin-puzzle”, but also of other CFFs, requires a comprehensive
measurement of all possible observables in dedicated experiments. A further comparison
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Figure 3.28. Upper left panel: The valence-like contribution (3.60) to the CFF H extracted with
a “dispersion-relation” fit KM09a from fixed target measurements (dotted) at t = −0.2 GeV2 and
Q2 = 2 GeV2 vs. xB together with various models. Lower left panel: The corresponding models of
the GPD xH(x, η, t,Q2) together with a minimalist GPD parameterization (dotted curve) vs. x at
η = 0.2, t = −0.2 GeV2, and Q2 = 2 GeV2. The same quantities at Q2 = 50 GeV2 are displayed in
the right panels.

shows that while in the valence region the extracted quark GPDs are somewhat different,
they become compatible for small x. The main difference lies in the gluonic sector; a more
appropriate analysis requires the inclusion of radiative corrections in a global fitting proce-
dure, which is in progress. We should also mention here that hard exclusive processes with
nuclei, which at present are not extensively studied, open a new window for the partonic
view of nuclei.

Imaging the partonic content of the nucleon and the phenomenological access to the
proton spin sum rule from hard exclusive processes can only be reached through proper
understanding of GPD models. We also point out that GPDs can also be formulated in
terms of an effective nucleon (light-cone) wave function, which links GPDs to transverse mo-
mentum dependent parton distributions. The whole framework consisting of perturbative
QCD, lattice simulations, and dynamical modeling is available to reveal GPDs and access
the nucleon wave function. Such a unifying description can be considered as the primary
goal in quantifying the partonic picture. While such a task looks rather straightforward,
much effort is needed on the theoretical, phenomenological, and experimental sides, with
experimental data with small uncertainties playing the key role. A high-luminosity EIC is
an ideal machine that would cover a wide kinematical range and complement the planned
fixed target experiments at JLab@12 GeV. Thus, besides new measurements, an EIC has a
great potential to significantly improve existing data sets.
Acknowledgments. We are grateful to P. Kroll for many fruitful discussions.
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3.9 Monte Carlo studies on DVCS with an EIC

Salvatore Fazio

3.9.1 Exclusive processes with a dedicated EIC detector

Our current knowledge of the role of gluons in hadronic matter comes mainly from DIS
experiments of electrons off protons most notably from HERA at DESY. Although electrons
only interact with electrically charged particles, and gluons carry only color charge, a high-
energy electron beam can still be used as an excellent gluon microscope.

The HERA physics program of ep collisions surprisingly showed a large fraction of
diffractive events contributing 10 − 15 % to the total DIS cross-section. One of the key
signatures of these “diffractive” events is an intact proton traveling at nearly beam energies,
together with a gap in rapidity before some final-state particles are produced at mid-rapidity.
However, the detectors (H1 and ZEUS) were not optimized for this important physics and
were unable to measure the scattered proton; this was only achievable after a program of
upgrades. In fact, to measure diffractive physics events, it is desirable to have very forward
detectors at small angles with respect to the beam line, referred to as “Roman Pots”.
Other requirements are that the detector should be able to measure all processes: inclusive
(ep → e′X), semi-inclusive (ep → e′X+hadrons), and exclusive (e.g., ep → e′p + J/ψ)
reactions. The requirements for ep and eA collisions are very similar, the only additional
complication in eA collisions arises from the need to tag the struck nucleus, or to veto
events with the nucleus break-up by detecting neutrons and other breakup products with
high efficiencies.

Briefly, a possible EIC detector consists (in the barrel region at mid-rapidity) of a
solenoidal field with Si tracking with full rapidity coverage around the interaction point
itself, followed by Cherenkov detectors for particle identification and then by both electro-
magnetic and hadronic calorimeters. There are further trackers and calorimeters at forward
rapidities, but this time, the magnetic field is a dipole. A Roman Pots spectrometer can be
installed along the beam-pipe in the direction of the outgoing proton. This is just a starting
point and other technologies are under active investigation.

3.9.2 DVCS and GPDs: from HERA to an EIC

Measurements of observables associated with hard exclusive processes at an ep/eA col-
lider requires substantially higher luminosities than traditional inclusive DIS because of
the small cross sections and the need for differential measurements. The detectors and the
interaction region have to be designed to permit full reconstruction of the final state.

In assessing the prospects for measurements of exclusive processes in ep scattering at
collider energies, W 2 ≫ 10 GeV2, one needs to distinguish between “diffractive” (no ex-
change of quantum numbers between the target and the projectile/produced system) and
“non-diffractive” processes (exchange of quantum numbers). In diffractive channels, such as
J/ψ, ρ, φ production and DVCS (production of a real photon), the cross sections rapidly rise
with the collision energy, W . At large Q2, these processes probe the gluon GPD and/or the
singlet quark GPD. In non-diffractive channels, such as π±, π0, ρ+, K production, the cross
sections decrease with energy. These processes at high Q2 probe the flavor/charge/spin
non-singlet quark GPDs describing the quark structure of the target.

The final state of a DVCS event, shown in figure 3.29a, contains one track and two
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Figure 3.29. Diagram of the DVCS (a) and BH processes for a photon emitted from the initial (b)
and final (c) lepton line.

electromagnetic clusters together with a proton scattered at a very small angle. The tech-
nique for measuring DVCS consists of first extracting a data sample of events characterized
by the DVCS topology. Apart from the DVCS process, the data selection comprises also
Bethe-Heitler (BH) events, a well known QED process, because DVCS and BH share the
same final state. The selected sample will contain a mixture of DVCS and BH contribu-
tions. For not too large y (see figure 3.31), the BH contribution is not much larger than
DVCS and thus can be subtracted from the data using the MC predictions and control data
samples containing BH only since at high enough Q2 the interference contribution drops out
to a good accuracy when averaging over the angle φ between the production and scattering
planes.

The differential cross section as a function of |t| can be parameterized by an exponential:
dσ/dt ∝ eb|t|. The H1 Collaboration [648] measured |t| from the transverse momentum
distribution of the photon and studied the b-slope in a few bins in Q2 and W . The slope
b seems to decrease with Q2 up to the value expected for a hard process but it does not
depend onW . The ZEUS Collaboration [645] performed a direct measurement of the proton
final state using a Roman Pots spectrometer: the resulting b = 4.5 ± 1.3 ± 0.4 GeV−2 at
Q2 = 3.2 GeV2 and W = 104 GeV is consistent, within the large uncertainties due to the
low acceptance of the spectrometer, with the H1 result of b = 5.45 ± 0.19 ± 0.34 GeV−2 at
Q2 = 8 GeV2 and W = 82 GeV [648].

A comprehensive program of parton imaging in the nucleon would need precise mea-
surements of b for wide range of xB values, 10−4 < xB < 10−1; this is currently beyond the
possibilities of any experiment. Building an EIC with a properly designed detector could
finally make it possible — a preliminary feasibility study is reported in section 3.6.

The beam-charge asymmetry (BCA) provides an access to the real part of the DVCS
amplitude through the interference between the DVCS and BH amplitudes (for illustration,
we keep only the dominant cos(φ) harmonic):

AC =

dσ+

d|t| − dσ−

d|t|
dσ+

d|t| +
dσ−

d|t|
= p1 cos(φ) ∝ 2ABH

ℜe(ADVCS)

|ADVCS|2 + |ABH|2
cos(φ) . (3.69)

The measurement of AC is complementary to the measurement of the |t| distribution. The
DVCS beam-charge asymmetry has been measured by the H1 [648] and HERMES [671, 672]
experiments.

The large rapidity acceptance and high precision tracker of the EIC detector together
with its very accurate electromagnetic calorimeter and the high luminosity of the machine,
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make it an ideal tool for the measurement of both the DVCS cross section differential in |t|
and the DVCS+BH cross section asymmetries. Specifically for the BCA, a positron beam
would be required.

3.9.3 Monte Carlo simulations of DVCS at an EIC

The Monte Carlo generator used for our studies is MILOU [673], which simulates both
the DVCS and the BH processes together with their interference term. DVCS is simu-
lated using the framework of GPDs at next-to-leading order (NLO) accuracy, including
the NLO evolution of GPDs [625]. The t dependence is introduced as an exponential
dσ/dt ∝ eB(Q2)|t|, where B(Q2) is either a constant or can have a weak logarithmic de-
pendence on Q2, B(Q2) ∼ ln(Q2). In the present simulation, we used the former option,
B(Q2) = 5 GeV−2. In addition, the proton dissociation background, ep → eγY , has not
been included.

The DVCS and BH processes have been simulated in the following kinematic range:

• Q2 ≥ 1 GeV2;

• 10−4 < xB < 10−1;

• 0.01 < y < 0.85;

• 0.01 < |t| < 1 GeV2.

The Q2 and xB ranges correspond to the phase space achievable with an EIC; the lower y
limit is chosen according to the acceptance of the detector; the interval in |t| relates to the
acceptance of a forward proton spectrometer. The energy configuration considered for the
present study is a 5-20 GeV electron beam colliding with a 250 GeV proton beam.

Figure 3.30 shows the correlation between the scattering angle of the real photon pro-
duced in the interaction and its energy for different EIC energy configurations. For the
20 × 250 configuration, the photons with an energy greater than ∼ 5 GeV are produced
backward at an angle larger than 2.7 rad, corresponding to the rear end-cap calorimeter in
the detector. Since for the DVCS process the electron is always scattered backward, this
can lead to problems in discriminating the photon and electron clusters and makes it cru-
cial to have an electromagnetic calorimeter with high spatial resolution and a good tracker
coverage at backward rapidity to measure the electron track. Indeed, this is extremely
important for the t resolution in the case of a measurement performed without a Roman
Pots because the four-momentum t must be reconstructed, using momentum conservation,
from the transverse momenta of the electron and the photon.

The fraction of BH events has been estimated using an MC sample containing both
DVCS and BH processes. The samples have been normalized to the luminosity. The
fraction of BH events is calculated as follows:

FBH =
BHevt

BHevt +DV CSevt
. (3.70)

Figure 3.31 shows the fraction of BH events as a function of y, Q2, and |t|. As expected,
DVCS is dominant at low y whereas BH dominates at higher y with its fraction increasing
up to 100% for y > 0.85.

In the present study, the kinematic domain has been binned logarithmically in 1 < Q2 <
100 GeV2 and 10−4 < xB < 10−1. Figure 3.32 shows the distribution of the statistics per
bin for the 50× 250 configuration (left panel) and 5× 50 configuration (right panel).
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Figure 3.30. The angle of the produced real photon in a DVCS event as a function of the photon
energy for different EIC energy configurations. Each plot shows also the distribution of the photon
and scattered electron energies.

Figure 3.31. The fraction of BH events in the ep→ epγ sample as a function of y (left), Q2 (middle),
and |t| (right).
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Figure 3.32. The distribution of the DVCS events in a logarithmically binned phase space for the
50× 250 (left) and 5× 50 (right) EIC beam energy configurations.

As an example of the precision that could be achieved at an EIC, figure 3.34 shows the
expectations for a measurement of the DVCS ep cross section differential in |t|, dσep→epγ/dt,
for several bins of xB and Q2. The estimated luminosity for the 20 × 250 configuration is
1034 cm−2s−1. The integrated luminosity of the simulated events is 11.9 fb−1, corresponding
to approximately one month of running at 20×250 and assuming 50% operational efficiency.
The b slope parameter with its uncertainty is extracted for each data set via a an exponential
fit ∼ e−b|t|, and its value is reported in figure 3.34 together with uncertainties.

One can see that an excellent measurement (binning over a wide range in Q2 and xB)
can already be obtained with a relatively modest beam time, allowing for numerous detailed
studies of the reaction mechanism (Q2-scaling behavior, QCD evolution) and extraction of
information about the nucleon GPDs and its change with xB. The statistical uncertainty
for the differential cross section can be, at small |t| values, significantly below 1%, as well
as the uncertainty on the extracted slope parameter, b. This implies that the measurement
is actually limited by systematics. Thus the utilization of a high resolution spectrometer
based on the Roman Pots technique becomes important for an EIC. For example, the
leading proton spectrometer based on 6 Roman Pots stations equipped with silicon micro-
strips detectors used at ZEUS for the DVCS dσ/d|t| measurement, allowed to measure
Pt with a resolution of 5 MeV [645] under test beam conditions which corresponded to
∆(P 2

t ) = |∆t| = 10−2Pt for a |t| measurement. A new properly designed Roman Pots
spectrometer, potentially based on a radiation-hard silicon pixel technology, could reach
a geometrical acceptance of about 60%, with a better Pt resolution. Since for an EIC
systematics are the challenge, it is worth sacrificing the acceptance and therefore increasing
the beam time for a more accurate measurement.

Figure 3.35 shows the expectations for a DVCS measurement for large-|t|. The data
have been simulated for 1 < |t| < 2 GeV2 in several bins of xB and Q2. The luminosity of
the simulated sample is 151 fb−1 corresponding to approximately 52 weeks of data taking
in the 20 × 250 configuration. One can see that even if the cross section drops drastically
for large |t| values, the EIC still allows for good binned measurements, but this requires
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years of data taking. (For a relevant discussion, see section 3.6.) In this regime, the main
detector offers a much better acceptance then Roman Pots and can be used for measuring
|t|.

A data sample containing DVCS, BH and their interference term has been simulated
considering separately an electron beam (luminosity is 44 pb−1) and a positron beam (lu-
minosity is 47 pb−1) and used to calculate the beam-charge asymmetry, AC . The result is
shown in figure 3.33 together with a fit in the form AC = p1 cos(φ) (3.69), where p1 is a
free parameter. One can see that a fair accuracy for the BCA can be obtained at an EIC
for a modest integrated luminosity.

Figure 3.33. The beam-charge asymmetry AC as a function of the azimuthal angle φ between the
production and scattering planes.
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Figure 3.34. The DVCS cross section has been simulated in the range 1.0 < Q2 < 100 GeV 2,
10−4 < xB < 0.1 for the 20× 250 GeV energy configuration. The DVCS cross section is simulated
in several bins of xB and Q2 and is shown for small |t| values.

203



Figure 3.35. The DVCS cross section has been simulated in the range 1.0 < Q2 < 100 GeV 2,
10−4 < xB < 0.1 for the 20× 250 GeV energy configuration. The DVCS cross is section simulated
in several bins of xB and Q2 and is shown for large |t| values.
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3.10 DVCS Beam Spin Asymmetries with an EIC

R. Géraud, H. Moutarde, F. Sabatié

3.10.1 Deeply Virtual Compton Scattering polarization observables

The photon electroproduction ep → epγ can either occur by radiation along one of the
electron lines (Bethe-Heitler or BH) or by emission of a real photon by the nucleon (Deeply
Virtual Compton Scattering or DVCS). The total cross section as given by [625] reads:

dσep→epγ

dxBdy d∆2 dφdϕ
=

α3xBy

16π2Q2
√
1 + ǫ2

∣∣∣∣
T
e3

∣∣∣∣
2

, (3.71)

where ∆ is the 4-momentum transfer between the initial and final proton; Q2 the virtuality
of the exchanged photon; xB the usual Bjorken variable; ǫ = 2xBM/Q (M is the proton
mass); y is the fraction of the electron energy lost in the nucleon rest frame; φ is the angle
between the leptonic plane (e, e′) and the photonic plane (γ∗, γ) as shown in figure 3.36.
The angle ϕ is defined as the difference between φ and φS , the orientation of the target spin
in the case of a polarized target, shown also in figure 3.36.

Figure 3.36. Kinematics of the photon leptoproduction in the target rest frame (the Trento nota-
tions). The incoming and outgoing leptons define the scattering plane, and the outgoing photon and
recoil protons define the hadronic plane. In this reference system, the azimuthal angle between the
lepton and recoil proton planes is φ. The angle φS defines the orientation of the target spin in the
case of a polarized target (it will not be used in the present contribution).

The total amplitude T is the superposition of the BH and DVCS amplitudes:

|T |2 = |TBH|2 + |TDVCS|2 + I ,
I = T ∗DVCSTBH + TDVCST ∗BH , (3.72)

where TDVCS and TBH are the amplitudes for the DVCS and Bethe-Heitler processes, and
I denotes the interference between these amplitudes. The individual contributions to the
total ep→ epγ cross section can be written as (up to twist-3 contributions and corrections
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in 1/Q) [625]:

|TBH|2 =
ΓBH(xB , Q

2, t)

P1(φ)P2(φ)

{
cBH
0 +

2∑

n=1

cBH
n cos(nφ) + sBH

1 sinφ

}
, (3.73)

|TDVCS|2 = ΓDVCS(xB , Q
2, t)

{
cDVCS
0 +

2∑

n=1

[cDVCS
n cos(nφ) + sDVCS

n sin(nφ)]

}
,(3.74)

I =
ΓI(xB , Q

2, t)

P1(φ)P2(φ)
]

{
cI0 +

3∑

n=1

[cIn cos(nφ) + sIn sin(nφ)]

}
, (3.75)

where ΓBH,ΓDVCS and ΓI are known kinematical prefactors. P1(φ) and P2(φ) come from
the BH electron propagators and can be written as:

Q2P1 = Q2 + 2k ·∆ , Q2P2 = −2k ·∆+∆2 , (3.76)

where k is the 4-momentum of the incoming lepton.
In the case of scattering on unpolarized or longitudinally polarized targets, all sin(nφ)

coefficients in (3.73-3.75) depend either on the beam helicity λ or on the target longitudinal
polarization Λ; they disappear in the unpolarized cross section.

Using a polarized beam, two separate quantities can be extracted: the difference of cross
section with opposite beam helicities and the total cross section, which at leading twist can
be written respectively as:

dσ→ − dσ← = 2 · TBH · ℑm(TDVCS) ,

dσ→ + dσ← = |TBH|2 + 2 · TBH · ℜe(TDVCS) + |TDVCS|2 , (3.77)

where the arrows correspond to the beam helicity. At low y, the interference term entering
the total cross section is small compared to the DVCS and BH contributions, which contrasts
with the case of intermediate or large y where the DVCS contribution is small with respect
to the interference, which itself is in general significantly smaller than the BH term. Note
that the DVCS contribution to the difference of cross section only appears at higher twist.

From these two natural observables, one can write asymmetries which are experimentally
easier to determine than cross sections:

ALU =
dσ← − dσ→

dσ← + dσ→
, (3.78)

Beam spin asymmetries are mostly sensitive to the GPD H and are complementary
to unpolarized cross sections and beam charge asymmetry measurements presented in sec-
tion 3.9.

3.10.2 Monte Carlo

The PROPHET package [674] was used in its Monte Carlo configuration to generate
photon electroproduction pseudo-data in the EIC kinematics. We relied on the Goloskokov-
Kroll model for GPDs [605] evaluated at NLO, integrated over the LO hard kernel to obtain
Compton Form Factors H, H̃, E and Ẽ which are the complex counterparts of GPDs and
directly relate to the DVCS amplitude at the leading order of αs [625]. Note that Ẽ only
enters the unpolarized cross section for DVCS, but was neglected in this evaluation.
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The photon electroproduction observables were evaluated using the GV package [675],
which in contrast with the usual BMK formalism [625], does not make approximations of the
order of 1/Q in the treatment of the interference term. It was checked that the unpolarized
cross sections generated by our Monte Carlo give the results simular to those shown in
section 3.9, but with more realistic b-slopes since they were not taken as a constant but
form a part of the Goloskokov-Kroll model.

3.10.3 Projected results

The Beam Spin Asymmetry evaluated in a typical (xB , Q
2) bin is shown in figure 3.37.

The sinφ coefficient turns out 3 to 5 times lower than that at typical lower energy and
higher xB kinematics. Therefore, this asks for a rather large integrated luminosity. For the
considered xB range (and lower), about three months of EIC at 1034 cm−2s−1 luminosity
assuming 50% operational efficiency is necessary to achieve a 10 to 15% accuracy on the
extracted sinφ coefficient, mostly linked to the imaginary part of CFFH. For higher xB and
Q2 values, much larger integrated luminosities will be necessary to achieve similar statistical
accuracy.

Using longitudinal and transverse target asymmetries, one will be able to obtain infor-
mation on H̃ and even the elusive E, essential for the evaluation of Ji’s sum rule. Studies
of these observables for the EIC are in progress using the same formalism.

Figure 3.37. Photon electroproduction Beam Spin Asymmetries for the 20× 250 EIC configuration,
in the typical kinematic bin: 1.58 ·10−3 < xB < 2.51 ·10−3, 3.16 < Q2 < 5.61 GeV2 for four different
t-bins as shown on each plot. The Monte Carlo was set up as to generate 90k events for each t-bin
and the corresponding integrated luminosity is shown on each plot. Up to about 3 months of beam
time with 50% efficiency is necessary to achieve 10 to 15% accuracy on the extracted sinφ coefficient
p0, sensitive to the imaginary part of CFF H.

207



3.11 Hard exclusive photoproduction of Quarkonia

Peter Kroll

Photoproduction of quarkonia (e.g., J/Ψ and Υ) forms another class of hard exclusive
processes which allow one to scrutinize the handbag approach and extract information on
generalized parton distributions (GPDs). Neglecting intrinsic heavy quarks in the proton,
only the gluonic subprocess γ∗g →Mg (accompanied by the gluon GPDs) contributes to the
scattering amplitude. A particular feature of quarkonium production is the appearance of
the large mass, mQ, of the heavy quark which provides a hard scale and allows one to treat
photoproduction within a QCD factorization approach. A first leading-order calculation
of quarkonium production within the handbag approach has been carried out in [676].
Recently this analysis has been improved by the inclusion of NLO corrections [677]. In
these studies, a non-relativistic scenario for the description of the quarkonium state has been
adopted in which the quark and antiquark share the meson’s momentum equally. Hence,
the quarkonium wave function is proportional to δ(x − 1/2) and the quarkonium mass is
given by MQ ≃ 2mQ. There are other theoretical approaches to the process of interest,
e.g., the dipole approach, the leading ln(1/x) approximation or the BFKL Pomeron. Due
to limitation of space these approaches will not be discussed here.

In the kinematical range of large photon-proton center-of-mass energy,
√
s ≫MQ, and

small momentum transfer, t, the skewness is given by

ξ =M2
Q/(2s) . (3.79)

Neglecting terms of order of
√
−t/mQ, t/4m

2 and ξ, one finds the following expressions for
the helicity amplitudes of the quarkonium photoproduction:

Mµ+,µ+ =
e0
2
eQ

∫ 1

0

dx

(x+ ξ)(x− ξ + iε)

∑

λ

Hµλ,µλ

[
Hg + λH̃g

]
,

Mµ−,µ+ = −e0 eQ
√−t
4m

∫ 1

0

dx

(x+ ξ)(x− ξ + iε)

∑

λ

Hµλ,µλE
g ,

M−−,++ = e0 eQ

√−t
2m

∫ 1

0

dx

(x+ ξ)(x− ξ + iε)
H−−,++H

g
T . (3.80)

Other helicity amplitudes are zero except for those related by parity conservation to the
above ones. The helicity labels µ and µ′ refer to the initial photon and final meson, re-
spectively; the labels λ and λ′ refer to the initial and final gluon, respectively. The explicit
helicity labels of M refer to the proton. In the non-relativistic scenario, the LO subprocess
amplitudes read

Hµ′λ′,µλ =
8παs(µR)fQ

3mQ
δµ′µ δλ′λ , (3.81)

where fQ is the decay constant of the quarkonium; µR is an appropriate renormalization
scale. Thus, at this level of accuracy, only the process amplitudes,

Mµ+,µ+ = e0eQ
8παsfQ
3mQ

〈Hg〉 , Mµ−,µ+ = −e0eQ
8παsfQ
3mQ

√−t
2m

〈Eg〉 , (3.82)

are non-zero. The terms 〈F 〉 denote the convolutions of the subprocess amplitudes and
GPDs. One sees that the unpolarized cross section for quarkonium production at small t
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is only fed by Hg, while the asymmetry measured with a transversally polarized target is
given by an interference term of Eg and Hg. Other GPDs, like the chiral-odd Hg

T , do not
contribute at this level of accuracy.

For the EIC kinematics for which ξ < 0.01, quarkonium production is a diffractive
process, i.e., the amplitudes are dominantly imaginary. Thus, essentially the GPDs are
only needed at the cross-over line x = ξ, while the small real part may be estimated with
the help of analyticity. Many methods for the construction of GPDs, e.g., the double
distribution ansatz [678] or the Shuvaev transform [593], lead to GPDs which at x = ξ
are proportional to the usual parton distributions. In particular, for the reggeized double
distribution ansatz used in [659, 679], one has

Hg(ξ, ξ, t) = ch
[
2ξg(2ξ)

]
(2ξ)−α

′
ht ebht . (3.83)

Assuming that xg(x) = cx−δh at low x, the constant ch reads (with b = 2 [678]):

ch = c
[
(1− δh/5)(1 − δh/4)(1 − δh/3)

]−1
. (3.84)

Since δh is positive, ch > c, which implies that Hg(ξ, ξ, t = 0) > 2ξg(2ξ) (this is termed the
skewness effect). In (3.83), a linear gluonic (’Pomeron-like’) Regge trajectory is assumed:

αh = 1 + δh + α′ht . (3.85)

Its slope is taken from the J/Ψ photoproduction data [588] (α′h = 0.15GeV−2), while δh,
the intercept minus 1, can be fixed from the data on the cross section for electroproduction
of ρ0 and φ mesons [680] that behaves as σ ∝ s2δh . The data provide a scale-dependent
intercept (see figure 3.38):

δh(µ) = 0.1 + 0.06 ln(µ2/µ20) , (3.86)

where µ0 = 2GeV and µ = Q for electroproduction. The scale dependence of δh is in
agreement with evolution.
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Figure 3.38. Left: The intercept of the gluonic trajectory shifted by one unit; the data points are
from [680]. Right: Various NLO gluon PDFs. The figure is from [681].

The construction of the GPD along the lines described above requires the knowledge
of the gluon PDF; in figure 3.38, some recent results for it are shown. For x smaller than
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about 10−3, the errors of most PDFs become very large. The only exception is the CTEQ6
results [82] for which the error stays constant at the level of about 25% for x < 10−2. Since
the uncertainties of the PDF are conveyed to the GPDs and, hence, to the quarkonium
cross section, any prediction of the latter will suffer from huge uncertainties rendering any
comparison with experiment meaningless. In order to arrive at reasonable predictions, the
following remedial measure has been proposed in [659, 679]: The gluon PDF is expanded
as the following series,

xg(x, µ) = x−δh(µ)(1− x)5
2∑

i=0

ci(µ)x
i/2 , (3.87)

and the expansion parameters are fitted to a given PDF for intermediate values of x, say,
0.003 < x < 0.3, and relevant scales. The power δh is fixed at the experimental value (3.86).
Applying this prescription to the NLO CTEQ6 PDF [82], one can reproduce the CTEQ6
result for x < 0.003. Therefore, the CTEQ6 gluon PDF with its errors may be used for
numerical predictions. (The same method applied to other current gluon PDFs leads, in
most cases and within uncertainties, to the results for cross sections that are in a reasonable
agreement with those evaluated using the CTEQ6 PDF [659].)

The calculation of the quarkonium cross section is further complicated by large NLO
corrections [677], see figure 3.39. The results shown in figure 3.39 are evaluated from a GPD
that is also generated from the NLO CTEQ6 PDF but under the assumption that, at the
initial scale, Hg is given by the PDF multiplied by an appropriate function of t. Evidently,
the large NLO corrections necessitate a resummation of higher orders for a reliable prediction
of the quarkonium cross section.
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Figure 3.39. Left: LO and NLO predictions for the forward J/Ψ photoproduction vs.
√
s (the figure

is from [677]). Right: LO prediction using the GPD given in [679, 659], see the text. The green
band indicates the uncertainty of the prediction; the data points are from [589, 588].

In order to examine the dependence of the predictions on the GPD used in the calcula-
tion, I have repeated the LO order calculation exploiting the GPD proposed in [659, 679]
and whose construction is briefly described above. The result, obtained for a scale of 2mQ

which is chosen in concord with the construction of the GPD [see (3.86)], overestimates
the data but is in agreement with the experimental energy dependence. It however dif-
fers strongly from the LO result presented in [677]. Similar observations can be made for
photoproduction of the Υ.
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The target asymmetry for quarkonium production may give access to the GPD Eg, of
which not much is known, see the discusion in section 3.4. Indeed,

AUT = −
√−t
m

|〈Eg〉|
|〈Hg〉| sinφ , (3.88)

where φ is the relative phase between 〈Hg〉 and 〈Eg〉. Since Eg is expected to behave
similarly to Hg at small ξ but with a Regge trajectory αe = 1 + δe + α′et, analyticity tells
us that the relative phase is approximately given by

φ(t) = π/2(αe(t)− αh(t)) . (3.89)

In a soft Pomeron scenario, one would have αe = αh and, hence, AUT = 0. However, the
QCD evolution of the GPDs may generate differences in the trajectories and, therefore,
AUT may be non-zero. To work this out, one needs a detailed study of the evolution of Eg,
which is lacking at present. There are examples of αe in the literature that lead to tiny
asymmetries of the order of 1−2%. In section 3.4, it has been proposed a parameterization
of Eg with a node at some intermediate value of x. In this case one may obtain a larger
AUT . However, this possibility has not yet been explored in detail.

Summary: Comparing precise data of the cross section for photoproduction of quarkonia
with theoretical calculations within the handbag approach may allow for an extraction
of Hg at the cross-over line and small values of ξ since the real part of the amplitude
provides only small corrections to the cross section of the order of 10%. This may lead to
a useful constraint on Hg and g(x) at low x. However, in order to arrive at reliable results
for Hg, the theoretical calculation should include resummed higher orders of perturbative
QCD. Also, deviations from the non-relativistic scenario should be investigated and the
strength of contributions from intrinsic heavy quarks estimated. Furthermore, a detailed
comparison of various gluon GPDs should be made and their errors taken into account. For
photoproduction of charmonium production in particular, one should be aware of possible
substantial power corrections since the charm quark mass although being large enough to
allow for a perturbative treatment of the subprocess, is not large enough to suppress power
corrections decisively. On the other hand, for electroproduction of charmonium power
corrections are likely to be smaller. In principle the target asymmetry gives an access to
Eg. However, AUT will likely be very small except for the case when Eg markedly differs
from common parameterizations.
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3.12 Simulations of non-diffractive exclusive processes at an
EIC

T. Horn

3.12.1 Introduction

Exclusive processes in ep scattering at collider energies can be either “diffractive” (no
exchange of quantum numbers between the target and the projectile/produced system) or
“non-diffractive” (there is an exchange of quantum numbers). By measuring diffractive
channels (J/Ψ, ρ0, or φ production) at sufficiently high Q2, one probes the gluon GPDs
and/or the singlet quark GPDs. In particular, J/Ψ production probes the gluon GPD in
the nucleon, and its t-dependence reveals the transverse spatial distribution of the gluons.
Measurements of DVCS and exclusive ρ0 production at high Q2 provide access to the singlet
quark and gluon GPDs.

Non-diffractive channels like π+, π0, or K+ production are sensitive to the flavor and
spin structure of the nucleon at small xB , which complements the information obtained
from DVCS and meson production experiments in the valence region, e.g., HERMES and
6 GeV and 12 GeV JLab.

For moderate values of xB , the proposed electron-ion collider (EIC) could reach Q2 > 10
GeV2, where higher-twist contributions, which complicate the extraction of GPDs from
the data, are expected to be small. Indeed, the comparison of different meson channels
alone provides model-independent information about the ratio of quark spin and spatial
distributions, and a comparison between, for instance, π+ and K+ production may allow
for the studies of SU(3) symmetry in parton distributions.

3.12.2 Rate predictions

Rate predictions were made for several exclusive reaction channels using a new exclusive
Monte Carlo generator. Here, we will focus on the π+ and K+ channels. These are the
simplest systems also allowing for comparisons of non-strange and strange distributions
similarly to the comparative studies of singlet quarks and gluons with diffractive exclusive
channels.

Figure 3.40 shows the simulated cross section for exclusive pion and kaon production in
the 5× 50 GeV configuration in ep collisions (

√
s=31.6 GeV) at a luminosity of 1034 cm−2

s−1 3, and data taking for 100 days. The simulated data shown here are divided into four
Q2 bins between 10 and 45 GeV2 for a bin in xB between 0.02 and 0.05. Each Q2 bin was
divided into nine −t bins. The simulated pion data cover a range in −t up to 1 GeV2 with
acceptable rates for the assumed run time and luminosity for all Q2 bins. The rates in each
Q2 bin are highest at small values of −t and smallest at high values of −t. This makes
sense as one of the features of pion production is the dominance of the ”pole term” at low
−t. Furthermore, the pion rate decreases rapidly with higher Q2 bins as the cross sections
decrease, which is a characteristic behavior of exclusive reactions. However, one should keep
in mind that reaching high Q2 is needed due to the factorization requirement for studying
the transverse spatial structure of sea quarks. The kaon simulated data are presented in
the same kinematic bins as the pion data. The kaon cross section is smaller than the pion

3These energies and luminosities correspond to those given as medium-energy collider design prior to the
INT 10-3 program, e.g.,

√
s=31.0 GeV.
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one, although it does not fall off as rapidly with increasing −t for each Q2 bin, because the
kaon pole is not as dominant as the pion pole. The kaon rates are generally lower than the
pion rates, but the effect is most visible in the largest Q2 bins. For a fully differential kaon
measurement, it is thus essential to have luminosities of at least 1034 cm−2 s−1. Given the
design parameters of the medium-energy collider, this would correspond to a range in

√
s

between 31 and about 45 GeV.

Figure 3.40. EIC simulations for the exclusive pion and kaon electroproduction cross sections at a
electron beam energy of 5 GeV and a proton beam energy of 50 GeV (

√
s=31.6 GeV), 100 days

running, and a luminosity of 1034 cm−2 s−1. The points are shown for a bin in xB of 0.02 to 0.05.
The four panels denote bins in Q2 (from left to right) of 10-15 GeV2, 15-20 GeV2, 25-30 GeV2, and
35-40 GeV2.

The rate prediction depends to some extent on the cross section models included in the
simulation. For pions, a Regge-based cross section model that describes existing data well
was used [682]. The model dependence of the rate prediction was estimated using a different
cross section model based on an empirical parameterization of charged pion data [683]. For
kaons, the rate estimate was based on the empirical fits to world kaon production data. The
resulting uncertainty in the simulated rates was about a factor of two.

3.12.3 Kinematic considerations

Measurements in exclusive reactions require, besides knowledge of the beam quantities,
information of all particles in the exclusive reaction, i.e., the scattered electron, the scattered
meson, and the recoil baryon. Below we will illustrate the kinematic features of exclusive
reactions using the H(e, e′π+)n reaction. However, the kinematic distributions shown are
independent of the exclusive channel, and are thus generally applicable to all exclusive
reactions (diffractive and non-diffractive).

Figure 3.41 shows the accessible phase space for exclusive reactions in ep collisions for
five center of mass energies 4. A cut of Q2 > 10 GeV2 was applied to focus on the region
of interest for transverse spatial structure studies. At a value of

√
s=13.8 GeV, the meson

distribution covers the angular range of about 30-40 degrees at relatively small momentum.

4The energies have been chosen to correspond to the preliminary values of the medium and high energy
collider designs as given prior to the INT 10-3 program.
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Up to values of
√
s=44.7 GeV, which correspond to nearly symmetric collisions, the exclusive

meson distribution spreads over a wide angular range, still at a moderate momentum. At
even higher values of

√
s, the angular spread is reduced significantly. Indeed, the meson

distribution is pushed into a relatively narrow forward cone. Furthermore, the events of
interest in this narrow angular range also have very high momentum approaching the beam
energy. Exclusive measurements at these large values of

√
s would thus require the detection

of a high energy meson over a very small angular range.

Figure 3.41. The kinematic phase space for light mesons in deep exclusive reactions for different ep
collisions. A cut of Q2 > 10 GeV2 is applied to focus on events needed for studies of transverse
spatial distributions. The darker regions in the figures denote regions of the highest intensity. The
center of mass energies for the medium energies are

√
s=13.8 GeV, 31.6 GeV, and 44.7 GeV, and

for the high energies
√
s=63.2 GeV and 100 GeV. In this simulation, the direction of the electron

beam is toward increasing angles.

The momentum resolution (dp/p) to first order scales linearly with the momentum. The
best resolution is thus achieved by keeping the laboratory momenta as low as possible for
a given

√
s. This is achieved in symmetric, or nearly symmetric collisions. As illustrated in

figures 3.41 and 3.42 such kinematics also offer the advantage that the angular distribution
of the outgoing electrons and mesons covers nearly 4π, providing the best angular resolution.

Figure 3.42 shows the scattered electron distribution in deep exclusive reactions. At
modest electron energies (up to about 6 GeV) electrons predominantly scatter into the
central and forward direction. Kinematically these correspond to high-Q2 events, which are
also the events of interest in studies of the transverse spatial structure of sea quarks. On the
other hand, electrons at larger energies (up to the electron beam energy) scatter into the
forward-electron direction. These events correspond to low-Q2 events, which are of interest
in photoproduction or heavy meson measurements.

The meson momentum distribution has a strong Q2 dependence with the high momen-
tum region dominated by low-Q2 (photoproduction) events. This is illustrated in figure 3.43
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Figure 3.42. The kinematic phase space for electrons in exclusive reactions at low and high Q2 at a
fixed value of

√
s=49.0 GeV.

with a comparison of photo- and electroproduction at fixed
√
s=22 GeV using a cut of Q2 >

10 GeV2 to select the electroproduced light mesons. The forward scattered photoproduced
mesons dominate the low Q2 region populating a narrow angle cone with high momentum
while the light mesons with Q2 >10 GeV2 are centered around central angles at momenta
between 2 and 4 GeV. The scattered electron distribution shows the same general features
as discussed above. The t distribution of the recoil baryons does not change with selecting
the low or high Q2 region.

Figure 3.43. A comparison of the kinematic phase space for the scattered meson, electron, and the
recoiling baryon in exclusive photo- and meson electroproduction at

√
s=21.9 GeV. The three upper

panels are dominated by photoproduction; the three lower panels focus on light meson events for
studies of transverse spatial distributions.
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The EIC includes the option of using higher electron energies up to 11 GeV. Figure 3.44
shows a comparison of the meson distribution at fixed values of the ion beam energy for
three values of

√
s=21.9, 31.6, 44.7 GeV. Here, we will focus on the distribution in the

central region, which is indicated by the vertical lines. As mentioned above, the meson
distribution is pushed into a narrow angular cone with an increasingly higher momentum
as

√
s increases. Furthermore, the average meson momentum in the central region between

± 30 deg increases from 4 GeV/c to about 8 GeV/c as the electron beam energy doubles
from about 5 to 10 GeV at a fixed ion beam energy. Measurements of exclusive reactions at
electron beam energies of about 10 GeV/c and fixed ion beam energies would thus require
the detection of high momentum mesons in the central angle region (± 30◦).

Figure 3.44. The meson kinematic phase space for higher energies for deep exclusive reactions for
different combinations of the beam electron and proton energies. The first value in the labels denotes
the electron beam energy. A cut of Q2 > 10 GeV2 is applied to focus on events needed for studies
of transverse spatial distributions.

To access the physics of interest in exclusive reactions and extract information about
the GPDs, one needs data binned over a sufficiently large range in −t: a range of at least
0 < |t| < 1 GeV2 is needed. In ep collisions, the main challenge is that the outgoing baryons
are scattered at relatively small angles, especially at low −t, as the resolution goes roughly
as the inverse of the proton beam energy,

δt

t
∼ t

Ep
. (3.90)

Figure 3.45 illustrates the deep exclusive recoil baryon −t angular resolutions for values
of

√
s = (13.8, 31.6, 44.7, 63.2, 100) GeV. The nearly symmetric collisions at lower proton

beam energy provide the largest recoil baryon angular distributions of values of at least 1◦.
For asymmetric collisions, the distribution rapidly decreases to the angular distributions
of less than 0.3◦. To access the physics of interest, a better −t resolution would thus be
achieved with lower-energy and more symmetric kinematics.

3.12.4 L/T separation

Beyond studies of transverse spatial structure of sea quarks, non-diffractive processes
provide the opportunity for additional studies, for instance, the tests of hard-soft QCD fac-
torization and measurements of the pion form factor. These measurements require isolating
the longitudinal part of the electroproduction cross section using the L/T separations. This
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Figure 3.45. The kinematic phase space as −t vs. the scattering angle of the recoil baryon in
exclusive reactions for five values of

√
s. The first value in the labels denotes the electron beam

energy. A cut of Q2 > 10 GeV2 is applied to focus on events needed for studies of transverse spatial
distributions.

Figure 3.46. The virtual photon polarization, ǫ as a function of s for different combinations of the
electron and proton beam energies, at fixed Q2=10 GeV2, xB=0.1, and −t=0.1 GeV2. At high
values of s, ǫ→ 1 complicating the L/T separation.
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technique requires comparing data taken at two different beam energies with sufficiently
large separation of the virtual photon polarization, ∆ǫ, to control systematic uncertainties.
Based on previous L/T separations, a minimum acceptable value of ∆ǫ is 0.1.

Figure 3.46 shows the accessible values of ǫ as a function of s at fixed values of Q2,
xB , and −t. The lowest value of ǫ of about 0.8 is reached at

√
s=14.3 GeV, increasing

to near unity as s increases. Beyond
√
s=31.6 GeV, ǫ is effectively unity making the L/T

distributions impossible.

3.12.5 Summary of basic requirements for exclusive reactions

Studies of exclusive non-diffractive processes provide important information on the
transverse spatial distribution of non-perturbative sea quarks. These measurements re-
quire high luminosity for fully differential measurements in xB , −t, and Q2 as well as recoil
detection for exclusivity. They require a kinematic reach in t of at least up to 1 GeV2 with
good resolution. Our studies suggest that exclusive processes for values of xB > 0.01 have
better prospects with lower-energy and more symmetric kinematics.

The following list summarizes the basic experimental requirements for studies of the
transverse spatial structure of sea quarks through non-diffractive exclusive processes.
Energies
– More symmetric energies favorable in exclusive non-diffractive reactions;
– Lower energies essential for a range in ǫ for the L/T separation.
Kinematic Reach
– Need Q2 > 10 GeV2 (pointlike configurations);
– xB range between 0.001 and 0.1 overlapping with HERA and JLab 12 GeV;
– s range between 200 and 1000 GeV2.
Luminosity
– Exclusive non-diffractive processes require high luminosity for low rates for fully differen-
tial measurements; – Kaons push luminosity to > 1034 cm−2 s−1.
Detection
– Need recoil detection for exclusivity;
– Range in −t and resolution.
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3.13 Investigating the transverse spin of partons with deep
inelastic exclusive experiments

Gary R. Goldstein, Simonetta Liuti

3.13.1 Introduction

In this contribution, we suggest a class of deeply virtual exclusive reactions, namely
pseudoscalar meson electroproduction, as a means to access chiral-odd distributions. These
are described by a set of four chiral-odd GPDs which enter the matrix elements for the
various terms of the cross section. We conducted an analysis using a parameterization of the
GPDs that is inspired by a physically motivated picture of the nucleon as a quark-diquark
system with a Regge behavior. In the chiral-even sector a quantitative parameterization
can be obtained from a global fit to PDFs, nucleon form factors, and DVCS data where the
masses, couplings and Regge power behavior that set the scale for the dependence on the
kinematic variables, X, ζ, t,Q2, are determined via a recursive procedure [684].

The extension of this parameterization scheme to the chiral-odd GPDs is critical for the
phenomenology of deeply virtual meson electroproduction, which was begun particularly
for the π0 in [685]. In the diquark spectator model, chiral-even helicity amplitudes are
simply related to their chiral-odd counterparts via parity transformations. For the d-quark
case it is only the axial diquark relations that are involved, while the u-quark involves the
scalar contribution, as well. We thereby obtain the full set of four chiral-odd GPDs, each
being linearly related to helicity amplitudes. This allows us to predict the behavior of
pseudoscalar electroproduction [686].

It has now become particularly pressing to study the heavy quark components of the
nucleon because of the advent of the LHC. For the types of precision measurements in the
unprecedented multi-TeV CM energy regimes envisaged at the LHC it will be necessary
to provide accurately determined QCD inputs. The analyses in [129] have shown how
the inclusion of non perturbative charm quarks could modify the outcome of global PDF
analyses. However, the situation is not clear-cut. We therefore extended our analysis to
strange and charm pseudoscalar meson production [687]. We proposed that in order to
refine analyses such as the one in [129], new observables need to be identified from deeply
virtual meson production and spin correlation measurements. We presented preliminary
results involving the following electroproduction exclusive processes: (1) γ∗p→ J/ψ p′; (2)
γ∗p → DDp′; (3) γ∗p → DΛc; (4) γ∗p → ηC p

′. These processes necessitate: i) high
luminosity because they are exclusive; ii) high enough Q2 to produce the various charmed
mesons, and iii) a wide kinematical range in Bjorken x.

Finally, a few questions have emerged concerning on one side the applicability of disper-
sion relations to deeply virtual exclusive processes [688], and on the other, the commonly
assumed partonic picture of the ERBL region [689]. Newer deeply virtual exclusive cross
section and asymmetry measurements in extended kinematical regimes will provide essential
tests of the theory.

3.13.2 Transverse spin from pseudoscalar meson production

The basic definition of the quark-nucleon GPDs is through off-forward matrix elements
of quark field correlators. Contracting with the Dirac matrices, γµ or γµγ5 (σµνγ5), and
integrating over the internal quark momenta gives rise to the four chiral-even GPDs, H,E
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or H̃, Ẽ, and four chiral-even GPDs, HT , ET , H̃T , ẼT [575]. The crucial connection of the
eight GPDs to spin dependent observables in DVCS and DVMP is through the helicity
decomposition [575]. For example,

A++,++(X, ξ, t) =

√
1− ξ2

2
(Hq + H̃q − ξ2

1− ξ2
(Eq + Ẽq)) , (3.91)

A++,−−(X, ξ, t) =
√

1− ξ2(Hq
T +

t0 − t

4M2
H̃q
T − ξ

1− ξ2
(ξEqT + ẼqT )) . (3.92)

We have constructed a robust model for the GPDs, extending previous work [690] that
is based on the parameterization of diquark spectators and Regge behavior at small X. The
GPD model parameters are constrained by their relations to PDFs (at ζ = 0, t = 0) and to
nucleon form factors F1(t), F2(t), gA(t), and gP (t) through the first x moments. For the
chiral-odd GPDs, there are fewer constraints. In particular, HT (X, 0, 0) = h1(X) can be fit
using the loose constraints in [250] since the first moment of HT (X, ξ, t) is the “tensor form
factor”, called gT (t). It is conjectured that the first moment of 2H̃q

T (X, 0, 0) + EqT (X, 0, 0)
is a “transverse anomalous moment”, κqT , defined in [497].

With our ansatz, many observables can be determined in parallel with the correspond-
ing Regge predictions. Since the initial work [685], we have undertaken a more extensive
parameterization and presented several new predictions [684]. In figure 3.47, we show an
example corresponding to the transversely polarized proton target.
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Figure 3.47. Left: Transverse spin asymmetry, AUT , vs. −t at Q2 = 2.3 GeV2 and xB = 0.36 for
different values of the tensor charge, δu, with fixed δd = −0.62. Right: Comparison of π0 and ηc
cross sections. The range between the two lines gives an estimate of where the cross sections for the
other processes will lie.

The measured cross section for π0 is sizable and has large transverse γ∗ contributions.
This indicates that the main contributions should come from chiral-odd GPDs, for which the
t-channel decomposition is richer. In particular, because these GPDs arise from the Dirac
matrices σµν , there are two series of JPC values for each GPD [691] corresponding to space-
space or time-space combinations 1−− and 1+−. These series occur for three of the four
chiral-odd GPDs, with exception of ẼT . We are thus led to the conclusion that chiral-odd
GPDs will dominate the neutral pseudoscalar leptoproduction cross sections. This result
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has interesting consequences. First, in a factorized handbag picture, these GPDs will couple
to the hard part, the γ∗+quark → π0+quark, provided that π0 couples through γ5, which
is naively twist-three, rather than the twist-two coupling γ+γ5. Second, the vector 1−− and
axial-vector 1+− in the t-channel, viewed as particles (ρ0, ω and b01,h), couple primarily
to the transverse virtual photon. For Reggeons, the 1−− does not couple at all to the
longitudinal photon, while the axial-vector 1+− does so through helicity flip [692]. Guided
by these observations [685], we assume that the hard part depends on whether the exchange
quantum numbers are in the vector or axial-vector series, thereby introducing orbital angular
momentum into the model. We use Q2 dependent electromagnetic “transition” form factors
for vector or axial-vector quantum numbers going to a pion. We calculate these using pQCD
for q+ q̄+γ∗(Q2) → q+ q̄ and a standard z-dependent pion wave function, convoluted in the
impact parameter representation that allows orbital excitations to be easily implemented.

With our model for the chiral-odd spin-dependent GPDs and these transition form fac-
tors, we can obtain the full range of cross sections and asymmetries in kinematic regimes
that coincide with ongoing JLab experiments. (A similar emphasis on chiral-odd contribu-
tions for π electroproduction has recently been proposed [693], although the details of that
model are quite different from ours.) We are able to predict the important transverse photon
contributions to the observables [685]. In figure 3.47 (left), we show one striking example of
the predictions that depend on the values of the tensor charges, thereby providing a means
to narrow down those important quantities. This program has been presented [684] and
further details will soon appear, as the refinements of the chiral-odd parameterization are
completed [686]. In figure 3.47 (right), we show the cross section, σT + ǫσL, for charmed
meson production and compare it to the one for π0 production [687].

In summary, through the use of physically motivated models and the new horizons
provided by the EIC, a far reaching interpretation of the separate spin-dependent GPDs and
thereby, a picture of the transverse structure of the nucleons will emerge. The connection
of chiral-odd GPDs to the transversity structure of the nucleon is of great interest as a
manifestation of quark and gluon orbital angular momentum.
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3.14 Ways to access transversity GPDs at the EIC

B. Pire, L. Szymanowski, S. Wallon

3.14.1 Introduction

Transversity quark distributions in the nucleon remain among the most unknown leading
twist hadronic observables. This is mostly due to their chiral-odd character which enforces
their decoupling in most hard amplitudes. Generalized parton distributions (GPDs) offer
a new way to access the transversity dependent quark content of the nucleon. The factor-
ization properties of exclusive amplitudes allow in principle to extract the four chiral-odd
transversity GPDs [694], HT , ET , H̃T , ẼT . However, one-photon or one-meson electropro-
duction leading twist amplitudes are insensitive to them [695, 696]. The strategy which we
followed in [697, 698] is to study the leading twist contribution to exclusive processes where
more mesons are present in the final state. Note that, contrarily to transversity PDFs,
transversity GPDs enter the formulae for exclusive cross sections even when considering
unpolarized proton target, provided one selects the polarization state of an outgoing meson.

3.14.2 Diffractive photoproduction of two ρ mesons

We consider [697, 698], in analogy with the virtual photon exchange occurring in the
deep inelastic electroproduction of a meson, the subprocess:

P(qP ) + p(p2) → ρT (pρ) +N ′(p2′) , (3.93)

of almost forward scattering of a virtual Pomeron (the hard scale is the virtuality −q2P of
this Pomeron) on a nucleon. This subprocess is at work in the process

γ
(∗)
L/T (q) + p(p2) → ρ0L,T (qρ) + ρT (pρ) +N ′(p2′) , (3.94)

where a real or virtual photon scatters on a proton p, which leads via a two-gluon exchange
to the production of two vector mesons separated by a large rapidity gap and the scattered
nucleon N ′, as shown on figure 3.48. The final state may be either ρ0ρ0p or ρ0ρ+n. In both
cases, the two-gluon exchange with the nucleon line is forbidden by charge conjugation or
charge conservation and the process is thus sensitive only to quark GPDs. We consider the
kinematical region where the rapidity gap between ρ(pρ) and N

′ is much smaller than the
one between ρ(qρ) and ρ(pρ), i.e., the energy of the (ρ(pρ) + N ′) system is smaller than
that of the (ρ + ρ) system but is still large enough to justify our approach (in particular,
it is much larger than baryonic resonance masses). Since quasi-real transverse photons are
more abundant in electron-ion collisions and charged pions are most easily detected, one
may specialize to the reaction:

γT (q) + p(p2) → ρ0L,T (qρ) + ρ0T (pρ) + p(p2′) , (3.95)

where the initial quasi-real photon is treated as if it were real.
In this kinematical regime, the amplitude for this process is calculable consistently

within the collinear factorization method, as an integral (over the longitudinal momentum
fractions of the quarks) of the product of two amplitudes: the first one (the impact factor)
describes the transition γ(∗) → ρ0L,T via a two-gluon exchange and the second one describes

the subprocess P + p → ρ0T + p. The fact that the latter process is closely related to
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Figure 3.48. Factorization of the process γT (q)+p(p2) → ρ0L,T (qρ)+ρ
+
T (pρ)+n(p2′) in the asymmetric

kinematics discussed in the text. P is the hard Pomeron modeled by a two-gluon exchange.

the electroproduction process γ∗ p → ρ0 p allows us to separate its long distance dynamics
expressed through the GPDs from a perturbatively calculable coefficient function. The
skewness parameter ξ is related in the usual way (ξ ≈ xB/(2−xB)) to the Bjorken variable
defined by the Pomeron momentum xB = −q2P/(2qP · p2). The choice of a transversely
polarized vector meson ρ0T involves a chiral-odd distribution amplitude, which in turn selects
the chiral-odd GPDs.

The resulting scattering amplitude Mγ∗ p→ρ0L ρ0T p then receives contributions from the
four chiral-odd GPDs HT , H̃T , ET and ẼT , but only the first one does not vanish kine-
matically in the forward direction. Thus, assuming that the Mandelstam variable −t =
−(p2 − p2′)

2 is sufficiently small, the transversity GPD HT contribution dominates the
amplitude of process (3.95) which reads :

Mγ p→ρ0L ρ0T p = sin θ 16π2sαsf
T
ρ ξ

√
1− ξ

1 + ξ

CF
N (p 2

T )
2

×
1∫

0

du φ⊥(u)
u2ū2

Jγ→ρ
0
L(upT , ūpT )

Hu d
T (ξ(2u− 1), ξ, t)√

2
, (3.96)

where Hud
T = Hu

T −Hd
T ; φ⊥(u) is the distribution amplitude (DA) of the ρT meson; θ is the

angle between the transverse polarization vector of the target ~n and the polarization vector
~ǫT of the produced ρ0T meson; ~ε is the polarization vector of the initial photon. The impact
factor reads

Jγ→ρL(kT1, kT2 = pT − kT1) = −
eαs π f

0
ρ√

2N

1∫

0

dz (2z − 1)φ‖(z)
(
~ε · ~QP

)
, (3.97)

with

~QP (kT1, kT2 = pT − kT1) =
z ~pT

z2 p2T +Q2 z z̄ +m2
q

− z̄ ~pT
z̄2 p2T +Q2 z z̄ +m2

q

+
~kT1 − z ~pT

(kT1 − z pT )2 +Q2 z z̄ +m2
q

−
~kT1 − z̄ ~pT

(kT1 − z̄ pT )2 +Q2 z z̄ +m2
q

.

The scattering amplitude (3.96) receives a contribution only from the ERBL region.
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3.14.3 Cross section estimates

To obtain an estimate of the differential cross section of this process, we need a model
for the transversity GPD Hq

T (x, ξ, t) (q = u, d). We proposed a simple meson-pole approach
starting with the effective interaction Lagrangian,

LANN =
gANN
2M

N̄σµνγ5∂
νAµN , (3.98)

in which gANN is the coupling constant determining the strength of the interaction of the
axial meson A with the nucleon N . This yields

Ha
T (x, ξ) =

gANNf
a⊥
A (∆ · ST )2

2MN m2
A

φ⊥(
x+ξ
2ξ )

2ξ
, (3.99)

where ∆ is the transverse part of the momentum transfer vector r; fa⊥A is related to the
A meson decay constant. Identifying the scalar product (∆ · ST )2 with the average of the
intrinsic transverse momentum of the quarks, (∆ · ST )2 → 1/2〈k2⊥〉, and the axial meson A
with the b1 meson, A = b1(1235), we obtain our final expression for Hud

T :

Hud
T (x, ξ, 0) =

gb1NNf
T
b1
〈k2⊥〉

2
√
2MN m2

b1

φb1⊥ (
x+ξ
2ξ )

2ξ
, (3.100)

where fTb1 =
√
2fa1/mb1 with fa1 = (0.19 ± 0.03) GeV2; gb1NN = 5/(3

√
2)ga1NN with

ga1NN = 7.49 ± 1.0; 〈k2⊥〉 = (0.58 − 1.0) GeV2. The t dependence of the chiral-odd GPDs
may be parameterized in the following simple way:

Hq
T (x, ξ, t) = Hq

T (x, ξ, t = 0) × C2

(t− C)2
, (3.101)

with the standard dipole form factor with C = 0.71 GeV2.
In figure 3.49, we show our model estimates for the differential cross sections of photopro-

duction of two vector mesons (3.94), ρ0 and transversely polarized ρ+, with the unpolarized
beam and target. Note that these cross sections depend on the γ–nucleon energy only
through the variable ξ. The cross sections for the processes with two neutral ρ0 mesons in
the final state are two times smaller than those with ρ0 ρ+.

3.14.4 Photoproduction at lower photon energies

Diffractive physics requires high photon energies. If low energy photon tagging may be
performed at the EIC, a QCD study based solely on the collinear factorization (i.e., without
any Pomeron exchange) approach may be followed, opening other interesting channels.
In [699, 700], we considered the process:

γ(q) + p(p1, λ) → π+(pπ) + ρ0T (pρ) + n(p2, λ
′) , (3.102)

on a polarized or unpolarized proton target, in the kinematical regime of large invariant
mass Mπρ of the final meson pair (the hard factorization scale is now this invariant mass)
and small momentum transfer t = (p1 − p2)

2 between the initial and the final nucleons.
Roughly speaking, this kinematics means a moderate-to-large, and approximately opposite,
transverse momentum of each meson. The cross sections obtained are sizeable at values of
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Figure 3.49. The differential cross section for the photoproduction of ρ0T and ρ+T (left panel) and
ρ0L and ρ+T (right panel) as a function of ξ for p2T = 2, 4, and 6 GeV2. The cross sections for the
processes with two neutral ρ0 mesons in the final state are two times smaller than those with ρ0 ρ+.

sγN of the order 10− 20 GeV2 but decrease quickly with the photon energies. This regime
is more in the range of the JLab 12 program than of EIC.

In conclusion, we stress that this approach only assumes leading twist factorization of
non-perturbative quantities, such as meson DAs and chiral-odd GPDs.
Acknowledgments. We are grateful to D.Yu. Ivanov, R. Enberg and O.V. Teryaev for their
contributions to the results presented here.
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4.1 Introduction

Philipp Hägler, Bernhard Musch, Andreas Schäfer

The focus of research at an EIC is a precise and comprehensive understanding of the
quark-gluon structure and dynamics of hadrons and nuclei within the scope of traditional
QCD, as well as beyond it, e.g., beyond the formalism based on collinear parton distribu-
tions. This requires the combination of input from many different fields, including lattice
QCD (LQCD). In this chapter, the status of LQCD as well as the prospects for the next
decade are sketched. The main tasks of LQCD is to increase precision and to extend the
scope of LQCD calculations. [Both depends also significantly on progress in the under-
standing of perturbative QCD (pQCD).] Although working out solutions for all technical
details is a formidable task, recent developments suggest that LQCD should have settled
most of the open theory issues by the time the EIC starts operating.

LQCD results are by now routinely used as input for phenomenology if direct experi-
mental information is not available. This trend will intensify when in the future ever more
subtle aspects are investigated. Therefore, the EIC and a dedicated effort in LQCD have
to form a strong union. If direct comparison with experiment has proven certain types
of LQCD calculations to be reliable, LQCD can provide easily information which is hard
to obtain experimentally, for example on moments of PDFs and GPDs and the flavour
decomposition of structure functions. In this context it is, unfortunately, quite often not
sufficiently appreciated that most quantities of interest calculated on the lattice can only
be linked to experiment by highly non-trivial input from pQCD. Thus all three elements,
experiment, LQCD and pQCD have to be combined to reach optimal results.

The two main sources of difficulty are:

• The basis of LQCD is the observation that the analytic continuation to imaginary
times x0 → ix4 relates quantum field theory to statistics/thermodynamics. The latter
allows for a purely numerical treatment by means of Monte Carlo techniques. This
analytic continuation is only simple for time-independent quantities. The quantities
of this type usually studied are matrix elements of local operators (which can be
evaluated at x0 = 0 = x4).

〈h′(p′)
∣∣∣O(x = 0)

∣∣∣h(p)〉 . (4.1)

Here h, h′ can be any hadronic state, including the QCD vacuum. One typically
needs the continuum operator product expansion (OPE) to link such quantities to
observables.

• Most QCD quantities of interest are scheme and scale dependent. Only in leading
order (LO) this dependence can be neglected, but LO calculations are in most cases
insufficient for a high precision machine like the EIC. Thus LQCD results for matrix
elements of the type Eq. (4.1) have to be matched to a specific pQCD setting, typically
the MS scheme at a certain scale µ. This requires also a matching of renormalization
effects, which are quite different in the continuum and on the lattice due to the loss
of continuum symmetries (as discussed below). The lattice discretization leads to
different Feynman rules, in particular the appearance of tadpole diagrams. Another
concrete, simple example is the modification of the fermion propagator on the lattice,
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Figure 4.1. Sketch of the different types of lattice observables. For nearly all quantities of interest
for an EIC, a combination of pQCD and LQCD is needed to make contact to experiment.

which typically might read (depending on the specific lattice action)

DLattice(p) =
m− ia−1

∑
µ γµ sin(pµa)

m2 + a−2
∑

µ sin
2(pµa)

. (4.2)

Thus, renormalization factors on the lattice and in the continuum differ by finite
amounts, typically of the order of a few up to 30 percent. If one aims at an overall
precision of order percent, the matching of the renormalization factors between non-
perturbative (i.e. all order) lattice calculations and fixed order continuum calculations
has to be achieved with high precision. To achieve this for all quantities of interest
is clearly one of the major challenges for theory, both LQCD and pQCD, in the next
decade.

The points just discussed apply to ’indirect observables’, as illustrated in the right
column of Fig. 4.1. There do also exist some observables which can be compared directly,
without the need for renormalization, especially hadron masses. However, these are well
known experimentally, while the aim of LQCD is clearly to provide information on hitherto
unknown correlators. The observables of interest at the EIC, require nearly always non-
perturbative renormalization in the corresponding lattice studies.

The calculation of matrix elements like (4.1) proceeds as follows:

1. One generates a number of ensembles of gauge field configurations with the correct
statistical weights. The parameters for these ensembles are chosen such that one has
best control (for given computer resources) of the combined limit: lattice spacing
a → 0; physical lattice size L ≫ 1/ΛQCD; quark masses mq → mq(physical); large
number of independent field configurations, typically N ≫ 100.

2. One generates hadronic states using products of quark fields with the correct quantum
numbers (sources), e.g., one can use for a proton (C = iγ2γ4 is the charge conjugation
matrix, i, j, k run over the three color states):

B̂α(t, ~p) =
∑

~x

ei~p·~xǫijkû
i
α(x) û

j
β(x)(C

−1γ5)βγ d̂
k
γ(x) . (4.3)
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Propagation in Euclidean time generates real exponentials rather than phases. Con-
sequently, when expanding into a series in the correct physical multi-particle hadronic
states, propagation in Euclidean time filters out the lowest mass state for large enough
times,

B̂(0, ~p)|0〉 = c0|N〉 + c1|N ′〉 + c2|Nπ〉 + ...

B̂(t, ~p)|0〉 = c0e
−EN t|N〉 + c1e

−EN′ t|N ′〉 + c2e
−ENπt|Nπ〉 + ...

∼ c0e
−EN t|N〉 . (4.4)

To improve signals and to investigate higher lying states one uses a set of sources and
calculates a full correlation matrix.

3. One constructs ratios for quantities of interest in which the exponential factors cancel,
e.g.,

Γ̃αβ〈Bβ(t, ~p)OB̄α(0, ~p)〉
Γαβ〈Bβ(t, ~p)B̄α(0, ~p)〉

. (4.5)

4. Finally, one determines the relevant renormalization factors for the operator O non-
perturbatively on the lattice and relates the lattice results to a specific pQCD scheme.

One has to appreciate that the efficient combination of experimental and LQCD results
requires a good and efficient parametrization for the quantities of interest. If there exists
e.g. an efficient parametrization of a specific GPD etc. in terms of just a few parameters,
each result will constrain the acceptable parameter range . Thus also high quality model
building is necessary.

Over the years it became clear that it is very non-trivial to derive realistic estimates, in
particular of the systematic uncertainties, from the highly correlated quantities extracted
from Lattice Monte Carlo data. The ultimate test revealing potentially underestimated
systematic uncertainties is the comparison of certain benchmark observables with experi-
mental measurements, in this case, EIC data. The next best option is to compare results
obtained with substantially different lattice formulations. In principle, each analysis should
be repeated at least once with a different action. The latter is typically done in such a way
that different collaborations specialise on one specific action each.

The most critical extrapolation is the continuum limit a → 0. Lattice actions vio-
late basic symmetries of QCD (isotropy and homogeneity of space-time, chiral symmetry,
isospin symmetry in the case of twisted-mass fermions ...) for finite lattice spacing. Thus
the a → 0 limit, which restores all symmetries, could be non-trivial. Unfortunately, a can
only be varied in very limited ranges because the needed CPU time is always proportional
to a large power of 1/a. Therefore, a variety of improved lattice actions was proposed in
which lattice artifacts are not proportional to a but e.g. a2. Many variants exist, all of
which are well motivated in one way or the other. Substantial effort is invested to further
improve such actions, and it would be very surprising if by the time an EIC starts oper-
ating also the systematic uncertainties due to the multiple extrapolation a → 0, L → ∞,
mq → mq(physical). were not much better under control.
The purely statistical uncertainty will for sure become much smaller due to increased com-
puter power. While the most powerful present day computers are of the Petaflop class,
various initiatives aim already at Exaflop computing. In the next sections we will discuss in
detail some of the physics quantities calculated on the lattice, which are especially important
for the EIC.
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4.2 Generalized Form Factors

Most correlators relevant for hadron structure which were determined on the lattice
are related to Generalized Parton Distributions (GPDs) or Distribution Amplitudes (DAs).
For GPDs the hadronic states in Eq. (4.1) are equal, h = h′ but the momenta are usually
different (p 6= p′). For the best known GPDs Hq and Eq,

∫
dz−

2π
eixP̄

+z−〈P2| q̄(−
1

2
z) γ+q(

1

2
z) |P1〉

∣∣∣
z+=0, z⊥=0

=
1

P+

[
Hq(x, ξ, t) N̄(P2)γ

+N(P1) + Eq(x, ξ, t) N̄(P2)
iσ+α∆α

2M
N(P1)

]
. (4.6)

The OPE gives moments in terms of generalized form factors An,k(t), Bn,k(t), Cn(t),

∫ 1

−1
dxxn−1H(x, ξ, t) =

n−1∑

k=0
even

(2ξ)k An,k(t) + (n + 1 mod 2) (2ξ)nCn(t)

∫ 1

−1
dxxn−1E(x, ξ, t) =

n−1∑

k=0
even

(2ξ)k Bn,k(t)− (n + 1 mod 2) (2ξ)nCn(t) , (4.7)

which can be expressed in terms of local correlators by equations like

〈P ′| q̄(0)γ{µiDµ1 ...iDµn}q(0)|P 〉 = Ū(P ′)




n∑

i=0,even

{
γ{µ∆µ1 ...∆µi P̄µi+1 ...P̄µn}An+1,i(∆

2)

− i
∆ασ

α{µ∆µ1 ...∆µi P̄µi+1 ...P̄µn}

2m
Bn+1,i(∆

2)

+
∆µ...∆µn

m
Cn+1,0(∆

2)|n odd

]
U(P ) , (4.8)

where {· · · } denotes symmetrization and subtraction of trace terms. The fact that the sum
in Eq.(4.7) extends only up to n − 1 is called polynomiality. The proton alone has eight
independent quark GPDs for each quark flavour and typically one can calculate the leading
three moments with satisfactory accuracy on the lattice. Adding the gluon GPDs and
repeating the analysis for all octet and decuplet baryons and octet mesons one is already
speaking about several hundred quantities. In future one will also increasingly analyse
hadron resonances and transition form factors, such that the lattice data base will become
even richer. For each of these observables one has to analyse the renormalization properties,
the quark/pion mass dependence and the finite volume dependence (within suitable versions
of effective field theory/chiral perturbation theory (ChPT)). Finally one has to compare
results for different lattice actions and analyse the origin of discrepancies. Obviously it is
impossible to review all of this here. Rather, we refer to the comprehensive paper [604] for
an example of a state of the art analysis. Fig. 4.2, taken from this paper, gives a typical
example. This figure shows a number of common aspects:

1. Fluctuations are strongly suppressed for heavy quark/pion masses. This is why the
statistical errors (dark blue bars) increase drastically for smalles pion masses.
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Figure 4.2. The isosinglet moment Bu+d20 (t) as a function of simulated pion mass and t [604].

Figure 4.3. Lattice results for Ju and Jd compared with various models [582, 701, 605, 702] and
constraints derived from experiment (colored bands)

2. The difference between the two sheets gives the variation of HBChPT fits. However, it
would be safer to only use ensembles with squared pion masses belowm2

π ≤ 0.25GeV2,
where ChPT is rather well under control, which was obviously not possible with the
ensembles available for this analysis.

3. One is especially interested in the t = 0 limit of B20 in view of Ji’s sum rule,

〈
J3
q

〉
=

1

2
[Aq2,0(0) +Bq

2,0(0)] .

Already today lattice simulations give rather precise results for the total angular
momentum carried by the different quark species in a nucleon, see Fig. 4.3. In future
these results will further improve, e.g. due to the use of twisted boundary conditions
to realize proton momenta different from the natural ones on a lattice, i.e. different
from pj =

2π
L nj.

Thus, much has been done already, and much more will be done in future. Extrapolating
the progress of recent years to the time an EIC will start operation it seems realistic to expect
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Figure 4.4. An illustration for the transverse probability distribution of the nucleon quark distribu-
tions as a function of the transverse quark and nucleon spin direction. Figure taken from [456].

that by then pictures like Fig. 4.2 will be numerically precise and will include reliable error
bands.

Another important example are the quark density distributions in the transverse plane
plotted in Fig. 4.4. Their form is mainly determined by the Fourier transformations of
(moments of) the GPDs.

Bq
n0(x, 0, b

2
⊥) =

1

(2π)2

∫ 1

−1
dxxn−1

∫
d2∆⊥ e

ib⊥·∆⊥E(x, 0,∆2
⊥)

B̄q
Tn0(x, 0, b

2
⊥) =

1

(2π)2

∫ 1

−1
dxxn−1

∫
d2∆⊥ e

ib⊥·∆⊥ĒT (x, 0,∆
2
⊥) . (4.9)

The information on transverse structure contained in GPDs is, e.g., relevant in the following
context: First LHC data show strong disagreement between observed interaction rates and
predictions from event generators, see e.g. [703] for the so-called “underlying event” which
denotes the whole of all medium hard reaction channels, which are completely dominated
by QCD. Part of the explanation might be related to multiple-hard interactions, a class
of reactions which was shown to be already relevant at the Tevatron, see [704]. In these
reactions multiple hard quark-gluon interactions occur in the same proton-proton collision,
which are not described by the usual inclusive factorization theorems. The correction terms
have a complicated structure, see e.g. [705] and references cited there, but can be partially
related to GPD profiles in the transverse coordinate plane. By combining experimental
results from an EIC with improved lattice calculations it should be possible to describe
these effects much more precisely than currently. In this context, as always, experimental
results are crucial, because it is very difficult to judge the reliability of lattice results without
being able to compare with at least some experimental facts.

A multitude of angular asymmetries and hadronic correlations, many of which include
spin degrees of freedom, can be measured with a high luminosity EIC. For many of these,
the microscopic reaction mechanism is not yet understood. Some of the proposals made
depend crucially on the transverse hadronic structure encoded in GPDs, see e.g. [299]. One
of the main missions of an EIC is to clarify both the transverse structure and the reaction
mechanisms. This is a demanding task which can only be mastered with input from LQCD.
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4.3 TMDs on the lattice

The availability of methods to study GPDs on the lattice motivates us to develop similar
techniques for the calculation of TMDs [279, 280]. In contrast to other, more mature areas
of lattice QCD, the present focus of TMD calculations on the lattice is on the development
of methodology and on qualitative observations rather than precision. The ultimate goal is
to obtain results from first principles only that can potentially be compared to experimental
observations. The first step to reach this goal is to describe precisely which matrix elements
need to be calculated, and how they can be regularized in the context of TMD factorization.
Already at this step, the situation is much more challenging for TMDs than for moments
of GPDs, where the matrix elements needed are well-known. These issues are not specific
to lattice QCD, but they play a central role in the development of methods to calculate
TMDs non-perturbatively.

In its basic form, the correlator that needs to be calculated is that of eq. (2.1). For our
purposes, we write the trace projections Φ[Γ] = 1

2Tr(ΓΦ) of this correlator as

Φ[Γ](x,k⊥) =
1

P+

∫
d(l·P )
2π

e−i(l·P )x

︸ ︷︷ ︸
Fx

∫
d2l⊥
(2π)2

eil⊥·k⊥

︸ ︷︷ ︸
F⊥

1
2〈P, S| q(l) Γ Wη q(0) |P, S〉︸ ︷︷ ︸

Φ̃[Γ](l, P, S)

∣∣∣
l+=0

(4.10)

where Γ is a Dirac matrix. The gauge link Wη is discussed in sec. 2.4.1, and its geometry is
depicted for the SIDIS process in figure 4.5 a). With the generalization of eq. (2.47) it can
be written as a concatenation of straight Wilson lines Wη = V[l,l+ηv] V[l+ηv,ηv] V[ηv,0]. Here
v is a time-like vector normalized to v2 = 1. A staple shaped gauge link W∞ extending
to η → ∞ corresponds to SIDIS, while a staple W−∞ directed in the opposite direction
corresponds to the Drell-Yan process. Beyond tree level, eq. (4.10) needs to be modified in
order to take the collective effect of soft momentum gluons into account and to subtract
divergences. This can be achieved, e.g., by dividing Φ̃[Γ] by appropriate vacuum expectation
values (soft factors), see, e.g., [706, 256, 257, 260, 384].

First studies of transverse momentum dependence on the lattice follow the strategy to
determine matrix elements of the form Φ̃[Γ] in eq. (4.10) directly from three-point functions.
The idea of using a discrete representation of the non-local operator q(l) Γ Wη q(0) is a
novel technique and requires investigations about the properties of such extended operators
on the lattice. Considering this and the ambiguities about the precise operator geometry
suitable for TMD extraction, it seems reasonable to begin with a simplified setup. The
following two operator geometries are under investigation:

• straight gauge link connecting the two quark fields directly, W0 = V[l,0]. This simple
setup yields high statistics results, but does not correspond to the situation in SIDIS or
Drell-Yan. For example, non-zero time-reversal odd TMDs such as the Sivers function
f⊥1T are forbidden by symmetry with this link geometry. However, the qualitative
features of the results are interesting, especially the spin-dependence. A brief outline
of findings obtained with straight links is given in sec. 4.3.1.

• staple shaped gauge link of finite extent Wη for a spacelike choice of the direction
v as depicted in figure 4.5 a). Results for the SIDIS link W+∞ and the Drell-Yan
link W−∞ can be read off if the lattice results converge to a constant for longer and
longer staple extents η. Ongoing studies with this operator geometry are discussed in
sec. 4.3.2.
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a) b)

Figure 4.5. a) Staple shaped Wilson line. b) Representation of a straight Wilson line (dashed line)
as a step-like product of link variables.

4.3.1 Straight gauge links

In lattice QCD, it is possible to determine matrix elements Φ̃[Γ] appearing in eq. (4.10)
directly from a ratio of three- and two-point functions, provided the operator has no extent
in Minkowski-time. To do this, we employ the standard methods described in sec. 4.1. Only
the operator we insert is specific to our method. Operators with straight gauge links can be
approximated on the lattice by a step-like product of link variables, as depicted in figure 4.5
b). At present, disconnected diagrams are neglected. Disconnected diagrams cancel in the
isovector channel, i.e., in u− d quark distributions.

The key element to relate the matrix elements Φ̃[Γ] determined on the lattice to the
TMDs is a parametrization in terms of Lorentz-invariant amplitudes Ãi(l

2, l·P ), similar to
the parametrization in terms of amplitudes Ai(k

2, k·P ) in ref. [243]. For straight gauge
links one obtains

Φ̃[γµ] = 2Pµ Ã2 + 2iM2 lµ Ã3 , (4.11)

Φ̃[γµγ5] = −2M Sµ Ã6 − 2iM Pµ(l · S) Ã7 + 2M3 lµ(l · S) Ã8 , (4.12)

To translate the amplitudes into TMDs, the Fourier transform in eq. (4.10) must be carried
out. For example

f1(x,k
2
⊥) = 2F⊥ Fx Ã2(l

2, l·P ) , (4.13)

g1T (x,k
2
⊥) = 4M2∂k2

⊥
F⊥Fx Ã7(l

2, l·P ) , (4.14)

where the two independent Fourier transforms Fx and F⊥ are defined in eq. (4.10). On the
Euclidean lattice, the matrix elements can only be evaluated in the range

l2 ≤ 0 |l·P | ≤ |Plat|
√

−l2 (4.15)

where Plat is the three-momentum of the nucleon chosen on the lattice. As a result, data
points are only available in a wedge shaped area. The opening angle of the wedge can
be potentially increased by using larger lattice nucleon momenta Plat, but full coverage of
the |l|, l·P -plane can never be achieved with this method. Thus the information required to
reconstruct the x-dependence of the distributions is not fully available; the Fourier transform
Fx in eqs. (4.13)-(4.14) cannot be carried out. However, model assumptions about the
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Figure 4.6. x-integrated density of longitudinally polarized quarks inside a nucleon polarized in the
transverse x-direction. These results have been obtained with straight gauge links at a pion mass
mπ ≈ 500MeV [279]. The insets display the spin polarization of the quarks and of the nucleon.

correlation of x- and k⊥-dependence can be compared to the lattice data, see sec. VI of
ref. [280]. Moreover, the lowest x-moment of TMDs can be calculated, since the required
information is encoded in the data at l·P = 0. For example,

f
[1]
1 (k2

⊥) ≡
∫
dx f1(x,k

2
⊥) =

∫ 1

0
dx

(
f1(x,k

2
⊥)− f̄1(x,k

2
⊥)
)

= 2F⊥ Ã2(l
2, 0) , (4.16)

where f̄1 is the unpolarized anti-quark distribution function. First results for the low-

est x-moments f
[1]
1 , g

[1]
1T and h

⊥[1]
1L using straight gauge links have been presented in Ref.

[279, 280]. The calculations were carried out at a pion mass of about 500MeV, taking
advantage of existing gauge configurations from the MILC collaboration [707] and propaga-
tors from the LHP collaboration [708]. The worm gear distribution g1T gives rise to dipole
deformations in the x-integrated, k⊥-dependent density of longitudinally polarized quarks
inside a transversely polarized nucleon, as shown in figure 4.6. Due to the dipole deforma-
tion, this density is not axially symmetric. The peak is clearly shifted away from the center
along the axis defined by the transverse spin vector. This shift is associated with a non-zero
average transverse quark momentum 〈kx〉TL, which can be expressed in terms of a ratio
of amplitudes Ã7(0, 0)/Ã2(0, 0). The lattice computations yield 〈kx〉TL = 67(5)MeV for
down quarks and 〈kx〉TL = −30(5)MeV for up quarks (errors statistical only). Reference
[709] reveals that these results are of the same sign and of quite similar magnitudes as those
obtained with a light-cone constituent quark model [409], despite the unphysically large
quark masses employed in the lattice calculation.

We note that the straight link results discussed above depend on two additional impor-
tant ingredients: a non-perturbative renormalization condition and a Gaussian parametriza-
tion to perform the Fourier transform, see ref. [280] for details. The renormalization con-
dition is necessary to fix the length-dependent renormalization factor exp(−δm|l|) due to
the self-energy of the spacelike Wilson line V[l,0] [710, 711, 712]. At the present level of
statistical precision, the parametrization of the renormalized data as Gaussian functions is
very successful and acts as a provisional regulator of contributions from large k⊥. A better
understanding of the operator in the transition from the short range (small

√
−l2, corre-

sponding to large k⊥) to the long range behavior may lead to a an improved parametrization
of the lattice data, beyond the Gaussian assumption, and may open the possibility to make
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Figure 4.7. Test calculation of a T-odd ratio of amplitudes using staple shaped links at mπ ≈
800MeV [713].

contact with a perturbatively defined renormalization scheme.

4.3.2 Staple-shaped links and the Sivers function

TMDs obtained with a straight gauge link as discussed in the previous section are not
strictly identical to those relevant in, e.g., SIDIS or the Drell-Yan process. Instead, a link
geometry as depicted in figure 4.5 a) is required. In particular, naively time-reversal odd
TMD such as the Sivers function can only be non-vanishing once the operator structure
involves another direction v related to final or initial state interactions. Lattice QCD can
profit from frameworks that avoid rapidity divergences by considering directions v slightly
off the lightlike n−-direction [240, 241, 256, 257, 260, 384]. TMDs introduced this way
follow an evolution equation in the rapidity cutoff parameter ζ ≡ (2P · v)2/|v2| [240, 393].
The restriction to operators q(l) Γ Wη q(0) that have no extent in Euclidean time permits
only the implementation of spacelike directions v on the lattice, and furthermore limits the
rapidity cutoff parameter to the range 0 ≤ ζ ≤ 4|Plat|2, where Plat is the selected nucleon
three-momentum on the lattice. The dependence on v leads to additional amplitudes Ãi,
B̃i in the decomposition of the correlator eq. (4.11), compare also [246]:

Φ̃[γµ] =
2

S̃

{
Pµ Ã2 + iM2lµ Ã3 + iMǫµναβPν lαSβ Ã12 +

M2

(v·P )v
µ B̃1

+
M

v·P ǫ
µναβPνvαSβ B̃7 +

iM3

v·P ǫµναβ lνvαSβ B̃8

−M
3

v·P (l·S)ǫµναβPν lαvβ B̃9 +
iM3

(v·P )2 (v·S)ǫ
µναβPν lαvβB̃10

}
. (4.17)

Here S̃ generically represents a soft factor modification, as needed, e.g., in the formalism
of refs. [256, 257, 260, 384]. First lattice studies are ongoing for ratios of amplitudes, in
which renormalization factors and potential soft factors cancel [713, 280], similar as in
the asymmetries discussed in sec. 2.2.7. Figure 4.7 shows results from a test calculation
[713] of a ratio of time-reversal odd over time-reversal even amplitudes Rodd ≡ (Ã12 −
(M/|Plat|)2B̃8)/Ã2, evaluated at l·P = 0, |Plat| ≈ 0.5GeV, for selected values of l2. Note
that Ã12 would correspond to the Sivers function f⊥1T for lightlike v. In the test calculation,
the operator has been evaluated with staple shaped links Wη for a large range of extents η.
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The result of the test calculation is, within statistics, an odd function of ηv·P , as expected
for a time-reversal odd function. Moreover, we see the onset of a plateau at |ηv·P | & 2.
The plateau at large positive η correspond to the SIDIS result with a W∞ link, while the
plateau at large negative η correspond to the Drell-Yan result with the W−∞ link. This is a
promising indication that lattice estimates could be feasible for, e.g., the average transverse
momentum shift due to the Sivers function given by

〈ky〉TU ≡
∫
d2k⊥ ky Φ[γ+]

∫
d2k⊥Φ[γ+]

∣∣∣∣∣
S⊥=(1,0)

=M

∫
dx f

⊥(1)
1T (x)

∫
dx f

(0)
1 (x)

, (4.18)

see also [264, 444]. Here Φ[γ+] intuitively has an interpretation as the density of unpolarized

quarks in a transversely polarized proton, and f
⊥(1)
1T and f

(0)
1 (x) are k⊥-moments defined

as f (n)(x) ≡
∫
d2k⊥ (k2

⊥/2M
2)nf(x,k2

⊥). A generalized version of the above quantity can
be formed directly from the amplitudes determined on the lattice, namely

〈ky〉TU (B⊥) ≡M

∫
dx f̃

⊥(1)
1T (x,B2

⊥)∫
dx f̃1(x,B2

⊥)
= −M Ã12 −R(ζ)B̃8

Ã2 +R(ζ)B̃1

∣∣∣∣∣l2=−B2⊥
l·P=0

(4.19)

with R(ζ) = 1 −
√
1 + 4M2/ζ and where f̃1 and f̃

⊥(1)
1T are now k⊥-Fourier-transformed

TMDs as they appear in eq. (2.33). Keeping the length B⊥ sufficiently large compared to the
lattice spacing and correspondingly assuming renormalization properties as in continuum
field theory, one finds that multiplicative renormalization factors, including Wilson line
self-energies, as well as potential soft factors cancel in the ratio of amplitudes above. The
extrapolation to B⊥ = 0, where 〈ky〉TU (B⊥) is equal to 〈ky〉TU , will require special attention
to UV divergences and cutoff effects. However, already the generalized object 〈ky〉TU (B⊥)
at nonzero B⊥ may offer opportunities to compare with phenomenology, by means of an
x-integrated version of the Bessel-weighted quantities introduced in eq. (2.33) A possible
difficulty for lattice computations will be to reach large enough values ζ, in the regime where
evolution equations [240, 393] can be applied.
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Figure 4.8. A typical example from [714]. The 1− kaon states are shown. Color coding indicates
dominance of a particular charge-conjugation eigenstate

4.4 Spectroscopy and other physics topics

Still another approach to elucidate hadron structure is offered by lattice spectroscopy.
Spectroscopy has the great advantage that it allows to avoid the subtle renormalization
issues mentioned above, but the disadvantage that the deduction of information on hadron
structure is less direct. A typical recent example is found in [714], see Fig. 4.8. The basic
idea is that one uses a set of interpolating currents (sources) Oi with the same quantum
numbers to calculate and analyse the correlation matrix as a function of separation of the
time-hyper planes

Cij(t) =
〈
0
∣∣∣Oi(t)Oj(0)

∣∣∣0
〉

(4.20)

and solves the generalized eigenvalue problem. One thus obtains not only the eigenvalues
(masses) but also the eigenvectors in terms of the different sources. If done with care the
relative overlap of the physical mass states with the different sources allows to draw con-
clusions about their structure. This provides information, which is often complementary to
that obtained with the methods sketched above. Again for practical purposes this infor-
mation is most sensitive to leading Fock-state components. While this is a very powerful
method, its results must be interpreted with care. The eigenvectors of different mass states
give the amplitudes with which each source contributes. All of these are forced to be or-
thonormal by construction. This constraint can lead to substantial artifacts if the chosen
source functions span too small a function space. To avoid premature conclusions one,
therefore, has to compare results obtained for different lattice actions and many different
choices of sources. Presently the lattice community is still in the process of optimizing
this method, but it seems already clear by now that in a few years this approach will be a
standard source of many detailed information about hadron structure.
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5.1 Chapter summary: Overview and golden measurements

Alberto Accardi, Matthew Lamont and Cyrille Marquet

A basic quest of nuclear physics is the understanding of the structure of hadrons and
nuclei (nucleon number A > 1) in terms of QCD Lagrangian degrees of freedom, the quarks
and gluons. Deviations of the nuclear quark and gluon densities from the sum of the free
nucleon densities directly attest to binding effects and elucidate the QCD origin of the
internucleon interactions. Such deviations can arise through different mechanisms, such as
modification of the free nucleon structure, presence of non–nucleonic degrees of freedom,
and quantum–mechanical interference of the quark/gluon fields of different nucleons at
small parton fractional momentum x (“shadowing”), creating a fascinating landscape of
many-body QCD. At even smaller x, the gluon density increases to the point where gluons
become closely packed, leading to a strong field regime of non-linear QCD evolution called
saturation. This regime is argued to have universal properties for any hadronic system,
ranging from pions, to protons and nuclei, but its onset is enhanced in nuclear targets due
to the superposition of the gluon field of many nucleons.

A peculiar pattern of nuclear modifications was observed in fixed-target experiments
and caused much excitement; it shows suppression for 0.2 < x < 0.8 (“EMC effect”),
some signs of enhancement for 0.05 < x < 0.2, and significant suppression (shadowing)
at smaller x. However, such experiments were unable to reach deep into the shadowing
region or probe gluons. The EIC will overcome these limitations, extend measurements
to very high scales of Q2, and determine with high precision the nuclear effects on gluon
distributions. Full reconstruction of the hadronic final state also opens up for the first time
the possibility of measuring charged current interactions on nuclei, and to perform a full
quark flavor separation based on nuclear DIS data only. Crucially, the EIC will access much
lower values of x < 0.01 (for fixed Q2 than previously) and study the onset of the saturation
regime, which has never been directly probed experimentally, although tantalising (but not
unequivocal) signatures have been found at the Relativistic Heavy-Ion Collider (RHIC).

Another possibility offered by nuclear targets is the study of the propagation of color
charges in nuclear matter and the space-time evolution of hadronization. The unique fea-
ture of the EIC, compared to previous fixed target experiments, is its large energy span.
This allows one to experimentally boost hadronization effects completely out of the nucleus,
in order to focus attention on the propagation of fast quarks and gluons, and their accom-
panying parton showers, through the nucleus. Thus one can use the partons as colored
probes of the soft components of the target nuclear wave function, and conversely exper-
imentally test QCD mechanisms of parton energy loss in a known nuclear medium. At
lower energies, hadronization happens partially inside the nucleus, which can then be used
as a femtometer scale detector of the process. A good control of energy loss mechanisms in
the partonic phase will yield unambiguous insights into the dynamics of color confinement
whereby hadrons emerge from colored quarks and gluons.

Novel observables will be available thanks to the high energy reach, namely heavy fla-
vors, charmonium and bottomonium, and jets, greatly expanding the experimental toolbox
and sensitivity to nuclear effects, and thereby allowing a close connection to first principles
calculations in QCD. The collider mode will also make it feasible to study in detail target
fragmentation and its correlation to current fragmentation through mult-particle correla-
tions, thereby expanding considerably the study of shower development and hadronization
mechanisms.
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5.1.1 Gold and silver measurements

One of the goals of the program at the INT was to identify a small number of mea-
surements whose ability to extract novel physics is beyond quesition and which are feasible
at an EIC. Such measurements are referred to as “golden” measurements. These are com-
plemented by other “silver” measurements/observables, to form a broad, robust, and com-
pelling physics program. The gold and silver measurements are summarised in Tables 5.1
and 5.2, where also their feasibility in phase-I (medium energy) and phase-II (full energy) is
indicated, and further discussed below. Many more observables than can fit in this section
will be available at the EIC, contributing to a very rich physics program exploring the QCD
basis of nuclear physics. Many of these will be reviewed in detail in the rest of this chapter.

Deliverables Observables What we learn Phase-I Phase-II

integrated gluon F2,L nuclear wave.fn.; gluons at explore sat.

distributions saturation, Qs 10−3 . x . 1 regime

kT -dep. gluons; di-hadron non-linear QCD onset of RG evolution

gluon correlations correlations evolution/universality saturation; Qs

transp. coefficients large-x SIDIS; parton energy loss, light flavors, charm precision rare

in cold matter jets shower evolution; bottom; jets probes;

energy loss mech. large-x gluons

Table 5.1. Golden measurements in e+A collisions at an EIC

Deliverables Observables What we learn Phase-I Phase-II

integrated gluon F c
2,L, F

D
2,L nuclear w.fn.; early sat. onset saturation

distributions saturation, Qs challenge to measure regime

flavour separated charged current EMC effect origin full qi separation larger Q2,

nuclear PDFs & γZ str. fns. at 0.01 . x . 1 smaller x

kT -dep. gluons SIDIS at non-linear QCD extract Qs; RG evol.;

small-x evolution/universality multipole corr. flavor sep.

b-dep. gluons; DVCS; interplay between moderate x with smaller x,

gluon correlations diffractive J/Ψ, small-x evolution light, heavy nuclei saturation

& vector mesons and confinement

Table 5.2. Silver measurements in e+A collisions at an EIC

5.1.2 QCD at high gluon density

The fact that we do not know the dynamics of gluons in nuclei over basically any
x range seems a compelling enough reason to build an EIC. The non-Abelian nature of
QCD is its most distinguishing feature and controls emergent phenomena such as color
confinement, chiral symmetry breaking and the generation of the vast bulk of the visible
mass in the Universe. These are however non-perturbative phenomena which are difficult
to attack from first principles; where this is possible, such as in the case of the hadron
spectrum from lattice QCD, only static aspects of the strong interactions are addressed.
An EIC would allow one for the first time to experimentally probe at small x dynamical
non-Abelian aspects of a fundamental force of nature in a controlled setting where weak
coupling methods apply. The physics in this regime is the non-perturbative physics of strong
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Figure 5.1. The saturation scale, Q ≡ Qs, and how it scales with x, and A.

color fields; the important new feature is that the applicability of weak coupling methods
allow for systematic comparisons of theory to experiment.

In addition to the intrinsic interest in this novel many-body regime of QCD, experi-
mentally establishing and refining an effective field theory for the saturation regime – such
as the Color Glass Condensate (CGC) – as well as precisely imaging the distribution and
correlations of small-x partons in nuclei, besides being of intrinsic interest, would have wide-
ranging applications. The universality of the saturation regime implies that such a theory
would provide a microscopic basis for understanding and calculating total hadronic cross
sections, with important applications to, for example, ultra-high energy cosmic ray physics,
where extrapolations in energy of several orders of magnitude are required to compute their
spectrum and detect possible new physics effects. In high-energy relativistic heavy-ion colli-
sions, the release of saturated low-x partons represents the starting point of the subsequent
space-time evolution of the Quark-Gluon Plasma (QGP). Testing and benchmarking the
underlying theory opens the prospect of a controlled and precise first principles calculation
of such an initial state, reducing one of the largest sources of uncertainty in the interpre-
tation of experimental observables, and the measurements of the QGP properties: an EIC
would offer to the RHIC and LHC heavy-ion programs an important asset, as valuable as
the one HERA provided to the LHC p+p program.

The onset of the saturation regime, when the gluon density becomes so large that further
growth with energy is tamed, is characterised by the saturation scale Qs(x); partons with
momenta below this scale overlap in transverse space, so that parton recombination and
screening stops further growth in their number density. Given that parton distributions
grow as x decreases, and dramatically so as discovered at HERA, the saturation scale is
clearly expected to grow as x decreases. It is further enhanced in nuclear targets because
of the overlap of the gluon fields originating from different nucleons. This is illustrated in
Figure 5.1. In the saturated, dense regime at small x, non-linear QCD dynamics becomes
dominant but at the scale being set by a semi-hard Qs (of order 1 GeV), calculations can
be carried out by weak coupling techniques and suitable effective field theories, of which
the CGC is a prime example, can be derived from first principles.

The dilute-dense separation of scales is more subtle than just described. The larger
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the gluon’s transverse momentum kT , the smaller its longitudinal energy fraction x needs
to be to enter the saturation regime. In a scattering process, dilute partons (with kT ≫
Qs(x)) behave incoherently, whilst when the parton density is large (kT . Qs(x)), gluons
scatter coherently. Therefore, transverse momentum dependent observables will be able to
uncover more details than inclusive observables, which can only access averaged saturation
effects. The interplay of saturation and the transverse spatial distribution of gluons is also
important; as x decreases, gluon densities saturate first in the centre of the nucleus. To
accommodate further growth, gluons will be pushed more and more to the periphery, so
that the average gluon radius is expected to increase with decreasing x.

For all these reasons, regarding the small-x physics program in e+A collisions, the
physics deliverables of the EIC have been classified in three main categories giving access
to the integrated, transverse-momentum-dependent, and impact-parameter-dependent glu-
ons. Here, by “gluons” we mean not only the conventional single-gluon distributions but
also multi-gluon correlations. These have often been of secondary interest, but are now
recognised as essential to a full understanding of the low-x regime. Indeed, except for
the most inclusive observables which are subject to cancellations, consistent QCD calcu-
lations in the non-linear regime require the knowledge of multi-gluon distributions. Inte-
grated, transverse-momentum-dependent, and impact-parameter-dependent gluon distribu-
tions and correlations in nuclei are all unknown, and the processes we discuss below have
never been measured at small x.

Integrated gluons and sea-quarks

As the most basic observables from both the theory and experimental sides, the inclu-
sive (e+A→ e+X) structure functions F2 and FL stood out among other measurements,
already well before the INT programme. They were the first potential golden measurements
discussed; the pros and cons of these candidates to pin down to the gluon and sea-quark
distributions in nuclei were further reviewed during the program.

F2 is the most inclusive observable in deep inelastic scattering. Its measurement presents
no particular experimental challenge. On the theory side, it is the simplest process to
calculate, along with FL, with the fewest input assumptions. For instance, F2 and FL
will be the first observables for which a full NLO calculation in QCD including non-linear
effects will be available. (The existing phenomenology is still based on leading-order ”impact
factor” computations.)

Although it is harder to extract experimentally, FL is a golden measurement for high
density QCD because it is more directly related to the gluon distribution. Further, it is more
sensitive to non-linear effects than F2. In the latter, higher-twist contributions cancel each
other out delaying the onset of non-linear effects. The necessity of performing an energy
scan to measure FL implies that the accessible x range is a bit smaller than accessible with
the F2 measurement. However the increased sensitivity to non-linear effects more than
compensates for this shortcoming. Deviations of DGLAP fits of the simultaneous “singlet”
dominated (at small x) evolution of F2 and FL determined from EIC data should be able
to quantitatively determine the onset of the saturation regime. The case for the low-energy
EIC needs to be investigated more; in particular, the implementation of non-linear effects
must be made more accurate, and more detailed DGLAP fits of EIC pseudo-data should be
performed before establishing its sensitivity to saturation physics in the inclusive channel.
One caveat discussed is that QED radiative corrections for nuclear targets can be large, and
it remains to be proven that they can be controlled to the required precision. Computations
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addressing the role of these radiative corrections are underway and are discussed further in
the detector studies section of this report.

The charm structure functions F c2,L were considered as silver measurements for the non-
linear regime. As in the case of FL, these observables give a more direct access to the gluon
distribution relative to F2; however due to the mass of the charm quark, they also probe
higher values of x and are therefore less sensitive to non-linear effects. In addition, QCD
calculations with non-zero charm mass are scheme dependent, which can absorb signals
of non-linear effects if not appropriately handled. However, since they can be measured
precisely with a properly-designed vertex detector, charm structure functions will be a
very important complementary measurement to pin down the nuclear gluon distribution
throughout the (x,Q2) plane.

Last, but not least, silver measurements in the inclusive category are those of the diffrac-
tive structure functions FD2 and FL,D. These are sensitive to the square of the gluon distri-
bution. As may therefore be anticipated, the strongest hints for manifestations of non-linear
effects in e+p collisions at HERA come from diffractive measurements. A striking example
is the fact that the ratio of the diffractive to inclusive structure function is constant with
energy, an observation not easily reconciled in a leading twist scenario. Furthermore, the
leading-twist approximation does not explain the geometric scaling of the diffractive cross
section. Finally, as a sign of enhanced sensitivity to non-linear effects, the DGLAP analysis
of diffractive structure functions from HERA is problematic at larger values of Q2 relative
to the same for F2 ( ∼ 8 GeV2 in the former compared to 2 GeV2 in the latter). How-
ever, measurements of diffractive structure functions are relatively more difficult and the
additional kinematic variables make the analyses more involved than for F2,L.

Transverse momentum dependent gluons and sea-quarks

The golden measurement here is that of di-hadron azimuthal correlations in e+A→
e+h1+h2+X processes. Di-hadron correlations are not only sensitive to the kT dependence
of the gluon distribution but also to the kT dependence of gluon correlations. These corre-
lations are sensitive to multi-gluon distributions for which first principles computations are
only now becoming available. Precise measurements of these di-hadron correlations at an
EIC would allow one to extract these multi-gluon correlations and study their non-linear
evolution. Saturation effects in this channel correspond to a progressive disappearance with
decreasing x of the peak in the di-hadron azimuthal angle difference around ∆φ = π. In a
leading twist picture, where there is only one hard scattering, one expects, from momentum
conservation, that the peak will persist. A comparison of the heights and widths of the di-
hadron azimuthal distributions in e+A and e+p collisions respectively would clearly mark
out experimentally such an effect. An analogous phenomenon has already been observed for
di-hadrons produced at forward rapidity in d+Au and p+p collisions at RHIC. In that case,
di-hadron production proceeds from valence quarks in the deuteron (proton) scattering on
small-x gluons in the target Au nucleons (proton), qV+Au(p)→ h1+h2+X. Lacking direct
experimental control over x, the onset of the saturation regime is controlled by changing
the centrality of the collision, the di-hadron rapidity and the transverse momenta of the
produced particles. Experimentally, a striking flattening of the ∆φ peak in d+Au colli-
sions is observed in central collisions, but the peak reappears in peripheral collisions or for
mid-rapidity di-hadrons. Directly using a point-like electron probe, as opposed to a quark
bound in a proton or deuteron, is extremely beneficial. It is experimentally much cleaner
as there is no “spectator” background to subtract and the access to the exact kinematics
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of the process allows for more accurate extraction of the physics than possible at RHIC or
in the future with p+A collisions at the LHC. Because there is such a clear correspondence
between the physics of this particular final state in e+A collisions to the same in p+A
collisions, this measurement is an excellent testing ground for quantitative studies of the
universality of multi-gluon correlations in p+A and e+A collisions.

The simplest process to extract the transverse momentum dependence of the gluon dis-
tribution is single inclusive DIS (SIDIS), e+A→ e+h+X. One reason why these processes
are especially interesting is that by having two momentum scales at one’s disposal, it is
possible to keep Q2 large and access the saturation regime at transverse momenta pT . Qs.
This way, non-perturbative effects and higher-twist contributions are suppressed, but one
can nonetheless access non-linear QCD dynamics. Considering that Qs will not exceed a
few GeV at the EIC, this helps one disentangle strong coupling effects, characterized by a
fixed scale (ΛQCD), from weak coupling non-linear effects more cleanly relative to inclusive
observables. Furthermore, in the large Q2 and small x limits, the relation between the
transverse momentum of the produced hadron pT and that of the small-x glue kT is quite
direct, enabling a rather straightforward experimental probe of the gluon transverse mo-
mentum distribution. From the theoretical point of view, important connections have been
established between the framework of Transverse Momentum Dependent (TMD) distribu-
tions discussed previously in this report and the CGC effective theory at small x. Thus
SIDIS has all the pre-requisites to be considered a golden observable. It is nonetheless
classified as silver because di-hadron correlations are more directly sensitive to non-linear
QCD evolution.

Transverse position dependence of gluons and sea-quarks

To pin down the transverse distribution and correlations of small-x gluons, exclusive
measurements are needed. The prototypical observables discussed are diffractive vector me-
son production (DVMP) and deeply virtual Compton scattering (DVCS). Coherent diffrac-
tion, where the nuclear target is intact, gives access to the transverse spatial distribution
of the gluon density in a nucleus. Incoherent diffraction, where the nuclear target breaks
up, but is separated by a rapidity gap from the projectile fragmentation region, allows one
to extract, in addition, transverse plane correlations. These shed important light on the
spatial picture of the partonic sub-structure of nuclei. In addition, both contribute crucial
information necessary to understand the spatial gluon distributions that form the initial
conditions for heavy ion collisions. J/Ψ meson production off nuclei is the most widely
considered exclusive channel; those of other vector mesons ρ, φ) provide important com-
plementary information. DVCS, though luminosity hungry, is free of the uncertainty from
incomplete knowledge of vector meson wavefunctions.

Coherent diffractive J/Ψ production has been extensively discussed as potentially the
golden measurement in this category. However, while the physics goals are golden, the tech-
nical challenges are formidable. Coherent diffraction dominates over incoherent diffraction
only at rather low values of t. It was determined that a rejection of the target-dissociation
background with at least 95% efficiency is required in order to measure the coherent cross
section up to large enough momentum transfers, and a 20 MeV resolution on the momentum
transfer is also needed in order to extract precise enough information in impact parameter
space. While this measurement is more feasible in light nuclei, it becomes more challenging
in heavier nuclei. For light nuclei, coherent diffraction could shed important light on short
range nuclear forces. For larger nuclei, it is unclear at present whether what one learns is
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distinguishable from the distribution of gluons obtained from the Woods-Saxon distribu-
tion of nucleons in the nucleus; the ability for coherent diffraction to distinguish between
different dynamical models for large nuclei is disputed. For these reasons, it is classed as a
silver measurement.

Studies of the incoherent regime of diffractive vector meson production are slowly but
surely emerging. This process is a priori more sensitive to high parton densities than is
coherent diffraction. This is because it is much easier to measure at large t, corresponding
to small values of b, nearer the center of the nucleus where the gluon density is the largest.
However, the amount of information that can be extracted from nuclear fragments is not
clear, since the theoretical description of the nuclear break-up remains a challenge. The
minimum requirement is to be able to identify if the nucleus breaks up into ts constituent
nucleons or if the nucleons themselves break-up, as the corresponding calculations require
different theoretical tools. Neither experimental or theoretical works on this process are fully
mature to classify it as a golden measurement. However, the effects predicted by saturation
models are large and unique enough that an observation of these will be convincing evidence
of this physics. Therefore both theoretical and experimental studies of this channel should
be pursued vigorously.

5.1.3 Parton substructure of nuclei

Nuclear deep–inelastic scattering with an EIC will provide a unique measurement of
gluon and sea quark densities in the “dilute” regime at x & 0.01 in a range of nuclei. While
the quark densities in the region 0.05 . x . 0.6 were studied in fixed target experiments
and will be further explored at JLab with 12 GeV e beams, the behaviour of the gluon
and sea quark densities in this region is essentially unknown. The EIC will have sufficient
coverage in Q2 to extract the nuclear gluon density through the Q2 dependence of the
nuclear structure function FA2 . Further, direct access to gluons can be gained from the
longitudinal structure function FAL through measurements at different beam energies, or
additionally, by tagging charm production.

A reliable determination of the nuclear gluon density in the dilute regime is essential
for a quantitative assessment of the onset of the new QCD regime of high parton densities
and non-linear gluon interactions, which will be more widely accessible at a full-energy EIC
At x & 0.1, an EIC will also explore gluon anti-shadowing and EMC effects – a step that
might prove as revolutionary for our understanding of nuclei as the discovery of the quark
EMC effect 30 years ago. For these reasons, inclusive F2,L structure function measurements
at larger x complement those discussed for the small-x regime.

As it turns out, the high luminosity envisaged for the EIC enables measurements of
nuclear electromagnetic structure functions up to x ≈ 1 competitively with, or even sur-
passing, what has been achieved to date in fixed target experiments. (Since the maximum
x in a nucleus is A, collider high luminosity measurements could uncover interesting physics
in the Fermi regime where partons carry more more momenta than a bound nucleon.) Fur-
thermore, the large Q2 range and hadronic event reconstruction capabilities will also likely
allow measurement of charged current structure functions, and possibly of γ−Z interference
structure functions. See the chapter on electroweak physics for further discussion. This will
enable full quark flavour separation utilising only nuclear DIS data, and offer, for example,
new handles on the origin of the EMC effect such as its flavor dependence. In this context,
one should also mention the possibility of extracting information on particular twist four
operators, which play an important role in parity violating DIS in the EMC region. These
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measurements are highly interesting, important, and in some cases unique to the Electron-
Ion Collider compared to previous facilities. However, more work is needed to establish to
what extent full flavour separation can be effectively carried out at the EIC; we therefore
classify them as silver measurements.

Much more information on the nuclear modification of the quark/gluon structure of the
proton and neutron can be gained from deep–inelastic measurements with detection of the
spectator system of (A − 1) nucleons in the final state. In particular, measurements on
deuterium with a spectator proton can measure structure functions of the bound neutron
ranging from nearly on-shell to far off-shell, facilitating the extrapolation to an on-shell
neutron. Measurements with a spectator neutron, which are extremely difficult with a fixed
target but feasible at a collider using a zero degree calorimeter, provide completely new
information on the off-shell proton structure functions, and constrain theoretical models by
comparison to the well known free proton wave function. With heavier nuclear targets, one
could explore the effects of parton/nucleon embedding in a complex nuclear environment.
While no technical difficulty is foreseen, detailed studies of the required detectors are needed
to determine the feasibility and precision of these measurements.

5.1.4 Parton propagation and hadronization in nuclear matter

The transition from colored partons (quarks and gluons) to colorless hadrons – the so-
called hadronization or fragmentation process – exemplifies a fundamental process in QCD
which still lacks a quantitative understanding from first principles calculations. Fragmen-
tation functions, which encode the probability that a parton fragments into a hadron, have
been obtained by fitting experimental data covering large kinematic ranges and numerous
hadron species. However, knowledge about the dynamics of the process remains limited
and model dependent. A particular model, see Figure 5.2, posits a separation of scales be-
tween a short time scale for color neutralization due to confinement generating a colorless
“pre-hadron” and a longer time scale (presumably controlled by chiral symmetry breaking),
which governs the formation of hadrons. The dynamical consequences of such a model
are distinguishable from other models where the separation of scales is reversed or is non-
existent. Extracting these time scales would be an important step towards understanding
how hadrons emerge dynamically from partons, complementing the information on prop-
erties of color confinement extracted from lattice measurements of ground state “static”
correlators.

Nuclear deep inelastic scattering (nDIS) provides a known and stable nuclear medium
(“cold QCD matter”) and a final state with strong experimental control on the kinematics
of the hard scattering. This permits one to use nuclei as femtometer-scale detectors of the
hadronization process, see Figure 5.2. In fact, both the energy loss due to medium-induced
gluon bremsstrahlung off a quasi-free parton and the prehadron reinteraction with the sur-
rounding nucleons lead to attenuation and transverse momentum broadening of hadron
yields compared to proton targets, and allow experimental access to the space-time evolu-
tion of hadronization. Theoretical models of this process can be calibrated in nDIS and
then applied, for example, to the study of the Quark-Gluon Plasma (“hot QCD matter”)
created in high-energy nucleus-nucleus collisions.

The combination of high energy and luminosity offered by the EIC promises a truly
qualitative advance in this field, compared with current and planned fixed target experi-
ments. The large Q2 range permits measurements in the fully calculable perturbative regime
with enough leverage to determine nuclear modifications in the QCD evolution of fragmen-
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Figure 5.2. Parton propagation and hadronization in cold and hot nuclear matter. A scenario of
possibly distinct color neutralization (tCN ) and hadron formation (tF ) time scales is illustrated on
the vertical time axis.

tation functions; the high-luminosity permits the multidimensional binning necessary for
separating the many competing effects and for detecting rare hadrons. The large ν range
(≈ 10−1000 GeV) allows one to experimentally boost the hadronization process in and out
of the nuclear medium, in order to isolate in-medium parton propagation effects (large ν)
and cleanly extract color neutralization and hadron formation times (small ν); furthermore,
using the quark flavor separated nuclear PDFs expected from the EIC, one could analyze
nuclear Drell-Yan data, which are free from hadronization effects, and isolate initial state
parton energy loss from nuclear wave function effects, enabling a complete experimental
study of color charge interactions in cold nuclear matter. For the first time, one will be able
to study hadronization of open charm and open bottom meson production in e + A colli-
sions, as well as the in-medium propagation of the associated heavy quarks: these allow one
to fundamentally test high-energy QCD predictions for energy loss, and confront puzzling
measurements of heavy flavor suppression in the Quark-Gluon Plasma at RHIC. Within a
collider environment, one would also be able to separate target from current hadronization
and cross-correlate these two, adding a new dimension to hadronization studies.

The scattered quarks and gluons, from which the final-state hadrons emerge, couple to
other nuclear gluons. Good control over the color neutralization time scale will allow one
to use this internally created color radiation to explore the structure of nuclear matter in
close analogy with the well-known exploration of matter with electromagnetic radiation or
electrically charged particles. Furthermore, an EIC with

√
s & 30 GeV will permit for the

first time the measurement of jets and their substructure in e + A collisions, furnishing a
novel and extensive set of observables which directly access quark energy loss and the as
yet untested parton shower mechanism, fundamentally described in QCD and pervasive in
applications to particle physics simulations. Jet nuclear modifications can also be directly
related to the propagation of the colored partons shower in the nuclear medium, and used to
measure the cold nuclear matter transport coefficients which encode basic information on the
non-perturbative soft gluon structure of the nuclei. These measurements are complementary
to direct inclusive and diffractive structure functions measurements at small x in accessing
the high-density non-linear QCD regime, but are entirely feasible with a low-energy EIC.

The outlined parton propagation and hadronization program can for the most part be
carried out in phase-I. In phase-II, we do not anticipate any qualitative new lesson will be
learned, while the increased energy and Q2 range may prove useful, for instance, for more

248



refined studies in the jet and heavy flavor sectors, and offering an increased reach towards
small x for nuclear gluon measurements via 2+1 jet production.

In conclusion, due to the physics interest, theoretical interpretability and feasibility in
phase-I, this jet and heavy quark study program as a whole was classified as a golden
measurement for e+A collisions at an EIC, with light quark SIDIS classified as a silver
measurement.
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5.2 Small-x physics and saturation

5.2.1 Introduction and review of linear and non-linear approaches in
QCD

Collinear factorization and DGLAP evolution

Anna M. Staśto

The evaluation of strong interaction cross-sections which involve hard scales is possi-
ble thanks to QCD factorization theorems. The latter are derived from first principles in
QCD [716, 717] and allow the factorization of cross sections into hard scattering coefficients
(computed in a perturbative expansion in the strong coupling constant) and parton densi-
ties which contain information about nonperturbative dynamics. Parton densities, due to
their intrinsically non-perturbative nature, cannot be directly evaluated from first-principles
lattice computations except perhaps in very limited kinematic windows. Nevertheless, their
evolution with hard scale can be calculated. This is done usually using the renormalization
group DGLAP equations,

µ
d

dµ
fj/h(x, µ) =

∑

k

∫ 1

x

dz

z
Pjk(z, αs(µ)) fk/h(x/z, µ) , (5.1)

with the splitting functions which have perturbative expansion in powers of the strong
coupling constant αs,

Pjk(z, αs(µ)) =
∑

i

(αs(µ))
iP

(i)
jk (z) . (5.2)

Coefficient functions and splitting functions are known up to NNLO accuracy [4, 718, 5].
It has been found that at this order large corrections appear which are enhanced by the
logarithmic terms in 1/x. The collinear approach suffers also from other limitations. The
kinematical approximations mostly suitable for the evaluation of the inclusive observables
are not sufficient for exclusive processes and can lead to large discrepancies [719].

There are also other direct indications of the breakdown of the fixed order approach.
From the global fits [22, 43], it is known that the gluon density suffers from large uncer-
tainties at the NLO level in the region of small values of x, and the gluon density even
turns negative. Even though the gluon density is not a directly observable quantity, the
aforementioned uncertainties propagate into the observable longitudinal structure function
FL. The problem is concentrated in the low Q and low-x region, though the uncertainties
remain even at larger values of Q when x is decreased. A systematic study of the compati-
bility of the HERA deep inelastic data with DGLAP evolution has been performed in [720].
This analysis, originally based on the NNPDF1.2 analysis [681, 721], was then extended
to the global NNPDF2.0 set, which includes the very precise combined HERA-I dataset as
well as all the relevant hadronic data. A ‘safe’ region was defined as the one in which the
non-DGLAP effects are expected to be negligible, and it was defined by the cut on low-x
and Q data. A fit was then performed to the data that pass the cut and only belong to
the safe region and the structure functions evaluated at different scales. It turned out that
the prediction for the structure functions at low Q2 obtained from the backward-evolution
of the data above the cut exhibits a systematic downward trend. Thus the precise HERA
measurements indicate that the fixed order DGLAP evolution is incompatible with the data
in the low Q2 and low x region.
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Small-x re-summations

Anna M. Staśto

Since the seminal works [59, 60], it is well known that observables at small x receive
substantial corrections due to the large logarithms αs ln 1/x which need to be re-summed
in this regime. The BFKL approach [59, 60] provides a framework for this summation
and it is known up to next-to-leading logarithmic accuracy. The resulting evolution of
the gluon Green’s function provided by this framework is with respect to the ln 1/x or
rapidity variable, with the transverse momenta of the gluons being summed over all possible
configurations. The evolution has the following form

G(Y ;k,k0) = δ(2)(k− k0) +

∫
d2k′ K(k,k′) G(Y ;k′,k0) , (5.3)

with the branching kernel having also the perturbative expansion

K(k,k′) =
∑

i

(αs(µ))
iK(i)(k,k′) . (5.4)
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Figure 5.3. The intercept of the hard Pomeron ex-
tracted from the BFKL equation with fixed strong
coupling in LL, NLL and re-summed cases.

A solution for the gluon Green’s func-
tion and therefore the resulting cross sec-
tions exhibit strong growth with the energy,
the hard Pomeron, with the intercept being
significantly larger than unity in the LO ap-
proximation, ωP = 1 + αsNc4 ln 2/π. This
growth turns out to be incompatible with
both the hadronic data and the data on
structure functions from deep-inelastic scat-
tering. NLL (next-to-leading-log) correc-
tions [722, 723] turned out to be rather large
numerically and point to the need for the re-
summation of subsequent powers of higher
order corrections αks ln 1/x. The sizes of the
various NLL corrections can be understood
on physical grounds. Firstly, unlike in the
DGLAP limit, the strong coupling constant
is not naturally a small parameter. On top
of that, the BFKL approach does not sat-
isfy the momentum sum rule for the longi-
tudinal momentum fractions (the transverse
momenta are however conserved, unlike in the collinear approach). The kinematical approx-
imations made in the BFKL limit cannot be efficiently recovered by the truncated higher
orders of the perturbative expansion.

The strategy of re-summation at small x has been developed in a series of works
[724, 725, 726, 727, 728]. It involves the construction of the appropriate re-summed kernel
of the form given by Eq. 5.4, which includes at the same time known terms in the ex-
pansion of the splitting function, Eq. 5.2. Although the details of the various approaches
differ, there are common fundamental ingredients. The evolution in rapidity is subjected
to kinematical constraints which originate from the requirement of the consistency of the
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Figure 5.4. Left: The gluon Green’s function extracted from the BFKL equation in LL and re-
summed cases. The coupling is running in all computations, and k̄ denotes the scale at which the
strong coupling is regularized. Right: The extracted effective splitting function from the re-summed
approach: solid line. The scale was taken to be Q = 4.5GeV. Dotted pink line indicates the LO
DGLAP splitting function and the blue dashed indicates small x part of the NNLO DGLAP. The
dashed green line corresponds to the re-summed spliitting function from the ω expansion. The band
correspond to the scale variation.

assumption about the Regge kinematics. The evolution is matched with the DGLAP evo-
lution by including the splitting function at LO and NLO. The momentum sum rule is
imposed onto the resulting re-summed splitting function. The running of the coupling is
included into the evolution. Finally, matching to the NLL BFKL is performed with the
suitable subtractions in order to avoid double counting. The resulting Green’s function and
splitting function turn out to be very stable with minimal variations across the different
re-summation schemes.

c Gluon Green’s function and the splitting function: In Fig. 5.3, we show the
results on the intercept of the gluon Green’s function in the case of the fixed strong cou-
pling constant, obtained within the re-summation framework of [724]. The linear growth is
given by the LO approximation. The NLO value of the intercept is significantly below the
lowest order, and turns negative even for the intermediate values of αs. The re-summed
result is between the NLO and LO, it exhibits clear growth with increasing values of the
coupling constant, albeit much reduced with respect to the LO value and much closer to
the phenomenology.

The rapidity dependence of the gluon Green’s function is shown in Fig. 5.4 (left). The
scale was chosen to be equal to k = 4.5GeV. The reduction of the speed of growth is clear
in the re-summed case. Also the scale variations are relatively small in this case.

By using the deconvolution of the integral equation, one can calculate the integrated
gluon density. As a result, it is possible to solve the re-summed splitting function numer-
ically. In this way, the perturbative and non-perturbative contributions are factorized in
Q2. In Fig. 5.4 (right), we show the results for the splitting function as a function of the
momentum fraction for the re-summed case. It is compared with the results on the LO and
NNLO (only small x part) splitting functions. The results on the splitting function demon-
strate that the small x growth is delayed to much smaller values of x (beyond HERA). The
splitting function also has an interesting feature, namely that of the dip. It turns out that
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this is a universal feature, present also in other schemes of re-summation. In general, it was
found that the dip comes from the interplay between NNLO order and the re-summation.

Thus far, re-summation was demonstrated to give stable results for the gluon channel
only. For the complete description, however, one needs to include quarks in the evolution. A
matrix approach was developed which was shown to be consistent with the collinear matrix
factorization of the parton densities in the singlet evolution [726]. This approached enables
the calculation of the anomalous dimensions matrix, which can be directly compared with
the standard DGLAP matrix. It was shown that it is possible to incorporate NLLx BFKL
+ NLO DGLAP in this framework [726].

Conclusions and outlook: The small-x regime requires a formalism which incorporates
re-summation of the large terms αs ln 1/x. The BFKL formalism was extended to include
re-summation to higher orders. This formalism includes both DGLAP NLO and BFKL
NLL and higher order terms. Stability of the results was demonstrated for scale changes
and model changes. There are certain universal and characteristic features which come
from the solutions to the evolution equations: the rapid growth with x is delayed to smaller
values of x, and the splitting function has a minimum. A matrix model was developed which
gives consistent results on the gluon Green’s function and the splitting functions. For the
complete framework, one needs to include the re-summed coefficient functions. Detailed
fits to the data need to be performed. In this regard, the EIC will generate very important
information on parton densities at small x, and in distinguishing small x re-summation
effects from higher twist saturation effects.

Parton Saturation

Yuri V. Kovchegov and Cyrille Marquet

The QCD description of hadrons in terms of quarks and gluons depends on the processes
considered and on what part of the hadron wave function they are sensitive to. Consider a
hadron moving at nearly the speed of light along the light cone direction x+, with momentum
P+. Depending on their transverse momentum kT and longitudinal momentum xP+, the
virtual partons inside the hadron behave differently, reflecting the different regimes of the
hadron wave function. Soft hadronic processes are mostly sensitive to the non-perturbative
part of the wave function, they involve quantum fluctuations with transverse momenta of the
order of ΛQCD ∼ 200 MeV. A hadron can then be thought of as a bound state of strongly-
interacting partons, but a QCD description of the associated dynamics is still lacking. By
contrast, hard processes in hadronic collisions are sensitive to the weakly-coupled part of
the wave function and resolve the partonic structure of hadrons. They probe partons with
kT ≫ ΛQCD whose QCD dynamics is better understood.

One can distinguish two weakly-coupling regimes in the wave function: a linear one
called the hard regime, involving a small density of partons, typically with x . 1, in which
the hadron looks like a dilute system of independent partons, and a non-linear one called
the saturation regime, involving a large density of partons with x≪ 1, in which the hadron
looks like a dense system of nevertheless weakly-interacting partons, mainly gluons (called
small-x gluons). The dilute-dense separation is a bit subtler than that: the larger kT is, the
smaller x needs to be to enter the saturation regime. Indeed the separation between the
two regimes is characterized by a momentum scale Qs(x), called the saturation scale, which
increases as x decreases. In a scattering process, dilute partons (with kT ≫ Qs(x)) behave
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incoherently, while when the parton density is large (kT . Qs(x)), gluons scatter coherently.
The dynamics of the dilute regime is well described by the leading-twist approximation of
QCD, whose hallmark is collinear factorization. As explained in the previous section, when x
becomes small while not yet reaching the non-linear regime, so-called small-x re-summations
are also needed to improve the approximation.

To describe the small-x non-linear part of hadronic/nuclear wave functions in QCD, the
Color Glass Condensate (CGC) effective theory was proposed. Rather than using the stan-
dard Fock-state expansion which is ineffective in dealing with numerous small−x gluons,
the CGC approach employs collective degrees of freedom, static color sources at large x and
dynamical classical color fields at small x. The traditional approach to saturation physics
consists of two stages, corresponding to two different levels of approximations. The first
level corresponds to the classical gluon field description of nuclear wave functions and scat-
tering cross sections. It re-sums all multiple re-scatterings in the nucleus, but lacks energy
dependence. The latter is included through quantum corrections, which are re-summed by
non-linear evolution equations. This constitutes the second level of approximation. We will
present both stages below.

Classical gluon fields

McLerran–Venugopalan model: Imagine a single large nucleus, which was boosted to
some ultrarelativistic velocity, as shown in Fig. 5.5 (left). We are interested in the dynamics
of small-x gluons in the wave function of this relativistic nucleus. The small-x gluons
interact with the whole nucleus coherently in the longitudinal direction: therefore, only the
transverse plane distribution of nucleons is important for the small-x wave function. As one
can see from Fig. 5.5, after the boost, the nucleons, as “seen” by the small-x gluons, appear
to overlap with each other in the transverse plane, leading to high parton density. Large
occupation numbers of color charges (partons) lead to classical gluon fields dominating the
small-x wave function of the nucleus. This is the essence of the McLerran-Venugopalan
(MV) model [729, 730, 731]. According to the MV model, the dominant gluon field is given
by the solution of the classical Yang-Mills equations Dµ F

µν = Jν where the classical color
current Jν is generated by the valence quarks in the nucleons of the nucleus from Fig. 5.5.
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Figure 5.5. Left: Large nucleus before and after an ultrarelativistic boost. Right: Unintegrated
gluon distribution φ(x, k2T ) of a large nucleus due to classical gluon fields (solid line). Dashed curve
denotes the lowest-order perturbative result.

The Yang-Mills equations were solved for a single nucleus exactly [732, 733] resulting
in the unintegrated gluon distribution φ(x, k2T ) (multiplied by the phase space factor of the
gluon’s transverse momentum kT ) shown in Fig. 5.5 right as a function of kT . (Note that in
the MV model, φ(x, k2T ) is independent of Bjorken-x.) Fig. 5.5 demonstrates the emergence
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of the saturation scale Qs. As one can see from Fig. 5.5, the majority of gluons in this classi-
cal distribution have transverse momentum kT ≈ Qs. Since in this classical approximation
Q2
s ∼ A1/3, for a large enough nucleus, all of its small-x gluons would have large transverse

momenta kT ≈ Qs ≫ ΛQCD, justifying the applicability of the perturbative approach to
the problem. Note that the gluon distribution slows down its growth with decreasing kT
for kT < Qs (from power-law of kT to a logarithm) and the distribution saturates.

DIS at high energy: Glauber-Mueller formula: Let us consider deep inelastic scatter-
ing (DIS) on a large nucleus. In DIS, the incoming electron emits a virtual photon, which in
turn interacts with the proton or nucleus. In the rest frame of the nucleus, the interaction
can be thought of as the virtual photon splitting into a quark-antiquark pair, which then
interacts with the nucleus (see Fig. 5.6, left panel). Since the light cone lifetime of the qq̄
pair is much longer than the size of the target nucleus, the total cross section for the virtual
photon–nucleus scattering can be written as a convolution of the virtual photon’s light cone
wave function (the probability for it to split into a qq̄ pair) with the forward scattering
amplitude of a qq̄ pair interacting with the nucleus

σγ∗Atot (Q2, xBj) =

∫
d2x dz

2π
[ΦT (x, z) + ΦL(x, z)] d

2b N(x, b, Y ) (5.5)

with the help of the light-cone perturbation theory [734]. Here the incoming photon with
virtuality Q splits into a quark–antiquark pair with the transverse separation x and the im-
pact parameter (transverse position of the center of mass of the qq̄ pair) b. Y is the rapidity
variable given by Y = ln(s x2T ) ≈ ln 1/xBj . The square of the light cone wave function of
qq fluctuations of a virtual photon is denoted by ΦT (x, z) and ΦL(x, z) for transverse and
longitudinal photons correspondingly, with z being the fraction of the photon’s longitudinal
momentum carried by the quark. At the lowest order in electromagnetic coupling (αEM )
ΦT (x, z) and ΦL(x, z) are given by [735, 736]

ΦT (x, z) =
2Nc

π

∑

f

αfEM
{
a2f K

2
1 (x⊥af ) [z

2 + (1− z)2] +m2
fK0(x⊥af )

2
}
, (5.6)

ΦL(x, z) =
2Nc

π

∑

f

αfEM 4Q2 z2(1− z)2 K2
0 (x⊥af ), (5.7)

with a2f = Q2z(1 − z) + m2
f , x⊥ = |x| and ∑f denoting the sum over all relevant quark

flavors with quark masses denoted by mf . α
f
EM = e2f/4π with ef the electric charge of a

quark with flavor f .
Our first goal is to calculate the forward scattering amplitude of a quark–anti-quark

dipole interacting with the nucleus, which is denoted by N(x, b, Y ) in Eq. (5.5), including
all multiple re-scatterings of the dipole on the nucleons in the nucleus.To do this we need
to construct a model of the target nucleus. We assume that the nucleons are dilutely
distributed in the nucleus [737]. There we can represent the dipole-nucleus interaction as a
sequence of successive dipole-nucleon interactions, as shown in Fig. 5.6, right panel. Since
each nucleon is a color singlet, the lowest order dipole-nucleon interaction in the forward
amplitude from Fig. 5.6 is a two-gluon exchange. The exchanged gluon lines in Fig. 5.6 are
disconnected at the top: this denotes a summation over all possible connections of these
gluon lines either to the quark or to the anti-quark lines in the incoming dipole.
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Figure 5.6. Left: Deep inelastic scattering in the rest frame of the target. Right: Deep inelastic
scattering in the quasi-classical Glauber-Mueller approximation in ∂µA

µ = 0 gauge.

Re-summation of the diagrams like the one in Fig. 5.6 yields [737]

N(x, b, Y = 0) = 1− exp

{
−x

2
⊥Q

2
s(b) ln(1/x⊥ Λ)

4

}
(5.8)

with the saturation scale defined by

Q2
s(b) ≡ 4π α2

s CF
Nc

ρT (b). (5.9)
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Figure 5.7. The forward amplitude of the dipole–
nucleus scattering N ,plotted as a function of the
transverse separation between the quark and the
anti-quark in a dipole (x⊥) using Eq. (5.8).

Here, ρ is the density of nucleons in the
nucleus (ρ = A/[(4/3)πR3] for a spherical
nucleus of radius R with atomic number
A) and T (b) is the nuclear profile function
equal to the length of the nuclear medium
at a given impact parameter b, such that
T (b) = 2

√
R2 − b2 for a spherical nucleus.

Λ is an infrared cutoff. We put Y = 0 in
the argument of N in Eq. (5.8) to underline
that this expression does not include any
small-x evolution which would bring in the
rapidity dependence.

Eqs. (5.8) and (5.9) allow us to deter-
mine the parameter corresponding to the
re-summation of the diagrams like the one
shown in Fig. 5.6. Noting that for large nu-
clei, the profile function scales as T (b) ∼
A1/3 and the nucleon density scales as ρ ∼
A0, we conclude that the re-summation pa-
rameter of multiple re-scatterings is [738]:

α2
s A

1/3. The physical meaning of the parameter α2
s A

1/3 is rather straightforward: at a
given impact parameter the dipole interacts with ∼ A1/3 nucleons exchanging two gluons
with each. Since the two-gluon exchange is parametrically of the order α2

s we obtain α
2
s A

1/3

as the re-summation parameter for the quasi-classical approximation.
The dipole amplitude N , from Eq. (5.8), is plotted (schematically) in Fig. 5.7 as a

function of x⊥. One can see that, at small x⊥, x⊥ ≪ 1/Qs, we have N ∼ x2⊥ and the
amplitude is a rising function of x⊥. However, at large dipole sizes x⊥ & 1/Qs, the growth
stops and the amplitude levels off (saturates) at N = 1. This regime corresponds to the
black disk limit for the dipole-nucleus scattering where, for large dipoles, the nucleus appears
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as a black disk. To understand that the N = 1 regime corresponds to the black disk limit,
let us note that the total dipole-nucleus scattering cross section is given by:

σqq̄Atot = 2

∫
d2bN(x, b, Y ) (5.10)

where the integration goes over the cross sectional area of the nucleus. If N = 1 at all
impact parameters b inside the nucleus, for a spherical nucleus of radius R, Eq. (5.10)
becomes σqq̄Atot = 2π R2, which is a well-known formula for the cross section of a particle
scattering on a black sphere [739].

The transition between the N ∼ x2⊥ to N = 1 behavior in Fig. 5.7 happens at around
x⊥ ∼ 1/Qs. For dipole sizes x⊥ & 1/Qs, the amplitude N saturates to a constant. This
translates into the saturation of quark distribution functions in the nucleus, as was shown in
[737] (as xq+xq̄ ∼ F2 ∼ σγ∗Atot ), and thus can be identified with parton saturation, justifying
the name of the saturation scale.

Before we proceed, let us finally note that since T (b) ∼ A1/3, the saturation scale in
Eq. (5.9) scales as Q2

s ∼ A1/3 with the nuclear atomic number [730, 731, 729, 737]. This
implies that for a very large nucleus, the saturation scale would become very large, much
larger than ΛQCD. If Qs ≫ ΛQCD, the transition to the black disk limit in Fig. 5.7 happens
at momentum scales (corresponding to inverse dipole sizes) where the physics is perturbative
and gluons are the correct degrees of freedom.

Nonlinear evolution equations

General picture: While the classical gluon fields of the MV model exhibit many correct
qualitative features of saturation physics, and give predictions about the A-dependence of
observables which may be compared to the data, they do not lead to any rapidity/Bjorken-
x dependence of the corresponding observables, which is essential in the data on nuclear
and hadronic collisions. To include rapidity dependence, one has to calculate quantum
corrections to the classical fields described above.

partonsN

new parton is emitted as energy increases

it could be emitted off anyone of the N partons

any two partons can recombine into one

Figure 5.8. Nonlinear small-x evolution of a hadronic or nuclear wave functions. All partons (quarks
and gluons) are denoted by straight solid lines for simplicity.

The inclusion of quantum corrections is accomplished by the small-x evolution equations.
The first small-x evolution equation was constructed before the birth of saturation physics.
This is the Balitsky-Fadin-Kuraev-Lipatov (BFKL) evolution equation [60, 59]. This is a
linear evolution equation, which is illustrated by the first term on the right hand side of
Fig. 5.8. Consider a wave function of a high-energy nucleus or hadrons: it contains many
partons, as shown on the left of Fig. 5.8. As we make one step of evolution by boosting
the nucleus/hadron to higher energy, either one of the partons can split into two partons,
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leading to an increase in the number of partons proportional to the number of partons N
at the previous step,

∂ N(x, k2T )

∂ ln(1/x)
= αsKBFKL ⊗ N(x, k2T ), (5.11)

with KBFKL an integral kernel. Clearly the BFKL equation (5.11) introduces a Bjorken-
x/rapidity dependence in the observables it describes.

The main problem with the BFKL evolution is that it leads to the power-law growth
of the total cross sections with energy, σtot ∼ sαP−1, with the BFKL pomeron intercept
αP −1 = (4αsNc ln 2)/π > 0. Such a power-law cross section increase violates the Froissart
bound, which states that the total hadronic cross section can not grow faster than ln2 s at
very high energies. Moreover, the power-law growth of cross sections with energy violate
the black disk limit known from quantum mechanics: the high-energy total scattering cross
section σtot of a particle on a sphere of radius R is bounded by 2π R2 (note the factor
of 2 which is due to quantum mechanics, this is not simply a hard sphere from classical
mechanics!).

We see that something has to modify Eq. (5.11) at high energy. The modification is
illustrated on the far right of Fig. 5.8: at very high energies, partons may start to recombine
with each other on top of the splitting. The recombination of two partons into one is
proportional to the number of pairs of partons, which, in turn, scales as N2. We end up
with the following non-linear evolution equation:

∂ N(x, k2T )

∂ ln(1/x)
= αsKBFKL ⊗ N(x, k2T )− αs [N(x, k2T )]

2. (5.12)

This is the Balitsky-Kovchegov (BK) evolution equation [740, 741], which is valid for QCD
in the limit of large number of colors Nc. An equation of this type was originally suggested
by Gribov, Levin and Ryskin [742] and by Mueller and Qiu [743], though at the time it
was assumed that the quadratic term is only the first non-linear correction with higher
order terms possibly appearing as well: in [740, 741] the exact form of the equation was
found, and it was shown that in the large-Nc limit, Eq. (5.12) does not have any higher-
order terms in N . Generalization of Eq. (5.12) beyond the large-Nc limit is accomplished
by the Jalilian-Marian–Iancu–McLerran–Weigert–Leonidov–Kovner (JIMWLK) [744, 745]
evolution equation, which is a functional differential equation. Both the BK and JIMWLK
evolution equations will be discussed in more details later.

The physical impact of the quadratic term on the right of Eq. (5.12) is clear: it slows
down the small-x evolution, leading to parton saturation and to total cross sections adhering
to the black disk limit. The effect of gluon mergers becomes important when the quadratic
term in Eq. (5.12) becomes comparable to the linear term on the right-hand-side. This gives
rise to the saturation scale Qs, which now grows with energy (on top of its increase with A).

The Balitsky-Kovchegov equation: Let us now include the energy dependence in the
dipole amplitude N from Eq. (5.8). Similar to the BFKL evolution equation [59, 60], we
are interested in quantum evolution in the leading longitudinal logarithmic approximation
re-summing the powers of αs ln

1
xBj

∼ αs Y , with Y the rapidity variable. Again we will

be working in the rest frame of the nucleus, but this time we choose to work in the light
cone gauge of the projectile A+ = 0 if the dipole is moving in the light cone + direction.

Leading logs in x corrections appear in the diagrams through emissions of long-lived
s-channel gluons, as shown in Fig. 5.9. These s-channel gluons interact with the target
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Figure 5.9. Quantum corrections to dipole-nucleus scattering.

nucleus through multiple re-scatterings. In the large-Nc limit of QCD such diagrams can
be re-summed by the BK evolution equation [740, 746, 741, 747]:

∂N(x0, x1, Y )

∂Y
=

αsCF
π2

∫
d2x2

x201
x220 x

2
21

[
N(x0, x2, Y ) +N(x2, x1, Y )−N(x0, x1, Y )

−N(x0, x2, Y )N(x2, x1, Y )

]
,

(5.13)

where we have redefined the arguments of N to depend on the transverse coordinates of
the quark and antiquark (instead of dipole size and the impact parameter as was done in
Eq. (5.8)). Here xij = |xij | and xij = xi − xj.

δ
δ ln s 2N
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Figure 5.10. Diagrammatic representation of the nonlinear evolution equation (5.13).

In the large-Nc limit, gluon cascades reduce to a cascade of color dipoles. Summation
of the dipole cascade is illustrated in Fig. 5.10 where the dipole cascade and its interaction
with the target are denoted by a shaded oval. In one step of the evolution in energy (or
rapidity) a soft gluon is emitted in the dipole. If the gluon is real, than the original dipole
would be split into two dipoles, as shown in Fig. 5.10. Either one of these dipoles can
interact with the nucleus with the other one not interacting, which is shown by the first
term on the right hand side of Fig. 5.10 with the factor of 2 accounting for the fact that
there are two dipoles in the wave function now. Alternatively, both dipoles may interact
simultaneously, which is shown by the second term on the right hand side of Fig. 5.10. This
term comes in with the minus sign. The emitted gluon in one step of evolution may be a
virtual correction, which is not shown in Fig. 5.10: in that case, the original dipole would
not split into two, it would remain the same and would interact with the target. In the end,
the evolved system of dipoles interacts with the nucleus. In the large-Nc limit, each dipole
does not interact with other dipoles during the evolution which generates all the dipoles.
For a large nucleus, the dipole-nucleus interaction was given above in Eq. (5.8). That result
re-sums powers of α2

s A
1/3: hence the BK equation re-sums powers of αs Y and powers of

α2
s A

1/3.

Map of high-energy QCD

Solutions of the BK and JIMWLK evolution equations have been calculated numeri-
cally [748, 749, 750], with asymptotic limits studied analytically. The numerical solution
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Figure 5.11. Left: Solutions of the BK equation at rapidities Y=0, 5, 15 and 30 (curves are labeled
from right to left) for the three different running coupling schemes considered in [751] Right: HERA
data on the total DIS γ∗p cross section plotted in [752] as a function of the scaling variable τ =
Q2/Q2

s(xBj).

(for the BK equation with running coupling, which will be described later) is presented in
Fig. 5.11 [751]. These plots are the same dipole amplitude N plotted as a function of the
dipole size labeled r as was done in Fig. 5.7. In Fig. 5.11, different curves correspond to dif-
ferent energies/rapidities Y . One can clearly see that the curves tend to drift to the left with
increasing energies, corresponding to increasing saturation scale with the energy/rapidity.
Therefore we see that the saturation scale increases with rapidity, making the corresponding
physics more perturbative.

We summarize our knowledge of high energy QCD in Fig. 5.12, in which different regimes
are plotted in the (Q2, Y = ln 1/x) plane, by analogy with DIS. For hadronic and nuclear
collisions one can think of typical transverse momentum p2T of the produced particles instead
of Q2. Also rapidity Y and Bjorken-x variable are interchangeable. On the left of Fig. 5.12
we see the region with Q2 ≤ Λ2

QCD in which the coupling is large, αs ∼ 1, and small-coupling

approaches do not work. In the perturbative region, Q2 ≫ Λ2
QCD, we see the standard

DGLAP evolution and the linear BFKL evolution. The BFKL equation evolves gluon
distributions toward small-x, where parton densities becomes large and parton saturation
sets in. The transition to saturation is described by the non-linear BK and JIMWLK
evolution equations. Most importantly, this transition happens at Q2

s ≫ Λ2
QCD where the

small-coupling approach is valid.
One of the most important predictions of nonlinear small-x evolution is that, at high

enough rapidity, the scattering amplitude N (and, consequently, DIS structure functions)
would be a function of a single variable x⊥Qs(Y ), such that N(x⊥, Y ) = N(x⊥Qs(Y )).
This prediction is spectacularly confirmed by HERA data. Geometric scaling has been
demonstrated in an analysis of the HERA DIS data [752], presenting one of the strongest
arguments for the observation of saturation phenomena at HERA. These results are shown
here in Fig. 5.11 from [752], where the authors combined HERA data on the total DIS γ∗p
cross section σγ

∗p
tot for xBj < 0.01 as a function of the scaling variable τ = Q2/Q2

s(xBj). One

can see that, amazingly enough, all the data falls on the same curve, indicating that σγ
∗p
tot

is a function of a single variable Q2/Q2
s(xBj)! This gives us the best to date experimental

proof of geometric scaling. (For a similar analysis of DIS data on nuclear targets see [753].)
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Figure 5.12. Map of high energy QCD in the (Q2, Y = ln 1/x) plane.

The fact that geometric scaling is a property of the solution of the BK equation was later
demonstrated in [754, 755].

Universality aspects of the Color Glass Condensate

François Gelis

The Color Glass Condensate (CGC) is an effective field theory (EFT) based on the
separation of the degrees of freedom into fast frozen color sources and slow dynamical
color fields [729, 731, 730]. A renormalization group equation –the JIMWLK equation
[756, 757, 758, 759, 760, 761, 745, 762, 763]– ensures the independence of physical quantities
with respect to the cutoff that separates the two kinds of degrees of freedom.

The fast gluons with longitudinal momentum k+ > Λ+ are frozen by Lorentz time
dilation in configurations specified by a color current Jµa ≡ δµ+ρa, where ρa(x−, x⊥) is the
corresponding color charge density. On the other hand, slow gluons with k+ < Λ+ are
described by the usual gauge fields Aµ of QCD. Because of the hierarchy in k+ between
these two types of degrees of freedom, they are coupled eikonaly by a term JµA

µ. The
fast gluons thus act as sources for the fields that represent the slow gluons. Although it
is frozen for the duration of a given collision, the color source density ρa varies randomly
event by event. The CGC provides a gauge invariant distribution WΛ+[ρ], which gives the
probability of a configuration ρ. This encodes all the correlations of the color charge density
at the cutoff scale Λ+, separating the fast and slow degrees of freedom. Given this statistical
distribution, the expectation value of an operator at the scale Λ+ is given by

〈O〉Λ+ ≡
∫ [

Dρ
]
WΛ+

[
ρ
]
O
[
ρ
]
, (5.14)

where O[ρ] is the expectation value of the operator for a particular configuration ρ of the
color sources.

The power counting of the CGC EFT is such that in the saturated regime, the sources
ρ are of order g−1. Attaching an additional source to a given Feynman graph does not alter
its order in g; the vertex where this new source attaches to the graph is compensated by the
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g−1 of the source. Thus, computing an observable at a certain order in g2 requires the re-
summation of all the contributions obtained by adding extra sources to the relevant graphs.
The leading order in g2 is given by a sum of tree diagrams, which can be expressed in terms
of classical solutions of the Yang-Mills equations. Moreover, for inclusive observables [764,
765], these classical fields obey a simple boundary condition: they vanish when t→ −∞.

Next-to-leading order (NLO) computations in the CGC EFT involve a sum of one-loop
diagrams embedded in the above classical field. To prevent double counting, momenta in
loops are required to be below the cutoff Λ+. This leads to a logarithmic dependence in
Λ+ of these loop corrections. These logarithms are large if Λ+ is well above the typical
longitudinal momentum scale of the observable considered, and must be re-summed.

For inclusive observables, the leading logarithms are universal and can be absorbed into
a redefinition of the distribution WΛ+ [ρ] of the hard sources. The evolution of WΛ+ [ρ] with
Λ+ is governed by the functional JIMWLK equation

∂WΛ+ [ρ]

∂ ln(Λ+)
= −H

[
ρ,

δ

δρ

]
WΛ+[ρ] , (5.15)

where H is known as the JIMWLK Hamiltonian. This operator contains up to two deriva-
tives ∂/∂ρ, and arbitrary powers in ρ. Its explicit expression can be found in refs. [756, 757,
758, 759, 760, 761, 745, 762, 763, 766, 767]. The derivation of the JIMWLK equation will
be sketched below.

Numerical studies of JIMWLK evolution were performed in [750, 768]. An analytic,
albeit formal, solution to the JIMWLK equation was constructed in [769] in the form of a
path integral. Alternatively, the evolution can can be expressed as an infinite hierarchy of
coupled non-linear equations for n-point Wilson line correlators–often called the Balitsky
hierarchy [770]. In this framework, the BK equation is a mean field approximation of the
JIMWLK evolution, valid in the limit of a large number of colors Nc → ∞. Numerical
studies of the JIMWLK equation [750, 768] have found only small differences with the BK
equation.

Let us finally comment on the initial condition for the JIMWLK equation which is also
important in understanding its derivation. The evolution should start at some cutoff value
in the longitudinal momentum scale Λ+

0 at which the saturation scale is already a (semi)hard
scale, say Qs0 & 1 GeV, for perturbation theory to be applicable. The gluon distribution
at the starting scale is in general non–perturbative and requires a model. A physically
motivated model for the gluon distribution in a large nucleus is the McLerran-Venugopalan
model [729, 731, 730]. In a large nucleus, there is a window in rapidity where evolution
effects are not large but x is still sufficiently small for a probe not to resolve the longitudinal
extent of the nucleus. In this case, the probe “sees” a large number of color charges, pro-
portional to A1/3. These charges add up to form a higher dimensional representation of the
gauge group, and can therefore be treated as classical color distributions [729, 731, 730, 771].
Further, the color charge distributionWΛ+

0
[ρ] is a Gaussian distribution1 in ρ. The variance

of this distribution –the color charge squared per unit area– is proportional to A1/3 and
provides a semi-hard scale that makes weak coupling computations feasible. In addition to
its role in motivating the EFT and serving as the initial condition in JIMWLK evolution,
the MV model allows for direct phenomenological studies in p+A and A+A collisions in

1There is a additional term, corresponding to the cubic Casimir; which is parametrically suppressed for
large nuclei [772]. This term generates Odderon excitations in the JIMWLK/BK evolution [773, 774].
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regimes where the values of x are not so small as to require evolution.

The CGC in DIS at small x: We denote σdipole(x, r⊥) the QCD “dipole” cross-section
for the quark-antiquark pair to scatter off the target. This process is shown in fig. 5.13 left,
where we have assumed that the target moves in the −z direction. In the leading order
(LO) CGC description of DIS, the target is described, as illustrated in fig. 5.13 right, as
static sources with k− > Λ−0 . The field modes do not contribute at this order.

k-

P -Λ -
0

fields sources

k-

P -Λ -
0Λ -

1

fields sources

δT
NLO

T
LO

Figure 5.13. Left: LO and NLO contributions to DIS off the CGC. Top right: sources and fields in
the CGC effective theory. Bottom right: NLO correction from a layer of field modes just below the
cutoff.

Employing the optical theorem, σdipole(x, r⊥) can be expressed in terms of the forward
scattering amplitude T (x⊥,y⊥) of the qq̄ pair at LO as

σLO
dipole(x, r⊥) = 2

∫
d2b

∫
[Dρ]WΛ−

0
[ρ] T

LO
(b+

r⊥
2
, b− r⊥

2
) , (5.16)

where, for a fixed configuration of the target color sources [775, 776]

T
LO

(x⊥,y⊥) = 1− 1

Nc
tr (U(x⊥)U

†(y⊥)) , (5.17)

with U(x⊥) a Wilson line representing the interaction between a quark and the color fields
of the target, defined to be

U(x⊥) = T exp ig

∫ 1/xP−

dz+ A−(z+,x⊥) . (5.18)

In this formula, A− is the minus component of the gauge field generated (in Lorentz gauge)
by the sources of the target; it is obtained by solving classical Yang-Mills equations with
these sources. The upper bound xP− (where P− is the target longitudinal momentum)
indicates that source modes with k− < xP− do not contribute to this scattering amplitude.
Thus if the cutoff Λ−0 of the CGC EFT is lower than xP−, T

LO
is independent of Λ−0 .

However, when Λ−0 is larger than xP−, the dipole cross-section is in fact independent
of x (since the CGC EFT does not have source modes near the upper bound xP−) and
depends on the unphysical parameter Λ−0 . As we shall see now, this is related to the fact
that eq. (5.16) is incomplete and receives large corrections from higher order diagrams.
Consider now the NLO contributions (one of them is shown in the right panel in figure 5.13
left with gauge field modes in the slice Λ−1 ≤ k− ≤ Λ−0 (see fig. 5.13 right). An explicit
computation of the contribution of field modes in this slice gives

δT
NLO

(x⊥,y⊥) = ln

(
Λ−0
Λ−1

)
H T

LO
(x⊥,y⊥) , (5.19)
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whereH is the JIMWLK Hamiltonian. All dependence on the cutoff scales is in the logarith-
mic prefactor alone. This Hamiltonian has two derivatives with respect to the classical field
A ∼ O(1/g); HT

LO
is of order αsTLO

and therefore clearly an NLO contribution. However,
if the new scale Λ−1 is such that αs ln(Λ

−
0 /Λ

−
1 ) ∼ 1, this NLO term becomes comparable in

magnitude to the LO contribution. Averaging the sum of the LO and NLO contributions
over the distribution of sources at the scale Λ−0 , one obtains

∫
[Dρ] WΛ−

0
[ρ] (TLO + δTNLO) =

∫
[Dρ]WΛ−

1
[ρ] TLO , (5.20)

where WΛ−
1
≡ (1+ ln(Λ−0 /Λ

−
1 )H)WΛ−

0
. We have shown here that the NLO correction from

quantum modes in the slice Λ−1 ≤ k− ≤ Λ−0 can be absorbed in the LO term, provided
we now use a CGC effective theory at Λ−1 with the modified distribution of sources shown
in eq. (5.20). In differential form, the evolution equation of the source distribution is the
JIMWLK equation stated previously.

Repeating this elementary step, one progressively re-sums quantum fluctuations down
to the scale k− ∼ xP−. Thanks to eq. (5.20), the result of this re-summation for the dipole
cross-section is formally identical to eq. (5.16), except that the source distribution is WxP−

instead of WΛ−
0
. Note that if one further lowers the cutoff below xP−, the dipole cross-

section remains unchanged.

The CGC in A+A collisions: Collisions between two nuclei (“dense-dense” scattering)
are complicated to handle on the surface. However, in the CGC framework, because the
wave functions of the two nuclei are saturated, the collision can be treated as the collision
of classical fields coupled to fast partons of each nucleus respectively described by the
external current Jµ = δµ+ρ1 + δµ−ρ2. The source densities of fast partons ρ1,2 are both
parametrically of order 1/g, which implies that graphs involving multiple sources from both
projectiles must be re-summed.

At leading order, inclusive observables2 depends on the retarded classical color field
Aµ, which solves the Yang-Mills equations [Dµ,Fµν ] = Jν with the boundary condition
limx0→−∞Aµ = 0. Among the observables to which this result applies is the expectation
value of the energy-momentum tensor at early times after the collision. At leading order,

T µν
LO

=
1

4
gµν FλσFλσ −FµλFν

λ , (5.21)

where Fµν is the field strength of the classical field Aµ.
Although A+A collisions are more complicated than e+A or p+A collisions, one can

still factorize the leading higher order corrections into the evolved distributions WΛ− [ρ1]
and WΛ+ [ρ2]. At the heart of this factorization is a generalization of eq. (5.19) to the case
where the two projectiles are described in the CGC framework [777, 778, 779]. When one
integrates out the field modes in the slices Λ±1 ≤ k± ≤ Λ±0 , the correction to the energy
momentum tensor is

δT µν
NLO

=
[
ln

(
Λ−0
Λ−1

)
H1 + ln

(
Λ+
0

Λ+
1

)
H2

]
T µν

LO
, (5.22)

where H1,2 are the JIMWLK Hamiltonians of the two nuclei respectively. What is crucial
here is the absence of mixing between the coefficients H1,2 of the logarithms of the two

2Exclusive observables may also be expressed in terms of solutions of the same Yang-Mills equations, but
with more complicated boundary conditions than for inclusive observables.
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projectiles; they depend only on ρ1,2 respectively and not on the sources of the other pro-
jectile. Although the proof of this expression is somewhat involved, the absence of mixing
is deeply rooted in causality. The central point is that because the duration of the collision
(which scales as the inverse of the energy) is so brief, soft radiation must occur before the
two nuclei are in causal contact. Thus logarithms associated with this radiation must have
coefficients that do not mix the sources of the two projectiles.

Following the same procedure for eq. (5.22), as for the e+A and p+A cases, one obtains
for the energy-momentum tensor in an A+A collision the expression

〈T µν〉
LLog

=

∫ [
Dρ1 Dρ2

]
W1 [ρ1

]
W2

[
ρ2

]
T µν

LO
. (5.23)

This result can be generalized to multi-point correlations of the energy-momentum tensor,

〈T µ1ν1(x1) · · · T µnνn(xn)〉LLog
=

∫ [
Dρ1 Dρ2

]
W1 [ρ1

]
W2

[
ρ2

]
T µ1ν1

LO
(x1) · · · T µnνnLO

(xn) .

(5.24)
In this expression, all the correlations between the energy-momentum tensor at different
points are from the distributionsW1,2[ρ1,2]. Thus, the leading correlations are already built
into the wavefunctions of the projectiles prior to the collision.

Note that the expressions in eqs. (5.23) and (5.24) are valid for proper times τ ∼ 1/Qs
after the heavy ion collision. Complicated final state effects, possibly driven by instabilities,
are expected to bring this non-equilibrium gluonic matter into a quark-gluon plasma. Al-
though this aspect of A+A collisions is very different from what happens in DIS reactions,
the Color Glass Condensate provides a universal description of the hadronic and nuclear
wavefunctions prior to the collision in both cases, and a powerful framework to show that
the logarithms of the collision energy are universal for inclusive enough observables. Thanks
to this universality, measurements at small x in e+A collisions can provide valuable con-
straints on the distributions W [ρ] for a nucleus, that can then be used in order to compute
the state of the system formed at early times in A+A collisions.

Shadowing

Boris Z. Kopeliovich

In terms of the dipole formalism, nuclear shadowing is related to the interaction of
different Fock components of the projectile particle with the nuclear target. The lowest
Fock states (i.e. γ∗ → q̄q) are responsible for higher twist shadowing, while higher Fock
components (i.e. γ∗ → q̄qg) give rise to leading twist gluon shadowing.

Quark shadowing: The magnitude of higher twist shadowing is controlled by the interplay
between two fundamental quantities.

(i) The lifetime of photon fluctuations, or coherence time.

lc =
2 ν

Q2 +M2
=

P

xBjmN
= P lmaxc , (5.25)

where xBj = Q2/2mNν, M is the effective mass of the fluctuation, P = (1 +M2/Q2)−1,
and lmaxc = 1/mNxBj . The usual approximation is to assume that M2 ≈ Q2 since Q2 is the
only large dimensional scale available. In this case, P = 1/2 and the corresponding value
of lc is called Ioffe length of time.
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Shadowing is possible only if the coherence time exceeds the mean nucleon spacing
in nuclei, and shadowing saturates (for a given Fock component) if the coherence time
substantially exceeds the nuclear radius.

(ii) Equally important for shadowing is the transverse separation of the q̄q. This con-
trols the dipole-nucleon cross section σNq̄q(r), and correspondingly the total nuclear cross
section [780, 781],

(
σγ

∗A
tot

)T,L
lc≫RA

= 2

∫
dα

∫
d2r

∣∣∣ΨT,L
q̄q (εr)

∣∣∣
2
∫
d2b

[
1− exp

(
−1

2
σNqq̄ (r)TA(b)

)]
(5.26)

where the perturbative light-cone distribution function for the q̄q has the form [782, 783],

ΨT,L
q̄q (~rT , α) =

√
αem
2π

χ̄ ÔT,L χK0(ǫrT ); (5.27)

χ and χ̄ are the spinors of the quark and antiquark respectively; K0(ǫrT ) is the modi-
fied Bessel function; ǫ2 = α(1 − α)Q2 + m2

q; and the operators ÔT,L for transversely and
longitudinally polarized photons have the form,

ÔT = mq ~σ · ~e+ i(1 − 2α) (~σ · ~n) (~e · ~∇r) + (~σ × ~e) · ~∇r, (5.28)

ÔL = 2Qα(1 − α)~σ · ~n . (5.29)

Here ~n = ~p/p is a unit vector parallel to the photon momentum; ~e is the polarization vector
of the photon; mq and and α are the mass, and fractional light-cone momentum carried by
the quark. See also eqs. (5.6) and (5.7) discussed previously.

In order to be shadowed, a q̄q-fluctuation of the photon has to interact with a large
cross section. As a result of color transparency [780, 784], small size dipoles with r2 ∼
1/Q2 interact only weakly and are therefore less shadowed. The dominant contribution to
shadowing comes from the aligned jet configurations (α → 0, 1) [785] of q̄q pairs, which
have large transverse separation, 〈r2〉 ∼ 1/[Q2α(1 − α)] according to (5.27). Although the
weight of such configurations is small, 1/Q2, this is compensated by the large interaction
cross section [786].

The coherence length (Eq. (5.25)) averaged over interacting |q̄q〉 and |q̄qg〉 fluctuations
calculated in [787] is presented in Fig. 5.14. The mean values of the factor P = lc/l

max
c in

(5.25) are plotted for q̄q fluctuations of transverse and longitudinal photons, as well as for
q̄qg fluctuations as a function of Q2 at fixed xBj (left panel). We see that q̄q fluctuations
in a longitudinal photon live about twice as long as in a transverse one. Both are different
from P = 1/2 corresponding to the Ioffe time. The lifetime of the higher order Fock states
containing gluons is about order of magnitude shorter.

Onset of shadowing: Eq. (5.26) describing quark shadowing is valid only in the limit
of lc ≫ RA, i.e. at very small xBj where the magnitude of shadowing nearly saturates.
However, all available data for DIS on nuclei are in the region of shorter coherence length,
and one needs theoretical tools to describe the onset of shadowing.

The Gribov theory of inelastic shadowing [791] relates nuclear shadowing to the cross
section of diffractive dissociation. In the case of a deuteron target, this approach provides
a full and model independent description of shadowing. The onset of shadowing can be
accurately calculated, since the phase shift ∆z/lc between the impulse approximation term
and the inelastic shadowing term is under control. However, a description of shadowing
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Figure 5.14. Left panel: Factor
〈
PT,L

〉
and 〈P g〉 defined in (5.25) for q̄q fluctuations of transverse

and longitudinal photons, and for q̄qg fluctuations, from the top to bottom. Calculations are done
as a function of Q2 at xBj = 0.01. Dotted curves correspond to perturbative wave functions and an
approximate dipole cross section ∝ r2T . Dashed curves rely on the realistic parameterization for the
dipole cross section [788]. The solid curves show the most realistic case based on the nonperturbative
wave functions. Right panel: Comparison between calculations for quark shadowing and experimen-
tal data from NMC [789, 790] for the structure functions of different nuclei relative to carbon as
function of xBj . The Q

2 range covered by the data is approximately 3GeV2 ≤ Q2 ≤ 17GeV2 from
the lowest to the highest xBj bin. Solid and dashed curves are calculated with and without the real
part of the light-cone potential in (5.31).

for heavy nuclei is a challenge in this approach. Indeed, only the lowest order of Gribov
corrections can be calculated using data on diffraction. The higher order corrections, illus-
trated in Fig. 5.15a, need information unavailable from data, like the diffractive amplitudes
between different excited states, X∗, X∗∗, the attenuation of these states in the nuclear
medium, etc.

X
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**
X

a b

−q

z

*γ

1 2z
2rr1

qz21z

γ* γ*
*γ

Figure 5.15. a: A high order term in Gribov inelastic shadowing corrections to FA2 (x,Q2); b: Dipole
description based on the path integral technique, which sums up the Gribov corrections in all orders.

An alternative description with the path integral technique was proposed in [787]. One
should sum up over all possible trajectories of the quark and antiquark propagating through
the nucleus, as is illustrated in Fig. 5.15b. This leads to the 2-dimensional Schrödinger equa-
tion for the Green function describing propagation of a dipole with initial (final) transverse
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separation ~r1 (~r2) at longitudinal coordinate z1 (z2),

[
i
∂

∂z2
+

∆⊥ (r2)− ε2

2να (1− α)
+
i

2
ρA (b, z2)σ

N
qq̄ (r2)−

a4 (α) r22
2να (1− α)

]
G (r2, z2 | r1, z1) = 0 (5.30)

The last two terms represent the imaginary and real parts of the light cone potential. The
former describes the attenuation of the dipole in the nuclear medium, while the latter models
the non-perturbative interactions inside the dipole. Solving this equation, one can calculate
the shadowing corrections as

(
σγ

∗A
tot

)T,L
= A

(
σγ

∗N
tot

)T,L
− 1

2
Re

∫
d2b

1∫

0

dα

∞∫

−∞

dz1

∞∫

z1

dz2

∫
d2r1

∫
d2r2 (5.31)

×
[
ΨT,L
q̄q (ε, λ, r2)

]∗
ρA (b, z2)σ

N
qq̄ (s, r2)G (r2, z2 | r1, z1) ρA (b, z1) σ

N
qq̄ (s, r1)Ψ

T,L
q̄q (ε, λ, r1)

At lc ≪ 1/ρσ, the second term vanishes. For lc ≫ RA, it saturates at the value given by
Eq. (5.26). The numerical results are compared with data from the NMC experiment [789,
790] in the right panel of Fig. 5.14. The solid and dashed curves are calculated with and
without the real part of the light-cone potential in (5.31). It worth emphasizing that this
is a parameter-free calculation, no adjustment to nuclear data has been done. The dipole
cross section was fitted to DIS data on a proton.

Note that these calculations were performed for the lowest Fock component |q̄q〉 of the
photon; they miss gluon shadowing related to the higher Fock states containing gluons.

Gluon shadowing: Gluon shadowing is related to specific channels of diffractive gluon
radiation. In terms of Regge phenomenology, these processes correspond to the triple-
Pomeron contribution, and can be seen in data as the large mass tail of the invariant mass
distribution, dσdiff/dM

2
X ∝ 1/M2

X . Such an M2
X-dependence is the undebatable evidence

of radiation of a vector particle, i.e. a gluon.
Data show that the magnitude of diffractive gluon radiation is amazingly small. The

way to see that is to express the single diffraction cross section in terms of the Pomeron-
proton cross section as is illustrated in the left panel of Fig. 5.16. The Pomeron can be
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Figure 5.16. Left panel: The amplitude squared of diffractive excitation of the projectile proton,
summed over all the excitations with invariant mass MX , is related via the optical theorem with
the total Pomeron-proton cross section at c.m. energyMX . Right panel: The Pomeron-proton cross
section extracted [792] from data on single diffraction pp→ pX as function of IP -p c.m. squared.

treated as a gluonic dipole and its cross section is expected to be about twice as big as for
a q̄q dipole, i.e. σIPptot ∼ 50mb. However, data depicted in the right panel of Fig. 5.16 show
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that σIPptot < 2mb. Such a dramatic disagreement gives a clue that diffractive gluon radiation
is strongly suppressed compared with the expectation based on pQCD. This problem has
been known in the Regge phenomenology as smallness of the triple-Pomeron coupling [793].

Gluon radiation can be described within the dipole approach via the propagation of a
q̄qg dipole through the nuclear medium [794]. As the mean fractional momentum of the
radiated gluon is very small, 〈αg〉 ∼ 1/ ln(s), one can rely on eq. (5.26) for very small
xBj , or eqs. (5.30)-(5.31) for the onset of gluon shadowing, by replacing σq̄q(r) ⇒ σgg(r).
The only way to explain the observed suppression of gluon radiation is to reduce the mean
size of the glue-glue dipole. This can be achieved by introducing a specifically strong
nonperturbative interaction within the glue-glue dipole, which comes as the real part of
the light-cone potential in eq. (5.30). Adjusting the strength of this interaction to data on
diffractive gluon radiation (triple-Pomeron term) one arrives at the light-cone distribution
functions in (5.26) and (5.31) with the mean glue-glue separation r0 ≈ 0.3 fm [795]. This
distance is smaller than the confinement radius ∼ 1/ΛQCD = 1 fm and is in accord with the
lattice evaluations of the gg correlation radius [796], and the instanton radius [797]. There is
more experimental evidence supporting the existence of a semi-hard scale in hadrons [798].

Thus, the magnitude of gluon shadowing evaluated in [795, 799] is expected to be rather
small, as is depicted in Fig. 5.17. The nuclear ratio Rg = GA(x,Q

2)/AGN (x,Q
2) is plotted

as a function of xBj at Q2 = 4 and 40GeV2 (left panel); and as a function of the path
length in nuclear matter at Q2 = 4GeV2 and different values of xBj .

Figure 5.17. Left panel: Ratio of the gluon distribution functions in nuclei (carbon, copper and lead)
and nucleons versus Bjorken x at Q2 = 4 GeV2 (solid curves) and 40 GeV2 (dashed curves) [795].
Right panel: Nuclear ratio Rg = GA(x,Q

2)/AGN (x,Q2) for gluons as function of path length in
nuclear matter, calculated in [799] at Q2 = 4GeV 2 for several fixed values of x.

The path-integral approach is the most accurate method, which is valid in all regimes
of gluon radiation, from incoherent to fully coherent. Nevertheless, this is still the lowest
order calculation, which might be a reasonable approximation only for light nuclei, or for the
onset of shadowing. The contribution of higher Fock components is still a challenge. This
problem has been solved so far only in the unrealistic limit of long coherence lengths for all
radiated gluons, described by the Balitsky-Kovchegov (BK) equation [740, 741]. A numerical
solution of this equation is quite complicated and includes lots of modelling [800]. A much
simpler bootstrap equation, which only requires modelling the shape of the saturated gluon
distribution, was derived in [801]. It includes the self-quenching effect for gluon shadowing,
and leads to a gluon distribution in nuclei which satisfies the unitarity bound [802] The
results are quite similar to the numerical solutions of the BK equation [800]. The magnitude
of the self-quenched gluon shadowing found in [801] is similar to the above results obtained
in the leading order.
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Leading-twist nuclear shadowing

Vadim Guzey and Mark Strikman

Nuclear shadowing in hadron (photon)-nucleus scattering is the firmly established ex-
perimental phenomenon that at high energies the scattering cross section on a nuclear target
is smaller than the sum of the scattering cross sections on the individual nucleons. In the
nucleus rest frame, the theory of nuclear shadowing is based on the connection between nu-
clear shadowing and diffraction which has been established long time ago by Gribov [791].
In the derivation, the key assumption is that nuclei can be described as dilute systems of
nucleons. The accuracy of the resulting theory for hadron-nucleus cross sections is very
high, with the corrections at the level of a few % which reflect the small admixture of non-
nucleonic degrees of freedom in nuclei and the small off-shellness of the nucleons in nuclei as
compared to the soft strong interaction scale. Gribov’s result can be understood [803] as a
manifestation of unitarity as reflected in the Abramovsky-Gribov-Kancheli (AGK) cutting
rules [804].

The connection between shadowing and diffraction is also valid in deep inelastic scat-
tering (DIS) with nuclei; the approach based on this connection is called the leading twist
theory of nuclear shadowing [803, 805, 806, 807]. In this theory, parton distribution functions
(PDFs) in nuclei at small x are calculated combining the unitarity relations for different
cuts of the shadowing diagrams corresponding to the diffractive and inelastic final states
(AGK cutting rules) with the QCD factorization theorem for hard diffraction [808] (which
provides a good description of the totality of the HERA hard diffractive data). The result-
ing multiple scattering series for the quark nuclear PDFs is presented in fig. 5.18, where
graphs a, b, and c correspond to the interaction with one, two, and three nucleons of the
target, respectively. Graph a gives the impulse approximation; graphs b and c contribute
to the shadowing correction. The interaction with N > 3 nucleons, though not shown, is
taken into account in the final expression for nuclear PDFs.

At the level of the interaction with two nucleons of a nucleus with the atomic mass
number A, one can derive the model-independent expression for the shadowing correction
to the nuclear PDF of flavor j [803] (corresponding to graph b of fig. 5.18):

xf
(b)
j/A(x,Q

2) = −8πA(A− 1)ℜe(1 − iη)2

1 + η2

∫ 0.1

x
dxIPβf

D(4)
j (β,Q2, xIP , tmin)

×
∫
d2~b

∫ ∞

−∞
dz1

∫ ∞

z1

dz2 ρA(~b, z1)ρA(~b, z2)e
i(z1−z2)xIPmN , (5.32)

where f
D(4)
j is the diffractive parton distribution of the nucleon; ρA is the nuclear matter

density; η is the ratio of the real to imaginary parts of the elementary diffractive amplitude,

η = ℜeAdiff/ℑmAdiff ≈ 0.17. The diffractive PDF f
D(4)
j depends on two light-cone fractions

xIP = (M2
X +Q2)/(W 2+Q2) and β = x/xIP and the invariant momentum transfer t, where

W is the invariant virtual photon-nucleon energy, W 2 = (q + p)2, and M2
X is the invariant

mass squared of the produced intermediate diffractive state denoted as “X” in fig. 5.18. The
longitudinal (collinear with the direction of the photon momentum) coordinates z1 and z2
and the transverse coordinate (impact parameter) ~b refer to the two interacting nucleons;

mN is the nucleon mass. The t dependence of f
D(4)
j can be safely neglected as compared

to the strong fall-off of the nuclear form-factor for A > 4 and, as a result, f
D(4)
j enters

eq. (5.32) at tmin ≈ −x2m2
N (1 +M2

X/Q
2)2 and all nucleons enter with the same impact
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Figure 5.18. Multiple scattering series for nuclear quark PDFs. Graphs a, b, and c correspond to the
interaction with one, two, and three nucleons, respectively. Graph a gives the impulse approximation;
graphs b and c contribute to the shadowing correction.

parameter ~b. Equation (5.32) satisfies the QCD evolution equations at all orders in the
strong coupling constant αs.

To evaluate the contribution to nuclear shadowing of the interactions with N ≥ 3
nucleons in fig. 5.18, one needs to invoke additional model-dependent considerations, since
the interaction of a hard probe (virtual photon) with N ≥ 3 nucleons is sensitive to fine
details of the diffractive dynamics. In particular, the hard probe can be viewed as a coherent
superposition of configurations which interact with the target nucleons with very different
strengths. This effect of color (cross section) fluctuations is analogous to the inelastic
shadowing in hadron-nucleus scattering with the important difference that the dispersion
of the interaction strengths is much smaller in the hadron case than in DIS. However, the
observation that αIP (0) = 1.11 found in the analysis of hard diffraction at HERA [809] is
very close to αsoft

IP (0) = 1.08 in soft hadronic interactions [810] indicates that hard diffraction
in DIS is dominated by large-size hadron-like (aligned jet) configurations which evolve to
large Q2 via the DGLAP evolution. (As to the point-like configurations, they give an
important and increasing with Q2 contribution to graph a in fig. 5.18.)

This important observation reduces theoretical uncertainties in the treatment of the
interactions with N ≥ 3 nucleons and allows one to reliably parameterize the strength of
the interaction with N ≥ 3 nucleons by a single effective hadron-like cross section σjsoft. The
final expression for the nuclear PDFs at a certain initial scale Q2

0 reads [806, 807]:

xfj/A(x,Q
2
0) = Axfj/N(x,Q

2
0)

− 8πA(A− 1)ℜe(1 − iη)2

1 + η2

∫ 0.1

x
dxIPβf

D(4)
j (β,Q2

0, xIP , tmin)

∫
d2b

∫ ∞

−∞
dz1

∫ ∞

z1

dz2 ρA(~b, z1)ρA(~b, z2)e
i(z1−z2)xIPmN e

−A
2
(1−iη)σjsoft(x,Q2

0)
∫ z2
z1

dz′ρA(~b,z′)
.

(5.33)

Due to the QCD factorization theorem, these nuclear PDFs fj/A(x,Q
2) can be used to

calculate many different observables at small x including the nuclear structure function F2A

and the longitudinal structure function FAL , the charmed contributions to these structure

functions F c2A and F
A(c)
L , etc.; fj/A(x,Q

2) can also be applied to the calculations of hard
processes in heavy-ion collisions.

Removing the integration over d2b in right-hand side of eq. (5.33), one obtains the
impact parameter dependent nuclear PDFs (nuclear GPDs in the ξ = 0 limit in the impact
parameter representation) [807], see Section 5.3.3.
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Figure 5.19. The leading twist theory of nuclear shadowing
predictions for fj/A/(Afj/N ) (ū and c quarks and gluons)
and F2A/(AF2N ) as functions of x at Q2

0 = 4 GeV2. The
two sets of curves correspond to the two extreme scenarios
of nuclear shadowing (see the text).

In our analysis [807], we used
two models for the color fluctua-
tions in the virtual photon which
correspond to two models for σjsoft
which cover essentially all reason-
able possibilities for the resulting
nuclear shadowing. An example of
our predictions for the gluon, ū-
quark, c-quarks, and F2A structure
functions is presented in fig. 5.19
for the two scenarios for σjsoft that
we have mentioned above (labeled
FGS10 H and FGS10 L). As one
can see from fig. 5.19, we pre-
dict large nuclear shadowing for
each singlet parton flavor with the
characteristic feature that nuclear
shadowing in the gluon channel
is larger than that in the quark
channel. The difference between
the two extreme scenarios of color
fluctuations (the solid and dotted

curves in fig. 5.19) is less than 20% for A ∼ 200 and much smaller for light nuclei. The
spread between the solid and dotted curves is the theoretical uncertainty of our predictions.
Note also that these results weakly depend on the choice of nucleon PDFs.

Accounting for the color fluctuations as done in eq. (5.33) tends to reduce the amount
of nuclear shadowing as compared to the quasi-eikonal approximation used in the literature
[803, 811]. Also, the AGK technique allows one to calculate other quantities such as nuclear
diffractive PDFs and fluctuations of multiplicity in non-diffractive DIS [803, 807, 812] both
of which turn out to be sensitive to the pattern of the color fluctuations, see Section 5.2.3.

Our approach to nuclear shadowing assumes the applicability of the linear (in parton
densities) leading-twist DGLAP approximation. Numerical studies indicate that the dom-
inant contribution to nuclear shadowing in eq. (5.33) comes from the region of relatively
large β = Q2/(M2 + Q2) corresponding to the rapidity intervals ≤ 3 for which the small-
x approximation used in the BFKL-type approaches is not applicable. These approaches
predict αIP (0) ∼ 1.25, while the HERA experiments find αIP (0) ∼ 1.11 ≈ αsoft

IP (0) consis-
tent with the expectations of the QCD aligned jet approximation [813] that we effectively
implemented in the derivation of eq. (5.33).

Non-perturbative approaches

Hans J. Pirner

One of the challenges in QCD is the description and understanding of high-energy scat-
tering on protons and nuclei. Even for high energies and large Q2 in deep inelastic electron
scattering a non-perturbative framework may be necessary. For the transverse structure
function, the qq̄ dipole in the photon can be large and the saturation scale Qs is small
for the energies we discuss. In the following I will present the main features of such an
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approach, which of course will also include the perturbative aspects.
The most important phenomenon observed in high-energy scattering is the rise of the

total cross sections with increasing c.m. energy. While the rise is slow in hadronic reactions
of large particles such as protons, pions, kaons, or real photons, it is steep if one small
particle is involved such as an incoming virtual photon or an outgoing charmonium. This
energy behavior is best seen in the proton structure function F2(x,Q

2). With increasing
photon virtuality Q2, the increase of F2(x,Q

2) towards small Bjorken x becomes signifi-
cantly stronger. It is tempting to test the growth of the structure function with nuclei. In
the following I will summarize my work with Shoshi, Steffen and Dosch which is published
in two main papers [814, 815]. For references to other work please see these two papers.

In the two-pomeron model of Donnachie and Landshoff, the energy dependence of the
cross sections at high energies results from the exchange of a soft and a hard pomeron.
The first dominates in hadron-hadron and γ∗p reactions at low Q2 and the second in γ∗p
reactions at high Q2. The two pomerons may be related to a glueball trajectory, which is
inherently nonperturbative, and a gluon ladder à la BFKL, which includes the perturbative
aspects. The two-pomeron model, however, does not contain parton saturation nor unitarity
effects. A model motivated by the concept of parton saturation is the one of Golec-Biernat
and Wüsthoff which allows very successful fits to γ∗p data, but cannot be applied to hadron-
hadron reactions. A successful description of dipole nucleon scattering which can be used
for hadron-nucleon scattering and DIS with moderate Q2 has been found [795].

We have combined perturbative and non-perturbative QCD to compute high-energy re-
actions of hadrons and photons with special emphasis on saturation effects that manifest
S-matrix unitarity [814]. We follow the functional integral approach to high-energy scatter-
ing of Nachtmann, in which the S-matrix element factorizes into the universal correlation of
two light-like Wegner-Wilson loops SDD. The light-like Wegner-Wilson loops describe color
dipoles given by the quark and antiquark in the meson or photon projectile and the quark
and diquark in the baryon target. This approach treats projectile and target symmetrically.
S-matrix unitarity is respected as a consequence of a matrix cumulant expansion and the
Gaussian approximation of the functional integrals. The resulting dipole cross sections do
not show Glauber-like behavior with the dipole size as in the Golec-Biernat model. The
loop-loop correlation function SDD is expressed in terms of the gauge invariant bi-local
gluon field strength correlator integrated over two connected minimal surfaces. Due to
the symmetric treatment of the two dipoles this formalism can explicitly investigate the
dependence on the impact parameter of the two scattering partners.

The gluon field strength correlator has a non-perturbative and a perturbative compo-
nent. The stochastic vacuum model of Dosch and Simonov is used for the non-perturbative
low frequency background field and perturbative BFKL gluon exchange for the high fre-
quency contributions. This combination allows us to describe long and short distance
correlations in agreement with Euclidean lattice calculations of the static quark-antiquark
potential with color-Coulomb behavior at short distances and confining linear rise at long
distances. We have tried to model both components in AdS/QCD, but the long range loop-
loop correlation cannot be established on a classical level, since the connecting surface in 5
dimensions breaks off at large distances [816].

Energy dependence in the loop-loop correlation function, SDD, is introduced by hand in
order to describe simultaneously the energy behavior in hadron-hadron, photon-hadron, and
photon-photon reactions involving real and virtual photons as well. Motivated by the two-
Pomeron picture of Donnachie and Landshoff, we ascribe to the soft and hard component
a weak and strong energy dependence, respectively. The parameter describing the energy
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dependence of the perturbative correlation function is very large because we includemultiple
gluonic interactions. In ref. [814] we have considered not only the dependence of the dipole
cross section on dipole size with increasing energy and the resulting kt-saturation, but also
the scattering amplitudes in impact parameter space, where the S-matrix unitarity imposes
rigid limits on the impact parameter profiles such as the black disc limit. We present profile
functions for longitudinal photon-proton scattering that provide an intuitive geometrical
picture for the energy dependence of the cross sections. The profile function first becomes
greyer, turns black and then increases in transverse size. Using a leading-twist NLO DGLAP
relation, we estimated the impact parameter dependent gluon distribution of the proton
xG(x,Q2, |~b⊥|) from the profile function for longitudinal photon-proton scattering. We
have not found saturation of the profile function at HERA energies, but at higher energies,
xG(x,Q2, |~b⊥|) does saturate as a manifestation of the S-matrix unitarity.

In the same framework, we have studied the unintegrated gluon distribution xG(x, kt)
as a function of transverse momentum kt for increasing energies [815]. To obtain the uninte-
grated gluon distribution, one uses the possibility to rewrite the non-perturbative scattering
of an artificial external dipole as a superposition of perturbative contributions. In other
words the string of the projectile dipole can be decomposed mathematically in a superpo-
sition of dipoles of smaller sizes, from which xG(x, kt) can be extracted.

The long range confining character of the non-perturbative field strength correlators
determines the low kt behavior of the gluon structure function of the hadron as xG(x, kt) ∝
1/kt. In the low momentum limit, xG(x, kt) · kt converges towards a constant independent
of x, related to the size of the hadron. The cross-over from the nonperturbative region to
the perturbative region occurs at around kt = 1GeV at x-values 10−4 < x < 10−2.

On a more fundamental level, we have analysed correlations of Wilson lines in vacuum
as one approaches the light cone from space-like distances [817]. The dominant terms of the
near light cone Hamiltonian for the Wilson lines define a field theory in 2+1 dimensions. In
the limit of small x, the SU(3) QCD for Wilson lines reduces to a critical Z(3) theory with a
diverging correlation length ξ(x) ∝ x−1/(2λ2) where the exponent λ2 = 2.52 is obtained from
the center group Z(3) of SU(3). We conjecture that the dipole wave function of the virtual
photon behaves as the correlation function of Wilson lines in the vacuum. For transverse
sizes smaller than the correlation size it scales like Ψ ∝ 1/(xt)

1+n with n = 0.04 and for
distances larger than the correlation length it decays exponentially which makes this region
negligible. For F2 we integrate the square of the photon wave function weighted with a
dipole proton cross section of fixed size R0 independent of x. All the energy dependence
is absorbed into the photon. Because of the aproximate conformality of the dipole wave
function (n ≈ 0), the result depends only on R2

0/ξ(x)
2 ∝ R2

0x
1/λ2 , i.e. the saturation scale

varies as as Q2
s = Q(xo)

2(x0/x)1/λ2 . The critical index in this theory is a characteristic
feature of Z(3) theory i.e. the center group of SU(3) in an external field given by the
light quarks. This is very different from the perturbative color glass condensate where Qs
depends on the running coupling similarily to the power behaviour of BFKL.

5.2.2 Inclusive DIS (F2, FL, F
c
2)

Estimates of higher twist in deep inelastic nucleon and nucleus scattering

Joachim Bartels, Krzysztof Golec-Biernat and Leszek Motyka

A deeper understanding of the transition region at low Q2 and small x in deep inelastic
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Figure 5.20. Higher-twist contribution estimate for F2 (left) and FL (right) of the proton.

electron proton scattering has been one of the central tasks of HERA physics. It will be one
of the key questions to be addressed by a future Electron Ion Collider. Approaching this
transition region from the perturbative side, one expects to see the onset of corrections to
the successful DGLAP description, based upon leading twist operators in QCD. The twist
expansion defines a systematic approach to the short distance limit probed in deep inelastic
scattering. The study of higher-twist corrections therefore provides an attractive route for
investigating the region of validity of the leading twist DGLAP evolution equations.

The validity of the leading-twist QCD evolution equations is based upon the fact that,
for sufficiently large Q2 and not too small x, the gluons inside the proton are dilute. The
DGLAP evolution equations, however, predict that, at small x and low Q2, the gluon density
grows. As a result, the gluons start to interact and the gluon density eventually saturates.
The onset of saturation is encoded in the saturation scale, Q2

sat(x).
The investigation of saturation is of highest importance for our understanding of QCD.

Saturation can be viewed as a first step of entering the strong interaction region. While
the QCD coupling constant is still small, saturation phenomena probe nonlinear dynamics
of the gluon sector which plays a crucial role in many areas of strong interactions. It is
expected that saturation effects in deep inelastic scattering on a nucleus are enhanced in
comparison with deep inelastic scattering on a proton. In the former case, the incoming
photon ‘sees’ the gluons of many nucleons, whereas in the case of a single nucleon, one has
to go to smaller x values (higher energies) in order to reach the same gluon density.

A brief discussion of the connection between saturation and the twist expansion has
been given in [818]. Whereas in the GBW model [83, 819] there is a rather direct classi-
fication of eikonal-type exchanges of gluon ladders in terms of twist quantum numbers, in
saturation models based upon the nonlinear BK-equation [85, 820] a twist decomposition
is much less obvious. In the following we present some numerical estimates of higher-twist
contributions, using the improved version of the GBW model [821].

The method: The theory of higher-twist operators and their evolution equations has been
outlined in [822]: in leading order, the higher-twist evolution equations are described by the
nonforward DGLAP splitting functions, and there is a particular pattern of mixing between
different operators of the same twist. In the same way as for leading twist, a numerical
analysis of higher twists requires initial conditions for the set of evolution equations, which
have to be adjusted to data. In [818] the magnitude of higher-twist corrections was evaluated
in a slightly different way. Starting from the observation that within the GBW saturation
model the multiple exchanges of leading-twist gluon ladders can be put into a one-to-
one correspondence with contributions of definite twist quantum numbers, it is possible to
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Figure 5.21. Higher-twist contribution estimate for F2 (left) and FL (right) of the gold nucleus.

arrive at quantitative estimates of the leading-twist contributions and corrections due to
twist τ = 4, 6, .... Details have been described in [818] and will not be repeated here.

While the analysis in [818] was performed for the case of e+ p scattering, it is straight-
forward to extend it to electron-nucleus scattering. Assuming a cylindrical nucleus with a
characteristic size RA ≈ A1/3Rp (with Rp being the proton radius), we simply replace the
dipole-proton cross section (eq.(42) in [818])

σdipole−proton = σ0
(
1− exp(−Ω(x, r2))

)
(5.34)

by the dipole-nucleus cross section

σdipole−nucleus = A2/3σ0

(
1− exp(−A1/3Ω(x, r2))

)
, (5.35)

where Ω(x, r2) is the eikonal function given in [818]. With the parameters from [818] we
simply repeat the electron proton calculations for electron gold scattering, using the modi-
fied dipole cross section formula in (2).

Numerical results: The numerical results for F2 and FL are shown in Fig. 5.20 for the
proton, and Fig. 5.21 for the gold nucleus. In each figure we show, on the l.h.s in a 3-
dimensional view, the ratio of the higher-twist corrections and the full structure function
as a fucntion of x and Q2,

ratio =
F

(total)
2,L − F

(τ=2)
2,L

F
(total)
2,L

. (5.36)

The r.h.s. shows the projection onto the (log x, logQ2) plane: the lines belong to fixed
values of the ratio (5.36). One recognizes the general trend: the corrections are getting
larger when x and Q2 decrease (moving towards the lower left corner). For given x and
Q2, the corrections for the longitudinal structure functions are larger than for F2. This is
a consequence of the sign structure of the corrections in FL and FT : twist four corrections
to FL and FT have opposite signs, and in the analysis [818] of F2 = FT + FL a strong
cancellation has been found. This explains the small higher twist contribution for F2.

One also recognizes the general trend that for gold, all corrections are larger than for
the proton. Finally, the corrections to FL are negative and those to F2 are mostly posi-
tive. In the case of the proton F2 there is a change in sign in the region of very small values
of Q2: this again is a consequence of the sign structure of the twist corrections to FT and FL.

Conclusions: Our numerical analysis confirms that, in general, the structure functions FL
are more sensitive to higher-twist corrections than F2 which, because of the sign structure
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in the twist 4 corrections, seems to much better “protected” against higher twist. Also,
nuclear targets are more sensitive to higher twist corrections relative to the proton. In view
of these results, it seems clear that in a future electron-ion collider, the measurement of FL
is of vital importance in the search for saturation.

Strength of nonlinear effects in nucleons and nuclei

Tuomas Lappi
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Figure 5.22. The saturation scale in a proton and
Ca and Au nuclei as a function of b/bmed, where
bmed is the median impact parameter probed in
inclusive DIS at x = 0.001 and Q2 = 1GeV2.

The effects of nonlinearity and unitar-
ity in small x DIS are most clearly visi-
ble in the dipole framework. We denote
N (x,bT , rT ) the imaginary part of the scat-
tering amplitude for a dipole of size rT and
rapidity y = ln(1/x) to scatter off the target
at impact parameter bT . The total dipole
cross section is given by twice the integral
of N (x,bT , rT ) over the impact parameter.
While the formal unitarity limit would be
for N to lie between 0 and 2, in practice
the reasonable physical area is between 0
(no scattering) and 1 (complete absorption
or the black disk limit). The typical value
of the dipole scattering amplitude therefore
serves as a good measure of the degree of
nonlinearity of the scattering process.

As the total cross section depends on the
integral of the scattering amplitude over the impact parameter, statements about the mag-
nitude of the scattering amplitude depend on the profile of the target in bT . The bT -
depdendence for the scattering amplitude on a nucleon is, however, very much constrained
by the t-dependence of exclusive vector meson production. Using this information, in addi-
tion to the total cross section, results in the two commonly used bT -dependent dipole am-
plitude parametrizations that we will use here, the IPsat and bCGC models [600, 823, 824].
They have successfully been used to describe HERA data on the inclusive cross section,
exclusive vector meson production and diffractive structure functions [825].

The saturation scale: To a first approximation the impact parameter dependence of
the nuclear scattering amplitude can then be obtained by combining the nucleon one with
basic knowledge of nuclear geometry in a Glauber-like treatment (see e.g. Refs. [826, 827]
for details). This yields a characteristic pattern of nuclear suppression (shadowing) of the
inclusive cross section, a nuclear enhancement of diffraction to small mass states and a
suppression in diffraction to large masses (small β) [825].

One way of quantifying the importance of nonlinear effects is to compare the value of
the (bT and x-dependent) saturation scale Q2

s to the virtuality Q2 of the process. The sat-
uration scale is defined as the inverse of the dipole size at which the scattering amplitude
N reaches some specific value defined by convention. For Q2 ≫ Q2

s one is in the dilute
limit and for Q2 ∼ Q2

s nonlinear effects become important. A naive argument of the A-
dependence of the saturation scale for nuclei would give Q2

sA ∼ A1/3. The importance of a
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realistic impact parameter dependence for nuclei was discussed in more detail in Ref. [826],
where it was found that this dependence is indeed true to a very good approximation, but
the picture is more intricate than that. For the center of a nucleus vs. the center of a pro-
ton the saturation scale is suppressed by a geometrical factor ∼ 0.3 ≈ R2

pA
2/3/R2

A. Both a
nucleon and a nucleus have a dilute edge at large impact parameters. The thickness of this
edge is determined by confinement scale physics and is thus of the same order for both. The
proton is, however, a much smaller object and therefore the dilute edge region is responsible
for a much larger fraction of the total cross section than in a nucleus. One way to see this is
to look at the saturation scale at the median impact parameter contributing to the inclusive
cross DIS cross section. The value of Q2

s (bmed) is ∼ 35% of the value at b = 0 for a proton,
but ∼ 70% for a gold nucleus (see Fig. 5.22, [826]).
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Figure 5.23. Longitudinal mean scattering amplitude 〈N〉L for a proton (left) and a a gold nucleus
(right) with the IPsat parametrization (first row) and bCGC parametrization (second row).

The mean scattering amplitude: An alternative way of assessing the typical values of
the scattering amplitude is to calculate its expectation value weighted by the cross section
of a particular process. We thus define the mean scattering amplitude as

〈N〉T,L =

∫
d2rT

∫ 1
0 dz

∣∣∣Ψγ∗

L,T

∣∣∣
2 ∫

d2bTN 2(x,bT , rT )

∫
d2rT

∫ 1
0 dz

∣∣∣Ψγ∗

L,T

∣∣∣
2 ∫

d2bTN (x,bT , rT )
. (5.37)

This will yield a value between 0 and 1 for all points in the Q2, x-plane. Note that although
in principle 〈N〉 varies between 0 and 1, the maximal value for a Gaussian bT -distribution,
which describes the proton very well, is only 1/2. The longitudinal and transverse structure
functions probe a slightly different distribution of dipole sizes r, with the longitudinal
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structure function showing a stronger Q2-dependence. The same quantities can easily be
computed also for charm quarks only.
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Figure 5.24. The mean scattering amplitude 〈N〉tot for the total cross section for a proton (left) and
a a gold nucleus (right) with the bCGC parametrization.

Figure 5.23 shows the mean scattering amplitude probed in the longitudinal total cross
section in a proton and a gold nucleus in the IPsat model. The characteristic feature of the
eikonalized DGLAP-evolved gluon distribution in this parametrization is the fact that the
x-dependence becomes faster at higher energies. The same quantity for the bCGC cross
section is plotted in fig. 5.23. Here one sees the characteristic constant energy dependence
Q2

s ∼ x−λ in the bCGC parametrization leading to straight lines of constant N in a log-log
plot. The amplitude weighted by the total cross section is shown in Fig. 5.24 for the IPsat
parametrization. It shows a slower Q2-dependence than the longitudinal one, connected with
the well-known fact that the longitudinal structure function is more sensitive to higher-twist
effects than the total one.

In all plots for protons we have shown the kinematical limits for HERA and the EIC
(325GeV proton on 30GeV electron with y < 0.9) and in the nucleus plots for the EIC
(130AGeV nucleus on 30GeV electron with y < 0.9) and lower energy mEIC option
(130AGeV nucleus on 5GeV electron with y < 0.9). The comparison between nuclei and
protons is striking. In the IPsat parametrization, as is typical of DGLAP evolution, the
energy dependence at the initial small Q2-scale is very slow. Thus the lower energy of the
EIC compared to HERA would be insignificant in face of the effect of using nuclei. A value
of 〈N〉tot of 0.3 could, for example, be reached at Q2 = 4GeV2 at the EIC vs. Q2 = 1GeV2

at HERA; much more safely in the weak coupling regime. With nuclei the EIC could, at
Q2 = 1GeV, reach values of 〈N〉L ≈ 0.5 that are simply inaccessible in an ep collider at
practically any energy for an approximately Gaussian proton profile.

Acknowledgments: M. Diehl came up with the idea of visualizing the strength of the non-
linear effects in the way presented here.

Nuclear PDFs and deviations from DGLAP evolution

Alberto Accardi, Vadim Guzey and Juan Rojo

In this contribution we present a preliminary analysis which aims at determining the
potential of the EIC to measure gluon shadowing and anti-shadowing and its sensitivity to
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saturation dynamics.
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pseudo-data included in the NNPDF analy-
sis of the EIC e+Pb cross-sections, both for
stage I and for stage II. Possible kinemati-
cal cuts relevant to the study of the onset of
non–linear phenomena are also shown.

The input for this analysis is the EIC pseudo
data for the inclusive DIS cross section in
two scenarios, a medium energy EIC (

√
s =

12, 17, 24, 32, 44 GeV, denoted by stage I) and a
full energy EIC (

√
s = 63, 88, 124 GeV, stage II),

with 0.004 < y < 0.8 in either case. The kine-
matic coverage is summarized in Fig. 5.25. The
pseudo-data was generated starting from e + p
and e+n cross sections computed using the cen-
tral values of the NNPDF2.0 parton distribu-
tions [47]. An integrated luminosity of 4 fb−1

was assumed for all energies, and the pseudo-
data has been corrected for the expected statis-
tical fluctuations. For most of the x range the re-
sulting statistical errors are negligible compared
to the assumed 2% systematic error. Nuclear
effects have been included in a K-factor approx-
imation, so that the longitudinal and transverse
cross sections in 208Pb can be expressed in terms of the proton cross sections as

σPbT,L
(
x,Q2, y

)
= Kλ

T,L

(
x,Q2, y

)
σpT,L

(
x,Q2, y

)
, (5.38)

where the label λ sets the intensity of the assumed saturation effects, and λ = 1 corresponds
to the nominal saturation in the IP Non-sat model [600]. In particular, the K-factor in
Eq. (5.38) is given by the following piece-wise expression. For small x, x ≤ 0.01,

Kλ
T,L =

2

〈σqq̄〉T,L

∫
d2b
〈(

1− e−λ
1
2
Aσqq̄TA(b)

)〉
T,L

, (5.39)

where σqq̄ is the dipole cross section in the IP Non-sat model (we assume for simplicity
that in the EIC kinematic range there is no saturation at the proton level, and search
for the nuclear medium-induced saturation); TA(b) =

∫
dzρA(b, z), where ρA(b, z) is the

nuclear density normalized to unity; the brackets 〈. . . 〉T,L stand for the integration with
the wave function squared of a virtual photon with transverse or longitudinal polarization,
respectively. In the 0.01 ≤ x ≤ 0.1 interval, we assume that Kλ

T,L increases linearly from

the value given by Eq. (5.39) at x = 0.01 up to Kλ
T,L = 1 at x = 0.1. For x > 0.1, we

assumed that Kλ
T,L is equal to the ratio of the nuclear to free nucleon structure functions,

F2A(x,Q
2)/[AF2N (x,Q2)], which is given by the leading-order parameterization of Ref. [828]

Nuclear parton distributions are then determined by a Next-to-Leading Order QCD fit
of the pseudo-data within the NNPDF framework [681, 47]. The kinematic cuts used to
ensure the validity of DGLAP evolution are Q2 ≥ 2 GeV2 and W 2 ≥ 12.5 GeV2. In this
preliminary study, we consider pseudo-data for Pb targets only, and postpone discussion
of the dependence of the nuclear PDFs on A to a future investigation. In the collinear
factorization approximation, Pb structure functions are related to Pb parton distributions
in the same way as in the proton case (see Section 5.3.1 and Ref. [829]). We also assumed
for simplicity the Pb nucleus to be isoscalar, so that the structure functions depend only
on three independent nuclear PDFs: the singlet quark PDF, ΣPb

(
x,Q2

)
, the gluon PDF
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gPb(x,Q2), and the strange PDF; the latter was furthermore set to be a fixed fraction of
the singlet PDF.

Now we discuss some preliminary results of the nuclear PDF fits. We show in Fig. 5.26
the singlet and the gluon PDFs at the initial scale Q2 = 2 GeV2 obtained using only stage
I data for e+Pb collisions, and then adding the stage II data. To illustrate the accuracy
that the EIC can reach in the determination of nuclear PDFs we show in Fig. 5.27 their
relative uncertainties alongside those of the proton’s NNPDF2.0 [47] combined with those
of the EPS09 nuclear modifications [40] for 208Pb, which allows a comparison of the relative
error bands. Since the restrictive EPS09 parametrization may underestimate the nuclear
uncertainties outside the region where data is presently available, notably at x . 0.01, we
added the relative NNPDF2.0 and EPS09 relative uncertainties linearly for a conservative
estimate of the total uncertainty.

Figure 5.26. The quark singlet (left plot) and the gluon PDFs (right plot) in Pb at the initial
evolution scale Q2

0 = 2 GeV2, for stage I and stage I+II.

The measurement of the nuclear modifications of the gluon are one of the most impor-
tant measurements at the EIC, as this quantity is essentially unknown from present data.
Inclusive cross sections are sensitive to the gluon distribution both via scaling violations
and, to a lesser extent, through the longitudinal structure function accessed through the
proposed

√
s = 12 − 124 GeV energy scan. From Fig. 5.26 we see that one can determine,

with reasonable accuracy, the gluon shadowing down to x ∼ 10−3 in stage II and down to
x ∼ 10−2 in stage I. The better capabilities of stage II stem both from its greater lever arm
in Q2 and its coverage of smaller values of x, see Fig. 5.25. In particular, the precision of
the Pb gluon in Stage II at small x is comparable to estimates from global proton fits. On
top of this, at the EIC it will be possible to study gluon anti-shadowing, EMC and Fermi
motion effects with much better accuracy than afforded by current global nuclear fits (see
Sections 5.3.1 and 5.3.1. We can also see that EIC will measure accurately the sea quark
shadowing, and that nuclear modifications of light quarks at large x could be measured a
precision similar or even better than for the proton case.

This analysis was based on the validity of collinear factorization for nuclei, and the
validity of linear DGLAP evolution in Q2. However, at small enough x and Q2, deviations
from linear fixed order DGLAP evolution are expected to appear, e.g., due to small-x re-
summation effects [830] or gluon saturation, see Section 5.2.1. In heavy nuclei, the effects
due to gluon saturation are boosted to higher Q2 and x by the atomic number; one then
has the possibility of experimentally separating small-x and saturation effects, which is not
be possible with HERA e+ p data.

In Refs. [720, 831] a general strategy was presented to quantify potential deviations from
NLO DGLAP evolution, which was then applied to proton HERA data. In a global PDF fit,
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Figure 5.27. The relative uncertainty in the quark singlet (two upper panels) and the gluon PDFs
in Pb (two lower panels) at the initial evolution scale Q2

0 = 2 GeV2, with stage I and stage I+II
data. Results are shown on linear (left plot) and logarithmic (right plot) scales. For reference, the
analogous results for the Pb PDFs using NNPDF2.0+EPS09 parametrizations are also shown.

deviations from DGLAP in the data can be hidden in a distortion of parton distributions;
however, these can be singled out by determining undistorted PDFs from data in regions
where such effects are expected to be small. In more detail, one can fit PDFs using data at
large x and Q2, where DGLAP is likely to hold with high accuracy, and then evolving them
down in the Q2 region where deviations are expected to arise. DGLAP deviations can then
be quantitatively determined by comparing calculations to data in this region, which were
not used in the PDF determination.

This approach can be applied as well to the nuclear case. From simple theoretical
arguments about the energy and A dependence of the saturation scale (see Section 5.2.1),

we expect deviations from linear evolution to appear when Q2 . Q̄2 (Ax̄/x)
1
3 , where x̄ is a

reference value, say x̄ = 10−3, and Q̄2 is the scale where DGLAP evolution at x̄ would be
broken in the proton. Note however that the A-dependence of the saturation scale may in
fact be tamed by the leading twist nuclear shadowing, see Section 5.2.1. While saturation
models may give an indication of the value of Q̄2, we wish to determine this scale in a model
independent way as the scale at which deviations from DGLAP evolution can be detected
from EIC nuclear target (pseudo-)data. The unsafe region for DGLAP evolution can also be

written as Q2 . Q2
cx
− 1

3 with Q2
c some constant setting the strength of the deviations from

DGLAP. In Refs.[720, 831] the range Q2
c ∈ [0.5, 1.5] GeV2 was considered for the proton

case; in the nuclear case this range should be rescaled by a factor A
1/3
Pb ≈ 6. Typical values

of these kinematical cuts for the Pb nucleus are shown in Fig. 5.25.
We show in Fig. 5.28 a representative result of the fits to the EIC pseudo-data after

applying the cut with Q̄2 = 1.5A
1/3
Pb ∼ 9, compared to the reference uncut fits to stages I

and I+II pseudo-data with λ = 1. As expected when data is removed the uncertainties in the
physical observables become much larger, but one can still see a systematic downwards shift
in the central value, which is the signature of the departure from linear evolution [720, 831].
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Figure 5.28. The Pb structure function FPb
2 (x,Q2) at Q2 = 3 GeV2 from the analysis of the EIC

stage I (left plot) and stage I+II (right plot) simulated data with λ = 1, without kinematical cuts

and with cuts using Q2
c = 1.5A

1/3
Pb ∼ 9.

Note that this signal is already apparent with stage I data only, although its statistical
significance might be marginal.

We plan to systematically explore the sensitivity of the EIC to non-linear dynamics using
this technique, by optimizing the kinematical cuts for different values of the saturation scale
used to generate the pseudo-data, exploit the interplay between the FPb

2 and FPb
L structure

functions, and quantitatively measuring the statistical significance of the signal. This will
determine in a fairly model-independent way the smallest saturation scale that can be
detected at the EIC in either stage I or stage II.

Acknowledgments: We thank F. Caola, R. Ent, S. Forte and L. Zhu for discussions and
collaboration.

Constraining the nuclear gluon distribution using inclusive observables

Victor P. Gonçalves

Data from HERA allow for a good determination of the gluon density of the proton.
A much harder task has been to determine the gluon distribution of nucleons bound in
a nucleus, the nuclear gluon distribution (xgA(x,Q2)). Existing data, taken over a wide
kinematic range 10−5 ≤ x ≤ 0.1 and 0.05GeV 2 ≤ Q2 ≤ 100GeV 2, show a systematic
reduction of the nuclear structure function FA2 (x,Q2)/A with respect to the free nucleon
structure function FN2 (x,Q2). This phenomenon is known as the nuclear shadowing effect
and is associated to the modification of the target parton distributions so that xqA(x,Q2) <
AxqN (x,Q2), as expected from a superposition of ep interactions. The modifications depend
on the parton momentum fraction: for momentum fractions x < 0.1 (shadowing region)
and 0.3 < x < 0.7 (EMC region), a depletion is observed in the nuclear structure functions.
These two regions are bridged by an enhancement known as antishadowing for 0.1 < x <
0.3. The experimental data for the nuclear structure function determine the behaviour
of the nuclear quark distributions, while the behaviour of the nuclear gluon distribution
is indirectly determined using the momentum sum rule as a constraint and/or studying
the logQ2 slope of the ratio FSn2 /FC2 . Currently, the behaviour of xgA(x,Q2) at small x
(high energy) is completely uncertain as shown in Fig. 5.29, where we present the ratio
Rg = xgA/(A.xgN ), for A = 208, predicted by four different groups which realize a global
analysis of the nuclear experimental data using the DGLAP evolution equations in order
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to determine the parton densities in nuclei. In particular, the magnitude of shadowing and
the presence or not of the antishadowing effect is completely undefined.
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Figure 5.29. The ratio Rg = xgA/A.xgN predicted
by the EKS, DS, HKN and EPS parametrizations
for A = 208 and Q2 = 2.5 GeV2.

In this contribution we study the be-
haviour of the nuclear longitudinal struc-
ture function FAL and the charm struc-

ture function F c,A2 and analyse the possibil-
ity to constrain the nuclear effects present
in xgA using these inclusive observables
(For more details and references see Ref.
[832]).

FAL and F c,A2 in the collinear formal-
ism: The longitudinal structure function in
deep inelastic scattering is one of the ob-
servables from which the gluon distribution
can be unfolded. In the collinear formalism,
FL is described in terms of the Altarelli-
Martinelli equation

FL(x,Q
2) =

αs(Q
2)

2π
x2
∫ 1

x

dy

y3
[
8

3
F2(y,Q

2) + 4
∑

q

e2q(1−
x

y
)yg(y,Q2)] . (5.40)

At small x, the second term with the gluon distribution is the dominant one. This expression
can be reasonably approximated by FL(x,Q

2) ≈ 0.3 4αs
3π xg(2.5x,Q

2), which demonstrates
the close relation between the longitudinal structure function and the gluon distribution.
Therefore, we expect the longitudinal structure function to be sensitive to nuclear effects.

In order to estimate the charm contribution to the structure function we treat the
charm quark as a heavy quark and estimate its contribution by fixed-order perturbation
theory. This involves the computation of the boson-gluon fusion process. A cc pair can
be created by boson-gluon fusion when the squared invariant mass of the hadronic final

state is W 2 ≥ 4m2
c . Since W

2 = Q2(1−x)
x +M2

N , where MN is the nucleon mass, the charm
production can occur well below the Q2 threshold, Q2 ≈ 4m2

c , at small x. The charm
contribution to the proton/nucleus structure function, in leading order (LO), is given by

1

x
F c2 (x,Q

2,m2
c) = 2e2c

αs(µ
′2)

2π

∫ 1

ax

dy

y
Ccg,2(

x

y
,
m2
c

Q2
) g(y, µ′2) , (5.41)

where a = 1+ 4m2
c

Q2 and the factorization scale µ′ is assumed µ′2 = 4m2
c . C

c
g,2 is the coefficient

function given by

Ccg,2(z,
m2
c

Q2
) =

1

2
{[z2 + (1− z)2 + z(1− 3z)

4m2
c

Q2
− z2

8m4
c

Q4
]ln

1 + β

1− β

+ β[−1 + 8z(1 − z)− z(1− z)
4m2

c

Q2
]} , (5.42)

where β = 1− 4m2
cz

Q2(1−z) is the velocity of one of the charm quarks in the boson-gluon center-

of-mass frame. Therefore, in leading order, O(αs), F
c
2 is directly sensitive only to the gluon

density via the well-known Bethe-Heitler process γ∗g → cc. The dominant uncertainty in
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Figure 5.30. Ratios Rg, RC and RL for the four considered nuclear parametrizations, Q2 = 2.5
GeV2 and A = 208.

the QCD calculations arises from the uncertainty in the charm quark mass. In this contri-
bution we assume mc = 1.5GeV .

The nuclear ratios: Let us now study the behaviour of the nuclear longitudinal structure
function FAL and the charm structure function F c,A2 and analyze the possibility to con-
strain the nuclear effects present in xgA using these inclusive observables. We estimate the
normalized ratios

RL(x,Q
2) =

FAL (x,Q2)

AF pL(x,Q
2)

and RC(x,Q
2) =

F c,A2 (x,Q2)

AF c,p2 (x,Q2)
(5.43)

considering four distinct parametrizations for the nuclear gluon distributions and compare
their behaviour with those predicted for the ratio Rg = xgA/AxgN .

In Fig. 5.30 we present our results. Firstly, let us discuss the small-x region, x ≤ 10−3,
determined by shadowing effects. We observe that RL practically coincides with Rg for all
parametrizations and for the two values of Q2 considered. This suggests that shadowing
effects can be easily constrained in an eA collider by measuring FL. This conclusion is,
to a good extent, model independent. On the other hand, the ratio RC gives us an upper
bound for the magnitude of the shadowing effects. For example, if it is found that RC is
equal to ≈ 0.6 at x = 10−4 and Q2 = 2.5 GeV2 the nuclear gluon distributions from DS
and HKN parametrizations are very large and should be modified. Considering now the
kinematical range of x > 10−3 we can analyse the correlation between the behaviour of RL
and RC and the antishadowing present or not in the nuclear gluon distribution. Similarly
to what is observed at small values of x, the behaviour of RL is very close to the Rg one in
the large-x range. In particular, the presence of antishadowing in xgA directly implies an
enhancement in FAL . It is almost 10% smaller in magnitude that the enhancement predicted
for xgA by the EKS and EPS parametrizations. Inversely, if we assume the non-existence
of the antishadowing in the nuclear gluon distribution at x < 10−1, as in the DS and
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HKN parametrizations, no enhancement will be present in FAL in this kinematical region.
Therefore, it suggests that also the antishadowing effects can be easily constrained in an
eA collider measuring FL. On the other hand, in this kinematical range the behavior of RC
is distinct of Rg at a same x. However, we observe that the behavior of RC at x = 10−2

is directly associated to Rg at x = 10−1. In other words, the antishadowing is shifted in
RC by approximately one order of magnitude in x. For example, the large growth of Rg
predicted by the HKN parametrization at x ≥ 10−1 shown in Fig. 5.29 implies the steep
behavior of RC at x ≥ 10−2 observed in Fig. 5.30. Consequently, by measuring F c2 it is also
possible to constrain the existence and magnitude of the antishadowing effects.

Acknowledgments: The author thanks E.R. Cazaroto, F. Carvalho, and F.S. Navarra for
collaboration.

DIS in the high-energy limit at next-to-leading order

Giovanni A. Chirilli

Nowadays,it is widely accepted that non-linear dynamics effects dominate deep inelastic
lepton hadrons scattering processes (DIS) at very high-energy (Regge limit), and non-linear
equations have been derived in order to describe the evolution of the structure of hadronic
matter at this regime. One of these equations is the Balitsky-Kovchegov equation (BK)
derived by Balitsky [770] in the Wilson lines formalism, and by Kovchegov [741, 747] in
the dipole frame. The Wilson line formalism is an operator language based on the concept
of factorization of the scattering amplitude in rapidity space and on the extension of the
application of the Operator Product Expansion (OPE) formalism to high-energy (Regge
limit). So far, the OPE formalism was known only in the Bjorken limit as an expansion in
terms of local operators or in terms of light ray operators.

The relevance of the BK equation for future experiments at an Electron Ion Collider
(EIC) or Large electron Hadron Collider (LeHC) can be determined by the running of the
coupling constant and the evolution kernel at the next-to-leading-order (NLO) approxima-
tion (NLO corrections in power of the strong coupling constant αs). The argument of the
coupling constant has been obtained by the authors of ref. [833, 834] where only the quark
contribution has been calculated explicitly, while the gluonic part was obtained conjecturing
that its contribution would follow the same pattern of the quark contribution. However,
this result did not fully solve the problem of the argument of the running coupling constant
due to an ambiguity of one term which is not proportional to b = 11

3 Nc − 2
3nf . The com-

plete results of the NLO-BK kernel including the gluon contribution to the argument of the
coupling constant has been obtained in [835] where it was shown that the result agrees with
the NLO Balitsky-Fadin-Kuraev-Lipatov (BFKL) kernel. The BFKL equation [836, 60] can
be obtained from the BK equation by dropping out the non linear terms. Indeed, a caveat
of such a linear evolution equation is the violation at very high energy of the unitarity
condition which is instead preserved by the BK equation.

Conformal symmetry is a symmetry violated in QCD by the running of the coupling
constant. What one would then expect from the calculation of the NLO BK-kernel is that
the only source of violation of such symmetry come from the running of coupling while
the rest of the kernel preserves conformal (Möbius) symmetry. However, although Wilson
lines are formally conformal invariant, at one loop correction they are rapidity-divergent,
and since it is not known how to regulate them in a conformally invariant way, the NLO-
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BK kernel contains non-conformal terms (besides to the running coupling constant) as a
remnant of the prescription used to cure such divergences. In order to study the source
of the loss of conformal invariance, it is convenient to consider a conformally invariant
theory like the N=4 super-symmetric Yang-Mills (SYM) theory. The NLO evolution kernel
obtained in this framework is also not conformally invariant [837], contrary to what one
would expect from a conformal field theory. It was then shown in [837], that suitable
operators for the description of processes at high-energy (Regge) theory are composite
conformal (Wilson line) operators constructed order by order in perturbation theory. These
operators absorb the undesired non conformal terms in the same way as counterterms are
added to renormalize local composite operators in order to restore the symmetry that the
bare operator lost at the level of NLO (and higher) corrections. Indeed, the NLO evolution
of such composite conformal operators in QCD resolve in a running coupling part and in a
conformally invariant part. In ref. [837, 838], the conformal expression for the NLO BFKL
has been obtained for the first time.

In order to obtain the full NLO amplitude for DIS at high energy, one needs to calcu-
late the coefficient function (photon impact factor) at NLO and convolute it with the NLO
evolution kernel of the relative operator (the NLO BK kernel). The NLO impact factor has
been calculated in ref. [839] where an analytic expression (in coordinate space) has been
obtained for the first time.

High-energy operator product expansion: In the usual OPE, due to the presence of
two different scales of the transverse momentum k⊥, one introduces a factorization scale,
usually denoted by µ, which factorizes the amplitude of DIS processes in pertubatively
calculable contributions (hard part) and in a non-pertubatively calculable ones (soft part)
represented by matrix elements made of light-ray operators. The evolution of such matrix
elements with respect to the renormalization point µ is the DGLAP evolution equation.

At high-energy (Regge limit), all the transverse momenta are of the same order of mag-
nitude. Therefore, a suitable factorization scale would be the rapidity scale: one introduces
rapidity (η) which separates “fast” fields from “slow” fields. Thus, the amplitude of the
process can be represented as a convolution of contributions coming from fields with ra-
pidity η < Y (fast fields) and contributions coming from fields with rapidity η > Y (slow
fields). As in the case of the usual OPE, the integration over the fields with rapidity η < Y
gives us the coefficient functions while the integrations over fields with rapidity η > Y are
the matrix elements of the operators. A general feature of high-energy scattering is that a
fast particle moves along its straight-line classical trajectory and the only quantum effect is
the eikonal phase factor acquired along this propagation path. In QCD, for the fast quark
or gluon scattering off some target, this eikonal phase factor is a Wilson line - an infinite
gauge link ordered along the straight line collinear to the particle’s velocity nµ:

Uη(x⊥) = Pexp
{
ig

∫ ∞

−∞
du nµ A

µ(un+ x⊥)
}
, (5.44)

Here, Aµ is the gluon field of the target, x⊥ is the transverse position of the particle
which remains unchanged throughout the collision, and the index η labels the rapidity of
the particle. Repeating the above argument for the target (moving fast in the spectator’s
frame) we see that particles with very different rapidities perceive each other as Wilson
lines and therefore Wilson-line operators are the convenient effective degrees of freedom in
high-energy QCD (for a review, see Ref. [840]). The expansion of the T product of two
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electromagnetic currents at high-energy (Regge limit) is then in terms of Wilson lines

T{ĵµ(x)ĵν(y)} =

∫
d2z1d

2z2 I
LO
µν (x, y; z1, z2)Û(z1, z2)

+

∫
d2z1d

2z2d
2z3 I

NLO
µν (x, y; z1, z2, z3)[Û(z1, z3) + Û(z2, z3)− Û(z1, z2)− Û(z1, z3)Û(z3, z2)]

where

Ûη(x⊥, y⊥) = 1− 1

Nc
Tr{Ûη(x⊥)Û †η(y⊥)} (5.45)

The evolution of the Wilson line operator in eq. (5.45) is given by the BK equation [770,
741, 747]

d

dη
Û(x, y) = αsNc

2π2

∫
d2z

(x− y)2

(x− z)2(z − y)2
[Û(x, z) + Û(y, z)

−Û(x, y)− Û(x, z)Û(z, y)] (5.46)

The first three terms correspond to the linear BFKL evolution equation [836, 60] and de-
scribe parton emission while the last term is responsible for parton annihilation. For suffi-
ciently low xB , parton emission balances parton annihilation so the partons reach the state
of saturation [742, 841, 842] with the characteristic transverse momentum Qs growing with
energy 1/xB . The NLO evolution equation for composite Wilson line operator (preserving
conformal invariance as explained in the introduction) has been calculated in [835], where
one can find the full analytic expression.

In order to obtain the DIS amplitude at high-energy at the NLO, we now need the
coefficient function (“impact factor”) at next to leading order. Here, we present the NLO
impact factor for the study of DIS in the linearized case (two gluon approximation) where
the NLO BK equation reduces to the NLO BFKL equation. In this case the OPE at high
energy for DIS reduces to

1

Nc
(x− y)4T{ ¯̂ψ(x)γµψ̂(x) ¯̂ψ(y)γν ψ̂(y)} (5.47)

=
∂κα

∂xµ
∂κβ

∂yν

∫
dz1dz2
z412

Ûa0(z1, z2)
[
ILO
αβ

(
1 +

αs
π

)
+ INLO

αβ

]

where

IαβLO(x, y; z1, z2) = R2 g
αβ(ζ1 · ζ2)− ζα1 ζ

β
2 − ζα2 ζ

β
1

π6(κ · ζ1)(κ · ζ2)
(5.48)

is the LO impact factor and where we used the notation R ≡ κ2(ζ1·ζ2)
2(κ·ζ1)(κ·ζ2) , and the con-

formal vectors κ =
√
s

2x∗
(p1s − x2p2 + x⊥)−

√
s

2y∗
(p1s − y2p2 + y⊥), ζi =

(p1
s + z2i⊥p2 + zi⊥

)

with x∗ = pµ2xµ =
√
2
s x

+ (s is the Mandelstam variable). The analytic expression of the
NLO impact factor for DIS at high energies can be found in Ref. [839]. Note that the NLO
impact factor is conformally (Möbius) invariant and is given by a linear combination of
five conformal tensor structures as predicted in [843]. The next natural step would be the
Fourier transformation of the result in ref. [839] (the NLO impact factor), which gives the
momentum-space impact factor convenient for phenomenological applications (and available
at present only as a combination of numerical and analytical expressions [844, 845, 846]).
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Conclusions: We have briefly summarized the status of the NLO calculation of the struc-
ture function for DIS at high energy. The main ingredients for the full amplitude, namely
the NLO BK kernel and the NLO IF, have been calculated. The main result of this analysis
is that the OPE for high energy (Regge limit) is at the same status as the usual OPE in the
Bjorken limit. This means that the factorization in rapidity did not break down at NLO
accuracy. As an application of the factorization in rapidity, the full NLO analytic amplitude
in N = 4 SYM was calculated, the NLO result for the Pomeron intercept at small αs was
confirmed, and for the first time the NLO Pomeron residue was obtained [847].

The Wilson line formalism proved to be very successful, not only in obtaining in a more
efficient way many results that in the usual pertubative QCD mechanism (pQCD), were
obtained after many years of calculations by several groups, but also to obtain some results
that have not been obtained (not for lack of efforts) in the usual pQCD mechanism, like
the NLO impact factor, the NLO conformal BFKL kernel and the NLO pomeron residue,
and in addition to generalize these results to include the non linear effects dominant at high
energies. Another example which proves the efficiency of this formalism is the calculation,
in a very easy way, of the triple pomeron vertex for diffractive and non-diffractive (“fan
diagrams”) processes, including the subleading Nc contributions [848].

Acknowledgments: The author is grateful to the organizer of the workshop, in particular to
Markus Diehl and Raju Venugopalan, and to the INT institute for the warm hospitality.

Running Coupling in Small-x Physics

Yuri V. Kovchegov

Running coupling corrections have been included into BFKL/BK/JIMWLK evolution
following the Brodsky-Lepage-Mackenzie (BLM) scale-setting procedure [849] in [850, 834,
833, 851, 751]. The BLM prescription requires one to first re-sum the contribution of all
quark bubble corrections giving powers of αµNf , with Nf the number of quark flavors
and αµ the physical coupling at some arbitrary renormalization scale µ. One then has to
complete Nf to the full beta-function by replacing Nf → −6π β2 in the obtained expression.
Here, β2 = (11Nc − 2Nf )/(12π) is the one-loop QCD beta-function. After this, the powers
of αµ β2 should combine into physical running couplings αs(Q

2) = αµ/(1+αµβ2 ln(Q
2/µ2))

at various momentum scales Q which would follow from this calculation. The running
coupling below will be written in the MS renormalization scheme.

Below we will concentrate on the case of running coupling corrections to the BFKL
and BK evolution equations. Running-coupling corrections to the JIMWLK equation can
be found in [834, 751]. At the moment the running coupling corrections to BK have been
better explored numerically than those for JIMWLK.

Analytic result: Let us briefly summarize the results of [834, 833, 751]. The Balitsky-
Kovchegov evolution equation with the running coupling corrections included (rcBK) reads

∂S(x0, x1;Y )

∂Y
= R [S]− S [S] . (5.49)

Here we use the S-matrix notation, related to the forward dipole amplitude by S(x0, x1;Y ) =
1 − N(x0, x1;Y ). The first term on the right hand side of Eq. (5.49) is referred to as the
running coupling contribution, while the second term on the right hand side of Eq. (5.49) is
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referred to as the subtraction contribution. Separation into the two parts is arbitrary, and
was done differently in [833] and [834], with the net sum being the same [751].

The running coupling part was calculated independently in [833] and in [834]: the results
of those calculations are

RBal [S] =

∫
d2z K̃Bal(x0, x1, z) [S(x0, z;Y )S(z, x1;Y )− S(x0, x1;Y )] (5.50)

RKW [S] =

∫
d2z K̃KW(x0, x1, z) [S(x0, z;Y )S(z, x1;Y )− S(x0, x1;Y )] . (5.51)

The integral kernels in the two cases are given by

K̃Bal(r, r1, r2) =
Nc αs(r

2)

2π2

[
r2

r21 r
2
2

+
1

r21

(
αs(r

2
1)

αs(r22)
− 1

)
+

1

r22

(
αs(r

2
2)

αs(r21)
− 1

)]
(5.52)

as found in [833] and by

K̃KW(r, r1, r2) =
Nc

2π2

[
αs(r

2
1)

1

r21
− 2

αs(r
2
1)αs(r

2
2)

αs(R2)

r1 · r2
r21 r

2
2

+ αs(r
2
2)

1

r22

]
, (5.53)

as found in [834], where

R2(r, r1, r2) = r1 r2

(
r2
r1

) r21+r22
r2
1
−r2

2
−2 r21 r22

r1·r2

1

r2
1
−r2

2 . (5.54)

One notices immediately that RBal [S] calculated in [833] is different from RKW [S]
calculated in [834] due to the difference in the kernels K̃Bal and K̃KW in Eqs. (5.52) and
(5.53). However that does not imply disagreement between the calculations of [833] and
[834]: after all, it is the full kernel on the right of Eq. (5.49), R [S] − S [S], that needs to
be compared. To do that, one has to calculate the second term on the right hand side of
Eq. (5.49) (the subtraction contribution). This was done in [751], yielding

S[S] =α2
µ

∫
d2z1 d

2z2K ❣1 (x0, x1; z1, z2)

× [S(x0, w, Y )S(w, x1, Y )− S(x0, z1, Y )S(z2, x1, Y )] (5.55)

and the re-summed BK kernel K ❣1 can be found in the original reference. Substituting

w = z1 (or, equivalently, w = z2) in Eq. (5.55) yields the subtraction term SBal[S], which
has to be subtracted from RBal [S] calculated in [833] and given by Eq. (5.50) to obtain
the complete evolution equation re-summing all orders of αsNf in the kernel. Substituting
w = z = α z1 + (1−α) z2 in Eq. (5.55) yields the term SKW[S], which has to be subtracted
from RKW [S] calculated in [834] and given in Eq. (5.51) again to obtain the complete evo-
lution equation re-summing all orders of αsNf in the kernel.

Numerical Solution: The numerical solution of the running-coupling BK (rcBK) evolu-
tion just presented was performed in [751] and plotted in Fig. 5.31. One plots the running-
coupling parts from Eqs. (5.50) and (5.51) [834, 833] (dashed and dash-dotted lines cor-
respondingly), along with the full solution (solid line). As one can see the full solution is
best approximated by the Balitsky’s running coupling scheme from Eq. (5.50) [833]. Hence
in most phenomenological applications one simply solves rcBK with Balitsky’s prescription
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s = 1 GeV.

[85, 852]. Note that the rcBK solution also exhibits the property of geometric scaling [752],
as was shown in [751].

Running-coupling BFKL evolution: The running-coupling BFKL equation (rcBFKL)
was constructed in [851] and reads

∂φ(k, Y )

∂Y
=

Nc

2π2

∫
d2q

{
2

(k − q)2
αs

(
(k − q)2 e−5/3

)
φ(q, Y )

− k2

q2 (k − q)2
αs
(
q2 e−5/3

)
αs
(
(k − q)2 e−5/3

)

αs
(
k2 e−5/3

) φ(k, Y )

}
,

(5.56)

where the unintegrated gluon distribution φ(k, Y ) is defined by

N(x01, Y ) =

∫
d2k

(2π)2

(
1− eik·x01

)
Ñ(k, Y ) (5.57)

with

αs(k
2)φ(k, Y ) =

Nc S⊥
(2π)3

k2 Ñ(k, Y ). (5.58)

Here S⊥ is the transverse area of the target. The running-coupling BFKL equation (5.56)
was originally conjectured in [853, 854] by postulating the validity of the bootstrap equation
for running-coupling corrections.

Running-coupling and higher-order effects on the saturation scale

Guillaume Beuf

The DGLAP [855, 856, 857] and BFKL [858, 59, 60] equations give the evolution with
kinematics of the partonic content of hadrons and nuclei in the regime where these are dilute.
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As these equations are linear, they can be solved analytically by using a Mellin tranform.
By contrast, when the phenomenon of gluon saturation [742] is taken taken into account,
the relevant evolution equations - B-JIMWLK [770, 756, 757, 759, 760, 761, 745, 762, 763]
or BK [770, 741, 747] - are nonlinear, and thus cannot be solved analytically.

Nevertheless, the solutions of these nonlinear equations in the leading order (LO) approx-
imation (where the coupling αs is kept fixed) are well understood, by combining results from
numerical simulations [859, 750, 860] and analytical asymptotic expansions [755, 861, 862,
863, 864]. Indeed, the BK equation belongs to a well-studied class of nonlinear equations,
whose solutions develop asymptotically a universal traveling wave-front structure [865, 866],
which is independent of the initial condition3. In the context of QCD, that traveling wave-
front structure of the solution implies the geometric scaling [752] property found in the

DIS data at HERA: the total virtual photon - target cross sections σγ
∗

T,L(Y,Q
2) depend on

Y and Q2 essentially only through the combination Q2/Q2
s(Y ), because the dipole-target

amplitude solution of the BK equation depends only on r2Q2
s(Y ) at large Y , r being the

dipole size. The evolution of the saturation scale Q2
s(Y ) is obtained from the propagation

of the wave-front. For the LO BK equation, one gets a large Y expansion of the form

logQ2
s(Y ) = a1Y + a0 log Y +Const. + a−1/2Y

−1/2 +O(Y −1), (5.59)

where a1, a0 and a−1/2 are three known universal coefficients [864], whereas the constant
term and all the ones of order Y −1 or less do depend on the initial conditions, i.e. on the
nature of the target used for the DIS. From geometric considerations, the initial Q2

s of a
nucleus A is enhanced by a factor A1/3 with respect to that of a proton. That nuclear
enhancement of Q2

s(Y ) is preserved by the LO high-energy evolution, in the constant term
of the expansion (5.59). Both from numerical simulations and from the expansion (5.59),
one learns that the evolution of Q2

s(Y ) implied by the LO BK equation is too fast to be
compatible with the data for DIS and other observables, which favor logQ2

s(Y ) ∼ λY , with
λ ≃ 0.2 or 0.3. We are thus forced to consider higher order corrections to the BK equation.

Running vs. fixed coupling: As discussed in this section by Chirilli, the BK equation is
now known at next-to-leading order (NLO) [835, 837]. However, its solutions are much less
understood than the ones of the LO equation. Indeed no numerical simulations of the full
NLO BK equation have been performed yet, for technical reasons, but only simulations [859,
750, 860, 751, 867] of the BK equation with LO kernel and running coupling αs, with various
prescriptions used to set the scale in the coupling. By contrast, it is non-trivial to go from
fixed coupling to running coupling in the analytical studies, since it leads to a different class
of wave-front solutions, for which universality of the asymptotics is not fully established.
The inclusion of other NLO corrections gives however no additional difficulty. Let us first
discuss the effects of running coupling only.

A priori, the running of the coupling brings the additional scale ΛQCD into the problem,
which may spoil the geometric scaling property. Indeed, there is no interval where the
solutions of the running coupling BK equation show exact geometric scaling, by contrast to
fixed coupling solutions, but they satisfy an approximate geometric scaling in some range.
Equivalently, the wave-front in the solutions is being slowly distorted during its propagation,
instead of being uniformly translated as in the fixed coupling case.

3More precisely, in the QCD case, that asymptotic behavior in rapidity is reached from any initial
condition compatible with perturbative QCD in the UV.
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Running coupling effects turn the asymptotic behavior of the saturation scale into
logQ2

s(Y ) ∝
√
Y , as found in early analytical studies [742, 755, 861, 863]. More precisely

its large Y asymptotics writes

log
(
Q2
s(Y )/Λ2

QCD

)
= b1/2

√
Y + b1/6 Y

1/6 + b0 + b−1/6 Y
−1/6 + b−1/3 Y

−1/3 +O
(
Y −1/2

)
,

(5.60)
where the first five terms are universal and known4, whereas the following ones of order
Y −1/2 or less are sensitive to the initial conditions. The universality of the constant term
b0 in (5.60) implies that initial conditions effects such as the nuclear A1/3 enhancement of
Q2
s are washed-out at high rapidity when the coupling is running, as first predicted in [869].

Numerically, it has been found [750, 860, 870] that this effect happens at very high rapidity.
Hence, the nuclear enhancement of Q2

s, which is one of the motivations for doing nuclear
DIS at the EIC, should still be present in the kinematical range accessible at the EIC.
Remarkably, the evolution of the saturation scale in the running coupling case is such that
very good fits of DIS data can be performed with solutions of the running coupling BK
equation [85, 820], by contrast to the fixed coupling case, without the inclusion of other
NLO effects.

Other NLO effects: Apart from the contributions re-summed into the running of the
coupling, there are large NLO corrections to the BK kernel, related to the large NLO
corrections to the BFKL kernel [722, 723].

In a conformal gauge field theory, terms of arbitrary NnLO order from the kernel would
contribute at each order of the expansion (5.59). By contrast, the running of the coupling is
dynamically quenching the effect on the solutions of higher order terms in the kernel. NLO
contributions start to appear at order Y 0 in (5.60), NNLO contributions at order Y −1/2 and
so on. Moreover, the coefficient b−1/6 has been found to be NLO-independent [868]. Apart
from the running of the coupling, NLO contributions thus affect mostly the normalization
of Q2

s(Y ) at large Y , via b0, and only mildly the asymptotic Y -evolution of Q2
s(Y ), via

b−1/3 Y −1/3 and further subleading terms. That property is indeed seen in numerical simu-
lations with running coupling and a subset of other NLO contributions included [867]. That
result shed some light on the spectacular success of the running coupling LO BK equation
to describe DIS data. There is a degeneracy in (5.60) between the contribution of ΛQCD
and b0 to Q2

s(Y ). Hence, treating ΛQCD as a free fit parameter as in Refs. [85, 820] allows
one to fit the bulk of NLO effects, without actually simulating the BK evolution with NLO
kernel.

Several prescriptions [833, 834] have been proposed to split NLO corrections into con-
tributions to the running coupling or to the kernel. Hence, BK equations with running
coupling and LO kernel obtained following different prescriptions differ formally by terms
of order NLO and beyond in the kernel. In numerical simulations of such running coupling
LO BK equations [751], solutions with different prescriptions differ at large Y mostly by a
constant rescaling of Q2

s(Y ), in agreement with our previous discussion.

The problems brought by the impact-parameter dependence: Implicitly, we have
discussed so far only results from studies of impact parameter independent solutions of the
BK equation. The BK equation preserves unitarity at fixed impact parameter. However,
its impact parameter dependent solutions violate unitarity since they violate the Froissart

4The calculation of b0, b−1/6 and b−1/3 has been performed recently in [868].
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bound [871] on the cross-section [872, 867], due to the unphysical possibility of gluon emis-
sion at arbitrarily long range in the transverse plane. The running of the coupling reveals
another problem: there is a reappearance of the diffusion into the infrared [867], which
was thought to be cured by gluon saturation, from studies of impact parameter indepen-
dent solutions of the BK equation. Hence, the impact parameter dependent solutions of
the BK solutions are very sensitive to strongly coupled infrared physics, which is not yet
implemented in the formalism. This is the most challenging open theoretical problem with
regard to gluon saturation. Therefore, it is not yet clear to what extent the results about
impact parameter independent solutions presented in the previous sections are reliable for
realistic proton or nuclear targets.

5.2.3 Diffractive DIS (FD2 , F
D
L , charm contribution)

Diffraction in e+p and e+A collisions

Cyrille Marquet
A non-negligible fraction of the events in DIS are diffractive, meaning that the hadronic

target, of mass M , escapes the collision intact. As a colorless object has been exchanged in
the t-channel, there is rapidity gap void of particles in the final state, between the outgoing
target and the diffractive final state X, made up of all the other particles in the event. On
top of x and Q2, two additional kinematic invariants are needed to characterize diffraction
in DIS: the momentum transfer t < 0 at the hadronic vertex, and the mass MX of the
diffractive final state. In practice, the variable MX is sometimes traded for β and the
variable x is traded for xP–these are defined as

β =
Q2

Q2 +M2
X − t

; xP =
x

β
=

Q2 +M2
X − t

Q2 +W 2 −M2
. (5.61)

Small values of β refer to events with diffractive masses much bigger than the photon
virtuality, while values of β close to unity refer to the opposite situation. xP is useful
because it characterizes the size of the rapidity gap ∆η ≃ ln(1/xP).

There are events in which the hadronic target, instead of staying intact, may dissociate
into a low-mass excited state Y, while still leaving a rapidity gap in the final state. These
events are also classified as diffractive, they occur only if the mass MY of the excited state
is close enough to the initial mass M. Coherent diffraction is employed when the target
scatters elastically (ep→eXp), while incoherent diffraction refers to the more general case
ep→eXY which is a sum of coherent diffraction (Y=p) and target-dissociative diffraction
(Y6=p). The former dominates at low |t| and the latter at large |t|.

While in the leading-twist approximation of QCD there is a collinear factorization the-
orem to compute diffractive structure functions in DIS at large Q2, the description of hard
diffraction in this framework is not as natural as for inclusive events. This is reflected in the
fact that standard parton distribution functions (pdfs) are of no help to compute FD2 , and
one has to introduce a different set of parton distributions called diffractive pdfs (dpdfs).
Therefore in the collinear factorization framework, the description of the parton content of
the proton depends on whether or not the final state is diffractive. While this is successful
- and should be since collinear factorization is a good approximation of QCD at large Q2

- conceptually it is not so satisfactory as one would like to be able to describe any process
with a single proton wave function.

No further conceptual advances are expected within the leading-twist approximation of
QCD. There are some technical improvements that can be made, for instance it is nowadays
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practically impossible to extract dpdfs without assuming what is called Regge factorization:
dpdf(xP, t, β,Q

2) = f(xP, t) g(β,Q
2). This is not satisfactory, since such a factorization is

not a property of QCD. However, there is little doubt that if one could bypass this practical
problem - perhaps with a larger data sample in all four directions: Q2, β, xP and t - this
approach would succeed at large Q2.

But in fact, the purpose of an electron-ion collider is not to check whether DGLAP
evolution will work at large Q2, the goal is rather to explore what we don’t know as well: the
non-linear regime of QCD where collinear factorization breaks down. To be more specific, we
are interested in the regime Q2 < 5 GeV2 and x as small as possible. Interestingly enough,
studying the non-linear saturation regime will be easier with diffractive than with inclusive
measurements. This is so because at small x, diffractive processes are mostly sensitive to
quantum fluctuations in the proton wave function that have a virtuality of order Q2

s, instead
of Q2. As a result, power corrections (not the generic Λ2

QCD/Q
2 corrections, but rather the

sub-class of them of order Q2
s/Q

2 important at small x) are expected to come into play
starting from a higher value of Q2 in diffractive DIS, compared to inclusive DIS. In fact,
there is already a hint that this is happening at HERA: collinear factorization starts to fail
below about 2 GeV2 in the case of F2, while already below about 8 GeV2 in the case of FD2 .

The QCD description of diffractive DIS in the small-x limit turns out to be much more
insightful than that of the large-Q2 limit. It is so because at small x, DDIS can be expressed
in the Good-Walker picture (which was originally imagined for soft diffraction in hadron-
hadron collisions), with the benefit that, thanks to the point-like nature of the photon, the
modeling part of the Good-Walker approach can be replaced by actual QCD computations.
This remarkable realization of the Good-Walker picture in small-x DIS is more commonly
referred to as the dipole picture: dipoles are eigenstates of high-energy scattering in QCD,
and it is known how to expand the photon wave function onto the dipole basis. At the
end in this approach, the parton content of the proton - both in the linear and non-linear
regimes - is parametrized through the dipole cross section. As a result, diffractive structure
functions also feature geometric scaling [873]. Another important fact is that at small x,
diffraction can be entirely predicted, once the dipole cross section has been constrained with
inclusive data.

In spite of the fact that this approach has been able to successfully predict FD2 at small
x, there is still important conceptual progress to be made. For instance, the transverse
impact parameter dependence of the dipole scattering amplitude is very poorly constrained.
Indeed, one has been able to describe F2 and correctly predict FD2 with two kinds of impact
parameter dependences, neither of which is fully satisfactory. In a first class of dipole models,
the impact parameter profile of the proton is independent of energy, yielding a dipole cross
section bounded from above. In the other class of models, the black-disk regime of maximal
scattering strength spreads too quickly in the transverse plane with increasing dipole size r,
leading to a dipole cross section which diverges for large r. It is quite clear that the LHeC
is needed to help us understand better this issue.

Finally, let us say a few important words on ep→eXY diffractive events. In past experi-
ments, events with Y 6= p have mostly been regarded as background, and model-dependent
subtractions have been applied to data, yielding large normalization uncertainties. Within
the kinematic reach of HERA, it has been observed that the ratio dσep→eXY /dσep→eXp

is a constant independent of all kinematic variables other than MY and t (that ratio
increases with MY and |t|). Here we would like to emphazise that proton-dissociative
events are also intrinsically interesting. For instance, at small x the cross section difference
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dσep→eXY − dσep→eXp is 1/N2
c suppressed, meaning that if it were measured accurately, it

would give access to details of the QCD dynamics which are untestable otherwise. The EIC
provides such an opportunity.

After many fixed target experiments, it took a collider to discover diffractive events
in e+p. Since no e+A collider has ever been built, diffraction in e+A has simply never
been measured. That such a deficiency exists in our knowledge of nuclear structure is
compelling enough to build the EIC. Everything we would learn about DDIS off nuclei
at the EIC will be new, in any kinematical domain, implying a huge discovery potential.
Nevertheless, we have expectations of what diffraction off nuclei should look like, based on
our current understanding of QCD. For instance, the theory of nuclear shadowing allows the
constuction of nuclear DPDFs for large Q2 physics, while within the Color Glass Condensate
framework, nuclear diffractive structure functions can be predicted at small x. Depending
on these kinematics, different patterns of nuclear shadowing or antishadowing as a function
of β and xP are expected. This is just one example out of many that should be checked
with an e+A collider. Since the current predictions rely on rather simple models for impact
parameter dependence, they need to be confronted to data, in order to, in return, improve
our understanding.

Finally, there is one aspect of diffraction which is specific to nuclei that one should
mention. The structure of incoherent diffraction eA→eXY is more complex than with a
proton target, and also can teach us a lot more. In the case of a target nucleus, we expect
the following qualitative changes in the t dependence. First, the low-|t| regime in which
the nucleus scatters elastically will be dominant up to a smaller value of |t| (to about
|t| = 0.05 GeV2) compared to the proton case, reflecting the larger size of the nucleus.
Then, the nucleus-dissociative regime will comprise two parts: an intermediate regime in
momentum transfer up to about 0.7 GeV2 where the nucleus will predominantly break up
into its constituents nucleons, and a large−|t| regime where the nucleons inside the nucleus
will also break up, implying pion production in the Y system for instance. These are only
qualitative expectations, it is crucial to study this aspect of diffraction quantitatively in
order to complete our understanding of the structure of nuclei.

Expectations for e+A from the CGC

Cyrille Marquet

In this work, hard diffraction in electron-nucleus (e+A) collisions is considered within
the IPsat model,[600] corresponding to the classical limit of the Color Glass Condensate
approach. This effective theory of QCD at high partonic density is the most natural frame-
work to describe the saturation phenomenon, and therefore to study e+A scattering at high
energies, in particular diffractive observables. Here we shall focus on the nuclear diffractive
structure function FD2,A.

Let us recall the kinematics of diffractive DIS: γ∗A→XA. With a momentum transfer
t≤0, the proton/nucleus gets out of the γ∗−A collision intact, and is separated by a rapidity
gap from the other final-state particles whose invariant mass we denote MX . The photon
virtuality is denoted Q2, and the γ∗−A total energy W. It is convenient to introduce the
following variables: x=Q2/(Q2+W 2), β =Q2/(Q2+M2

X) and xP = x/β. The size of the
rapidity gap is ln(1/xP).

The diffractive structure function is expressed as a function of β, xP, Q
2, and t, and

we will only consider the t−integrated structure function FD,32 . While at large values of xP
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and Q2, the leading-twist collinear factorization is appropriate to describe hard diffraction
off protons, this is not the case at small xP or off nuclei, as higher twists are enhanced by
∼ (A/xP)

0.3. In this situation, the dipole picture is better suited to address the problem. It
naturally incorporates the description of both inclusive and diffractive events into a common
theoretical framework:[781, 874, 875] the same dipole-nucleus scattering amplitudes, which
can be computed treating the nucleus as a CGC, enter in the formulation of the inclusive
and diffractive cross-sections.

Diffractive structure functions in the dipole picture: In our approach, FD2 =F qq̄T +
F qq̄L +F qq̄gT where the different pieces correspond to transversely (T) or longitudinally (L)
polarized photons dissociating into a qq̄ or qq̄g final state. For instance, the qq̄ contributions
are

xPF
qq̄
T (β, xP, Q

2) =
NcQ

4

8π3β

∑

f

e2f

∫ 1

0
dz Θ(κ2f )z(1−z)

[
fT (z)ε

2
f (z)I1(κf , ǫf )+m

2
f I0(κf , ǫf )

]
,

xPF
qq̄
L (β, xP, Q

2) =
NcQ

6

8π3β

∑

f

e2f

∫ 1

0
dz Θ(κ2f )z(1−z)fL(z)I0(κf , ǫf ) , (5.62)

with

ε2f (z)=z(1−z)Q2+m2
f , κ

2
f (z)=z(1−z)M2

X−m2
f , fT (z)=z

2+(1−z)2 , fL(z)=4z2(1−z)2 .
(5.63)

The xP dependence comes in the functions Iλ from NA(r, b, xP), the qq̄ dipole-nucleus scat-
tering amplitude:

Iλ(κ, ǫ)=

∫
d2b

[∫ ∞

0
rdrJλ(κr)Kλ(ǫr)NA(r, b, xP)

]2
(5.64)

where Jλ and Kλ are Bessel functions. In equation (5.64), the integration variables r and
b are the qq̄−dipole transverse size and its impact parameter.

In principle, it is justified to neglect final states containing gluons, because these are
suppressed by extra powers of αs. However, for small values of β or large values of Q2, the
qq̄ pair will emit soft or collinear gluons whose emissions are accomponied by large loga-
rithms ln(1/β) or ln(Q2) which compensate the factors of αs. In those situations, multiple
gluon emissions should be re-summed; in practice, including the qq̄g final state is enough
to describe the HERA data. In both the small−β and large−Q2 limits, this can be done
within the dipole picture. An implementation of the qq̄g contribution F qq̄gT that correctly
reproduces both limits was recently proposed [876], while at large β and small Q2, the qq̄
contributions in equation (5.62) dominate. The formulae that we shall use can be found in
ref. [876].

The dipole-nucleus scattering amplitude: We shall use the IPsat parametrization to
describe the dipole-nucleus scattering amplitude:

NA(r, b, x) = 1− e−r
2F (r,x)

∑A
i=1 Tp(b−bi) , F (x, r2) =

π2

2Nc
αs

(
µ20+

C

r2

)
xg

(
x, µ20 +

C

r2

)
.

(5.65)
This is a model of a nucleus whose nucleons interact independently. Indeed, NA is obtained
from A dipole-nucleon amplitudes Np=1−exp[−r2F (r, x)Tp(b)] assuming that the probabil-
ity 1−NA for the dipole not to interact with the nucleus is the product of the probabilities
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Figure 5.32. Left plot: β-dependence of the different contributions to the proton diffractive structure
function FD2,p. Right plot: the ratio FD2,A/(AF

D
2,p) as a function of β for Ca, Sn and Au nuclei. In

both cases, results are for the “non breakup” case, and at Q2 = 5 GeV2 and xP = 0.001.

1−Np for the dipole not to interact with the nucleons. This assumption is not consistent
with the CGC quantum evolution, which sums up nonlinear interactions between the nucle-
ons. However, the classical limit of the dipole-CGC scattering amplitude can be thought of
an initial condition (5.65). Note that in the small r limit, one has NA =

∑
iNp, and there

is no leading twist shadowing.
In (5.65), Tp(b)∝exp[−b2/(2BG)] is the impact parameter profile function in the proton

with
∫
d2b Tp(b) = 1, and F is proportional to the DGLAP evolved gluon distribution. The

parameters µ0, C, and BG (as well as two other parameters characterising the initial condi-
tion for the DGLAP evolution) are fit to reproduce the HERA data on the inclusive proton
structure function F2. The diffractive proton structure function FD2 is well reproduced [825]
after adjusting αs = 0.14 in the qq̄g component. Vector-meson production at HERA is also
well described.[823]

We introduced in (5.65) the coordinates of the individual nucleons {bi}, they are dis-
tributed according to the Woods-Saxon distribution TA(bi), which means that to compute
an observable, one has to perform the following average

〈O〉N ≡
∫ ( A∏

i=1

d2biTA(bi)

)
O({bi}) . (5.66)

The Woods-Saxon parameters are measured from the electrical charge distribution, no addi-
tional parameters are introduced. The resulting dipole cross sections give a good agreement
[826] with the small-x NMC data on the nuclear structure function F2,A. We will use this
parametrization of NA to predict the nuclear diffractive structure function FD2,A.

Note that performing the average at the level of the amplitude (5.66), meaning calcu-
lating 〈NA〉2N in (5.62), imposes that the nucleus is intact in the final state. By contrast,
when performing the average at the level of the cross-section, meaning calculating 〈N2

A〉N
in (5.62), one allows the nucleus to break up into individual nucleons, which will typically
happen when the momentum transfer is bigger than the inverse nuclear radius. In what
follows, we shall refer to those possibilities as “non breakup” and “breakup” cases.

Nuclear enhancement and suppression of FD2 : In fig. 5.32, the β dependence of
the diffractive structure function is displayed for Q2 = 5 GeV2 and xP = 0.001. In the
left plot, the hierarchy of the different contributions is analysed in the case of FD2,p. The
dominant contribution is: the qq̄g component for values of β < 0.1, the longitudinally
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Figure 5.33. The ratios FD,x2,A /(AF
D,x
2,p ) of the different components (x = qq̄g, qq̄T, qq̄L) of the

diffractive structure function for both “breakup” and “non breakup” cases. Left plot: as a function
of Q2 for xP=0.001. Right plot: as a function of xP for Q2=5 GeV2. In both cases, results are for
Au nuclei and the different components are evaluated where they are dominant: at β=0.1 for qq̄g,
β=0.5 for qq̄T and β=0.9 for qq̄L.

polarized qq̄ component for values of β>0.9, and the transversely polarized qq̄ component
for intermediate values. In the case of FD2,A, this separation is still true but the qq̄ and
qq̄g components behave differently as a function of A. The qq̄ components are enhanced
compared to A times the proton diffractive structure functions while the qq̄g component,
on the contrary, is suppressed for nuclei compared to the proton (the Q2 and xP dependence
of these effects will be discussed shortly).

This leads to a nuclear suppression of the diffractive structure function in the small β
region, and to an enhancement at large β. This is illustrated by the right plot of fig. 5.32,
where the ratio FD2,A/(AF

D
2,p) is shown as a function of β for different nuclei (for the “non

breakup” case). The net result of the different contributions is that FD2,A/A, for a large β

range down to 0.1, is close to FD2,p, and is increasing with A.

In fig. 5.33, for the Au nucleus case, the ratios FD2,A/(AF
D
2,p) of individual contributions

are analyzed (for values of β at which they are dominant). Comparisons between the
“breakup” and “non breakup” cases are made, as functions of Q2 (left plot) and xP (right
plot). For the qq̄g component, the nuclear suppression is almost constant (the suppression
goes away slowly with Q2). For the qq̄ components, the enhancement becomes bigger with
increasing Q2 and xP. The result for the total diffractive cross-section in e+A scattering is
that it decreases more slowly with increasing Q2 or xP compared to the e+p case. Finally,
cross sections in the “non breakup” case are about 15% lower than in the “breakup” case.

Comparing with other approaches, we obtain similar features. We notice one interesting
difference with the results obtained using diffractive parton distributions modified by leading
twist shadowing [812]: even at large β, it is found that FD2,A/A is suppressed compared to

FD2,p as a function of Q2. This could be tested with measurements at a future EIC where
diffraction will be an important part of a rich program. A typical nuclear enhancement of
diffraction, for a Au nucleus, is a factor of ∼ 1.2. Combining this with the typical nuclear
suppression in the inclusive case (∼ 0.8, see [826]), we expect the fraction of diffractive
events to be increased by a factor of ∼1.5 compared to the proton, meaning 25 to 35 % at
the EIC.
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Expectations for diffraction e+A DIS from LT shadowing

Vadim Guzey and Mark Strikman

The leading twist theory of nuclear shadowing (see section 5.2.1) that uses the con-
nection between nuclear shadowing and diffraction [791] and allows one to predict nuclear
parton distributions (PDFs) at small x [803, 805, 806, 807] can also be used to predict
nuclear diffractive PDFs and diffractive structure functions [812]. At small x and in the
nuclear target rest frame, the virtual photon interacts coherently with all nucleons of the
nuclear target and the γ∗A→ XA scattering amplitude is given by the sum of the multiple
scattering contributions presented in Fig. 5.34. Graphs a, b, and c correspond to the coher-
ent interaction with one, two, and three nucleons of the nuclear target, respectively: graph a
is the impulse approximation; graphs b and c contribute to the shadowing correction. Note
that the interactions with four and more nucleons (at the amplitude level) are not shown,
but they are implied. The application of the Abramovsky-Gribov-Kancheli (AGK) cutting
rules [804] allows one to relate these diagrams to the corresponding diagrams for the total
cross section in γ∗A scattering.
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Figure 5.34. The multiple scattering series for the γ∗A → XA diffractive scattering amplitude.
Graph a is the impulse approximation; graphs b and c correspond to the interaction with two and
three nucleons of the nuclear target, and contribute to the shadowing correction.

Combining the Glauber-Gribov multiple scattering formalism for the γ∗A → XA scat-
tering amplitude with the QCD factorization theorem [808], one can derive the nuclear
diffractive parton distribution of flavor j [807, 812]:

βf
D(3)
j/A (β,Q2

0, xIP ) = 4πA2βf
D(4)
j/N (β,Q2

0, xIP , tmin)

∫
d2b

×
∣∣∣∣
∫ ∞

−∞
dzeixIPmNze−

A
2
(1−iη)σjsoft(x,Q2

0)
∫∞
z dz′ρA(b,z′)ρA(b, z)

∣∣∣∣
2

,(5.67)

where the notation is the same as in eqs. (5.32) and (5.33).
While at the level of the interaction with two nucleons (graphs a and b in fig. 5.34)

our predictions are model-independent, the contribution of the interaction with N ≥ 3
nucleons requires additional model-dependent considerations since these interactions probe
the details of the diffractive dynamics beyond what is encoded in the elementary diffractive

distribution f
D(4)
j , as discussed in Section 5.2.1. Viewing the hard probe (virtual photon)

as a coherent superposition of the configurations that interact with the target nucleons
with very different strengths (from align-jet configurations to point-like configurations) and
which are present in the virtual photon with the probability P (σ), one immediately sees
from fig. 5.34 that diffractive scattering probes all moments of the cross section (color)
fluctuations of the virtual photon, 〈σn〉 ≡

∫
dσP (σ)σn, up to the order n = 2A. One

should note that coherent diffraction probes these fluctuations differently from inclusive
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scattering. For instance, while the shadowing correction to the deuteron’s usual parton
distributions is proportional to 〈σ2〉 (i.e., it is unambiguously expressed in terms of the
corresponding diffractive PDFs, see eq. 5.32 in section 5.2.1), the shadowing correction
to the deuteron’s diffractive PDFs is proportional to 〈σ3〉 (interference of graphs a and
b in fig. 5.34). (Note that the square of graph b in fig. 5.34 proportional to 〈σ4〉 also
contributes, but its contribution is numerically very small.) As the cross section fluctuations
of the virtual photon (〈σn〉 moments) are rather weakly constrained by the present data,
predictions of the leading twist theory of nuclear shadowing contain unavoidable theoretical
uncertainty associated with modeling of 〈σn〉 with n ≥ 3. Precise measurements of the t
dependence of nuclear shadowing in eD diffraction at an EIC will dramatically reduce this
uncertainty by determining exactly these moments.
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Figure 5.35. The leading twist theory of nuclear shadowing
predictions for the ratio of nuclear to nucleon gluon and ū-

quark diffractive PDFs, f
D(3)
j/A /(Af

D(3)
j/N ), as a function of β at

xIP = 10−3 and Q2
0 = 4 GeV2. The two sets of curves (labeled

FGS10 H and FGS10 L) correspond to the two extreme scenarios
of nuclear shadowing.

Equation (5.67) determines
nuclear diffractive PDFs at
a certain initial scale Q2

0

(Q2
0 = 4 GeV2 in our

case). As a consequence of
QCD factorization [808], the
subsequent Q2 evolution is
given by the DGLAP evolu-
tion equations (at fixed xIP
and t). As another conse-
quence of the QCD factoriza-
tion, the same nuclear diffrac-

tive PDFs f
D(3)
j/A enter the per-

turbative QCD description of
many processes and observ-
ables: the diffractive struc-
ture function F

D(3)
2A , the lon-

gitudinal diffractive structure

function F
D(3)
LA , the charm

structure functions F
D(3)(c)
2A

and F
D(3)(c)
LA , and diffractive

electroproduction of jets and
heavy flavors.

As an example of our predictions for nuclear diffractive PDFs, in fig. 5.35 we present

the ratio of the nuclear (40Ca and 208Pb) to nucleon diffractive PDFs, f
D(3)
j/A /(Af

D(3)
j/N ), as a

function of β at fixed xIP = 10−3 and Q2
0 = 4 GeV2. The left column of panels corresponds

to the ū-quark distribution; the right column corresponds to the gluon distribution. The
two sets of curves (labeled FGS10 H and FGS10 L) correspond to the two scenarios for
the effective cross section σjsoft, which also determines shadowing effects as discussed in
Section 5.2.1. As one can see from the comparison of fig. 5.35 to our predictions for the
usual nuclear PDFs presented in fig. 5.19, nuclear diffractive PDFs are much more sensitive
to the effect of the color fluctuations (the spread between the solid and dotted curves is

much larger for f
D(3)
j/A /(Af

D(3)
j/N ) than for fj/A(x,Q

2
0)/[Afj/N (x,Q

2
0)]).

The simplest observable to measure at an EIC is the diffractive structure function F
D(3)
2A .

Our predictions for F
D(3)
2A /(AF

D(3)
2N ) for Q2 ∼ few GeV2 are similar in shape and close in
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A/model F
D(3)
2A,incoh/F

D(3)
2A , xIP = 10−3 F

D(3)
2A,incoh/F

D(3)
2A , xIP = 10−2

40Ca, FGS10 H 0.35 0.33
40Ca, FGS10 L 0.43 0.38
208Pb, FGS10 H 0.12 0.11
208Pb, FGS10 L 0.20 0.16

Table 5.3. The leading twist theory of nuclear shadowing predictions for the ratio of the nuclear

structure functions measured in incoherent and coherent diffraction in eA DIS, F
D(3)
2A,incoh/F

D(3)
2A , at

xIP = 10−3 and 10−2 and Q2
0 = 4 GeV2. The ratio is approximately β-independent.

the absolute value for 40Ca and model FGS10 H to the corresponding predictions made
in the framework of the color dipole model, where the main contribution originates from
the aligned-jet configurations [825]. (Note that at the level of the interaction with two
nucleons, the expressions for the shadowing correction in our leading twist approach and
in the dipole formalism are essentially the same and are unambiguously expressed in terms
of γ∗-nucleon diffraction.) Hence, it appears that the xIP and β dependence of coherent
inclusive diffraction in eA DIS at Q2 ∼ Q2

0 may not give unambiguous information on
the onset of the non-linear regime of parton dynamics; to distinguish between the non-
saturation and saturation regimes one will need to study the Q2 dependence of various
diffractive observables.

In addition to inclusive coherent diffraction that we have discussed above, the leading
twist theory of nuclear shadowing makes predictions for incoherent diffraction (with nuclear
break-up into its constituents) in eA DIS, see [807] for details. An example of our predic-
tions for the ratio of the nuclear structure functions measured in incoherent and coherent
diffraction in eA DIS at xIP = 10−3 and xIP = 10−2 and Q2

0 = 4 GeV2 is presented in
table 5.3. To a good accuracy, the ratio is approximately β-independent.

5.2.4 kT -dependent gluons: SIDIS and Jets

Dijet and Dihadron production at EIC

Fabio Dominguez, Cyrille Marquet, Bowen Xiao and Feng Yuan

Dijet production at an EIC: The operator definition of the Weizsäcker-Williams (WW)
gluon distribution can be written as follows [267, 283]:

xG(1)(x, k⊥) = 2

∫
dξ−dξ⊥
(2π)3P+

eixP
+ξ−−ik⊥·ξ⊥ 〈P |Tr

[
F+i(ξ−, ξ⊥)U [+]†F+i(0)U [+]

]
|P 〉 ,
(5.68)

where the gauge link U [+]
ξ = Un [0,+∞; 0]Un [+∞, ξ−; ξ⊥] represents final state interactions

with Un being the light-like Wilson line in covariant gauge. By choosing the light-cone gauge
with certain boundary conditions for the gauge potential (A⊥(ζ− = ∞) = 0 for the specific
case above), we can drop out the gauge link contribution in equation (5.68) and find that
this gluon distribution has the number density interpretation. Then, it can be calculated
from the wave functions or the WW field of the nucleus target [729, 731, 877]. At small-x
for a large nucleus, it was found

xG(1)(x, k⊥) =
S⊥
π2αs

N2
c − 1

Nc

∫
d2r⊥
(2π)2

e−ik⊥·r⊥

r2⊥

(
1− e−

r2
⊥

Q2
s

4

)
, (5.69)
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where Nc = 3 is the number of colors, S⊥ is the transverse area of the target nucleus,

and Q2
s = g2Nc

4π ln 1
r2⊥λ

2

∫
dx−µ2(x−) is the gluon saturation scale with µ2 the color charge

density in a large nuclei.
The second gluon distribution, the Fourier transform of the dipole cross section, is

defined in the fundamental representation

xG(2)(x, k⊥) = 2

∫
dξ−dξ⊥
(2π)3P+

eixP
+ξ−−ik⊥·ξ⊥ 〈P |Tr

[
F+i(ξ−, ξ⊥)U [−]†F+i(0)U [+]

]
|P 〉 ,
(5.70)

where the gauge link U [−]
ξ = Un [0,−∞; 0]Un [−∞, ξ−; ξ⊥] stands for initial state interac-

tions. It has been shown in ref. [283] that the Weizsäcker-Williams gluon distribution can
be directly probed in the dijet production processes in DIS while the second gluon distri-
bution enters in the total and semi-inclusive DIS cross sections. The quark-antiquark dijet
cross section in DIS can be calculated in both the CGC formalism and the TMD approach.
In the CGC formalism, the photon splits into a quark-antiquark pair which subsequently
undergoes multiple interactions with the nucleus (see figure 5.36 left).

After averaging over the photon’s polarization and summing over the quark and anti-
quark colors and helicities in the splitting functions ψT,L λαβ (p+, z, r), we obtain,

dσγ
∗
T,LA→qq̄X

d3k1d3k2
= Ncαeme

2
qδ(p

+ − k+1 − k+2 )

∫
d2x1
(2π)2

d2x′1
(2π)2

d2x2
(2π)2

d2x′2
(2π)2

×e−ik1⊥·(x1−x′1)e−ik2⊥·(x2−x′2)
∑

λαβ

ψT,Lλαβ (x1 − x2)ψ
T,Lλ∗
αβ (x′1 − x′2)

×
[
1 + S(4)

xg (x1, x2;x
′
2, x
′
1)− S(2)

xg (x1, x2)− S(2)
xg (x

′
2, x
′
1)
]
, (5.71)

where k1 and k2 are momenta for the final state quark and antiquark, respectively. We
further define ~P⊥ = ~k1⊥ − ~k2⊥ and ~q⊥ = ~k1⊥ + ~k2⊥. All transverse momenta are defined
in the center of mass frame of the virtual photon and the nucleus target. The two- and
four-point functions are defined as

S(2)
xg

(x1, x2) =
1

Nc

〈
Tr U(x1)U

†(x2)
〉
xg
, S(4)

xg
(x1, x2;x

′
2, x

′
1) =

1

Nc

〈
Tr U(x1)U

†(x′1)U(x′2)U
†(x2)

〉
xg
.

(5.72)

The notation 〈. . . 〉xg is used for the CGC average of the color charges over the nuclear
wave function where xg is the smallest fraction of longitudinal momentum probed, and is
determined by the kinematics.

In order to simplify the above result and obtain a factorized expression, we take the
correlation limit of equation (5.71). For convenience, we introduce the transverse coordinate
variables: u = x1 − x2 and v = zx1 + (1 − z)x2, and similarly for the primed coordinates.
The respective conjugate momenta are P̃⊥ = (1− z)k1⊥− zk2⊥ ≈ P⊥ and q⊥, and therefore
the correlation limit (P̃⊥ ≫ q⊥)can be taken by assuming u and u′ are small and then
expanding the integrand with respect to these two variables before performing the Fourier
transform. Therefore, we can obtain the following expression which agrees perfectly with
the TMD approach:

dσ
γ∗T,LA→qq̄+X
TMD

dP.S. = δ(xγ∗ − 1)xgG
(1)(xg, q⊥)Hγ∗T,Lg→qq̄, (5.73)

where xg is the momentum fraction carried by the gluon and is determined by the kinemat-
ics, xγ∗ = zq + zq̄ with zq = z and zq̄ = 1− z being the momentum fractions of the virtual
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Figure 5.36. Left: Typical diagrams contributing to the cross section in the DIS at small-x limit.
Right: EIC dihadron correlation function

photon carried by the quark and antiquark, respectively. The phase space factor is defined
as dP.S. = dy1dy2d

2P⊥d2q⊥, and y1 and y2 are rapidities of the two outgoing particles in
the lab frame. The leading order hard partonic cross section reads

Hγ∗T g→qq̄ = αsαeme
2
q

ŝ2 +Q4

(ŝ+Q2)4

(
û

t̂
+
t̂

û

)
, Hγ∗Lg→qq̄ = αsαeme

2
q

8ŝQ2

(ŝ+Q2)4
, (5.74)

with the usually defined partonic Mandelstam variables ŝ = P 2
⊥/(z(1 − z)), t̂ = −(P 2

⊥ +
ǫ2f )/(1 − z), and û = −(P 2

⊥ + ǫ2f )/z with ǫ2f = z(1− z)Q2.

di-hadron correlations in DIS: By including the kt dependent fragmentation functions
as proposed in ref. [332], one can compute the di-hadron production cross section and the
correlation function C(φ12) which is defined as follows

C(φ12) =
1

dσ
γ∗A→h1X
tot SIDIS
dzh1

dσγ
∗A→h1h2+X

tot

dzh1dzh2dφ12
, (5.75)

where zh1 and zh2 are the longitudinal momentum fractions of two produced hadrons w.r.t.
the photon momentum. p1⊥ and p2⊥ are the transverse momenta of these two back-to-
back hadrons and φ12 is the azimuthal angle between them. Thus, it is straightforward to
numerically evaluate the correlation function and plot it in figure 5.36 right, where we fix
zh1 = zh2 = 0.3, Q2 = 4.0GeV2,

√
s = 100GeV. p1⊥ and p2⊥ are integrated in the range

[2, 3]GeV and [1, 2]GeV, respectively. For the gluon distribution in gold nuclei, we have
used a parametrization inspired by GBW model. From figure 5.36, one sees the suppression
of the away-side peak in nuclei due to gluon saturation.

Conclusion: First of all, we would like to compare the dijet production process in DIS to
the inclusive and semi-inclusive DIS. As shown above, we derive that the dijet production
cross section in DIS is proportional to the WW gluon distribution in the correlation limit.
On the other hand, it is well-known that inclusive and semi-inclusive DIS involves the
dipole cross section instead [878], which can be related to the second gluon distribution.
This might look confusing at first sight, so let us take a closer look at equation (5.71).
If one integrates over one of the outgoing momenta, say k1, one can easily see that the
corresponding coordinates in the amplitude and conjugate amplitude are identified (x1 = x′1)
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and, therefore, the four-point function S
(4)
xg (x1, x2;x

′
2, x
′
1) collapses to a two-point function

S
(2)
xg (x2, x

′
2). As a result, the SIDIS and inclusive DIS cross section only depend on two-point

functions, thus they only involve the dipole gluon distribution.
Now we can see the unique feature of the dijet production process in DIS. By keeping the

momenta of the quark and antiquark unintegrated, we can keep the full color structure of the
four-point function which eventually leads to the WW gluon distribution in the correlation
limit. Therefore, measuring the dijet production cross sections or dihadron correlations
in DIS at future experimental facilities like EIC would give us a first direct and unique
opportunity to probe and understand the Weizsäcker-Williams gluon distribution. Last but
not least, by measuring the SIDIS and inclusive DIS cross section at EIC, one can also
probe and constrain the dipole gluon distribution.

Acknowledgments: We thank A. Accardi, M. Diehl, L. McLerran, A. Mueller, J.-W. Qiu,
A. Stasto and R. Venugopalan for stimulating discussion.

Heavy quark production in e+A collisions

Victor P. Gonçalves

In this contribution we calculate the cross section of heavy quark production using the
dipole approach and a nuclear saturation model based on the physics of the Color Glass
Condensate (CGC) (For more details and references see Ref. [879]). The main input of our
calculation is the dipole-nucleus cross section, σdA(x, r), which is determined by the QCD
dynamics at small x. In the eikonal approximation it is given by twice the impact-parameter
b integral of NA(x, r, b), the forward dipole-target scattering amplitude for a dipole with
size r which encodes all the information about the hadronic scattering, and thus about the
nonlinear and quantum effects in the hadron wave function. In our calculations we will
assume as before that the forward dipole-nucleus amplitude is given by

NA(x, r, b) = 1− exp

[
−1

2
σdp(x, r

2)TA(b)

]
, (5.76)

where σdp is the dipole-proton cross section and TA(b) is the nuclear profile function, which
is obtained from a 3-parameter Fermi distribution for the nuclear density normalized to
A. It is important to emphasize that this model describes the current experimental data
on the nuclear structure function as well as includes the impact parameter dependence in
the dipole nucleus cross section. For the dipole-proton cross section we will use the b-CGC
model.

To estimate the magnitude of the saturation effects in heavy quark production, let us
compare the CGC predictions with those associated to linear QCD dynamics. As a model
for the linear regime we consider the leading logarithmic approximation for the dipole-target
cross section, where σdA is directly related to the nuclear gluon distribution xgA as follows

σdA(x, r
2) =

π2

3
r2αsxgA(x, 10/r

2) . (5.77)

The use of this cross section in the formulae given below will produce results which we de-
note CT, from color transparency. In this limit we are disregarding multiple scatterings of
the dipole with the nuclei and are assuming that the dipole interacts incoherently with the
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Figure 5.37. Transverse momentum charm spectrum (left) and bottom spectrum (right) for Q2 = 2
GeV2 and different energies.

target. In what follows we consider two different models for the nuclear gluon distribution.
In the first one we disregard the nuclear effects and assume that xgA(x,Q

2) = A.xgN (x,Q
2),

with xgN being the gluon distribution in the proton and given by the GRV98 parameter-
ization. We will refer to this model as CT. In the second model we take into account the
nuclear effects in the nuclear gluon distribution as described by the EKS98 parameteriza-
tion. We will call this model CT + Shad. In our calculations the charm quark mass is
mc = 1.5 GeV and the bottom quark mass is mb = 4.5 GeV.

Heavy quark production in the color dipole approach: Heavy quark production
is usually estimated using the collinear factorization approach, where all partons involved
are assumed to be on mass shell, carrying only longitudinal momenta, and their transverse
momenta are neglected in the QCD matrix elements. On the other hand, in the large
energy (small-x) limit, we have that the characteristic scale µ of the hard subprocess of
parton scattering is much less than

√
s, but greater than the ΛQCD parameter. In this

limit, the effects of the finite transverse momenta of the incoming partons become impor-
tant, and the factorization must be generalized, implying that the cross sections are now
k⊥-factorized into an off-shell partonic cross section and a k⊥-unintegrated parton density
function F(x, k⊥), characterizing the k⊥-factorization approach. Recently, an alternative
approach to calculating the heavy quark production at high energies was proposed, con-
sidering the quasi-multi-Regge-kinematics (QMRK) framework. It is based on an effective
theory implemented with the non-Abelian gauge-invariant action. The heavy quark produc-
tion can also be calculated using the color dipole approach. This formalism can be obtained
from the k⊥-factorization approach after the Fourier transformation from the space of quark
transverse momenta into the space of transverse coordinates. It is important to emphasize
that this equivalence is only valid in the leading logarithmic approximation, being violated
if the exact gluon kinematics is considered. A detailed discussion of the equivalence or
not between the dipole and the QMRK approaches still is an open question. The main
advantage to use the color dipole formalism, is that it gives a simple unified picture of
inclusive and diffractive processes and the saturation effects can be easily implemented in
this approach.

In the color dipole approach, the heavy quark production cross section is given by

dσ(γ∗A→ QX)

d2p⊥Q
=

6e2Qαem

(2π)2

∫
dα

{[
m2
Q + 4Q2α2(1− α)2

] [
I0

p⊥2Q + ǫ2
− I2

4ǫ

]
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Figure 5.38. Dependence on the photon virtuality at p2T = 4 GeV2.

+

[
α2 + (1− α)2

] [
p⊥QǫI1
p⊥2Q + ǫ2

− I0
2

+
ǫI2
4

]}
(5.78)

with

Iλ =

∫
dr r Jλ(p

⊥
Qr)Kλ(ǫr)σdA(r) ; I2 =

∫
dr r2 J0(p

⊥
Qr)K1(ǫr)σdA(r)

with λ = 0, 1, and J0,1 and K0,1 are Bessel functions, and ǫ2 = α(1 − α)Q2 +m2.

Results: In Fig. 5.37 we show the transverse momentum spectrum of charm quarks. The
main purpose of this figure is to show that the predictions of the linear physics (CT +
Shad) differ from the total (i.e. bCGC) by a factor which increases with the energy W and
goes from 1.5 (W = 100 GeV) to 4 (W = 1400 GeV). Moreover, this difference persists for
a wide momentum window. At very large pT we enter the deep linear regime and expect
that the two curves coincide.

In Fig. 5.37 we show the transverse momentum spectrum of bottom quarks. As ex-
pected, we observe the same features of the charm distribution, except that now the non-
linear effects are weaker. Nevertheless they are still noticeable. In Fig. 5.38 we show the Q2

dependence of the pT distribution at a fixed value pT = 4 GeV2 for different energies. The
upper and lower panels show the charm and bottom distributions respectively. Here again,
we observe a remarkable strength and persistence up to large virtualities of the differences
between CT + Shad and bCGC.

Acknowledgments: The author thanks M. S. Kugeratski and F.S. Navarra for collaboration.

5.2.5 b-dependent gluons: Exclusive VM, DVCS

Gluon Density in e+A : KLN, CGC, DGLAP Glauber, or Neither?

William A. Horowitz

Perturbative quantum chromodynamics (pQCD) predicts a nontrivial expansion in the
size of the nuclear wavefunction at small x as the perturbative power law tails of the gluon
distribution near the edge of the nucleus become important compared to the exponential
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dropoff due to confinement effects [871, 742, 766]. Similarly, in order to not violate unitarity,
the enormous growth in the gluon parton distribution function as x becomes small found
via näıve application of DGLAP evolution (see [3] and references therein) must be tamed
by perturbatively-calculable saturation effects [742, 766]. However it is not yet clear from a
theoretical standpoint at what values of x these nontrivial changes in the dominant dynam-
ics occur [766]. Additionally a quantitative theoretical understanding of experimental heavy
ion data requires a quantitative understanding of the initial geometry of a heavy ion colli-
sion. Certainly observables such as the azimuthal anisotropy of particles [880, 881, 882] are
correlated with the anisotropy of the initial geometry; surprisingly the event-by-event fluctu-
ations in the initial geometry also strongly affect these observables [883, 884]. In particular
the viscosity to entropy ratio (η/s) of the quark-gluon plasma (QGP) found by comparing
hydrodynamics simulations to heavy ion collision data is directly related to the eccentricity
of the initial thermal quark-gluon plasma distribution that is evolved hydrodynamically.
Currently the uncertainty in the initial thermal distribution due to the uncertainty in the
importance of saturation effects in the initial nuclear profiles is large enough that it is not
clear whether the physics of the QGP is better described by leading order weakly-coupled
perturbative quantum chromodynamics (LO pQCD) or by LO strongly-coupled anti-de-
Sitter/conformal field theory (AdS/CFT) methods [881]. An experimental measurement of
the spatial gluon distribution in a highly boosted nucleus, and hence the relevant physics
in this kinematic range, would thus be a very interesting and important contribution to our
understanding of QCD.

Exclusive vector meson production (EVMP) in e + A collisions has been proposed as
a channel for just such a measurement [618, 885, 827]. In this section we will focus on the
production of heavy vector mesons, in particular J/Ψ mesons. To leading order, EVMP of
a J/Ψ meson occurs in an e + A collision when a photon emitted by the electron splits into
a c-c̄ pair which communicates with the gluon density in the highly boosted nucleus via
a two gluon exchange and subsequently forms a J/Ψ meson and nothing else (we will be
interested here in coherent EVMP, in which case the nucleus remains intact); see figure 5.39
for a visualization of the process. It is precisely this two gluon exchange which yields a
diffractive measurement of the gluon density in a nucleus.

Previous work [885] explored how modest changes in the Woods-Saxon distribution
[886] of a nucleus might manifest themselves as changes in the diffractive peaks in EVMP
if one assumes that the spatial distribution of gluons in a nucleus is proportional to the
Glauber thickness function found from the Woods-Saxon distribution. That these modest
changes do result in a visually obvious modification of the diffraction pattern motivated our
further study, in which we consider whether two very different physical pictures of the gluon
distribution in a highly boosted nucleus can be experimentally distinguished via EVMP:
in particular we wish to compare the diffraction patterns that emerge when the gluon
distribution 1) has normalization dictated by DGLAP evolution and spatial distribution
given by the Glauber thickness function and 2) is given by the KLN parameterization (see
[887, 888] and references therein) of the Color Glass Condensate (CGC) (see, e.g., [766, 889]
for a review). We choose to investigate these two ansätze of the gluon distribution in nuclei
as they have been the dominant models used in heavy ion physics calculations to estimate
the uncertainty in the viscosity to entropy ratio of the QGP produced at RHIC due to
the uncertainty of the currently poorly constrained initial conditions in heavy ion collisions
[880, 881].

It is worth taking a moment to comment on some common—yet confusing—terminology
in the EVMP field. As mentioned above, to leading order the coherent production of a vec-
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tor meson in an e + A collision involves a two-gluon exchange between the q-q̄ pair and the
nucleus. If one assumes that all two-gluon exchanges occur independently, then one may
exponentiate the single two-gluon exchange result. Making this independence assumption is
often referred to in the EVMP field as using “saturation” physics because the cross section
is unitarized via the exponentiation process. However this “saturation” does not refer to
unitarizing the gluon distribution functions themselves. For instance in the “IP-Sat” [600]
and “b-Sat” [823] models, where “Sat” is short for saturation, the x evolution of the gluon
PDF is effected through the use of the DGLAP equations. On the other hand, the “b-CGC”
model [823] incorporates both the exponentiation of the two-gluon exchange and the CGC
physics of the saturation of the gluon PDF. We note that, in principle, small-x evolution
effects and exponentiation effects in the dipole cross section should become appreciable
simultaneously [737]. In order to (hopefully) make the presentation more clear, and to sim-
plify some of the numerics, we will not exponentiate the two-gluon exchange; we will present
results using only the leading order two-gluon exchange in which the gluon PDF is given
either via DGLAP evolution or from the CGC. Any subsequent reference to “saturation”
in this paper will refer to the saturation of the gluon distribution function alone.

Formalism: Following [600, 885], the diffractive production of a vector meson from a
photon scattering off a target is

dσ

dt
=

1

16π

∣∣∣∣
∫
d2r

∫
dz

4π

∫
d2b 〈V |γ〉T eib·∆

dσqq̄
d2b

∣∣∣∣
2

, (5.79)

where 〈V |γ〉T is the overlap of the vector meson wavefunction and the transversely polarized
virtual photon wavefunction—the contribution from the longitudinally polarized photon is
zero as we are interested in Q2 = 0 photoproduction—and we used the photon-meson over-
lap and Gauss-LC model for the J/Ψ wavefunction from [600]5, and ∆2 = −t. dσqq̄/d2b is
the differential cross section for the interaction of the dipole with the target; its form de-
pends on the physics assumptions we make for the nuclear gluon distribution, as we discuss
in detail below.

Figure 5.39. Leading order Feynman diagram for the exclusive vector meson production of a J/Ψ
meson.

5Note that the normalization of the J/Ψ wavefunction in [600] is erroneously reported as a factor of
100 smaller than the correct value; one can readily see this by comparing with the normalization condition
defined in [600] and with the results reported in [823]. It is surprising that this error was not noted in [823],
in which the results found in [823] are explicitly compared to those in [600].
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DGLAP Evolution in x, Glauber Distribution of Gluons in b: If we assume that
the two gluon exchange from the dipole to the nucleus occurs within an individual nucleon
then

dσqq̄
d2b

=
π2

Nc
r2 αs(µ

2)xg(x, µ2)T (b), (5.80)

where r is the size of the dipole, µ =
√
(µ0+C/r2) is the relevant momentum scale for the

dipole, xg is the gluon distribution function, and

T (b) =
1

2πBG
e−b

2/2BG (5.81)

is the assumed spatial distribution of gluons in a nucleon. We use the MSTW parameter-
ization of the gluon PDF [22]. As described in [821], µ0 and C are free parameters; as in
[821, 600, 827], we take µ0 = 1 GeV2 and C = 4. From HERA data [588] the measured
slope of dσ/dt yields BG ≈ 4.25 GeV−2 [600]. Then

dσDGLAP

dt
= 4π σ2p e

−BGt

∣∣∣∣
∫
db J0(b

√
t)TA(b)

∣∣∣∣
2

, (5.82)

where J0 is the usual Bessel function, TA(b) ≡
∫
dz ρA

(√
b2 + z2

)
, with

∫
d2bTA(b) = A,

is the usual thickness function, and ρA is the density of the nucleus (here taken as the
Woods-Saxon distribution of 197Au with the usual R = 6.38 fm and a = 0.535 fm [890])
and

σp ≡
1

4π

∫
d2r

∫
dz 〈V |γ〉T

π2

Nc
r2 αs(µ

2)xg(x, µ2). (5.83)

CGC Distribution of Gluons in x and b: Alternatively we may view the nucleus as a
whole and that the gluon distribution is found from the CGC. In this case

dσqq̄
d2b

=
π2

NC
r2 αs(µ

2)xgA(µ
2, Q2

s), (5.84)

where xgA is the integrated gluon distribution function related to the unintegrated gluon
distribution (UGD) φA by

xgA(µ
2, Q2

s) =

∫
d2kφA(k

2, Q2
s) = π

∫ k2max =µ2

0
dk2 φA(k

2, Q2
s) (5.85)

The x and b dependence of the two-gluon exchange dipole scattering formula, Eq. 5.84,
comes in implicitly through the x and b dependence of Q2

s [888],

Q2
s ≡

2π2

CF
αs(Q

2
s)xg(x, Q

2
s)TA(b), (5.86)

where CF ≡ (N2
c − 1)/2Nc.

In principle one determines the UGD via the JIMWLK evolution equations or, in the
large-Nc limit, the BK evolution equations (see [766, 889] and references therein). However,
instead of solving the full evolution equations many heavy ion physics calculations use in-
stead the KLN prescription of the CGC (see, e.g., [887, 888]), which attempts to capture the
main feature of CGC physics; in particular, the KLN UGD becomes saturated at momenta
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on the scale of the saturation scale Qs. Because of its widespread use in heavy ion physics
calculations and in order to simplify our own calculations we, too, will use the KLN UGD,

φKLNA (k, Q2
s) =

κCF Q
2
s

2π3 αs(Q2
s)

{ (
Q2
s + Λ2

)−1
, k2 ≤ Q2

s(
k2 + Λ2

)−1
, k2 > Q2

s,
(5.87)

where κ is an O(1) parameter meant to represent higher order corrections to the UGD, and
Λ = 0.2 GeV [888].

In principle κ is set by comparing to known experimental observables such as the mea-
sured multiplicity at midrapidity at RHIC [891, 892, 893] or LHC [894, 895] or to the
diffractive cross sections for protons measured at HERA [588]. However we found that
the results from the leading order multiplicity formula [887] are linearly dependent on the
cutoff taken for αs, α

max
s . The KLN UGD itself, though, is not nearly as sensitive to αmaxs ,

so the multiplicity prescription does not provide a robust way of setting κ. We note in
passing that the centrality dependence of the particles produced via the leading order CGC
multiplicity formula using the KLN UGD’s also depends on αmaxs . Perhaps the use of the
next-to-leading order results in the UGD [896] and/or the production formula [897] will
mitigate this dependence enough to make reasonable comparisons of CGC multiplicity to
current data. Currently, though, there does not appear to be any quantitative estimate
of the size of the dependence of the predicted CGC multiplicity as a function of centrality
on αmaxs . κ also cannot be set by comparing to the proton diffractive cross section as the
currently available data does not probe regions of x small enough such that Q2

s is a per-
turbative scale (at least when using the LO MSTW PDFs). In our calculations we will set
κ = 1.

It is important to contrast the interaction of the dipole in the KLN CGC approach taken
here, in which the q-q̄ pair interacts with the entire nucleus, and the Glauber approach, in
which the pair interacts with individual nucleons. By interacting with individual nucleons
the diffractive cross section for the DGLAP Glauber model picks up an extra exponential
suppression in t proportional to the square of the width of the nucleon, BG.

Results: The saturation physics of the CGC has resulted in a wider and flatter gluon
distribution than that from the Glauber treatment; the DGLAP growth of the small-x
gluon distribution—tamed by the saturation physics of the KLN CGC—leads to a significant
enhancement in the cross section at x = 10−5 compared to that found using the KLN CGC
gluon distribution. It is worth noting that the KLN prescription for the CGC satisfies the
black disk limit.

We attempt to quantify the changes in both the nuclear gluonic width and density
as a function of x and note that even out to extremely small values of x ∼ 10−13, b1/2
from the KLN CGC continues to rise sublinearly with log(s); thus the implementation of
the KLN CGC used here, with the MSTW gluon PDF, satisfies the Froissart bound [871].
Intriguingly this sublinear (as opposed to linear) growth in radius as a function of log s is
a surprise compared to other CGC parameterizations [872]. Note the enormous growth of
the dipole cross section as x decreases for the LO DGLAP-evolved gluonic density. This
unitarity-violating enhancement is clearly reduced tremendously with the saturation physics
of the KLN CGC.

The drastically faster increase in the gluon density from the DGLAP evolved PDF results
in a cross section that increases much faster as a function of x than for the KLN CGC case.
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As was shown in [827]6 the incoherent cross section, in which the nucleus breaks up, begins
to dominate the total diffractive cross section by t ∼ 0.02 GeV−2. It is likely that the t
dependence of the incoherent EVMP of the two models will be different, although we do not
provide a quantitative estimate here: the decrease in cross section as a function of t for the
DGLAP Glauber model will be enhanced by exp(−BG t) due to the assumption that the
heavy quark dipole interacts with individual nucleons. And in the case of coherent scattering
one can discern a stronger t dependence in the DGLAP Glauber results due precisely to the
extra exp(−BG t) factor that results from treating the nucleus as a collection of individual
nucleons. More importantly, the much larger gluon density yields a particularly noticeable
difference at t = 0, where possible nuclear breakup effects are negligible.Even with the very
large PDF uncertainties as x decreases, there is a clear increase in the coherent diffractive
cross section for the DGLAP Glauber dipole compared to the KLN CGC dipole.
Conclusions and Discussion: An enormous wealth of information on the gluonic struc-
ture of highly relativistic nuclei can be found using exclusive vector meson production. In
particular we investigated the experimental signatures of the coherent scattering of a cc̄
dipole onto a nucleus that results in an intact nucleus and a J/Ψ meson in e + A collisions
at eRHIC energies. We found that the diffractive cross section will readily experimentally
differentiate between the two common initial highly boosted nucleus prescriptions used in
heavy ion physics phenomenology: 1) the gluon density is found using DGLAP evolution
and its spatial distribution is assumed to be proportional to the at-rest Glauber nuclear
thickness function and 2) the gluon density and distribution is given by the KLN parame-
terization of the CGC. In particular there is the exciting possibility of literally watching a
nucleus grow with center of mass energy as the positions in t of the minima and maxima
in the diffractive cross section for the saturation physics calculation depend quite strongly
on log(x). On the other hand the DGLAP Glauber model yields a nucleus of constant size
as a function of x; the positions in t of the diffractive minima and maxima do not change
as a function of x. At the same time one is determining the width of a nucleus in e + A
collisions, one will also measure the x dependence of the normalization of dσ/dt. Due to
the explosion of small-x gluons the DGLAP Glauber approach yields a normalization that
rapidly increases as a function of x; additionally the t dependence of the DGLAP Glauber
dσ/dt is also quite strong as it is proportional to exp(−BG t) due to the assumption that the
q-q̄ dipole interacts with individual nucleons. Conversely the KLN CGC dipole description
does not have a strong x dependence in its normalization due to its inclusion of saturation
effects; similarly, the interaction of the dipole with the whole nuclear gluonic wavefunction
yields a weaker t dependence than is displayed by the DGLAP Glauber results.

It is clear that, at the very least, the striking difference between the x dependence of the
peaks and minima from the DGLAP Glauber model and the KLN CGC model are robust:
these differences will persist should we use even more sophisticated models of these two
physical pictures; the x dependence of the peaks and minima will persist should we attempt
to approximate multiple scattering within the nucleus by exponentiating the dipole cross
section, should we use a less approximate CGC calculation such as is found in [896], or should
we examine the results from other vector mesons such as the φ or ρ. We regrettably leave the
quantification of the diffractive cross section for these more sophisticated physical models
and additional vector mesons for future work. Exponentiating the two-gluon exchange
cross section will reduce the enormous growth in the diffractive cross section in the DGLAP

6fig. 8 in [885] also shows that the incoherent process quickly dominates the coherent one as a function
of t, although we note that there was an error in the calculation of the figure and that the curves plotted do
not correspond to the equations in the text of the paper.
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Glauber picture compared to the CGC case; we suspect this reduction will not be too large,
although we also leave the quantification of this reduction to future work.
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Coherent vs incoherent diffraction

Tuomas Lappi and Cyrille Marquet

The purpose of this section is to investigate incoherent diffraction in a simpler context
than with inclusive diffraction γ∗A→ XY , mainly using diffractive vector meson production
γ∗A→ V Y , where the diffractive final state X consists of a vector meson and nothing else,
A stands for the target nucleus and Y for the final state it may dissociate into. At high
energies, the qq̄ dipole that the virtual photon has fluctuated into, scatters off the gluonic
field of the nucleus before recombining into the vector meson. While this scattering involves
a color-singlet exchange, leaving a rapidity gap in the final state, the nucleus can still interact
elastically (Y = A, this is called coherent diffraction) or inelastically (i.e. break up, called
incoherent diffraction). In this process, the momentum transfer t can be determined from
the meson regardless of the fate of the target, and elastic and inelastic interactions of the
target can be experimentally distinguished.

Kinematically, a low invariant mass of the system Y corresponds to a large rapidity
gap in the final state between that system and the vector meson, and implies that the
longitudinal momentum of the meson is close to that of the incoming photon. In this case,
the eikonal approximation can be assumed to compute the dipole-nucleus scattering. At
small values of x = (Q2 + M2

V )/(Q
2 + W 2) where Q2 is the photon virtuality, MV the

vector meson mass, and W the energy of the γ∗ − A collision, a target proton can also be
considered. Indeed in that case, since partons with an energy fraction as small as x are
probed in the target wave function, the dipole will scatter off large gluon densities generated
by the QCD evolution.

In e+p collisions, the cross-section is maximal at minimum momentum transfer with
exclusive production (or coherent diffraction) dominating. As the transfer of momentum
gets larger, the role of incoherent diffraction increases and eventually it becomes dominant,
typically for momenta larger that the inverse target size; the elastic contribution decreases
exponentially while the inelastic contribution decreases only as a power law. It is known
that saturation models describe well the exclusive cross section [600, 898, 823, 899], while
the BFKL Pomeron exchange approach works well for the target-dissociation cross-section
[900, 901]. In the section on proton breakup, we show that, within the Color Glass Con-
densate (CGC) picture of the small−x part of the hadronic wave function, both coherent
and incoherent diffraction can be described in the same framework. We also explicitly cal-
culate both contributions to the diffractive vector meson production cross-section using the
McLerran-Venugopalan (MV) model for the CGC wave function, and discuss phenomeno-
logical consequences in the context of a future electron-ion collider [902].

Diffractive dissociation is an aspect of diffraction that changes qualitatively with nuclear
targets. Indeed, the structure of incoherent diffraction eA→eXY is more complex than with
a proton target, and also can teach us a lot more. In the case of a target nucleus, we expect
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the following qualitative changes in the t dependence. First, the low-|t| regime in which
the nucleus scatters elastically will be dominant up to a smaller value of |t| (to about
|t| = 0.05 GeV2) compared to the proton case, reflecting the bigger size of the nucleus.
Then, the nucleus-dissociative regime will be made of two parts: an intermediate regime in
momentum transfer up to about 0.7 GeV2 where the nucleus will predominantly break up
into its constituents nucleons, and a large−|t| regime where the nucleons inside the nucleus
will also break up, implying pion production in the Y system for instance. These are only
qualitative expectations, it is crucial to study this aspect of diffraction quantitatively in
order to complete our understanding of the structure of nuclei. The transition from the
coherent to the intermediate regime is studied in the nuclear breakup section, following
Ref. [827].
Proton breakup: In diffractive vector meson production, the relevant quantity is (the
photon is a right mover, the CGC a left mover, and the gauge is A+ = 0):

Txy[A−] = 1− 1

Nc
Tr
(
U †yUx

)
, with Ux[A−] = P exp

(
igS

∫
dz+T cA−c (z+,x)

)
. (5.88)

In terms of this object, the differential cross sections for a transversely (T) or longitudinally
(L) polarized photon are given by (with t = −q2⊥ the momentum transfer squared)

dσT,L
dt

=
1

4π

〈∣∣∣∣
∫
dzd2xd2yeiq⊥.(zx+(1−z)y)ΨT,L(z,x−y)Txy

∣∣∣∣
2
〉

x

, (5.89)

where 2ΨT = Ψ++
V |γ +Ψ−−V |γ and ΨL = Ψ00

V |γ with

Ψλ′λ
V |γ(z, r) =

∑

hh̄

[φhh̄λ′ (z, r)]
∗φhh̄λ (z, r) , (5.90)

the overlap between the photon and meson wave functions. λ and h denote polarizations
and helicities while z is the longitudinal momentum fraction of the photon carried by the
quark and x and y are the quark and antiquark positions in the transverse plane.

The target average 〈 . 〉x is done with the CGC wave function squared |Φx[A−]|2 :

〈f〉x =

∫
DA−|Φx[A−]|2f [A−] . (5.91)

If one had imposed elastic scattering on the target side to describe the exclusive process
γ∗A→ V A, the CGC average would be at the level of the amplitude, and the two-point
function 〈Txy〉x inside the | . |2 in (5.89), recovering the formula often used with dipole
models.

Instead, when also including the target-dissociative part, the diffractive cross section
involves the 4-point correlator 〈TxyTuv〉x. In order to compute it, we must specify more
about the CGC wave function. We shall use the McLerran-Venugopalan (MV) model [729,
903, 730], which is a Gaussian distribution for the color charges which generate the field A :

|Φx[A−]|2 = exp

(
−
∫
d2xd2ydz+

ρc(z
+,x)ρc(z

+,y)

2µ2(z+)

)
, (5.92)

where the color charge ρc and the field A−c obey the Yang-Mills equation −∇2A−c (z+,x) =
gSρc(z

+,x). The variance of the distribution is the transverse color charge density squared
along the projectile’s path µ2(z+), with

〈ρc(z+,x)ρd(z′+,y)〉 = δcdδ(z
+ − z′+)δ(2)(x− y)µ2(z+) . (5.93)
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The only parameter is the saturation momentum Qs, with Q2
s proportional to the in-

tegrated color density squared. Note that there is no x dependence in the MV model, it
should be considered as an initial condition to the small−x evolution.

The MV distribution is a Gaussian distribution, therefore one can compute any target
average by expanding the Wilson lines in powers of gSA−c (see (5.88)), and then use Wick’s
theorem [904, 905]. The results for the 4-point function 〈TxyTuv〉 are given in [906]. We
note that, in the large−Nc limit, one has 〈TxyTuv〉 = 〈Txy〉〈Tuv〉, which means that at
small−x, the target-dissociative part of the diffractive cross-section in suppressed at large
Nc, compared to the exclusive part.

The numerical results presented below are obtained with the x evolution of the satura-
tion scale modeled as in [83]: Qs(x) = (x0/x)

λ/2 GeV, with λ = 0.277 and x0 = 4.1 10−5 for
the case of a target proton. The collinear logarithm of Qs is neglected, which corresponds
to exact geometric scaling [752, 907, 873]: F (x, r) = F [r2Q2

s(x)]. As an illustration, the
resulting cross-section for diffractive J/Ψ production is displayed in Fig. 5.40, and sepa-
rated into its coherent and incoherent contributions. The light-cone Gaussian J/Ψ wave
function [908, 909] has been used in (5.90). At small values of |t| where coherent diffraction
dominates, our results are in agreement with HERA data [620] (one can get a better agree-
ment with more realistic saturation models [600, 898, 823, 899], but this is not our point).
Our model indicates that for |t| > 0.7 GeV2 or so (this value slightly decreases when Q2

increases), incoherent diffraction starts to dominate.
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Figure 5.40. Diffractive J/Ψ production
in DIS at HERA for W = 90 GeV and
different Q2 values.

This may be the reason why the data on ex-
clusive production stop: there is too much proton-
dissociative ‘background’. We observe that this part
of the cross-section decreases as a power law with |t|,
rather than exponentially as the exclusive part does.

The model discussed in this work is well adapted
to describe the low- and large−|t| regimes in the case
of scattering off a nucleus, but not the intermedi-
ate regime since the constituent nucleons are absent
from the description. This problem has been ad-
dressed in a complementary setup in the case of in-
clusive diffraction off nuclei [826, 825], and the coher-
ent diffraction regime was found to be dominant up
to about |t| = 0.05 GeV2. The vector meson produc-
tion case will be addressed next. While in the proton
case, both exclusive and diffractive processes can be
measured, it is likely that at a future electron-ion col-
lider, the exclusive cross section cannot be extracted:
when the momentum transfer is small enough for the
nucleus to stay intact, then it will escape too close
to the beam to be detectable. Therefore the diffrac-
tive physics program will rely on our understanding
of incoherent diffraction.
Nuclear breakup into its constituent nucleons:
To simplify our calculation, we will here use a fac-
torized impact parameter profile for the dipole cross
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section in a proton

dσpdip
d2bT

(bT , rT , x) = 2 (1− Sp(rT ,bT , x)) = 2Tp(bT )N (r, x), (5.94)

where Tp is a Gaussian profile Tp(bT ) = exp
(
−b2/2Bp

)
. In the following we shall consider

two dipole cross section parametrizations, the IIM model [84, 910, 876], for which we take
take Bp = 5.59GeV−2, and a factorized approximation of the IPsat parametrization [600,
823], for which Bp = 4.0GeV2. See [827] for a discussion of the origin of these values in
different fits.

To extend the dipole cross section from protons to nuclei, we will take the independent
scattering approximation that is usually used in Glauber theory and write the S-matrix as

SA(rT ,bT , x) =

A∏

i=1

Sp(rT ,bT − bT i, x). (5.95)
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Figure 5.41. The quasielastic and coherent diffrac-
tive J/Ψ cross sections in gold nuclei at Q2 = 0
and xP = 0.001. The IPsat and IIM parametriza-
tions are shown. We also show the result for
the linearized “IPnonsat” version (used e.g. in
Ref. [911]) where the incoherent cross section is
explicitly A times that of the proton. Our ap-
proximation (5.97) is not valid for small |t| and
has been left out of the plot.

Here bT i are the nucleon coordinates.
This independent scattering assumption is
natural in IPsat-like parametrizations or
the MV-model, where r = |rT |, S(rT ) ∼
e−r

2Qs
2/4 with a saturation scale Qs

2 pro-
portional to the nuclear thickness TA(b).
High energy evolution, however, introduces
an anomalous dimension that leads, in the
nuclear case, to what could be called leading
twist shadowing. With an anomalous di-
mension S ∼ e−(Qsr)2γ with γ 6= 1, a propor-
tionality Qs

2 ∼ TA(b) is not equivalent to
Eq. (5.95). A solution to this problem (see
also the more detailed discussion in [825])
would require a realistic impact parameter
dependent solution to the BK [770, 741, 747]
equation which is not yet available. We
point the reader to Ref. [872], for example,
for a discussion of the difficulties. These are
related to the long distance Coulomb tails
that, physically, are regulated at the con-
finement length scale that is not enforced in
a first principles weak coupling calculation.

The average over the positions of the nucleon in the nucleus was given in eq. (5.66). The
expectation valuedefined there is equivalent to the average over nucleon configurations in a
Monte Carlo Glauber calculation. We are assuming that the positions bT i are independent,
i.e. neglecting nuclear correlations that would be a subject of interest in their own right
(see e.g. [912]). The coherent cross section is obtained by averaging the amplitude before
squaring it, | 〈A〉N |2, and the incoherent one is the variance

〈
|A|2

〉
N
−| 〈A〉N |2 that measures

the fluctuations of the gluon density inside the nucleus. Because 〈A〉N is a very smooth
function of bT , its Fourier transform vanishes rapidly for ∆ & 1/RA. Therefore, at large
∆, the quasielastic cross section is almost purely incoherent.
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The cross section for quasielastic vector meson production is now expressed in terms of
the dipole scattering amplitude as

dσγ
∗A→V A∗

dt
=
R2
g(1 + β2)

16π

∫
dz

4π

dz′

4π
d2rTd

2rT
′

× [Ψ∗VΨ] (r, z,Q) [Ψ∗VΨ] (r′, z′, Q)
〈
|Aqq̄|2 (xP, r, r′,∆T )

〉
N
, (5.96)

where we have applied corrections for the skewedness, Rg, and the real part of the scattering
amplitude (see e.g. [824]) We now average the square of the dipole scattering amplitude
over the nucleon coordinates, using the assumptions of Eqs. (5.95) and (5.94) and taking the
large A limit. We are additionally assuming that TA is a smooth function on the distance
scale defined by Bp. Averaging the square of the amplitude gives the total quasi-elastic
contribution.

Note that Eqs. (5.95) and (5.94) have enabled us to write the leading contributions
as proportional to the (Gaussian) proton impact parameter profile, which can then be
Fourier-transformed analytically. Giving up either of these approximations would force
us to numerically Fourier-transform the “lumpy” b-dependence corresponding to a fixed
configuration of the nucleon positions. Keeping only the terms that contribute at large
|t| ≫ 1/R2

A leaves us with the expression

|Aqq̄|2 (xP, r, r′,∆T ) = 16π2B2
pA

∫
d2bT

× e−Bp∆
2
T e−2πBp(A−1)TA(b)[N (r)+N (r′)]N (r)N (r′)TA(b). (5.97)

Equation (5.97) has a very clear interpretation. The squared amplitude is proportional
to A times the squared amplitude for scattering off a proton, corresponding to the dipole
scattering independently off the nucleons in a nucleus. This sum of independent scatterings
is then multiplied by a nuclear attenuation factor which accounts for the requirement that
the dipole must not scatter inelastically off the other A−1 nucleons in the target (otherwise
the interaction would not be diffractive). Note that factor 4πBpN (r, xP) = σp(r, xP) is the
proton-dipole cross section for a dipole of size r. Thus this attenuation corresponds to the
probability of a dipole with a cross section which is the average of dipoles with r and r′ to
pass though the nucleus. A similar expression can be found in Ref. [913] for example.

The coherent cross section in our approximation is given by

dσγ
∗A→V A

dt
=
R2
g(1 + β2)

16π

∣∣〈A(xP, Q
2,∆T )

〉
N

∣∣2 , (5.98)

where in the large A and smooth nucleus limit the amplitude is

〈
A(xP, Q

2,∆T )
〉
N
=

∫
dz

4π
d2rTd

2bT e
−ibT ·∆T [Ψ∗VΨ](r,Q2)2

[
1− e−2πBpATA(b)N (r,xP)

]
.

(5.99)

Figure 5.41 summarizes the t-dependence of the quasielastic and coherent cross sections.
Also shown is the approximation used in [911] where nonlinear effects are left out. The most
striking result is the large suppression by a factor of ∼ 3 of the incoherent cross section
due to nonlinear effects. The incoherent and coherent curves cross saround |t| ≈ 0.05GeV2,
as anticipated. With a very good detection of the nuclear breakup events, the first, even
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the second, diffractive dips in the coherent cross section could be measurable at the EIC,
providing detailed information about the average spatial distribution of gluons inside the
nucleus. For understanding the initial conditions of ultra-relativistic heavy-ion collisions
what has turned out to be equally important are the fluctuations in the gluon density,
which are directly measured by the incoherent part of the spectrum.

Electroproduction of J/Ψ

Boris Z. Kopeliovich

Proton target: The diffractive electro-production of charmonia and the charmonium-
nucleon elastic scattering are closely related. The amplitudes of diffractive electro-production
of a charmonium and elastic charmonium-proton scattering in the dipole approach have the
form,

Mγ∗p(s,Q
2) =

∑

µ,µ̄

1∫

0

dα

∫
d2rT Φ

∗(µ,µ̄)
Ψ (α,~rT )σqq̄(rT , s)Φ

(µ,µ̄)
γ∗ (α,~rT , Q

2); (5.100)

MΨ p(s) =
∑

µ,µ̄

1∫

0

dα

∫
d2rT Φ

∗(µ,µ̄)
Ψ (α,~rT )σqq̄(rT , s)Φ

(µ,µ̄)
Ψ (α,~rT ) . (5.101)

Here, µ and µ̄ are the spin indices of the c and c̄ quarks, Q2 is the photon virtuality,
Φγ∗(α, rT , Q

2) is the light-cone distribution function of the photon for a cc̄ fluctuation of
separation rT and relative fraction α of the photon light-cone momentum carried by c or c̄.
Correspondingly, ΦΨ(α,~rT ) is the light-cone wave function of J/Ψ, or Ψ′, or χ.

The wave functions of charmonia are calculated in [914] solving the Schrödinger equation
with four realistic potentials, which are labelled as COR [915], BT [916], LOG [917], and
POW [918]. Then one should make a Lorentz boost from the charmonium rest frame to the
infinite momentum frame, and to switch from 3-dimensional coordinates to the light-cone
variables, pT and α, which are the c-quark transverse and fractional longitudinal momenta
respectively. This was done in [914] using the popular prescription [919].

The important ingredient of the calculations performed in [914] (compare with [920]) is
the Melosh spin rotation [921] which relates the 2-dimensional spinors χc and χc̄, describing
c and c̄ in the infinite momentum frame, to the spinors χ̄c and χ̄c̄ in the rest frame:

χc = R̂(α, p̃T)χc , χc̄ = R̂(1− α,−p̃T)χc̄ , (5.102)

where the matrix R(α, ~pT ) has the form:

R̂(α, ~pT ) =
mc + αM − i [~σ × ~n] ~pT√

(mc + αM)2 + p2T

. (5.103)

Since the cc̄ pair is in S-wave, the spatial and spin dependences in the wave function
factorize, and one arrives at the following light cone wave function of the cc̄ in the infinite
momentum frame

Φ
(µ,µ̄)
ψ (α, ~pT ) = U (µ,µ̄)(α, ~pT ) · Φψ(α, ~pT ) , (5.104)

where
U (µ,µ̄)(α, ~pT ) = χµ†c R̂†(α, ~pT )~σ · ~eψ σy R̂∗(1− α,−~pT )σ−1y χ̃µ̄c̄ . (5.105)
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Now we can determine the light-cone wave function in the mixed longitudinal momentum
- transverse coordinate representation:

Φ
(µ,µ̄)
ψ (α,~rT ) =

1

2π

∫
d2pT e

−i~pT~rT Φ
(µ,µ̄)
ψ (α, ~pT ) . (5.106)
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Figure 5.42. Integrated cross section for elastic
photoproduction γ p → J/Ψ p with real photons
(Q2 = 0) as a function of the energy calculated with
GBW and KST dipole cross sections and for four
potentials to generate J/Ψ wave functions.

With this wave function and with
the standard distribution functions of the
photon one can calculate the amplitudes
in (5.100)-(5.101) and predict the cross
section of J/Ψ photoproduction on a pro-
ton. The results for the energy depen-
dence are compared with HERA data
(see references in [914]) in Fig. 5.42.
The calculation was performed in [914]
with two parametrizations of the dipole
cross section labelled as GBW [788] and
KST [795].

We see that only BP and LOG poten-
tials describe the data well, which, how-
ever, are not sensitive to the choice of
the phenomenological dipole cross section.
The Q2 dependence of the cross section is
compared to HERA data (see references
in [914]) in Fig. 5.43 (left) for the LOG and BT potentials. It turns out that the effects
of Melosh spin rotation have a gross impact on the cross section of elastic photoproduction
γ p→ J/Ψ(ψ)p . It increases the photoproduction cross section by about 50%. These effects
have even more dramatic impact on the ψ′, increasing the photoproduction cross section by
a factor of 2-3 and eliminating the large discrepancy with data observed previously [920].

Eventually, we are in a position to predict the charmonium-proton total cross section,
which is impossible to extract directly from photoproduction data, either on protons, or
nuclear targets. Indeed, neither vector dominance [922], nor Glauber model [923] can be
used for data analysis. We believe that the only way is to predict the charmonium cross
section within a model, which successfully describe data on photoproduction in a parameter
free way. Our predictions for the energy dependent charmonium-proton total cross section
are depicted in Fig. 5.43 (right) for J/Ψ and Ψ′.

Nuclear targets: Charmonium photoproduction on nuclei is controlled by two length
scales.

lc =
2 ν

M2
cc̄ +Q2

≈ 2 ν

M2
J/Ψ +Q2

; lf =
2 ν

M2
Ψ′ −M2

J/Ψ

, (5.107)

The first one is called coherence length can be interpreted as the lifetime of a c̄c fluctuation
in the projectile photon in the nuclear rest frame. When lc is short compared to the mean
nucleon spacing, one can treat c̄c production as instantaneous, with following propagation of
the c̄c dipole through the nucleus. In the opposite limit of lc ≫ RA the c̄c dipole propagates
and attenuates through the whole nucleus. The second scalelf is the formation length,
which characterizes the formation of the charmonium wave function. Indeed, the produced
c̄c dipole has a certain size and interaction cross section, but does not have any certain
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Figure 5.43. Left: Integrated cross section for elastic photo production as a function of the photon
virtuality Q2 +MJ/Ψ at energy

√
s = 90GeV. Right: Total J/Ψ-p (thick curves) and Ψ′-p (thin

curves) cross sections with the GBW and KST parameterizations for the dipole cross section.

mass. It might be the J/Ψ, or its radial excitation. To disentangle between them, takes
time according to the uncertainty principle.

The cross section of charmonium photo-production on nuclei is easiest to write in the
limit of long lc ≫ RA. In this case, the size of the c̄c dipoles “frozen” by Lorentz time
dilation for propagation of the dipole through the nucleus. The cross sections of incoherent
(the nucleus break up to fragments) and coherent (the nucleus remains intact) production
have the form [923, 924],

σ
γ∗T,LA

inc (s,Q2) =

∫
d2b TA(b)

∣∣∣∣
〈
Ψ

∣∣∣∣σc̄c(rT , s) exp
[
−1

2
σc̄c(rT , s)TA(b)

]∣∣∣∣Ψ
T,L
cc̄

〉∣∣∣∣
2

(5.108)

σ
γ∗T,LA

coh (s,Q2) =

∫
d2b

∣∣∣∣
〈
Ψ

∣∣∣∣1 − exp

[
−1

2
σc̄c(rT , s)TA(b)

]∣∣∣∣Ψ
T,L
cc̄

〉∣∣∣∣
2

, (5.109)

where ΨT,L
c̄c are the photon wave functions given by Eq. (5.27); Ψ(~rT , α) is the charmonium

light-cone wave function calculated in the previous section. These expressions are signifi-
cantly different from the Glauber model [925] and effectively include the Gribov corrections
in all orders.

We define the nuclear ratios for coherent and incoherent reactions as,

RcohΨ (s,Q2) =
σγ

∗A
coh (s,Q2)

Aσγ
∗N (s,Q2)

, RincΨ (s,Q2) =
σγ

∗A
inc (s,Q2)

Aσγ
∗N (s,Q2)

. (5.110)

These ratios, calculated with Eqs. (5.108)-(5.109) for real photoproduction of J/Ψ and Ψ′,
are depicted as a function of energy in Fig. 5.44. For coherent production, the cross section
rises with A nearly as A4/3, so the ratio may reach a large magnitude.

One can also predict the dependence on the momentum transfer ~kT for the charmonium
electro-production on nuclei. In the case of incoherent production, this dependence is the
same as for production on free nucleons. However, in coherent production, the nuclear form
factor comes into play and one has

dσ
γ∗T,LA

coh (s,Q2)

d2kT
=

∣∣∣∣
∫
d2b ei

~kT ·~b
〈
Ψ

∣∣∣∣1 − exp

[
−1

2
σq̄q(rT , s)TA(b)

]∣∣∣∣Ψ
T,L
cc̄

〉∣∣∣∣
2

. (5.111)
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Figure 5.44. Ratios RcohJ/Ψ, R
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coh
Ψ′ and RcohΨ′ for coherent and incoherent production on carbon,

copper and Pbas function of
√
s and at Q2 = 0. The solid and dashed curves refer to the GBW and

KST parameterizations respectively.

We introduce the ratios the sum of T and L components of Eq. (5.111) to the cross
section at Q2 = 0 and kT = 0,

R(s,Q2, kT ) =
dσγ

∗A
coh (s,Q2)

d2kT

/
dσγ

∗A
coh (s,Q2 = 0)

d2kT

∣∣∣∣∣
kT=0

(5.112)
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Figure 5.45. RatiosRJ/Ψ andRΨ′ as functions of kT at s = 4000GeV2

for different values of Q. All curves are calculated with the GBW
parameterization of the dipole cross section.

This ratio is plotted
in Fig. 5.45 as a function
of kT at s = 4000GeV2

for different virtualities
of the photon. We see
that the kT dependences
are rather similar for J/Ψ
and Ψ′. The shape of
the distribution is deter-
mined mainly by the nu-
clear geometry (and not
by the size of the (small)
charmonium). The cal-
culated curves show the
familiar diffraction pat-
tern known from elastic
scattering on nuclei.

It is interesting that
the effects of gluon shadowing, calculated in [924], do not affect much the shape and position
of the minima in kT dependence of the coherent cross section. However, the cross section
integrated over kT may be significantly affected by gluon shadowing. To see the magnitude
of gluon shadowing, we introduce the ratio of the cross sections calculated with and without
gluon shadowing,

Sg(s,Q
2) =

σγ
∗A
g (s,Q2)

σγ∗A(s,Q2)
. (5.113)

for incoherent and coherent exclusive charmonium electroproduction. The predicted effects
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of gluon shadowing are depicted in Fig. 5.46.
We only plot ratios for J/Ψ production, because ratios for Ψ′ are practically the same.

All curves are calculated with the GBW parameterization of the dipole cross section. We
see that the onset of gluon shadowing happens at a c.m. energy of a few tens of GeV. This
is controlled by the longitudinal nuclear form factor

FA(q
g
c , b) =

1

TA(b)

∞∫

−∞

dz ρA(b, z) e
iqcz (5.114)

where the longitudinal momentum transfer qgc = 1/lgc . For the onset of gluon shadowing,
qgc RA ≫ 1, one can keep only the double scattering shadowing correction,

Sg ≈ 1− 1

4
σeff

∫
d2b T 2

A(b)F
2
A(q

g
c , b) , (5.115)

where σeff is the effective cross section which depends on the dynamics of interaction of
the q̄qg fluctuation with a nucleon.
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Figure 5.46. Ratios Sg(s,Q
2), defined in (5.113), of cross sections cal-

culated with and without gluon shadowing for incoherent and coherent
J/Ψ production..

It was found in [787]
that the coherence length
for gluon shadowing is
rather short, lgc ≈ (10xmN )

−1,
where Bjorken x in our
case should be an effec-
tive one, x = (Q2 +
M2

Ψ)/2mNν. The on-
set of shadowing ac-
cording to (5.114) and
(5.115) should be ex-
pected at q2c ∼ 3/(RchA )2

corresponding to sg ∼
10mNR

ch
A (Q2+M2

Ψ)/
√
3,

where (RchA )2 is the mean
square of the nuclear
charge radius. This esti-
mate is in a good agreement with Fig. 5.46. Remarkably, the onset of shadowing is delayed
with rising nuclear radii and Q2. This follows directly from Eq. (5.115) and the fact that
the formfactor is a steeper falling function of RA for heavy than for light nuclei, provided
that qGc RA ≫ 1.

At medium energies, the effects of finite coherence length, lc ∼ RA become important.
They increase the incoherent and suppress coherent cross sections of charmonium electro-
production. One can find the details of the corresponding calculations in [924].

Exclusive processes in e+A collisions

Victor P. Gonçalves

Exclusive processes in deep inelastic scattering (DIS) have appeared as key reactions
to trigger the generic mechanism of diffractive scattering. In particular, diffractive vector
meson production and deeply virtual Compton scattering (DVCS) have been extensively

322



studied at HERA and provide a valuable probe of the QCD dynamics at high energies. The
cross sections for exclusive processes in DIS are proportional to the square of the scattering
amplitude, which makes them strongly sensitive to the underlying QCD dynamics.

In this contribution, we present our estimate for the coherent and incoherent cross sec-
tions for exclusive ρ, J/Ψ, and φ production as well as for nuclear DVCS, making use of the
numerical solution of the Balitsky-Kovchegov equation including running coupling correc-
tions in order to estimate the contribution of the saturation physics to exclusive processes
(For more details and references see Refs. [926, 927]).

Exclusive production: In the color dipole approach, exclusive production γ∗A → EY
(E = ρ, φ, J/Ψ or γ) in electron-nucleus interactions at high energies (lc ≫ RA) is given by

σcoh (γ∗A→ EA) =

∫
d2b
〈
NA(x, r, b)

〉2
(5.116)

where

〈N〉 =
∫
d2r

∫
dzΨ∗E(r, z)NA(x, r, b)Ψγ∗(r, z,Q

2) (5.117)

and NA(x, r, b), defined in eq. (5.76), is the forward dipole-target scattering amplitude for
a dipole with size r and impact parameter b. We will assume that σdp in eq. (5.76) is given
by the bCGC saturation model or the solution of the running coupling BK equation.

On the other hand, if the nucleus scatters inelastically, i.e. breaks up (Y = X), the
process is called incoherent production. In this case, one sums over all final states of the
target nucleus, except those that contain particle production. The t slope is the same as in
the case of a nucleon target. Therefore we have

σinc (γ∗A→ EX) =
|ImA(s, t = 0)|2

16π BE
(5.118)

where at high energies (lc ≫ RA) :

|ImA|2 =
∫
d2b TA(b)|Ψ∗E(r, z)σdp exp[−1

2
σdp TA(b)]Ψγ∗(r, z,Q

2)|2 (5.119)

and σdp is the dipole-proton cross section. In the incoherent case, the qq̄ pair attenuates
with a constant absorption cross section, as in the Glauber model, except that the whole
exponential is averaged rather than just the cross section in the exponent. The coherent
and incoherent cross sections depend differently on t. At small-t (−tR2

A/3 ≪ 1) coherent
production dominates, with the signature being a sharp forward diffraction peak. On the
other hand, incoherent production will dominate at large-t (−tR2

A/3 ≫ 1), with the t-
dependence being to a good accuracy the same as in the production off free nucleons.

In Eqs. (5.117) and (5.119) the functions Ψγ(z, r) and ΨE(z, r) are the light-cone wave-
functions of the photon and the exclusive final state, respectively. The variable r defines
the relative transverse separation of the pair (dipole) and z (1 − z) is the longitudinal
momentum fraction of the quark (antiquark). In the dipole formalism, the light-cone wave-
functions Ψ(z, r) in the mixed representation (r, z) are obtained through a two dimensional
Fourier transform of the momentum space light-cone wavefunctions Ψ(z, k). The photon
wavefunctions are well known in the literature. For the meson wavefunction, we considered
the Gauss-LC model. In the DVCS case, as one has a real photon in the final state, only
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Figure 5.47. Energy dependence of the coherent (left) and incoherent (right) cross sections for
different final states and Q2 = 1 GeV2.

the transversely polarized overlap function contributes to the cross section. Summed over
the quark helicities, for a given quark flavour f , it is given by,

(Ψ∗γΨ)fT =
Nc αeme

2
f

2π2
{[
z2 + z̄2

]
ε1K1(ε1r)ε2K1(ε2r) +m2

fK0(ε1r)K0(ε2r)
}
, (5.120)

where we have defined the quantities ε21,2 = zz̄ Q2
1,2 + m2

f and z̄ = (1 − z). Accordingly,

the photon virtualities are Q2
1 = Q2 (incoming virtual photon) and Q2

2 = 0 (outgoing real
photon).
Results: In Fig. 5.47 left, we show the coherent production cross section as a function of
the photon-target c.m.s energy, W , for a fixed photon virtuality Q2 = 1 GeV2. Fig. 5.47
right is the exact analogue for the corresponding incoherent cross sections. Each one of the
panels shows the results obtained for one specific final state. In each figure, the two upper
(lower) curves show the results for a Pb (Ca) target. In all figures, the dashed (solid) lines
are obtained with the bCGC (rcBK) dipole-proton cross section. At low W , the bCGC
and rcBK production cross sections are indistinguishable from one another because the
dipole cross sections tend to coincide. These latter have been tuned to fit DIS data, which
are taken in this kinematical region. Another expected feature is the observed decrease
of the cross sections with increasing vector meson masses, which comes from the wave
functions. Differences are expected to appear at higher energies, where we enter the lower
x (extrapolation) region. In all cases we see that the results obtained with the rcBK cross
section are larger than those obtained with the bCGC one. This is related to the fact that
the numerical solutions of the BK equation tend to reach the unitarity limit later. Due to
this fact, the results obtained with the rcBK dipole cross section grow faster with energy
than those obtained with the bCGC one. Another feature is that the differences between
bCGC and rcBK are larger for heavier vector mesons. Comparing the results shown in
Fig. 5.47 we verify the dominance of the coherent production with a small contribution
coming from incoherent processes.

Acknowledgments: The author thank E.R. Cazaroto, F. Carvalho, M. S. Kugeratski, M.V.T.
Machado, and F.S. Navarra by collaboration.
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Constraining the ρ wavefunction

Jeffrey R. Forshaw and Ruben Sandapen

In the dipole model [735, 928], the imaginary part of the amplitude for diffractive ρ
production is written as [899]

ℑmAλ(s, t;Q
2) =

∑

h,h̄

∫
d2rdzΨγ∗,λ

h,h̄
(r, z;Q2)Ψρ,λ

h,h̄
(r, z)∗e−izr.∆N (x, r,∆) (5.121)

where t = −|∆|2. In a standard notation [929, 899, 898], Ψγ∗,λ
h,h̄

and Ψρ,λ
h,h̄

are the light-cone

wavefunctions of the photon and the ρ meson respectively while N (x, r,∆) is the imaginary
part of the dipole-proton elastic scattering amplitude. The energy dependence of the latter
is via the dimensionless variable x, taken here to be x = (Q2 + 4m2

f )/(Q
2 + s) where mf

is a phenomenological light quark mass.7 Setting t = 0 in equation (5.121), we obtain the
forward amplitude used in reference [929]:

ℑmAλ(s, t;Q
2)
∣∣
t=0

= s
∑

h,h̄

∫
d2r dz Ψγ,λ

h,h̄
(r, z;Q2)σ̂(x, r)Ψρ,λ

h,h̄
(r, z)∗ (5.122)

where we have used the optical theorem to introduce the dipole cross-section σ̂(x, r) =
N (x, r,0)/s. Note that since the momentum transfer ∆ is Fourier conjugate to the impact
parameter b, the dipole cross-section at a given energy is simply the b-integrated dipole-
proton scattering amplitude:

σ̂(x, r) =
1

s

∫
d2b N (x, r,b) . (5.123)

This dipole cross-section can be extracted from the F2 data since

F2(x,Q
2) ∝

∫
d2r dz |Ψγ∗(r, z;Q

2)|2σ̂(x, r) (5.124)

and the photon’s light-cone wavefunctions are known in QED, at least for large Q2. The
F2-constrained dipole cross-section can then be used to predict the imaginary part of the for-
ward amplitude for diffractive ρ production and thus the forward differential cross-section,

dσλ
dt

∣∣∣∣
t=0

=
1

16π
(ℑmAλ(s, 0))

2 (1 + β2λ) , (5.125)

where βλ is the ratio of real to imaginary parts of the amplitude and is computed as in
reference [929]. The t-dependence can be assumed to be the exponential dependence as
suggested by experiment [930]:

dσλ
dt

=
dσλ
dt

∣∣∣∣
t=0

× exp(−B|t|) , B = N

(
14.0

(
1 GeV2

Q2 +M2
ρ

)0.2

+ 1

)
(5.126)

with N = 0.55 GeV−2. After integrating over t, we can compute the total cross-section
σ = σL + ǫσT which is measured at HERA.8

7We shall take mf = 0.14 GeV, the value used when extracting the dipole cross section from F2 data.
8To compare with the HERA data, we take ǫ = 0.98.
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Presently, several dipole models [931, 824, 910, 821, 823] are able to fit the current
HERA F2 data and there is evidence that the data prefer those incorporating some form of
saturation [932]. We can use the F2-constrained dipole cross-section in order to extract the
ρ light-cone wavefunction using the current precise HERA data [930, 680]. This has re-
cently been performed in reference [929] using the Regge-inspired FSSat dipole model [931]
and we shall report the results of this work here. In addition, we repeat the analysis using
two alternative models [910, 824, 823] both based on the original Colour Glass Condensate
(CGC) model [84]. They differ from the original CGC model by including the contribu-
tion of charm quarks when fitting to the F2 data. Furthermore in one of them [910, 824],
the anomalous dimension γs is treated as an additional free parameter instead of being
fixed to its LO BFKL value of 0.63. We shall refer to these models as CGC[0.74] and
CGC[0.63] models where the number in the square brackets stands for the fitted and fixed
value of the anomalous dimension respectively. For both models, we use the set of fitted
parameters given in reference [824]. All three models, i.e FSSat, CGC[0.63] and CGC[0.74]
account for saturation although in a b- (or equivalently t-) independent way. Indeed, at a
given energy, the dipole cross-section is equal to the forward dipole-proton amplitude or
to the b-integrated dipole proton amplitude given by equation (5.123). Finally, all three
dipole models we consider here give a good description of the diffractive structure function
data [876, 933].

Boosted Gaussian predictions

Dipole model χ2/data point

FSSat 310/75

CGC[0.74] 262/75

CGC[0.63] 401/75

BG fits

Model χ2/d.o.f

FSSat [929] 82/72

CGC[0.74] 64/72

CGC[0.63] 83/72

Improved fits

Model χ2/d.o.f

FSSat [929] 68/70

CGC[0.63] 67/70

Table 5.4. Left: Predictions of the χ2/data point using the BG wavefunction. Center: χ2/d.o.f
obtained when fitting Rλ and bλ to the leptonic decay width and HERA data. Right: χ2/d.o.f
obtained when fitting bλ, Rλ cT , dT the leptonic decay width and HERA data.

Fitting the HERA data: Previous work [898, 899, 824] has shown that a reasonable
assumption for the scalar part of the light-cone wavefunction for the ρ is of the form

φBG
λ (r, z) = Nλ 4[z(1 − z)]bλ

√
2πR2

λ exp

(
m2
fR

2
λ

2

)
exp

(
−

m2
fR

2
λ

8[z(1 − z)]bλ

)
(5.127)

× exp

(
−2[z(1 − z)]bλr2

R2
λ

)

and is referred to as the ‘Boosted Gaussian’ (BG). This wavefunction is a simplified version
of that proposed originally by Nemchik, Nikolaev, Predazzi and Zakharov [934]. In the
original BG wavefunction, bλ = 1 while the parameters Rλ and Nλ are fixed by the leptonic
decay width constraint and the wavefunction normalization conditions [929]. However, when
the BG wavefunction is used in conjunction with either the FSSat model or any of the CGC
models, none of them is able to give a good quantitative agreement with the current HERA
ρ-production data. This is illustrated by the large χ2 values in table 5.4, the situation is
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Best fit parameters

R2
L R2

T bL bT cT dT

FSSat [929] 26.76 27.52 0.5665 0.7468 0.3317 1.310

CGC[0.63] 27.31 31.92 0.5522 0.7289 1.6927 2.1457

CGC[0.74] 26.67 21.30 0.5697 0.7929 0 0

Table 5.5. Best fit parameters for each dipole model.

considerably improved by fitting Rλ and bλ to the leptonic decay width and HERA data
(we fit to the same data set and with the same cuts as in reference [929]).

For the FSSat and CGC[0.63] models, we can further improve the quality of the fit by
allowing for additional end-point enhancement in the transverse wave-function, i.e. using a
scalar wave-function of the form

φT (r, z) = φBG
T (r, z) × [1 + cT ξ

2 + dT ξ
4] (5.128)

where ξ = 2z − 1. The results are shown in table 5.4.
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Figure 5.48. Best fits to the HERA (left) and ZEUS (right) total cross-section data. CGC[0.74]:
solid; FSSat: dotted; CGC[0.63]: dashed.

The best fits obtained with each dipole model are compared to the HERA data in fig-
ures 5.48 and 5.49. The corresponding fitted parameters are given in table 5.5. Note that
we achieve a lower χ2/d.o.f = 0.89 with CGC[0.74] than with CGC[0.63] and FSSat for
which we obtain χ2/d.o.f = 0.96 and χ2/d.o.f = 0.97 respectively. Compared to the FSSat
and CGC[0.63] fits, note that no additional enhancement in the transverse wavefunction
is required in the CGC[0.74] fit. Nevertheless the extracted wavefunction still exhibits en-
hancement compared to the old BG wavefunction. The extracted light-cone wavefunctions
are shown in figure 5.50 left.

Distribution Amplitudes: The leading twist-2 Distribution Amplitude (DA) reads [929]:

ϕ(z, µ) ∼
(
1− e−µ

2/∆(z)2
)
e−m

2
f/∆(z)2 [z(1− z)]bL , (5.129)
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Figure 5.49. Best fits to the σL/σT data. The H1 data are at W = 75 GeV while the ZEUS data
are at W = 90 GeV. CGC[0.74]: solid; FSSat: dotted; CGC[0.63]: dashed.

Figure 5.50. Left and center: The longitudinal and transverse light-cone wavefunctions squared at
r = 0. (CGC[0.74]: solid; FSSat: dotted; CGC[0.63]: dashed.) Right: The extracted leading twist-2
DAs at µ = 1 GeV compared to the DA of reference [935] also at 1 GeV (long-dashed) and the
asymptotic DA (dot-dashed).

where ∆(z)2 = 8[z(1− z)]bL/R2
L. This leading twist DA is only sensitive to the longitudinal

wavefunction and, as illustrated in figure 5.50 right, we expect little variation in the pre-
dictions using the different dipole models. To compare with existing theoretical predictions
for the DA, we compute moments:

〈ξn〉µ =

∫ 1

0
dz ξnϕ(z, µ) . (5.130)

where by convention [929]
∫ 1
0 dz ϕ(z, µ) = 1. In reference [929], we noted that our DA is very

slowly varying with µ for µ > 1 GeV, i.e our parameterization neglects the perturbatively
known µ-dependence of the DA. This statement remains true if we use the CGC[0.63] or
CGC[0.74] instead of the FSSat model.

Our results are compared with the existing predictions in table 5.6. The moments ob-
tained with our best fit, i.e with the CGC[0.74] model, are very similar to those obtained
with FSSat model or the CGC[0.63]. In all cases, the results are in very good agreement
with expectations based on QCD sum rules and the lattice. Finally, in figure 5.50 right,
we compare our DAs with that predicted by Ball and Braun [935], at a scale µ = 1 GeV.
The agreement is reasonable given that in reference [935], the expansion in Gegenbauer
polynomials is truncated at low order, which is presumably responsible for the local mini-
mum at z = 1/2. Certainly, all 4 distributions are broader than the asymptotic prediction
∼ 6z(1 − z).

Conclusions: We have used the current HERA data on diffractive ρ production to extract

328



Moments of the leading twist DA at the scale µ

Reference Approach Scale µ 〈ξ2〉µ 〈ξ4〉µ 〈ξ6〉µ 〈ξ8〉µ 〈ξ10〉µ
(This paper) CGC[0.74] fit ∼ 1 GeV 0.227 0.105 0.062 0.041 0.029

(This paper) CGC[0.63] fit ∼ 1 GeV 0.229 0.107 0.063 0.042 0.030

[929] FSSat fit ∼ 1 GeV 0.227 0.105 0.062 0.041 0.029

(This paper) Old BG prediction ∼ 1 GeV 0.181 0.071 0.036 0.021 0.014

[936] GenSR 1 GeV 0.227(7) 0.095(5) 0.051(4) 0.030(2) 0.020(5)

[937] SR 1 GeV 0.26 0.15

[935] SR 1 GeV 0.26(4)

[938] SR 1 GeV 0.254

[939] SR 1 GeV 0.23±0.03
0.02 0.11±0.03

0.02

[940] Lattice 2 GeV 0.24(4)

6z(1− z) ∞ 0.2 0.086 0.048 0.030 0.021

Table 5.6. Our extracted values for 〈ξn〉µ, compared to predictions based on the QCD sum rules
(SR), Generalised QCD Sum Rules (GenSR) or lattice QCD.

information on the ρ light-cone wavefunction. We find that the corresponding leading twist-2
DA is broader than the asymptotic shape and agrees very well with the expectations of QCD
sum rules and the lattice. We also find that the data prefer a transverse wavefunction with
end-point enhancement although the degree of such an enhancement is model-dependent.

Acknowledgments: We thank H. Kowalski and C. Marquet for useful discussions. R.S. also
thanks the organisers for their invitation and for making this workshop most enjoyable.
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5.3 Nuclear Effects Across the x−Q2 plane

5.3.1 Nuclear Quarks and Gluons

Introduction

Rodolfo Sassot, Marco Stratmann, Pia Zurita

In spite of the remarkable phenomenological success of QCD as the theory of strong
interactions, a detailed understanding of the role of quark and gluon degrees of freedom
in nuclear matter is still lacking and poses great challenges for the theory. Ever since the
discovery that quark and gluons in bound nucleons exhibit momentum distributions notice-
ably different from those measured in free or loosely bound nucleons [941], more than two
decades ago, the precise determination of nuclear parton distribution functions (nPDF) has
attracted growing attention, driving both increasingly accurate and comprehensive nuclear
structure functions measurements [942] and a more refined theoretical understanding of the
underlying physics.

The precise knowledge of nPDFs is not only required for a deeper understanding of
the mechanisms associated with nuclear binding from a QCD improved parton model per-
spective, but is also a crucial input for the theoretical interpretation and analyses of a
wide variety of ongoing and future high energy physics experiments, such as, for instance,
heavy ion collisions at BNL-RHIC [943], proton-nucleus collisions to be performed at the
CERN-LHC [944], or neutrino-nucleus interactions in long baseline neutrino experiments
[945]. Consequently, the kinematic range and the accuracy at which nPDFs are known has
evolved into a key issue in many areas of hadronic and particle physics.

The standard description of DIS processes off nuclear targets is customarily done in
terms of the hard scale Q set by the virtuality of the exchanged photon and a scaling
variable xA ≡ Q2/(2pA · q), analogous to the Bjorken variable used in DIS off nucleons.
Here, pA is the target nucleus momentum, and, consequently, xA is kinematically restricted
to 0 < xA < 1, just like the standard Bjorken variable. Alternatively, one can define another
scaling variable xB ≡ AxA, where A is the number of the nucleons in the nucleus. Under
the assumption that the nucleus momentum pA is evenly distributed between the nucleons
pN = pA/A, this variable resembles the Bjorken variable corresponding to the scattering off
free nucleons, xB ≡ Q2/(2pN · q). However, in the context of nuclear scattering, it spans
the interval 0 < xB < A by definition, reflecting the fact that a parton may in principle
carry more than the average nucleon momentum.

In the most naive picture, parton distributions in a nucleus are simply given by the
incoherent sum or superposition of the parton distributions in the Z protons and (A − Z)
neutrons that constitute the nucleus. In that case, the ratios between the structure functions
or cross sections of two isoscalar nuclei (with the same proportion of protons and neutrons,
such as carbon and deuteron) should be just proportional to the ratio of their respective
number of nucleons (or to unity if we normalize the structure functions by the number of
nucleons A).

If we take into account Fermi motion effects, one would expect that in the larger nuclei,
the cross section extends up to larger xB , so the rates should typically grow to larger than
unity at high xB . What the EMC experiment found was that in addition to this motion
effect, there was a significant and quite unexpected drop in the rates between approximately
xB ≈ 0.3 and xB ≈ 0.7. In fig, 5.51, we show a precise measurement that illustrates
both effects. which was recently performed at JLab [946] Later on, it was found that the
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2 structure functions. In both panels, x ≡ xB as defined in the text.

situation was even worse for the naive picture outlined above, because at lower xB values,
the rates showed non-trivial patterns of suppression and enhancement. These effects are
called shadowing and anti-shadowing, respectively. The phenomenon has been measured at
different Q2 and persists at higher Q2 but with a particular dependence, specific for each
xB region.

After more than 30 years of experimental and theoretical studies, a standard picture of
nuclear modifications of structure functions and parton densities has not yet emerged. This
is a clear target for detailed studies at the EIC, which have a large potential to qualitatively
improve the current situation.

The EMC effect at an EIC

Ian C. Cloët

The EMC effect has an immediate parton model interpretation, which is that the valence
quarks in nuclei carry a smaller momentum fraction than the valence quarks in a free
nucleon. There have been numerous attempts to explain the EMC effect, for example nuclear
structure [949], nuclear pion enhancement [950], dynamical rescaling and inter-nucleon color
conductivity [951, 952, 953], point like configurations [954] and the medium modifications
to the bound nucleons [955, 956, 957, 958]. However, after more than a quarter of a century
since the original EMC experiment, there is still no universally accepted explanation of the
EMC effect. Therefore, it appears likely that to gain a deeper insight into the origins of
the EMC effect we require new experimental information that is not accessed in traditional
DIS.

An electron ion collier (EIC) provides excellent opportunities to access different aspects
of the EMC effect, which are not as accessible with traditional fixed target experiments. A
standout example is W–production via the DIS processes

ℓ− +A −→W− + νℓ +A −→ νℓ +X,

ℓ+ +A −→W+ + ν̄ℓ +A −→ ν̄ℓ +X.

The extraction of the target structure functions from these reactions is possible at an EIC
because of the unique ability to reconstruct the final state and therefore avoid the need to
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directly determine the outgoing momentum of the neutrino or anti–neutrino. The parton
model expressions for the F2 structure functions that characterize these processes are [959]

FW
+

2A (x) = ūA(x) + dA(x) + sA(x) + c̄A(x), (5.131)

FW
−

2A (x) = uA(x) + d̄A(x) + s̄A(x) + cA(x), (5.132)

where uA(x), ūA, . . . are the various quark distributions of the target. In the valence quark
region these W± structure functions are completely dominated by quark distributions of a
single flavour, and hence a measurement of these structure functions provides direct access
to the flavour decomposition of the nuclear parton distributions functions in this region.
The flavour dependence of the EMC effect can then be determined, which will provide
extremely important new information on the nature of this important phenomena.

The EMC effect ratio can be defined as

Ri =
F i2A

Z F i2p +N F i2n
, where i ∈ γ, W±, (5.133)

and F i2p, F
i
2n, F

i
2A are respectively the proton, neutron and nuclear structure functions.

The atomic number of the nucleus is labelled by Z, N is the neutron number. Using
the nuclear quark distribution results from Ref. [948], we can construct the usual EMC
effect associated with the exchange of a virtual photon and also the EMC effect in the W±

structure functions. These results are illustrate in Fig. 5.51 for an Au nucleus.
Therefore, measurements of FW

±

2A (x) for various nuclei, for example C, Fe, Au and Pb
would provide important new information on the flavour dependence of the EMC effect,
which in ref. [948] is predicted to be large for nuclei like Pb and Au. It is also claimed
that a significant part of the NuTeV anomaly may also be explained by this isovector EMC
effect [948]. Therefore, these measurements present an excellent opportunity for an EIC
and will undoubtedly help us understand the origins of the EMC effect, which is essential
if we are to ever have a QCD based description of nuclei.

Nuclear gluons

Hans J. Pirner

Historically, the very accurate NMC measurements of DIS on Tin and Carbon nuclei has
allowed one to extract the gluon distribution from the scaling violation in F2(A). This has
been done by Gousset and myself [960] for the first time. That analysis shows an enhance-
ment of 10% i.e. antishadowing for x ≈ 0.1 and the same amount of shadowing, namely also
10% at x ≈ 0.01. A high experimental accuracy is demanded, therefore only a trend could
be established. The asymptotic calculation of heavy charmonium production on nuclei is
often proposed as another method to extract the nuclear gluon distribution based on the
gluon-gluon fusion process. As shown in various papers by Kopeliovich this production is
more complicated, especially for J/Ψ, because of initial and final state effects. Measure-
ments of the gluon distribution would give an experimental window on the importance of
gluonic effects in nuclear binding. Very little is known about the role of gauge fields in
nuclei.

To gain insight on gluons in bound nucleons system, we have studied an abelian QED
model [961] where the nucleon is replaced by an atom and the nucleus by a molecule, i.e.,
we have analysed the structure function of the photon in the H2-molecule and compared
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it with the structure function in the H-atom. The electron orbits of the hydrogen atoms
in the molecule are polarized and modified by the electron exchange interaction leading
to a suppression of photons at small x. At the momentum corresponding to the relative
distance of the two protons, a small antishadowing peak is visible [961]. In analogy, gluon
antishadowing in the region x = 0.1 may indicate the distance ∆r ≈ 2 fm between the
centers of the nucleons which act as color sources of common gluon fields between nucleons.
A covalent binding of quarks may manifest itself as a density dependent lack of long range
gluons at x < 0.1 similarily to the deformation of the photon cloud in the hydrogen molecule.
In addition, in non-Abelian QCD, one expects at small x that the gluons from different
nucleons overlap and merge. Both of these effects have also an interpretation in the nuclear
rest frame in terms of the absorption of various partonic components in the wave function
of the photon.

During the last ten years, the available data have been used to extract nuclear parton
distributions and evolve them to high Q2, as reviewed below. In a careful analysis one
has to respect the large errors of the starting distribution at low Q2 for the nuclear gluon
distributions and also the larger x region has to be included correctly - at least the fact that
the nuclear gluon distribution [962] is more strongly affected by Fermi-motion of the nucleons
than the quark distribution, since it has a stronger decrease at large x. Enhancement of
the nuclear gluon distribution sets in already at x = 0.5 which may be of importance for
charmonium production at JLab [962].

Global fits of nuclear PDFs: current status

Rodolfo Sassot, Marco Stratmann, Pia Zurita

From the point of view of perturbative QCD (pQCD), the extraction of nPDF can be
performed in close analogy to what is routinely done for free nucleons: they are considered
as non-perturbative inputs, to be inferred from data, whose relation to the measured ob-
servables and their energy scale dependence can be computed order by order in perturbation
theory. Although one cannot discard potentially larger higher-twist or power corrections
than in the case of free nucleons, or non-linear nuclear recombination effects, standard QCD
factorization and universality of nPDFs are found to hold to a very good approximation in
the kinematical range covered by present experiments.

At variance with PDFs for free nucleons, which, driven by the demand for increasingly
precise predictions of the standard model, obtained an impressive degree of accuracy and
refinement, extractions of nPDFs are done at a considerably lower level of sophistication.
Not only the number, variety, kinematical coverage, and precision of nuclear data are much
more limited, but the precise parameterization of nPDFs is also much more involved as it
depends not only on the energy scale Q and the parton’s momentum fraction x, but also on
the size of the nucleus characterized by the atomic number A. In the following, we present
a brief summary of the current status of nPDFs and outline limitations in the analyses
imposed by the data available so far.

Thanks to its variable beam energy, the possibility to run with different nuclei, and the
envisioned large luminosities, an EIC will add invaluable novel information on nPDFs from
studies of the inclusive structure functions F2,L. It will extend the kinematic range toward
lower values of x as well as higher scales of Q, allowing precise determination of the gluon
distribution from scaling violations of F2, permit the flavour separation of the quark sea
and the study the onset of non-linear saturation effects at small x (see Section 5.2.2), which

333



eventually spoil the factorized pQCD approach.

Status of Nuclear Parton Densities. From the point of view of pQCD and a factorized
approach, the description of nuclear DIS can be viewed as follows. In a DIS processes off
a nuclear target, we also have a hard momentum scale Q that allows one to factorize the
measured cross section into a point-like partonic cross section and non-perturbative parton
densities, characteristic of partons seen in that nucleus. These “effective” parton densities
factorize and encode all the non-perturbative information, including the details about the
nuclear structure, and every mechanism, interaction, or effect we can imagine. Since the
hard partonic cross sections are just the same as those appearing in the factorization for free
nucleons, the nuclear parton densities will evolve with scale in the same way as ordinary
parton densities. For similar reasons, the approach could be extended to higher orders.
What is clearly not obvious within this line of reasoning is why, or how, one could split the
non-perturbative effective nuclear parton density into a piece containing only the effects
related to quarks and gluons belonging to single nucleon from those related to the nucleons
bound in the nuclei. No field theoretical tool gives us a precise prescription of how to achieve
this. It is important to keep in mind that even in lepton-nucleon scattering standard PDFs
are not just naive probability densities; they are non-trivial, though perfectly well defined,
objects which depend on the choice of factorization scheme and contain other ingredients
such as gauge links.

What can be done, of course, is to follow a program of global QCD analyses completely
analogous to the one carried out for PDFs, i.e., to extract the nPDFs and their A dependence
from data. In doing so one can explore if the basic properties of factorization and universality
still hold in a nuclear environment. The first QCD extractions of nPDFs defined in this
way were done at the end of the 90’s by two pioneering groups who performed leading order
(LO) analyses of nuclear DIS data (EKS98, HKM01) [963, 828, 964].

When introducing nPDFs, the usual approach was to propose a very simple relation
between the parton distribution of a proton bound in the nucleus, fAi , and those for free
protons fi,

fAi (xB , Q
2
0) = Ri(xB , Q

2
0, A, Z) fi(xB , Q

2
0), (5.134)

in terms of a multiplicative nuclear correction factor Ri(xB , Q
2, A, Z), specific to a given

nucleus (A,Z), parton flavor i, and initial energy scale Q2
0. Such a description is convenient

since the ratio Ri(xB , Q
2, A, Z) compares directly the parton densities with and without

nuclear effects, and is closely related to the most common nuclear DIS observables, which
are the ratios between the nuclear and deuterium structure functions. In Ref. [39] the alter-
native to relate nPDFs to standard PDFs by means of a convolution was introduced. The
convolution approach implements straightforwardly effects related to rescalings or shifts in
the parton’s momentum fraction due to interactions with the nuclear medium. In addition,
convolution integrals are the most natural language for parton dynamics beyond the LO and
allow for the straightforward application of the Mellin transform techniques, convenient for
a numerical fast and accurate computation of the scale dependence of PDFs and relevant
cross section estimates.

Following the developments for standard PDFs, nPDFs analyses subsequently incorpo-
rated various improvements such as a consistent next-to-leading order (NLO) framework
(nDS) [39], a thorough uncertainty analysis (HKN04 LO) [965], and periodical updates of
the different sets in order to incorporate new data (EKPS07 LO) [966], up to NLO accuracy
(HKN07 NLO, EPS09 NLO) [38, 40]. In the latest sets [40, 36] particular attention has
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Figure 5.52. Quality of the fit to nuclear DIS and Drell-Yan data; taken from Ref. [40].

been paid to the possible impact of d+Au collision data from RHIC and neutrino DIS data
on the global fits. A typical comparison to nuclear DIS and Drell-Yan data is shown in
Fig. 5.52.

It is worth noticing that the inclusion of d+Au data in nPDF fits, although neglecting
any nuclear modifications in the hadronization process, leads to significantly larger gluon
shadowing and antishadowing, as has been pointed out in [40]. The same data, however,
can be described with much more moderate nuclear gluon PDFs, but including medium
modified nFFs [967], see Section 5.4.1.

Regarding the impact of neutrino data, Schienbein et al. [36] claim that within their
analysis it is not possible to reproduce simultaneously the trend of the data coming from
electromagnetic nuclear DIS and some observables derived from neutrino DIS measurements.
Of course, these conclusions are reached under rather stringent assumptions such as a
very specific parameterization for nuclear effects and those implicit in the derivation of the
neutrino DIS rates to deuteron, which have not been actually measured yet. On the other
hand, using the EPS09 analysis and neutrino DIS data, Paukkunen and Salgado [968] find
no traces of such tension, besides some energy dependent fluctuations in the NuTeV data.
A typical comparison to neutrino data is given in Fig. 5.53.

Different recent extractions of nPDFs are shown in Fig. 5.54. A general shortcoming
of all present fits is that independent nuclear modification factors can be determined only
for gluons, valence, and sea quarks without distinguishing different quark flavors. Also,
present fixed-target data do not constrain nPDFs below about xB ≃ 0.01, and the curves
shown at smaller values of xB are mere extrapolations. Uncertainties on nPDFs are large,
in particular for the nuclear gluon distribution. There is clearly a need for more precise
data covering also the small xB region.
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Conclusions. In the last few years, our knowledge of the way that both parton densi-
ties and fragmentation probabilities are modified in a nuclear environment have improved
significantly. Different studies performed so far have clearly demonstrated that pQCD fac-
torization and universality are extremely good approximations within the precision and
kinematic range of the available data. Although the uncertainties and differences between
different QCD global analysis are still large, the availability of more data for different pro-
cesses, and their subsequent inclusion in the analyses will certainly help to reduce them
further. Ultimately, the EIC will be required for precise quantitative studies and to explore
the small xB regime where novel non-linear recombination and saturation phenomena are
expected. A preliminary study of the capabilities of the EIC in these respects has been
presented in Section 5.2.2: the EIC has the potential to determine gluon and quark nPDFs
to a precision comparable to the nucleon PDFs down to x ∼ 10−3, and indeed to detect
saturation effects as a deviation from DGLAP linear evolution.
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HKN nuclear parton distribution functions

Shunzo Kumano

The Hirai, Kumano and Nagai (HKN) nuclear PDFs [965, 38] are determined by a
global analysis of world data on charged-lepton DIS and Drell-Yan processes with nuclear
targets. Since the PDFs of the nucleon are relatively well determined, it is appropriate to
parametrize the nPDFs at the initial Q2

0 = 1 GeV2 using Eq. (5.134) and

Ri(xB , Q
2
0, A, Z) = 1 +

(
1− 1

Aα

)ai + bix+ cix
2 + dix

3

(1− x)βi
, (5.135)
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fications in Ca [38].

The determined uv, q̄, and g nPDFs from the
HKN07 analysis [38] are shown for the calcium nu-
cleus in Fig. 5.55 at Q2=1 GeV2. LO and NLO
results are shown with uncertainty bands, showing
that nPDFs are determined more accurately at NLO.
We obtain χ2

min/d.o.f.=1.35 and 1.21 for the LO and
NLO fits, respectively.

The valence-quark modifications are well deter-
mined because of accurate measurements on the F2

ratios at medium x. The small-x region is fixed
by the baryon-number and charge conservations to-
gether with the modifications in the medium- and
large-x regions. The antiquark modifications are also
determined well at small x due to measurements on
F2 shadowing, and they are also fixed at x ∼ 0.1
because of Fermilab Drell-Yan measurements. How-
ever, the region at x > 0.2 is not determined at all.
The E906/SeaQuest collaboration is currently mea-
suring this medium-x region, and there is also a pos-
sibility to measure this region with an experiment at
J-PARC. In the near future, the uncertainty bands
should be significantly reduced for the antiquark.

The gluon distribution has the largest uncertain-
ties since it contributes to the F2 and Drell-Yan ratios
only as higher-order effects, and the Q2 dependence
of FA2 /F

A′

2 is not measured accurately on nuclear tar-
gets, which makes it difficult to pin down the gluon
modifications measured by scaling violations of F2.
The small-x nPDFs are dominated by huge gluon dis-
tributions, so that it is essential to determine them
accurately for new discoveries by high-energy heavy-
ion experiments. Therefore, it is important to mea-
sure the Q2 dependence of FA2 /F

A′

2 at EIC for deter-
mining nuclear gluon distributions.

In HKN07, the nPDFs are also investigated for the deuteron. In obtaining the “nu-
cleonic” PDFs, deuteron data are used after crude nuclear corrections. Since the current
PDFs could possibly contain nuclear effects, appropriate nuclear corrections should be ap-
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plied in future for excluding such effects. Our codes for calculating the nPDFs and their
uncertainties are available at the web site [970]. The technical details are explained in Refs.
[965, 38] and within the subroutine.

5.3.2 Color Transparency

Color transparency phenomena

B. Z. Kopeliovich

The nuclear medium is more transparent for colorless hadronic wave packets than pre-
dicted by the Glauber model. One can treat this phenomenon either in the hadronic basis as
a result of Gribov’s inelastic corrections [791], or in QCD as a result of color screening [780],
an effect called color transparency (CT). Although the two approaches are complementary,
the latter interpretation is more intuitive and straightforward. Indeed, a point-like color-
less object cannot interact with external color fields, therefore its cross section vanishes as
σ(r) ∝ r2 when r → 0 [780]. When a colorless wave packet propagates through a nucleus,
the fluctuations with small size have an enhanced survival probability which leads to a
non-exponential attenuation ∝ 1/L [780], where L is the path length in nuclear matter.

Diffractive electro-production of vector mesons off nuclei is affected by shadowing and
absorption which are different phenomena. Final state absorption of the produced meson
exists even in the classical probabilistic approach which relates nuclear suppression to the
survival probability W (z, b) of the vector meson produced at the point with longitudinal
coordinate z and impact parameter ~b,

W (z, b) = exp

[
− σV Nin

∞∫

z

dz′ ρA(b, z
′)

]
, (5.136)

where ρA(b, z) is the nuclear density and σV Nin is the inelastic V N cross section. Shadowing,
is also known to cause nuclear suppression. In contrast to final state absorption, it is a pure
quantum-mechanical effect which results from destructive interference of the amplitudes for
which the interaction takes place on different bound nucleons. It can be interpreted as a
competition between the different nucleons participating in the reaction: since the total
probability cannot exceed one, each participating nucleon diminishes the chances of others
to contribute to the process. The interplay between absorption and shadowing is controlled
by the two time scales introduced for the case of charmonium in eq. (5.107). They are
defined similarly for other hadrons.

In the low-energy limit of short lc < lf ≪ RA (shorter than the mean nucleon spacing
∼ 2 fm) only final state absorption matters. The ratio of the quasielastic γ∗A → V X and
γ∗N → V X cross sections reads,

Rinc

∣∣∣
lc,lf≪RA

≡ σγ
∗A
V

Aσγ
∗N
V

=
1

A

∫
d2b

∞∫

−∞

dz ρA(b, z) exp


−σV Nin

∞∫

z

dz′ ρA(b, z′)


 (5.137)

In the limit of long lc ≫ RA, it takes a different form; in the Glauber approximation,

Rinc

∣∣∣
lc≫RA

=

∫
d2b TA(b) exp

[
−σV Nin TA(b)

]
, (5.138)
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Figure 5.56. Comparison of the dipolea pproach with E665 data [971] for nuclear effect in elec-
troproduction of ρ-mesons. Left panel: Q2- dependence of nuclear transparency for lead and cal-
cium. Solid and dashed curves show the results of using the Green function approach and the
“frozen” approximation respectively. Right panel: Q2-dependence of the total cross section ratio
Rcoh(A/C) = 12σcoh/Aσcoh.

One can see that the V meson attenuates along the whole nucleus thickness in Eq. (5.138),
but only along roughly half of that length in Eq. (5.137). The exact expression beyond VDM
which interpolates between the two regimes (5.137) and (5.138) can be found in [925].

The effects of color transparency lead to deviation from this expression. These effects,
which can be understood as Gribov inelastic corrections lead to equation (5.108), which
should be used to study the effects of color transparency.

Light-cone distribution functions for the photons and vector mesons. In what
follows, we rely on the dipole description and need to know the distribution functions for
the photon and vector mesons. To be self-consistent, we should use the same light-cone
potential for describing both. In equation (5.30) for the Green function, we chose the real
part of the potential of the q̄q dipole as in Refs. [795, 913]. Solving Eq. (5.30) for the Green
function with this potential and assuming similar spin structures for the vector mesons and
photons, one can obtain an explicit formula for the vector meson light-cone wave function
[913], depending on a “width” and a “quark mass” phenomenological parameters that were
fitted to data in [934].
Cross section on a proton. Now we are in a position to calculate the forward electro-
production diffractive amplitudes, which have the following form, The forward scattering

amplitude MT,L
γ∗N→V N (s,Q

2)
∣∣∣
t=0

can be extracted from eq. (5.100) discussed previously.

These amplitudes are normalized as |MT,L|2 = 16π dσT,LN /dt
∣∣∣
t=0

. In what follows we cal-

culate the cross sections σ = σT + ǫ σL assuming that the photon polarization is ǫ = 1.
For HERA data, the normalization of the cross section and its energy and Q2 depen-

dence are remarkably well reproduced, see [913]. This is important, since the absolute
normalization is usually much more difficult to reproduce than nuclear effects, which we
switch to in the nest section.

As a cross-check for the choice of the ρ0 wave function, we also calculated the total ρ0-
nucleon cross section, which is usually expected to be roughly similar to the pion-nucleon
cross section σπNtot ∼ 25mb. For the dipole cross section, we adopt the KST parameteriza-
tion [795], which has been used above, and is designed to describe low-Q2 data. Then, at
ν = 100 GeV, we obtain σρNtot = 27mb which is quite a reasonable number.
Diffractive electroproduction on nuclei. In the high energy regime of lc ≫ RA one can
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Figure 5.57. Nuclear transparency for incoherent and coherent electroproduction of ρ0 on nitrogen
and lead as function of energy. Solid and dashed curves correspond to calculations with and without
gluon shadowing, respectively. Left two panels: Incoherent production at Q2 = 0, 1, 3, 5, 10 GeV2.
Right two panels: Coherent production at Q2 = 0, 3, 10 GeV2.

rely on Eq. (5.111) for incoherent electroproduction of ρ-mesons (with different quark mass
and meson wave function). As a manifestation of color transparency, the nuclear ratio, also
called nuclear transparency, TrincA ≡ Rinc defined in (5.110), was predicted in [972] to rise as
function of Q2. Indeed, the mean size of the q̄q component of the virtual photon decreases
qith Q2, so the nucleus becomes more transparent. The results of the E665 experiment
at Fermilab [971] depicted in Fig. 5.56 are in a good accord with the predicted behavior.
The calculations performed in the ”frozen” approximation (lc ≫ RA) are presented with
dashed curves. The more realistic results including finiteness of lc and lf are plotted by solid
curves. While the ”frozen” approximation is rather accurate for incoherent production, the
deviation from its expectation for coherent process at the energy of the E665 experiment is
significant.

The predicted energy dependence of the nuclear ratios in incoherent and coherent ρ
production on nitrogen and lead are depicted in Fig. 5.57. As was expected, the nucleus
becomes more opaque with energy for incoherent production. This happens because when
the hadronic fluctuations of the virtual photon live longer, they propagate through the
whole nucleus and attenuate more. On the other hand, in incoherent production the phase
shifts between the amplitudes of ρ production on different nucleons must me very small in
order the nucleus remained intact. This is why the nuclear ratio depicted in the bottom
part of Fig. 5.57 is so suppressed at low energies.

At high energies, such as at an EIC, gluon shadowing causes an additional nuclear
suppression of ρ production. This correction is calculated as was described in Sect. 5.2.1
and the final results are plotted in Fig. 5.57 by solid curves. As was expected, the effect of
gluon shadowing is not significant.

From color transparency to color opacity

Mark Strikman

Color transparency (CT) phenomena play several roles. They probe both the high energy
dynamics of the strong interaction and the minimal small size components of the hadrons.
In the case when some of the produced particles have energies smaller than 10 GeV in the
nucleus rest frame, these processes could be also used to study the space-time evolution
of small wave packets - a question relevant for interpretation of heavy-ion collisions. They
also provide an important link to the hard QCD black disk regime - the regime of strong
absorption for the processes which at lower energies exhibit the CT regime, and determine
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the kinematics where factorization can be applied to generalized parton distribution studies.
The basic feature of CT is the suppression of the interaction of small size color singlet

configurations: for a dipole of transverse size d, perturbative QCD gives

σ(d, xN ) =
π2

3
αs(Q

2
eff )d

2
[
xNGN (xN , Q

2
eff ) + 2/3xNSN (xN , Q

2
eff )

]
, (5.139)

where Q2
eff ∝ 1/d2, xN = Q2

eff/W
2, and the second term is due to the contribution of

quark exchanges which is important for intermediate energies [973]. There are two critical
requirements for CT phenomena: squeezing, the selection of small size configurations, and
freezing, the selection of high enough energies to allow the squeezed configuration to live
long enough.

At high energies, one can select CT processes by selecting special final states: for ex-
ample, the diffraction of a pion into two high pt jets, or a small initial state γ∗L such as in
the exclusive production of mesons. QCD factorization theorems [572, 973] were proven for
these processes based on the CT property of QCD. The space time picture of these processes
in the nucleus rest frame is as follows: long before the target, the projectile pion or virtual
photon fluctuates into a qq̄ configuration with transverse separation d, which elastically
scatters off the target with an amplitude which for t = 0 is given by Eq. (5.139) (up to
small corrections due to different off shellness of the qq̄ pair in the initial and final states),
followed by the transformation of the pair into two jets or a vector meson. With a slight
simplification, the amplitude for dijet diffractive production can be written as

A(π N → 2 jets + N)(z, pt, t = 0) ∝
∫
d2d ψqq̄π (d, z)σqq̄−N(A)(d, s)e

iptd, (5.140)

where z is the light-cone fraction of the pion momentum carried by a quark, and ψqq̄π (z, d) ∝
z(1− z)d→0 is the quark-antiquark Fock component of the meson light cone wave function.
The presence of the plane-wave factor in the final state leads to an expectation of an earlier
onset of scaling than in the case of the vector meson production, where the vector meson
wave function appears instead. CT was observed in the pion diffraction into two jets [974],
confirming predictions in [975]. The HERA data on exclusive vector meson production are
also well described.

Investigations at an EIC

Studies at an EIC will require investigations of different exclusive meson production
channels as a function of x,Q2. In the CT limit and −t ≥ 0.1 GeV2, where coherence
effects are negligible, one expects

σincohγ∗LA→”meson”A∗(t) = Zσγ∗Lp→”meson”N(t)Nσγ∗Ln→”meson”N (t) (5.141)

In EIC kinematics, the coherence length is ≫ 2RA so deviations from the CT prediction
could be due to leading twist effects - leading twist shadowing, and higher twist effects
of multiple interactions of the qq̄ pair with the target nucleus. There are two distinctive
regimes: x ≥ 0.03 where nuclear PDFs are practically linear in A, and x ≤ 0.01 where a
significant LT shadowing of nPDFs is expected (see discussion in section 5.2.1).
The x ≥ 0.03 region. Multiple interactions should reduce the cross section. At an EIC, it
would be possible to perform a scan as a function ofQ2. For lowQ2 and especially for σT , one
expects a hadron-like regime in which absorption is strong and σincohγ∗LA→”meson”A∗(t) ∝ A1/3.
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With an increase of Q2, one expects a transition from soft dynamics with Gribov-Glauber
type screening to the CT regime without significant LT gluon shadowing. In the case of J/ψ
production, one expects the CT regime already at low Q2 while for the light mesons, the
onset of CT can be much slower as essential transverse sizes of the qq̄ pair decrease rather
slowly with Q2 as manifested in the slow convergence of the t-slope of ρ-meson production
to the t-slope of J/ψ production with increasing Q2 [976].
The x ≤ 0.01 region. In this regime, one expects large shadowing due to the LT mecha-
nisms both for the incoherent and coherent contribution in which case [977], perturbative
color opacity is given by

dσγLA→V A

dt
/
dσγLN→V N

dt
= G2

A(x,Q
2
eff )/G

2
N (x,Q2

eff ) · F 2
A(t), (5.142)

where FA(t) is the nucleus form factor. Typical results for the expected suppression effect
are given in Fig. 5.58. Note here that effective Q2, which enters in Eq.5.142, is much smaller
than Q2 in the electro-production of light vector mesons. For example, in the case of the ρ
meson, Q2

eff ∼ 3 GeV2 for Q2 ∼ 10 GeV2. For J/ψ photo-production, Q2
eff ∼ 3÷ 4 GeV2

and grows slowly with Q2 [978]. Hence, for the top EIC energies, one expects a reduction
in the coherent J/ψ photo/electro production of at least a factor of two. Numerically, the
LT shadowing mechanism leads to a larger screening effect for the interaction of the small
dipoles than the HT dipole eikonal models (cf. [976]).

The incoherent cross section, σincoh, is shadowed somewhat more strongly than the
coherent cross section, σcoh. The effect grows with the increasing strength of the elementary
interaction. As a result, the ratio B−1γ∗N→”V ”N ·σincoh/σcoh of incoherent and coherent cross
sections integrated over t and divided by the slope of the elementary cross section is expected
to decrease slowly with decreasing x at fixed Q2 (cf. Fig.43 in [979]). For example, for
B = 4 GeV−2, R ≡ σincoh/σcoh changes from R ≈ 0.3 in the impulse approximation limit
to R ≈ 0.18 in the regime of strong absorption (strength of dipole interaction of the order
σtot(πN)). Simultaneous measurements of coherent and incoherent diffraction will allow
the testing of the underlying dynamics in greater detail.

Note that it will be feasible to measure the coherent cross section at t ∼ 0 due to the very
steep t dependence of coherent peak and the ability to kill most of the incoherent diffraction
experimentally. At the same time, measurements of the t dependence of coherent diffraction
beyond the first minimum are unlikely (except for the lightest nuclei like 4He) due to the
dominance of processes of the nuclear excitations for −t ≥ −t1. (Measurements of very
soft photons at rather large opening angles are required[980].) Note that the cross section
of inelastic diffraction with production of hadrons in the nucleus fragmentation region is
comparable to that of quasi-elastic diffraction. Studies of the t-dependence of the meson
production and/or hadron production in the nucleus fragmentation regionare required to
separate these two processes.
Testing the onset of the black disk regime. The study of vector meson production
provides a fine probe to test the onset of high density color opacity regime where the LT
approximation breaks down - the black disk regime in which interactions of small dipoles
with heavy nuclei become completely absorptive. In this limit, one can derive a model
independent prediction for the cross section of the vector meson production [981]:

dσγ
∗
T+A→V+A

dt
=
M2
V

Q2

dσγ
∗
L+A→V+A

dt
=

(2πR2
A)

2

16π

3ΓVM
3
V

α(M2
V +Q2)2

4
∣∣J1(

√−tRA)
∣∣2

−tR2
A

, (5.143)
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meson GPD and large angle γ∗(qqq) →→ πN scattering.

where ΓV is the electronic decay width V → e+e−, α is the fine-structure constant.
Eq. (5.143) corresponds to a drastically different result: a factor of Q4 slower Q2 dependence
of the cross section than the LT result.
Other directions of studies. Recently, a number of novel processes were suggested to
check the interplay between CT and color opacity phenomena as well as to use CT to
understand the dynamics of various elementary processes.

1. It was demonstrated that it is possible to trace small dipoles through the center of
the nucleus by selecting large t VM production with rapidity gap γ∗A→ V + gap+Y
for xg = −t/(−t+M2

Y ) [982].

2. It was suggested that amplitudes of high energy 2 → 3 branching processes: a+ b→
c+ d+ e, where t = (pb − pe)

2 is small, t′ = (pa − pc)
2, s′ = (pc + ped)

2 are large, and
t′/s′ = const can be written in a factorized form as a convolution of different nucleon
quark GPDs and hard 2 → 2 amplitudes [983]. Several examples of such processes are
depicted in Fig. 5.59. In the case of the ep collider one would be able to study both the
nucleon GPDs and GPDs of the real (virtual photon). Also, it will be possible to study
large angle γ(γ∗) + (qq̄) → meson1 +meson2 and γ(γ∗) + (qqq) → meson + baryon
reactions.

3. Embedding these processes in nuclei, for example by studying the process γ + A →
π+π+A∗, will make it possible to determine at what pT of the pions CT sets in
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and hence determine minimal pT for which these processes could be used to study
various quark GPDs. The nuclear transparency for these processes is very sensitive
to the size of the meson q̄ configurations [984]. Hence it may be possible to determine
the characteristic transverse size of the qq̄ dipole involved in the hard process using
Eq. (5.139). Also, by studying the transparency as a function of s for fixed s′, t and t′,
one could measure in great detail the rate and the pattern of the space time evolution
of small qq̄ wave packets.

5.3.3 Nuclear quark and gluon GPDs

Vadim Guzey, Mark Strikman

Generalized parton distributions (GPDs) parameterize the response of hadronic targets
(nucleon, nucleus) when probed by hard probes in exclusive reactions. The QCD factoriza-
tion theorems state that GPDs are universal distributions that can be accessed in a wide
range of hard exclusive processes: deeply virtual Compton scattering (DVCS) [624], electro-
production of mesons by longitudinal virtual photons [572], time-like Compton scattering,
etc. GPDs are fundamental and rigorously-defined quantities that encode information on:
(i) the distributions and correlations of partons in hadrons that is much richer than that
contained in usual diagonal parton distributions and elastic form factors (in a certain sense,
GPDs provide three-dimensional parton imaging), (ii) parton total angular momentum
(thus, GPDs are believed to help resolve the so-called proton spin crisis), etc. For the
detailed discussion of GPDs, see section 3.1 on “Imaging QCD Matter”

While what has been said above holds true for any hadronic target, nuclear GPDs are
also interesting in their own right:

(i) Nuclear GPDs give access to both proton and neutron GPDs [985, 986, 987, 988, 989].
Incoherent reactions (with nuclear break-up) can be used to study quasi-free neutron
GPDs [990].

(ii) Traditional nuclear effects—off-diagonal EMC effect [991, 992], nuclear shadowing and
antishadowing [993, 994, 807]—have been predicted to be more prominent than in the
diagonal case.

(iii) Nuclear GPDs may be a good tool to study not well-established/controversial and
novel nuclear effects such as the medium modifications of bound nucleon GPDs [992,
995] and presence of non-nucleonic degrees of freedom [996].

Medium xB > 0.05

The cleanest way to study GPDs is deeply virtual Compton scattering (DVCS), γ∗+A→
γ+A′. Nuclear DVCS is more complex and versatile than that with the free proton because
the nuclear target, A, can have various spins (the number of GPDs increases with the spin of
the target) and many different final states, A′, can be produced (A′ = A,A∗, A+π,A−1+N ,
etc.). In the situation when the final nuclear state cannot be detected, one can sum over
all final states A′ assuming their completeness and obtain for the nuclear DVCS cross
section [988]:

σDVCS = A(A− 1)σcohDVCS +AσNDVCS . (5.144)
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In this expression, the first term is the coherent-dominated contribution (without nuclear
break-up or excitation) which is proportional to the nuclear form factor squared, F 2

A, and
significant only at the small momentum transfer t. The second term is the incoherent con-
tribution whose t dependence is governed by that of the nucleon GPDs; this term dominates
at large t.

Similarly to Eq. (5.144), the expressions interpolating between the coherent and inco-
herent regimes can also be derived for the interference between DVCS and Bethe-Heitler
(BH) amplitudes and BH cross section. For instance, the coherent-dominated contribution
to the interference between DVCS and BH amplitudes scales as Z(A − 1) and that to the
BH cross section scales as Z(Z − 1) (Z is the nuclear charge). Therefore, one immediately
and model-independently predicts the enhancement of the ratio of the nuclear to free proton
DVCS beam-spin asymmetries at small t, AALU/A

p
LU ∼ (A− 1)/(Z − 1) [987, 988]. At large

t, the cross section is dominated by the incoherent contribution, no nuclear enhancement
is expected, and AALU/A

p
LU ∼ 1 (in fact, the neutron contribution somewhat suppresses

the ratio and makes AALU/A
p
LU < 1 [989]). While the HERMES analysis of nuclear DVCS

with 4He, 14N, 20Ne, 84Kr, and 132Xe targets supports that AALU/A
p
LU ∼ 1 at large t and

A-independent at all t, it finds that at small t, AALU/A
p
LU = 0.91 ± 0.19 [672].

Quark nuclear GPDs in the kinematic region of the off-diagonal EMC effect, 0.1 <
xB < 0.3, will be constrained with high precision by the analysis CLAS data on DVCS on
4He [997]. The experiment measured purely coherent nuclear DVCS (the recoiled nucleus
was detected using the BoNuS spectator tagger) and also DVCS on a quasi-free proton.
The latter will probe possible nuclear medium modifications of the bound proton quark
GPDs [995]. Gluon GPDs in nuclei can be accessed best in hard exclusive production of
heavy vector mesons. For instance, coherent J/ψ production for xB > 0.1 can be used to
learn about the off-diagonal EMC effect in the gluon channel. The incoherent production of
J/ψ can be used to probe medium modifications of the gluon GPD of the bound nucleon.

The EIC will be the only other accelerator beside JLab 12 GeV to study GPDs in e+A
collisions, and will contribute considerably to their knowledge. In particular, it will access
sea quark and gluon distributions, which are hard to measure at 6 GeV due to the limited
x and Q2 range, and open dedicated channels like J/Ψ diffreactive production.

Small xB < 0.05: leading twist shadowing and exclusive diffraction

The EIC will open the way to experimental measurements of nuclear GPDs at small xB ,
where nuclear shadowing is known to occur for PDFs. The leading twist theory of nuclear
shadowing (see section 5.2.1) allows one also to predict the impact parameter dependence
of nuclear PDFs [807, 803, 805, 806]. The resulting impact parameter dependent nuclear
PDFs, fj/A(x,Q

2, b) are the corresponding nuclear generalized parton distributions (GPDs)

in the ξ → 0 limit and in impact parameter space [994], fj/A(x,Q
2, b) = Hj

A(x, ξ = 0, b,Q2),
where the latter GPD depends in general on two light-cone fractions x and ξ; ξ is fixed by
the external kinematics, ξ = xB/(2 − xB), where xB is the standard Bjorken x. The
number of GPDs depends on the spin of the target; we shall consider only spinless targets
characterized by one twist-two chirally-even GPD Hj (j is the parton flavor).

Using the predictions of the leading twist theory of nuclear shadowing for the impact
parameter dependence of nuclear PDFs (Eq. (5.33)) and the connection of these to GPDs,
one can obtain the nuclear GPD Hj

A at small x in the ξ = 0 limit. The final result for the

345



 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

10-5 10-4 10-3 10-2 10-1

H
j A

/(
A

T
A
 f j

/N
)

x

ubar, Pb-208

t=0
t=-0.005 GeV2

t=-0.01 GeV2

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

10-5 10-4 10-3 10-2 10-1

x

gluon, Pb-208

t=0
t=-0.005 GeV2

t=-0.01 GeV2

Figure 5.60. The ratio of the gluon and ū-quark Hj
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function of x for different values of t. All curves correspond to Q2 = 4 GeV2 and model FGS10 H.

GPDs in the momentum space is

Hj
A(x, ξ = 0, t,Q2) = AFA(t)fj/N (x,Q

2)

− A(A− 1)

2
16πℜe

{
(1− iη)2

1 + η2

∫
d2b ei

~∆⊥·~b
∫ ∞

∞
dz1

∫ ∞

z1

dz2

∫ 0.1

x
dxIPρA(b, z1)

× ρA(b, z2)e
imNxIP (z1−z2)e−

A
2
(1−iη)σjsoft(x,Q2)

∫ z2
z1

dz′ρA(b,z′) 1

xIP
f
D(4)
j (β,Q2, xIP , tmin)

}
,

(5.145)

where the notation is the same as in eqs. (5.32) and (5.33).
Fig. 5.60 presents our predictions for the ratio Hj

A(x, ξ = 0, t,Q2)/[AFA(t)fj/N (x,Q
2)]

for 208Pb as a function of x for different values of t. The left panel corresponds to the ratio
of the ū-quark distributions; the right panel corresponds to the gluon distributions. All
curves correspond to Q2 = 4 GeV2 and model FGS10 H (see details in section 5.2.1). Since
the t dependence of the shadowing correction to Hj

A(x, ξ = 0, t) (second term in Eq. (5.145))
is somewhat slower than that of the impulse approximation (the first term), the effect of
nuclear shadowing increases as |t| is increased, as expected.

Experimental observables measured in hard exclusive processes such as, e.g., γ∗ +A→
γ(J/Ψ, ρ, . . . ) + A, probe the GPD Hj

A(x, ξ, t,Q
2) integrated over the entire region of the

light-cone variable x, 0 ≤ x ≤ 1. However, at high energies (small ξ or xB), the situation
simplifies: the predominantly imaginary γ∗+A→ γ(J/Ψ, ρ, . . . )+A scattering amplitudes
are expressed solely in terms of the GPDs at the x = ξ cross-over line, Hj

A(ξ, ξ, t,Q
2) (to the

leading order in the strong coupling constant αs). In addition, it was shown in [592] that at
high energies and in the leading logarithmic approximation (LLA), GPDs at an input scale
Q2

0 ∼ few GeV2 can be approximated well by the usual parton distributions, i.e., it is safe
to neglect the effect of the skewness ξ. Therefore, for instance, for the imaginary part of the
coherent nuclear deeply virtual Compton scattering (DVCS) amplitude (γ∗ +A→ γ +A),
we have at the leading order in αs:

ℑmADVCS(ξ, t,Q
2) = −π

∑

q

e2q
[
Hq
A(ξ, ξ, t,Q

2) +H q̄
A(ξ, ξ, t,Q

2)
]

≈ −π
∑

q

e2q
[
Hq
A(ξ, ξ = 0, t,Q2) +H q̄

A(ξ, ξ = 0, t,Q2)
]
,(5.146)

where eq are the quark charges; Hq
A(ξ, ξ = 0, t,Q2) are given by Eq. (5.145).
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The cleanest way to access GPDs is via DVCS. At the photon level, the γ∗+A→ γ+A
cross section reads, (see, e.g., [625]):

dσDVCS

dt
=
πα2

emx
2(1− ξ2)

Q4
√
1 + ǫ2

|ℑmADVCS(ξ, t,Q
2)|2 , (5.147)

where αem is the fine-structure constant; ǫ2 = 4x2m2
N/Q

2; ℑmADVCS is given by Eq. (5.146).
The DVCS process interferes and competes with the purely electromagnetic Bethe-

Heitler (BH) process. The BH cross section at the photon level can be written in the
following form [625]:

dσBH

dt
=

πα2
em

4Q2t(1 + ǫ)5/2(1− y − y2/2)

∫ 2π

0

dφ

2π

1

P1(φ)P2(φ)
|ABH(ξ, t,Q

2, φ)|2 , (5.148)

where y = (q · PA)/(k · PA) = Q2/(xs) (k is the incoming lepton momentum, q is the
momentum of the virtual photon, PA is the momentum of the incoming nucleus, s is the
total invariant energy squared); φ is the angle between the lepton and hadron scattering
planes; P1(φ) and P2(φ) are proportional to the lepton propagators; |ABH(ξ, t,Q

2)|2 is
the BH amplitude squared. The expressions for P1,2(φ) and |ABH(ξ, t,Q

2)|2 can be found
in [625]. Note that |ABH(ξ, t,Q

2)|2 is proportional to the nuclear electric form factor squared
(|FA(t)|2) and the nucleus charge squared (Z2).

Integrating the differential cross sections in Eqs. (5.147) and (5.148) over t, one obtains
the corresponding t-integrated cross section σDVCS (BH) between tmin ≈ −x2m2

N and tmax =
−1 GeV2:

In fig, 5.61 we present our predictions for a 208Pb target: in the left plot, the DVCS
and BH cross sections at Q2 = 4 GeV2, in the middle plot the differential cross sections as
a function of |t| at fixed x = 5× 10−3, and in the right plot the ALU asymmetry.

In the considered kinematics, the t-integrated BH cross section is much larger than the
DVCS cross section for x < 10−2 due to the dramatic enhancement of the BH cross section
at small t ≈ tmin by the factor 1/t, see Eq. (5.148). Therefore, in order to extract a small
DVCS signal on the background of the dominant BH contribution for such x, one needs to
consider the observable differential in t. The t dependence of the DVCS and BH differential
cross sections has the characteristic shape of the nuclear form factor squared, with distinct
minima and maxima. However, the minima of the DVCS cross section are slightly shifted
towards smaller t: this is the effect of the leading twist nuclear shadowing in quark nuclear
GPDs. The small shift of the minima toward smaller t can be interpreted as an increase
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of the transverse size of the distributions of quarks in nuclei. One can enhance the effect
by using lighter nuclei (e.g., 4He and 12C) or by considering observables sensitive to the
interference between the BH and DVCS amplitudes. For instance, the DVCS beam-spin
asymmetry at ALU(φ = 900), dramatically oscillates as a function of |t| [994], and the sole
reason for these oscillations is the leading twist nuclear shadowing.

Another possibility to study nuclear shadowing in DVCS is offered by processes with
nuclear break-up. In this case, the nuclear modification (suppression due to shadowing) of
the DVCS break-up cross section (as compared to the impulse approximation) is as large—or
even bigger—as that for the coherent case. At the same time, in the impulse approximation,
the relative contribution of the DVCS and BH cross sections is enhanced by A/Z compared
to the ep case. It allows one to observe the DVCS signal on the large BH background down
to much smaller x than in the ep case, see the discussion in section 3.1.

The leading twist theory of nuclear shadowing allows one also to make predictions for
certain observables in exclusive electroproduction of heavy vector mesons (J/ψ, Υ) with
nuclear targets which probe the nuclear gluon distribution, with a pattern similar to that
discussed for small-x nuclear DVCS [807]. See the discussion by M.Strikman in Section 5.3.2.

5.3.4 Nuclear TMDs

Jian-Hua Gao, Zuo-tang Liang, Xin-Nian Wang, Jian Zhou

Transverse momentum dependent distributions (TMDs) were discussed extensively for
nucleons earlier in this report. TMDs play an important role in studying final/initial state
multiple re-scattering effects in nuclei. Indeed, the leading power nuclear effect comes from
the gauge link appearing in the nuclear TMDs, in which the re-scattering effect is encoded.

The extraction of the TMDs from high energy scattering data relies on TMD factoriza-
tion theorems, established in the e+e− annihilation process [241] and semi-inclusive deep-
inelastic (SIDIS) lepton-nucleon scattering [256]. It is not so clear whether TMD factor-
ization still holds in SIDIS off a large nucleus target. In our recent work [998], we simply
assume that it does. Correspondingly, one can introduce leading power unpolarized nuclear
TMDs. For simplicity, we restrict our discussion to the light cone gauge, A+ = 0 [263],
where

fAq (x,
~k⊥) =

∫
dy−

2π

d2y⊥
(2π)2

eixp
+y−−i~k⊥·~y⊥〈A | ψ̄(0,~0⊥)

γ+

2
L⊥(0, y)ψ(y−, ~y⊥) | A〉, (5.149)

and the transverse gauge link is L⊥ ≡ P exp
[
−ig

∫ ~y⊥
~0⊥

d~ξ⊥ · ~A⊥(∞, ~ξ⊥)
]
. This gauge link is

not only crucial to ensure the gauge invariance of the TMD parton distribution functions,
but also leads to physical consequences such as single-spin asymmetries in SIDIS and the
Drell-Yan process in e+ p collisions [251, 261, 262]. For DIS off a nucleus target, it should
also contain information on the quark transverse momentum broadening due to multiple
scattering inside the nucleus [998].

In the study of either cold or hot nuclear matter, parton transverse momentum broaden-
ing plays a crucial role in unraveling the medium properties. One important parameter that
controls parton energy loss is the parton transport parameter q̂, i.e., the transverse momen-
tum broadening squared per unit of propagation length [999]. Therefore, the calculation
and measurement of the jet transport parameter is an important step toward understanding
the intrinsic properties of the QCD medium. Much effort has been devoted to the study
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of transverse momentum broadening in high energy collisions within different approaches
[999, 1000, 1001, 1002, 1003, 1004, 1005, 1006].

In this contribution, we start from the matrix element definition of the nuclear TMD
and identify the gauge link as the main source of leading nuclear effects. The broadened
distribution has a Gaussian form, as found in earlier studies [1005], and suppresses the
azimuthal asymmetry in SIDIS off nuclear targets. This in turns gives direct experimental
access to the cold nuclear matter transport coefficient q̂, and offers a way to determine the
relative magnitude of the intrinsic transverse momentum in various nucleon TMDs.
Nuclear TMDs and nucleon TMDs. The effect of final state interactions that lead to
transverse momentum broadening can be encoded in the gauge link. In fact, the nuclear
dependent part of the quark TMD can be isolated from the gauge link so that the nuclear
TMD can be expressed as a convolution of the Gaussian broadening and the nucleon TMD.
Assuming a weakly bound nucleon, neglecting the correlation between different nucleons,
and keeping only the matrix elements with nuclear enhancement one obtains the nuclear
TMD,

fAq (x,
~k⊥) =

A

π∆2F

∫
d2ℓ⊥e

−(~k⊥−~ℓ⊥)2/∆2F fNq (x, ~ℓ⊥) , (5.150)

as a convolution of the nucleon TMD and a Gaussian with a width ∆2F given by the total
transverse momentum broadening squared,

∆2F =
1

AfNq (x)

∫
d2k⊥k

2
⊥
[
fAq (x,

~k⊥)− fNq (x,~k⊥)
]
=

∫
dξ−N q̂F (ξN ) . (5.151)

where the quark transport parameter q̂F (ξN ) is defined as

q̂F (ξN ) = − g2

2Nc
ρAN (ξN )

∫
dξ−

2p+
〈N | F+σ(0)F

σ
+(ξ
−) | N〉 = 2π2αs

Nc
ρAN (ξN )[xf

g
N (x)]x=0,

(5.152)
with ρAN (ξN ) is the spatial nucleon density inside the nucleus and fNg (x) is the gluon distri-
bution function in a nucleon. Eq. (5.150) is our main result.

Nuclear dependence of azimuthal asymmetry in SIDIS. One can generalize the
above approach to the nuclear modification of higher twist TMD parton distributions.
The case of twist-3 and twist-4 TMDs [243, 247, 1007], which account for the cosφ and
cos 2φ azimuthal asymmetries in SIDIS, has been recently investigated in Ref. [1008, 1009].
Here we review the nuclear dependent cosφ azimuthal asymmetry in the two kinematic re-
gions: at small transverse momentum Ph⊥ ∼ ΛQCD and intermediate transverse momentum
ΛQCD ≪ Ph⊥ ≪ Q, where Q is the virtual photon momentum. The central ingredient of
the treatment in Ref. [1008] is the relation between the nucleon twist-3 TMDs and nuclear
ones. If we look at jet production in SIDIS, the azimuthal asymmetry is solely determined
by one twist-3 TMD distribution f⊥(x, k⊥). The ratio of the asymmetry between SIDIS off
nucleons and nuclei is,

〈cosφ〉eA
〈cosφ〉eN

=
fA⊥ (x, k⊥)/f

A(x, k⊥)

fN⊥ (x, k⊥)/fN (x, k⊥)
(5.153)

The ratio depends on how the twist-3 TMD distributions fA⊥ is enhanced/suppressed due
to the stronger final state interaction taking place inside a nucleus. Following the same
approach applied to the twist-2 TMD distribution, we relate the function fA⊥ to fN⊥ ,

fA⊥ (x, k⊥) ≈ A

π∆2F

∫
d2ℓ⊥

(~k⊥ · ~ℓ⊥)
~k2⊥

e−(
~k⊥−~ℓ⊥)2/∆2F fN⊥ (x, ℓ⊥) (5.154)
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Given the TMDs fN(x, k⊥) and fN⊥ (x, k⊥), one will be able to calculate the ratio (5.154).
To illustrate the nuclear dependence of the asymmetry qualitatively, we consider an ansatz
of the Gaussian distributions in k⊥ for both TMDs,

fN(x, k⊥) =
1

πα
fNq (x)e−k

2
⊥/α , fN⊥ (x, k⊥) =

1

πβ
fNq⊥(x)e

−k2⊥/β. (5.155)

As shown in Fig. 5.62, the azimuthal asymmetry is suppressed in e+A SIDIS as compared
to that in e+N SIDIS. Note also that the suppression pattern as a function of k⊥ is sensitive
to the relative magnitude of the intrinsic transverse momentum in the nucleon TMDs.
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Figure 5.62. Ratio 〈cosφ〉eA
〈cosφ〉eN

as a function of ∆2F for different k⊥ and the relative width β/α.

Now let us discuss the asymmetry at intermediate transverse momentum. The fact
that TMDs are perturbatively calculable when p⊥ ≫ ΛQCD or k⊥ ≫ ΛQCD allows us
to reduce the theoretical uncertainty, since the twist-3 TMDs are poorly known so far.
In the parton model, the azimuthal asymmetry for hadron production in SIDIS can be
expressed as a convolution of a few TMD distributions and TMD fragmentation functions
[243, 247]. It turns out that fragmentation functions H⊥1 and H̃ are power suppressed
compared to D̃⊥ and D at large p⊥ [292, 296, 297]. Therefore, at intermediate transverse
momentum, the leading power terms are proportional to f1D̃⊥ and f⊥D. In the current
fragmentation region, where p⊥ is large, we make a collinear expansion around p⊥ = q⊥
in terms of the power k⊥/q⊥ and keep the quadratic terms k2⊥/q

2
⊥ in order to extract

the nuclear dependent contributions. After carrying out the integrals over p⊥, we find

the nuclear dependent azimuthal asymmetry is related to the term D(z)
∫ k2⊥
q2
⊥

f1(x, k⊥)d2k⊥.

Therefore, the difference of the cosφh azimuthal asymmetry is proportional to the transverse
momentum broadening.

〈cosφh〉eA − 〈cos φh〉eN ∝
∫
k2⊥
q2⊥

[
fA1 (x, k⊥)− fN1 (x, k⊥)

]
=

∆2F

q2⊥
(5.156)

Conclusions. In summary, we can get a direct handle on the crucial transport parameter q̂,
which descrcibed the properties of the QCD medium, by measuring the nuclear dependent
azimuthal asymmetry at intermediate transverse momentum. Conversely, the target nucleus
can be used as a filter to study nucleon TMDs, e.g., to determine the relative magnitude of
the intrinsic transverse momentum of fN and fN⊥ .

Acknowledgments: J.Z. thanks A. Metz and M. Diehl for helpful discussion.
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5.4 Parton Propagation and Hadronization

5.4.1 Current Fragmentation

Introduction and the role of e+A collisions

Raphaël Dupré and Alberto Accardi

The fragmentation process, by which hard partons turn into hadrons, is only partly
known due to its non perturbative nature. Fragmentation functions, which encode the
probability that a parton fragments into a hadron, have been obtained by fitting experi-
mental data covering large kinematic ranges and numerous hadron species, see Section 5.4.1.
However, knowledge about the dynamics of hadronization remains fragmentary: this process
has been studied in a number of model calculations, but lacks a first-principles description
in QCD. One possible scenario for the hadronization process is sketched in figure 5.63 as an
example for DIS. At LO the virtual photon strikes a quark, which then propagates quasi-
freely emitting gluons; after a time called production time, the quark neutralizes its color
and gluon emission stops. The quark becomes a pre-hadron, which will eventually form
a hadron at the formation time. In fact, a color string connects the struck quark to its
nucleon, and hadrons can be formed all along this string, but we focus our attention on the
hadron that contains the struck parton. In nuclear DIS, the hadronization process happens
at least in part in the target nucleus (cold nuclear matter). Thus the quark is subject to
energy loss by medium-induced gluon brehmsstrahlung, and the prehadron (as well as the
hadron) can have inelastic interactions with the surrounding nucleons, leading to attenua-
tion and broadening of the produced particle spectra. The relative weight of one mechanism
compared to the other is determined by the magnitude of the color neutralization time. For
full reviews, see Refs. [1010, 1011, 1012]. Alternative scenarios are also feasible and final
states in nuclear DIS (nDIS) can help untangle these from the scenario outlined here to
provide genuine insight into the hadronization process.

Figure 5.63. A model sketch of the hadronization process.

These nuclear effects are both an opportunity for a first principles study hadronization
and nuclear properties as well as important benchmarks for reducing existing uncertainties
in many nuclear measurements. For example, in neutrino experiments, nuclei are used to
maximize the cross section and the kinematics are reconstructed from the hadronic final
state. Therefore, a poor knowledge of hadron attenuation leads to a tangible systematic
error. In heavy-ion collisions, hadrons are produced in hot and expanding nuclear matter,
whose properties can be measured, among other methods, by the modifications of high-
energy particle spectra compared to proton-proton and proton-nucleus collisions. It is clear
that the details and the time scales of the hadronization process can profoundly modify the
interpration of the data, see Fig. 5.2.
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The role of e+A collisions. Nuclear deep inelatic scattering provides a known and stable
cold nuclear medium and a low-multiplicity final state with strong experimental control on
the kinematics of the hard scattering. This permits one to use nuclei as femtometer-scale
detectors and study the time scales of the hadronization process and calibrate theoretical
models for parton energy loss and prehadronic scattering, that can then be applied, for
instance, to the study of the QGP, see Figure 5.2. Initial state parton energy loss can
furthermore be studied in isolation from hadronization in Drell-Yan lepton pair production
in p + A collisions, where however it can be masked by nuclear modification of the target
wave function such as antishadowing and the EMC effect. So, an interplay of nuclear DIS
and nuclear Drell-Yan can help isolate hadronization effects on one hand, and on the other
to clarify the differences in quark and anti-quark antishadowing. Perhaps more interest-
ingly, the study of hadronization in nuclear DIS can give direct information about the gluon
structure of the nuclei. For example, one can link energy loss and transverse momentum
broadening to the gluon density [1013] or more directly to the saturation scale [801]. In
models like GiBUU [1014], focussing on hadron absorption, access to the pre-hadron evolu-
tion and its color transparency evolution is possible. All these physical interpretation of the
data are model dependent and based on very different assumptions about the relative im-
portance of the interaction mechanisms, therefore they are fragile and need to be carefully
validated and calibrated with precise data.

The typical observables used to explore hadronization in nuclear DIS are the multiplic-
ity ratio and the transverse momentum broadening, in both cases they are comparison of
deuterium with heavier nuclei. The multiplicity ratio, representing the production rate of
a hadron h in a nuclear target A compared to Deuterium, is defined as

RhA(Q
2, ν, zh, p

2
T ) =

Nh
A(Q

2, ν, zh, p
2
T )/N

e
A(Q

2, ν)

Nh
D(Q

2, ν, zh, p
2
T )/N

e
D(Q

2, ν)
(5.157)

with N e
t and Nh

t respectively the number of electrons and the number of semi-inclusive
hadrons h. 1−RhA is the attenuation of hadron production in a nucleus of atomic mass A.
This ratio minimizes the influence of nuclear PDF modifications, which have been shown
to cancel to a large degree up to NLO. The hadron transverse momentum broadening,
representing the increase of transverse momentum in a nuclear target A compared to Deu-
terium, is defined by ∆〈p2T 〉 = 〈p2T 〉A − 〈p2T 〉D, with 〈p2T 〉t the average hadron transverse
momentum measured in a nucleus. When integrated over a large kinematic range, these
observables they are dominated by the geometry of the nuclei and do not discriminate well
between the models. One needs to also consider more differential observables, including
a multi-dimensional analysis of RM and ∆〈p2T 〉, and hadron-hadron and photon-hadron
correlations.

Another possibility is to use experimental settings in which we can isolate the involved
processes. In the case of EIC, the high energy boost imparted to the struck quark in
events with large ν can increase dramatically the production length, which leads to pre-
hadron production far outside the nuclei and an experimental isolation of pure parton
energy loss effects. Since the pre-hadron production time is expected to roughly be inversely
proportional to the mass squared of the hadron, measuring attenuation and pT -broadening
of many meson and baryon species, together with the large ν leverage afforded by the EIC,
will give another important handle in the exploration of the hadronization mechanism. New
features will be availabe at the EIC, the high rate for heavy flavor production (D and B
mesons) will allow the measurement of heavy quark energy loss. Finally, jet production,
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will open the possibility to study the dynamics of parton showers and the detailed transport
properties of cold nuclear matter using specific jet observables.
Overview of theoretical models. Three processes are typically included in theoretical
descriptions of in-medium hadronization: quark energy loss, pre-hadron absorption and
modified fragmentation functions. The models in the literature are usually based on one or
two of those and neglect the others. In this section we will discuss a few examples to give
an idea of the abundant existing literature; for a detailed review, including models specific
to heavy-ion collision experiments, see Ref. [1010].

Pure quark energy loss models assume a very long production time and are typically used
to describe hadron suppression in the hot nuclear matter produced in heavy-ion collision. In
a few cases they have been applied to nDIS data as well [1015, 1016] permitting a common
interpretation of hadron suppression in cold and hot nuclear matter. In these models,
hadron suppression is due to the lower energy of the quark when it fragments, so that
hadrons are produced in lower number and at lower energy. The differences in the models
depend on the way calculations of medium-induced gluon radiation are performed, on the
modeling of the medium, and on assumptions about its coupling to the hard parton.

Typically, parton energy loss is determined by the transport coefficient q̂, which is defined
as the transverse momentum square transfered to a quark after propagating through a length
of nuclear matter and is a characteristic property of that matter. It is expected to be much
larger in a Quark-Gluon Plasma than in the nucleus of a nDIS experiment, which is what
is observed from the analysis of experimental data from RHIC and HERMES [1015, 1016,
1017, 1018]. The q̂ transport coefficient is directly related to the observed broadening of
the pT distribution of hadrons in nDIS; it follows that the main challenge for these pure
energy loss models is to make a coherent picture of both multiplicity ratios and hadron
pT broadening. In particular, for some of the models, the q̂ extracted from multiplicity
ratios is larger by an order of magnitude than what one would estimate from the hadron
transverse momentum broadening. This has led some authors [1019] to the conclusion that
quark energy loss is not enough to explain the observed nuclear effects; nevertheless, the
variation between theoretical models is still too big for a definitive statement.

The GiBUU model [1014] is an absorption model based on Boltzmann equation including
only hadronic and pre-hadronic interactions, see Section 5.4.1. It assumes short productions
times obtained from the Lund string model and neglects gluon brehmstralung from the par-
tonic stage. It can describe very well well most of the hadron multiplicity ratios measured
at HERMES and EMC using a linear growth of the pre-hadron cross section between pro-
duction time and formation time. Other pure absorption models [1020, 1021, 1022] are also
successful in describing hadron attenuation. However, the transverse momentum broad-
ening remains a challenge for this kind of models; some progress within GiBUU has been
presented during the meeting by Kai Gallmeister.

To resolve the problems of the previous “pure” models, Kopeliovich et al. [1019] describe
hadronization including both quark energy loss and hadron absorption. In their model,
the transverse momentum broadening is linked to quark energy loss and the multiplicity
ratio suppression is explained by hadron absorption, therefore the two processes can be
independently quantified. This model describes HERMES data to a large extent, and
highlights the fact several processes are involved and need to be disentangled.

Recently, HERMES data have also been described by assuming factorization and univer-
sality to hold at the nuclear level not only for parton distributions but also for fragmentation
functions, and a set of nuclear Fragmentation Functions have been fitted to experimental
data using both e + A interactions and d + Au collisions at RHIC. In this case, no dy-
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Figure 5.64. Multiplicity ratio of positively charged hadrons (left) and negatively charged hadrons
(right) from the HERMES experiment [1029]

namical assumption is made of the physical mechanism for nuclear modifications of hadron
production; this information is subsumed into the non-perturbative nuclear FFs–see Section
5.4.1.

A number of other models exist using different variants of the discussed mechanisms,
and most of them are able to describe the existing data to a good extent: no consensus
is reached yet on which mechanisms are dominant, and indeed this is the main motivation
for future precise measurements of hadronization at Jefferson Lab [1023], which will be
completed by the time EIC starts its operations, and will help settle some of the issues
related to early time color dynamics and interaction in cold nuclear matter.
Previous mesurements and open questions. Unidentified charged hadron multiplicity
ratios in nuclei were measured in numerous lepton facilities, the earlier results were by
Osborne et al. [1024] at SLAC, Hand et al. [1025] and the E665 collaboration [1026] at
FNAL, and the European Muon Collaboration [1027, 1028] at CERN. Those measurements
revealed a general picture: hadron suppression is stronger at low ν and high z. On the
opposite side, at low z, an increase of the number of hadron is observed.

In the more recent data from the HERMES collaboration [1029, 1030] several hadrons
are studied individually (Fig. 5.64), and new observables such as transverse momentum
broadening (figures 5.67 and 5.68) and two hadrons multiplicity ratios [1031] are measured.
Because of their improved precision and the large number of hadron species, these data
provide us today with a much more detailed picture, which leads to new questions. The
behavior of the kaons, for example, is very interesting: K+ are less suppressed than pions,
but K− have the same behavior as pions (figure 5.64). This difference is not reproduced
by existing models, showing that the relatively simple phenomenological models utilized so
far cannot fully describe the data. Furthermore, the introduction by HERMES of precise
and flavor dependent ∆p2T measurement [1030] has revealed another strange behavior: the
pT broadening of K+ is larger than for the pion (Figure 5.67 right). This seems to indicate
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more interaction for kaons, and yet they are less suppressed. To solve this apparent incon-
gruity, one may have to consider models based on different processes involved at different
stages of hadronization, like in Reference [1019], reinforcing the indications coming from
kaon suppression. Furthemore, no model is able to describe the z dependence of the pT
broadening, highlighting once again the need for a more detailed theoretical understanding
of hadronization. Finally, proton observables are very different from anti-protons (figure
5.64), and no model is yet able to reproduce them correctly, although few attempts have
been made [1014, 1032]. At the low energies of HERMES, part of the problem may be
due to protons coming from the target fragmentation region, which is interesting in its own
right. The collider geometry and the large energy range of EIC will permit to experimen-
tally separate clearly target and current fragmentation, allowing to address hadronization in
either region. Indeed developing a consistent picture within a given model for both current
and target fragmentation would be a great theoretical progress.

To complete the review of existing data, we should mention the preliminary results on
pion and kaon production from the CLAS collaboration at Jefferson Lab, where electrons
up to 5 GeV scatter on fixed targets ranging from Carbon to Lead [1033, 1034].

Studying hadronization at an EIC

Raphaël Dupré and Alberto Accardi

The experimental study of the hadronization process using nDIS is well established;
however the high energy available at the EIC creates novel opportunities. The main inter-
est in going at higher energy is to ensure that hadron formation occurs outside of the nuclei,
in order to isolate in-medium parton interactions and energy loss. Furthemore, an EIC will
permit, for the first time in e+A collisions, the study of hadronization of the open charm and
eventually open bottom mesons. Recent results from RHIC [1035, 1036] are showing unex-
pected results for open charm and bottom suppression in A+A collisions, and several con-
trasting explainations have already been suggested, with more detailed experiments planned
at RHIC. However, due to the intricated interplay of the many variables in A+A collisions
and to the poorly known nature of the Quark-Gluon Plasma partons, the e+A input seems
necessary to confirm any interpretation. Also, the considerable energy leverage offered by
an EIC is a chance to map precisely the Q2 evolution of parton energy loss, and determine
possible nuclear modifications of DGLAP evolution. The high luminosity will also facilitate
the study of two particle correlations (such as hadron-hadron or photon-hadron) over a
wide energy range, largely improving recent HERMES measurements, and complementing
the low-energy measurements planned at CLAS. Finally, high energy permits access to jets,
which give an opportunity to use new observables with improved sensitivity to quark energy
loss and the medium modification of fragmentation functions, see Section 5.4.2. They also
facilitate a detailed determination of the cold nuclear matter transport coefficients, which
encode basic information on the non perturbative gluonic structure of the nuclei and can
be calculated from first principles, e.g., in lattice QCD [1037].

To illustrate the possibilities offered by EIC, we show projections done using the PYTHIA
Monte-Carlo generator to evaluate cross sections at s = 200 or 1000 GeV2, and L =
200 fb−1. We apply a series of cuts on the generated events to ensure the DIS nature of the
interaction (Q2 > 1 GeV2 and W 2 > 4 GeV2), to limit radiative corrections (y < 0.85), to
insure that we can detect the scattered electron (y > 0.1) and to limit di-parton production
in the hard scattering of the virtual photon (xBj > 0.1). Finally we assume an acceptance
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Figure 5.65. Multiplicity ratio in function of z for various ν bins. Full points are data from HERMES
[1029], empty are projections for statistical errors at the EIC, at arbitrary vertical position. The
left panel shows EIC measurements at s = 200GeV2, for 2 different ν cuts (20 < ν < 30 GeV and
50 < ν < 70 GeV); the right panel at s = 1000GeV2 with 100 < ν < 130 GeV.

of 50% for pions, eta meson and kaons, and, an acceptance of 2% for heavy mesons. The
acceptance is set low for heavy mesons to account for the small number of decay channels
that can be effectively detected. EIC observables are plotted on arbitrary vertical scales,
and include statistical errors only.

An EIC is the perfect tool for precise measurement of quark energy loss and transverse
momentum broadening. One may object that at the higher EIC energies, because of the
large ν & 150 GeV, the relative effect on the quark momentum is too little to produce
an appreciable hadron attenuation. This is true at least for the pions, as shown by EMC
data. However, attenuation may in fact disappear at a yet higher value of ν for large
z or for heavier particles, because of reduced production times, or for large Q2, because
of a faster evolution in virtuality as discussed in Section 5.4.2. Anyway, because of the
EIC kinematic flexibility, interesting multiplicity ratios can be measured. For example,
Figure 5.65 shows projections for light and heavy flavors, which would shed light on the
heavy quarks at RHIC, where they unexpectedly display a similar suppression compared
to their light counterparts. It is also interesting to compare mesons of different mass but
the same valence quark contents, such as π0 vs. η, and K0 vs Φ. Figure 5.66 shows
projections for the former case compared to calculations in a pure energy loss or pure
prehadron absorption scenario. The sensitivity of such measurement to the hadronization
time scales is obvious.

Changing observables, measurements of the hadron transverse momentum broadening
permit getting around the small values of hadron attenuation at large energies. Indeed the
pT broadening to first approximation is independent of ν, and even very little effects can
be experimentally observed; moreover, the induced transverse momentum has a theoretical
interpretation in terms of transport coefficients. However, one should keep in mind that
∆〈p2T 〉 of pions or other hadrons is not a direct measurement of q̂, which is the parton
transverse momentum broadening, and that it is essential to use dependences in ν and
z to make a model independent extraction of q̂. One may also access q̂ through nuclear
modifications of hadron azimuthal asymmetries, see Section 5.3.4. The importance of this
topic, especially in the scope of other EIC measurements, is enhanced by the connection
between q̂ and the saturation scale [801], enabling an independent large-x measurement
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Figure 5.66. Multiplicity ratio for π0 and η mesons compared to pure energy loss and pure prehadron
absorption computations.
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Figure 5.67. Transverse momentum broadening in function of z (left) and A (right), empty triangles
and star are projections for EIC at s = 1000GeV2, full points are HERMES data.

of the latter, complementary to the more traditional small-x measurements discussed in
Section 5.2. An EIC will not only allow one to make those measurements with pions but
also, and uniquely compared to previous e+A facilities, with heavy mesons (see figures
5.67).

The Q2 evolution of hadron attenuation is not clearly understood: HERMES data indi-
cate a small rise of the transverse momentum broadening, but the Q2 coverage is not large
enough to make a definite statement. An EIC can do a far better job as shown in figure 5.68
and provide a unique probe to detect any modification of the DGLAP evolution in nuclear
medium.

The scaling of the hadronization times and the quark energy loss with the mass of quarks
is an important question that can be used to reveal pQCD effects in parton energy loss and
non perturbative effects in hadronization [1038, 1039]. Many measurements to explore this
at the EIC are possible, as the figures in this section illustrate.

To achieve the discussed measurement the key experimental requirement are good par-
ticle ID in general; for heavy flavors one needs in particular a very good vertex detector
resolution, which needs to be of the order of few tens of micrometer, and high luminosity
to reach a statistical precision allowing unambigous theoretical interpretations. Having a ν
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range covering low values for studies of hadronization and large values for studies of parton
propagation and energy loss will require energies spanning s = 200 − 1000 GeV2. The
lowest required energy can be increased provided measurements of y < 0.1 can be achieved
for SIDIS observables.

Finally, the high energy of an EIC provides the chance, for the first time in e + A
collisions, to study hadronization through jet observables. Jets are a new and independent
way to access transport coefficient q̂ and confirm other measurements, to explore in detail
the medium induced gluon radiation and transport properties of cold nuclear matter, and
to study the conversion of the parton shower into hadrons, see Section 5.4.2.

Hadronization in e+A collisions within GiBUU

Kai Gallmeister and Ulrich Mosel

The study of the interaction of hadrons, produced by elementary probes in a nucleus,
with the surrounding nuclear medium can help to investigate important topics, such as
color transparency and hadronization time scales. We investigate this by means of the
semiclassical GiBUU transport code [1040], which not only allows for the absorption of
newly formed hadrons, but also for elastic and inelastic scattering as well as for side feeding
through coupled channel effects. A study of parton interactions in cold, ordinary nuclear
matter of known properties is important to disentangle effects of the interaction of partons
from those of the medium in which they move.

We summarize here the main features of our model, for details see [1014]. The model
relies on a factorization of hadron production into the primary interaction process of the
lepton with a nucleon, essentially taken to be the free one, followed by an interaction of
the produced hadrons with nucleons. We have modeled the prehadronic interactions such
that the description is applicable at all energy regimes and describes the transition from
high to low energies correctly. For the first step, we use the PYTHIA model that has been
proven to very successfully describe hadron production, also at the low values of Q2 and ν
treated in our studies. This model contains not only string fragmentation but also direct
interaction processes such as diffraction and vector-meson dominance. In this first step,
we take nuclear effects such as Fermi motion, Pauli blocking and nuclear shadowing into
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Figure 5.69. Nuclear modification factor for charged hadrons. Experimental data are shown for
HERMES at 27 GeV and for EMC at 100-280 GeV. The cross section scenarios are (from left to
right): constant, linear and quadratic increase with time after production.

account [1041]. The relevant production and formation times [1014] are obtained directly
from PYTHIA [1042]. In the second step we introduce prehadronic interactions between
the production and the formation time and the full hadronic interactions after the hadron
has been formed.

The actual time dependence of the prehadronic interactions presents an interesting prob-
lem in QCD. Dokshitzer et al. [1043] have pointed out that QCD and quantum mechanics
lead to a time-dependence somewhere between linear and quadratic. We also note that a
linear behavior has been used by Farrar et al. [1044] in their study of quasi-exclusive pro-
cesses. In our calculations, we work with different time-dependence scenarios, among them
a constant, lowered pre-hadronic cross section, a linearly rising one, and a quadratically
rising one. In addition, we study a variant of the latter two, where the cross section for
leading hadrons, i.e., hadrons that contain quarks of the original target nucleon, starts from
a pedestal value ∼ 1/Q2, thus taking into account possible effects of color transparency.
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Fig. 5.69 shows a compar-
ison of these various model
assumptions to HERMES
and EMC data on uniden-
tified charged hadron atten-
uation. A good descrip-
tion of both data sets simul-
tanousely is obtained only
with a linear time depen-
dence of the cross sections.
Furthermore, a nearly per-
fect agreement is observed
in HERMES data for pions,
kaons, and protons, which
give the attenuation RM as
a function of energy transfer ν, relative energy zh = Eh/ν, momentum transfer Q2 and the
squared transverse momentum p2T [1029]. The rise of RM with ν is mainly an acceptance
effect, as we have shown in [1041], whereas the weaker rise of RM with Q2 reflects the
pedestal value ∼ 1/Q2 of the pre-hadronic cross sections.

In Fig. 5.70 we show the average formation time for different particle species as a function
of the boson energy ν. One realizes a smooth transition from CLAS at 5GeV up to EMC
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at 280GeV for all particle species. One observes a somehow larger formation time for
pions than for the heavier particles. Nevertheless, this effect, being somewhere on a 50%
level, is much smaller than mass ratios would suggest: mN/mπ ∼ 7. Thus, recalling the
basic boost relation, th = γhτh = (Eh/mh)τh, the factor τh and the factor mh in the
nominator/denominator cancel each other. We therefore conclude that, within our model,
the formation time of a hadron in its rest frame is proportional to its mass, τf ∝ mH ,
contrary to common assumptions of a constant formation time for all hadron species, which
can also be obtained from uncertainty principle considerations [1038, 1010].
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Figure 5.71. The hadron attenuation for different hadron species within several Q2 bins as function
of z (left panel) and ν (for z > 0.2, right panel) for a collider setup (3 + 30)GeV.

Hadron Attenuation at an EIC: Strong Q2 Dependence. One may now look at
hadron attenuation at an EIC. Fig. 5.71 shows the expected attenuation for different hadron
species within several Q2 bins as functions of ν and z for a very low energy collider setup
(3+30)GeV, which is close to former EMC conditions. One observes a large Q2 dependence:
while for low Q2 values, the attenuation of all hadron species decreases to approx. 0.5 at
z → 1, the attenuation is only approx. 0.8 for Q2 > 4 GeV2. This is also shown in Fig. 5.71,
where the same attenuation is shown, but now as a function of Q2 and integrated over all
ν and z > 0.2 values. It is worthwhile mentioning that there is nearly no ν dependence for
all Q2 bins visible in our calculations.
Hadron Attenuation at an EIC: π0 vs. η. As already shown in Fig. 5.71, some
differences in the resulting attenuation ratio show up for different hadron species. In Sec-
tion 5.4.1, it has been suggested that a comparison of η and π0 attenuation ratios will
distinguish between energy-loss models and absorption models. In Fig. 5.72 we show our
results for the attenuation of these two particle species. Both attenuation signals are close
to each other, but show stronger absorption for π0 than for η mesons, in which case the
discriminatory power would weaken. In Fig. 5.72 we also show the hadronic interaction
cross section of pions and eta mesons with nucleons. For laboratory momenta larger than
2 GeV, these are nearly identical. Thus differences in the attenuation are due to formation
time effects.
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A global fit of nuclear fragmentation functions

Rodolfo Sassot, Marco Stratmann, Pia Zurita

Similarly to modifications of PDFs in nuclei, the production of hadrons in the final-
state is known to be affected when occurring in a nuclear environment. For example,
semi-inclusive deep-inelastic scattering (SIDIS) off large nuclear targets shows significant
differences as compared to hadron production off light nuclei or proton targets, as reviewd
in Section 5.4.1.

The past few years have seen a significant improvement in the pQCD description of
hadron production processes, and, more specifically, in the precise determination of vacuum
fragmentation functions (FFs), including estimates of their uncertainties [74]. FFs carry the
details of the non-perturbative hadronization process, factorized from the hard scattering
cross section in the same way as for PDFs. The most important result of these studies is that
the standard pQCD framework not only reproduces data on electron-positron annihilation
into hadrons, but it describes with remarkable precision also other processes like semi-
inclusive deep-inelastic scattering and hadron production in proton-proton collisions. It is
then quite natural to ask if pQCD factorization can be also generalized to final-state nuclear
effects, i.e., to introduce medium modified or nuclear fragmentation functions (nFFs), and
to assess how good such an approximation works or to determine where and why it breaks
down. From theoretical considerations alone, the answer is, however, not obvious since
on the one hand, interactions with the nuclear medium may spoil the requirements of
the factorization theorems, but, on the other hand, any estimates of possible factorization
breaking effects are strongly model dependent.

Within the factorization ansatz, nFFs should contain (factorize) all the non-perturbative
details related to hadronization in a nuclear environment, would be exchangeable from one
process to another (universal), and would allow for QCD estimates at any given order in
perturbation theory in a well defined and unified framework. These features can be explicitly
tested using data from an increasing but still limited number of experiments that have
performed precise measurements of hadron production off nuclear targets, for instance, in
SIDIS by HERMES [1029] or in deuteron-gold collisions studied at RHIC [1045, 1046]. Both
type of processes are compatible with a universal nuclear modification of the hadronization
mechanism in the currently accessible kinematic regime. The inclusion of next-to-leading
order QCD corrections and the possibility to use different observables have been proven to
be crucial for an accurate parametrization of nFFs [967].
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In addition to the primary goal of testing the factorization properties of nFFs and to
constrain them from different data sets in a consistent theoretical framework (for further
comparison with the different model estimates), a thorough analysis of nFFs also serves
as a baseline for ongoing studies of hadron production processes in heavy-ion collisions
performed at RHIC and the LHC [1047]. In the following, we present a brief summary
of the first global fit of nFFs and outline limitations in the analysis imposed by the data
available so far.
Medium Modified Fragmentation Functions. Even though nuclear effects in the
hadronization process have been known to be significant for quite some time, only recent
experiments have become precise enough and selective from a kinematical point of view
to allow for more detailed and quantitative studies. Specifically, the HERMES collabo-
ration has performed a series of measurements of pion, kaon and proton attenuation on
different nuclear targets as a function of the hadron momentum fraction z and the photon
virtuality Q2, which both are used to characterize fragmentation functions, as well as the
virtual photon energy ν, that can be related to the nucleon momentum fraction x carried
by initial-state parton, see Fig. 5.64.

Single-inclusive identified hadron yields obtained in d+Au collisions at mid-rapidity at
BNL-RHIC, which show a characteristic nuclear suppression and enhancement pattern as
a function of the hadron transverse momentum pT , are another source of information on
nuclear modification effects in the hadronization process. These measurements are often
seen as “control experiments” associated with the heavy-ion program at RHIC to explore
the properties of nuclear matter under extreme conditions. However, in view of the evidence
for strong medium induced effects in the fragmentation process found in SIDIS, d+Au data
are also of particular relevance for extracting nFFs and testing the assumed factorization
and universality properties.

To perform global nFF fits, it was proposed in Ref. [967] to relate the medium modified
fragmentations to the standard ones in a convolution approach with a very simple ansatz for
the weight functions. The fits gives a very good description of the full kinematic dependence
of the HERMES data as can be seen in Fig. 5.73 while an approach which ignores all final-
state nuclear effects clearly fails. The same set of nFFs that account for nuclear modification
in SIDIS also reproduce the main features of the d + Au data from RHIC. The peculiar
pT dependence of the effects is found to come from an interplay between quark and gluon
fragmentation as a function of pT in the hadron production cross section. It is interesting
to notice that there seems to be no visible conflict between the standard Q2 dependence
assumed for the nFFs and the data. In this respect, there have been many interesting
suggestions and model dependent calculations at the LO level, motivating the use of medium
modified evolution equations. However, in the range of Q2 covered by present SIDIS and
d + Au data, there is no evidence for any significant departure from standard time-like
evolution equations [1048, 1049, 1050, 1051].

The pattern of medium induced modifications is rather different for quarks and for
gluons, see Fig. 5.74. The dominant role of quark fragmentation in SIDIS leads to a sup-
pression, i.e., Rπq < 1, increasing with nuclear size A as dictated by the pattern of hadron
attenuation found experimentally. The enhancement of hadrons observed in d + Au colli-
sions for pT ≈ 10GeV, along with the dominant role of gluon fragmentation at low values of
pT explains that Rπg > 1 for z → 0.2. Below z ≃ 0.2, where all the data used in the fit have
very limited or no constraining power, both quark and gluon nFFs drop rapidly. For the
time being, the behavior in this region could easily be an artifact of the currently assumed
functional form for the parameterization. The extended Q2 range of EIC will allow one to
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Figure 5.73. Quality of the nFF fit to nuclear SIDIS data from HERMES.

accurately test the factorization assumption for nFFs, which is at the basis of the presented
approach to nuclear modfications of hadron production.

Heavy quarks and quarkonia in a nuclear environment

B. Z. Kopeliovich

Time dependence of vacuum radiation. The color field of a quark originating from a
hard reaction (DIS, high-pT , e

+e−, etc.) is stripped off, i.e., such a quark is lacking a color
field up to transverse frequencies q <∼Q, and starts regenerating its field by radiating gluons,
i.e., forming a jet. This can be described by means of an expansion of the initial “bare”
quark over the Fock states containing a physical quark and different number of physical
gluons with different momenta. Originally, this is a coherent wave packet equivalent to a
single bare quark |q〉. However, different components have different invariant masses and
they start gaining relative phase shifts as a function of time. As a result, the wave packet
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is losing coherence and gluons are radiated in accordance with their coherence times. The
required time is to the jet energy, since the radiation time (or length) depends on the gluon
energy and transverse momentum k (relative to the jet axis),

lc =
2E

M2
qg −m2

q

=
2Ex(1 − x)

k2 + x2m2
q

. (5.158)

Here, x is the fractional light-cone momentum of the radiated gluon; mq is the quark mass;
M2
qg = m2

q/(1 − x) + k2/x(1 − x) is the invariant mass squared of the quark and radiated
gluon.

One can trace how much energy is radiated over the path length L by the gluons which
have lost coherence during this time interval [1052, 1019, 1053, 1054, 1055],

∆E(L) = E

Q2∫

Λ2

dk2
1∫

0

dxx
dng
dx dk2

Θ(L− lc), (5.159)

where Q ∼ pT is the initial quark virtuality; the infra-red cutoff is fixed at Λ = 0.2GeV.
The radiation spectrum reads

dng
dx dk2

=
2αs(k

2)

3π x

k2[1 + (1− x)2]

[k2 + x2m2
q ]
2
, (5.160)

where αs(k
2) is the running QCD coupling, which is regularized at low scale by the substi-

tution: k2 ⇒ k2 + k20 with k20 = 0.5GeV2. In the case of heavy quark the k-distribution
Eq. (5.160) peaks at k2 ≈ x2m2

q, corresponding to the polar angle (in the small angle
approximation) θ = k/xE = mq/E. This is known as the dead cone effect [1056, 1057].

The step function in Eq. (5.159) creates another dead cone [1055]: since the quark is
lacking a gluon field, no gluon can be radiated unless its transverse momentum is sufficiently
high, k2 > 2Ex(1 − x)/L − x2m2

q. This bound relaxes with the rise of L until it reaches
k2 ∼ x2m2

q, characterizing the heavy quark dead cone at Lq = E(1− x)/xm2
q . The radiation

of such a “naked” quark has its own dead cone controlled by its virtuality Q2 ≫ m2
q, and is

much wider than the one related to the quark mass. Therefore, there is no mass dependence
of the radiation until the quark virtuality cools down to Q2 ⇒ Q2(L) ∼ m2

q. At the early
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stage of hadronization, when Q2(L) ≫ m2
q, all quarks radiate equally, and the results

of [1057] for a reduced energy loss of heavy quarks should be applied with a precaution.
The numerical results demonstrating this behavior are depicted in Fig. 5.75.
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Figure 5.75. Left panel: Vacuum energy loss by light (mq = 0), charm
(mc = 1.5GeV) and bottom (mb = 4.5GeV) quarks with E = 15GeV and
virtuality Q ∼ E as function of path length. Right panel: The same, but
for energies 20 (three upper curves) and 10GeV (three bottom curves), and
zoomed in at short path lengths.

One can see that
a substantial differ-
ence between the
radiation of energy
by charm and light
quarks onsets at rather
large distances, above
10 fm. However the
b-quark radiation is
suppressed already
at a short distance,
less than one fermi.
Moreover, it com-
pletely regenerates
the color field al-
ready at a distance
of the order of 1 fm
and does not radi-
ate any more. Of
course, this b-quark still may have a medium induced radiation, which is very weak ac-
cording to [1057]. Notice that the interference between vacuum and induced radiations is
absent because they occur on different time scales.
Production and formation length. One should clearly distinguish between the produc-
tion time scales for a colorless dipole (pre-hadron) and the final hadron. The former signals
color neutralization, which stops the intensive energy loss caused by vacuum radiation fol-
lowing the hard process, while the latter is a much longer time taken by the dipole to gain
the needed hadronic mass, i.e. to develop the hadron wave function. While the former is
proportional to 1 − zh and contracts at large fractional momentum zh of the hadron, the
latter keeps rising proportionally to zh. These two time scales are frequently mixed up. The
shortness of the production lengths at large zh is dictated by energy conservation. Indeed,
a parton originating from a hard reaction intensively radiates, losing energy. This cannot
last long, otherwise the parton energy will drop below the energy of the detected hadron.
Only the creation of a colorless pre-hadron, which does not radiate gluons any more, can
stop the dissipation of energy. Energy conservation thus imposes a restriction on the color
neutralization time [1058], lp ≤ Eq

〈dE/dz〉 (1 − zh), which must vanish at zh → 1. One should
also distinguish between the mean hadronization time of a jet, whose energy is shared be-
tween many hadrons, and specific events containing a leading hadron with zh → 1. The
production of such a hadron in a jet is a small probability fluctuation, usually associated
with large rapidity gap events. The space-time development of such an unusual jet is dif-
ferent from the usual averaged jet. It is illustrated in Fig. 5.76. Notice that one should not
mix up the production time with the time scale evaluated in [1059], Eq. (2), which is just
the well known coherence time. This is not the time of duration of hadronization which
we are interested in. If hadronization were lasting as long as the coherence time, energy
conservation would be broken. Besides, a pre-hadron does not have any certain mass, since
according to the uncertainty relation it takes time, called formation time, to resolve between
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the ground and excited states, which have certain masses. Therefore, one cannot evaluate
the production time of a pre-hadron relying on the mass of the hadron.
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Figure 5.76. The two-step process of leading hadron production. On the production length lp the
quark is hadronizing experiencing multiple interactions broadening its transverse momentum and
inducing an extra energy loss. Eventually, the quark color is neutralized by picking up an antiquark.
The produced color dipole (pre-hadron) is attenuating in the medium and developing the hadron
wave function over the formation path length lf .

Since the produced pre-hadron strongly attenuates in the nuclear medium, the position
of the color neutralization point is crucial for the resulting nuclear suppression. Notice
that such a picture of space-time development of hadronization is classical. In quantum
mechanics one cannot say with certainly whether the pre-hadron is produced inside or
outside the medium: the inside-outside interference term is significant [1060].
Heavy flavored hadrons. The production length distribution calculated for light quarks
[1052, 1019, 1054] should be similar to that for charm quarks, which have a similar vacuum
radiation during the first several fermi. However, a bottom quark, according to Fig. 5.75,
dissipates considerably less energy, moreover, its vacuum radiation ceases at the distance
of about 1 fm, because the quark completely restores its color field. Of course, confinement
does not allow a colored quark, even with a restored field, to propagate freely. It keeps
losing energy via nonperturbative mechanisms [1054], like in the string (flux tube) model.
Surprisingly, nonperturbative dynamics is more involved into hadronization of heavy com-
pared with light quarks. However, one should remember that this is true only for jets which
end up producing leading hadrons with zh → 1.

A high-energy heavy quark always escapes from the medium and produces an open flavor
hadron with no suppression. Therefore, a break-up of a light-heavy dipole propagating in a
medium should not lead to a suppression, unless the fractional momentum zh of the detected
hadron is fixed at a large value. In such a case, break up of the dipole ignites continuation
of vacuum energy loss, which slows down the quark to smaller values of zh. This is why a
quark should stop radiating at a distance l ∼ lp and produce a colorless dipole, which then
survives through the medium.

It is interesting that the produced heavy-light, c-q or b-q dipoles expand their sizes
faster than a light q̄q dipole. This happens because of the very asymmetric sharing of
the longitudinal momentum in such dipoles. Minimizing the energy denominator one gets
the fractional momentum carried by the light quark, α ∼ mq

mQ
, which indeed is very small,

about 0.1 for charm and 0.03 for bottom. Then according to [1055, 1061], the dipole size
is evolving with time as r2T (t) =

2t
α(1−α)E + r20, where r0 is the initial dipole separation: the

b-q dipole is expanding much faster than q̄q.
Conclusions. The hadronization of charm and bottom quarks ends up at a short

distance lp with production of a colorless dipole which is strongly absorbed by the medium.
This may explain why both of them are strongly suppressed in A+A collisions. Studies of
light vs. heavy meson productions at the EIC will clearly be able to validate the discussed
effects.
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5.4.2 Jets

Jets, in-medium parton propagation and nuclear gluons

Alberto Accardi, Matthew A. C. Lamont, Gregory Soyez

Preliminary results from the SLAC E665 fixed target experiment have demonstrated jet
production in e + A collisions at s ≈ 1000 GeV2 [1062, 1063]. Thus, the start of the jet
study programme should be feasible in a Phase-I EIC. This can be confirmed by further
simulations, required to study the capabilities in a collider experiment as opposed to a
fixed-target experiment like E665.

As will be discussed in detail in the next 2 contributions, the nuclear modification of
1+1 jet production, i.e., 1 jet from current fragmentation and 1 from target fragmentation,
is of great interest to study parton propagation through cold nuclear matter, in order to
extract cold nuclear transport coefficients, and probing soft gluons in nuclei. In addition,
the nucleus can be used as a femtometer-scale detector of the evolution of parton showers,
allowing to test their perturbative descriptions (e.g., kT -ordering vs. rapidity ordering) and
Monte-Carlo implementations, which are used pervasively in all fields of high-energy physics
to analyze experimental data.

The case of 2+1 jets is also interesting. Indeed, the cross section for this prcess reads

d2σ2+1

dxp dQ2
= Aq(xp, Q

2) qA(xp, Q
2) + Ag(xp, Q

2) gA(xp, Q
2), (5.161)

where the two terms correspond to the quark-initiated and gluon-initiated processes re-
spectively, and the coefficients Aq and Ag are matrix elements that can be computed at
given order in perturbation theory. Unlike the 1+1 case which is dominated by quark initi-
ated processes, the 2+1 cross section is now also sensitive to nuclear gluons, and offers yet
another way to measure them.

Since the outgoing jets have to travel in the medium, the coefficients Aq and Ag will be
affected by in-medium propagation. We shall assume here that the measurements of 1+1 jet
cross-sections allow to control in medium quark jets, hence Aq. Then, by tagging or vetoing
gluon jets in 2+1 events one can study, respectively, gluon jets in-medium propagation and
the nuclear gluon distributions. In Fig. 5.77, we show the expected kinematic reach of
the gluon measurements for a phase-I and phase-II EIC, and for various cuts on the jet
transverse momentum pT . Details can be found in [1064]. Detailed simulations are planned
to study the feasibility and physics reach of these jet studies.

Monte-Carlo for hard jets in e+A collisions

A. Majumder

The production and modification of hard jets produced in lepton nucleus collisions is
considered. The assumption of factorization of the hard scattering cross section from the
structure functions and final fragmentation function allow one to compute the final medium
modified fragmentation function in both cold nuclear matter and in a hot Quark-Gluon-
Plasma (QGP) in an identical formalism. This allows for both a cross check of the basic
energy loss formalism used in these reactions, and a comparative study of the partonic
sub-structure of these different phases of QCD matter. Detailed descriptions are provided
via a Monte-Carlo simulation of such calculations. We compare the results of analytical
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Figure 5.77. Left: Parton-level processes that contribute (a) to the 1+1 and (b,c) 2+1 jet cross-
section. Middle and Center: Accessible kinematic range in xp and Q

2 for the 2+1 jets scenario. The
accessible region is plotted for different energies E of the electron beam and hadron beam energy
Ep = 100 GeV, corresponding to a phase-I and phase-II EIC, for different jet transverse momentum
cuts pT > pT,min at fixed jet energy cut Ecut.

calculations in these two regimes and present preliminary Monte-Carlo simulations for jets
produced in deep-inelastic collisions.
Introduction to in-medium DGLAP. Collision processes which involve a hard scale can
be factorized into separate probabilities of hard and soft processes which are convoluted via
a single dimensionless variable [716]. For example, for the case of single hadron inclusive
production in deep-inelastic-scattering (DIS), the differential cross section may be expressed
as,

dσ

dz
=

∫
dxG(x,Q2)⊗ dσ̂

dQ2
⊗D(z,Q2), (5.162)

where, G(x,Q2) represents the parton distribution function, dσ̂
dQ2 represents the electron

quark scattering cross section via single photon exchange. D(z,Q2) represents the frag-
mentation function to produce a hadron with a momentum zν from the fragmentation of
the outgoing quark jet. The structure functions and fragmentation functions are defined
and factorized from the hard cross sections at a given scale µ2 which, in this case, is cho-
sen to be equal to the hard scale of the process Q2. They only need to be measured at a
single scale, and the change of these functions with scale is given by the DGLAP evolution
equations [856]. For fragmentation functions, these equations read

∂D(z,Q2)

∂ lnQ2
=
αS
2π

∫
dy

y
P (y)D

(
z

y
,Q2

)
, (5.163)

where, P (y) is the gluon splitting function and represents the probability for a quark to
radiate a gluon and retain a fraction y of its light cone momentum.

In the case of DIS on a large nucleus, one may simply include the entire effect of the
medium by including a length dependent multiplicative factor to the gluon splitting func-
tion [1065], which accounts for the fact that the radiated gluon will scatter in the medium
influencing its radiation amplitude, i.e., P (y) → P (y)K(y, q−, L−, Q2). The medium de-
pendent factor given as [1066],

K(y, q−, L−, Q2) =

∫ L−

0
dζ−

q̂

Q2

[
2− 2 cos

(
Q2ζ−

2p+q−y(1− y)

)]
(5.164)
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Figure 5.78. Left: A comparison of the results of an analytic DGLAP evolution calculation and a
Monte-Carlo shower calculation for the same choice of input parameters. Right: Results of a set of
Monte-Carlo simulations of a jet propagating through a 4 fm brick.

In the equation above, L− is the maximum possible length traversed in the medium in the
course of one emission. In an evolution equation, the formation time of the final radiation
is chosen to be larger than the maximum medium length. This restricts the length to be
no larger than q−/Q2

min, where Qmin is the minimum allowed virtuality on exit from the
medium. In an analytic solution to the DGLAP equation, one requires an input fragmen-
tation function. The most unambiguous input is to use the known vacuum fragmentation
function at the scale Q2

min where we have stipulated that the jet has emerged from the
medium. This is then evolved in Q2 up to the hard scale of the process using the medium
modified evolution equation which includes the kernel of Eq. (5.164).

Results from such an in-medium DGLAP evolution are plotted in Fig. 5.78 . The input
distribution in vacuum is taken from KKP at an input scale of µ2in = 1 GeV2 and evolved
up to Q2. Its ratio to the KKP fragmentation at the scale Q2 is plotted as the green
dashed line in Fig. 5.78. Note that our numerical implementation of the DGLAP equation
is different from that of KKP and so for comparison, we plot the ratio of the vacuum
evolved fragmentation function in our implementation versus that in the KKP where both
calculations start from the same input distribution i.e. the KKP function at the scale µ2in,
and are compared at the higher scale of Q2. The ratio is plotted as the magenta curve in
Fig. 5.78. While over the range of z considered, the curve is close to unity, it may deviate
by up to 20% at lower values of z.

The solid blue line in Fig. 5.78 represents the ratio of the mediummodified fragmentation
function to the vacuum fragmentation function, where both numerator and denominator
are calculated using the same numerical routine (for the vacuum FF we simply use q̂ = 0).
This ratio can be approximately compared to the ratio of hadron yields in DIS experiments.
It should be pointed out that in all the calculations reported in this article, the medium is
assumed to be static and uniform with a fixed length. This fixed length is travelled by each
jet. Realistic geometries will be considered in the future.
Monte-Carlo implementation. In any realistic calculation of jet modification in an
extended medium a variety of approximations need to be made. For example, in the in-
medium DGLAP evolution equations reported in the previous sections, we assumed that
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the entirety of the parton shower exits the medium and fragments in vacuum. This is
obviously not the case. In reality, a large portion of the shower is trapped in the medium
and does not undergo vacuum fragmentation. Such effects cannot be treated in a DGLAP
setup where the input is the final vacuum fragmentation. Note that such effects may be
included with a position dependent input fragmentation function. However, such input is
always ambiguous and the computation of the evolution of a position, energy and obviously
z-dependent fragmentation functions are prohibitively numerically intensive.

The obvious solution to this is to use a Monte-Carlo jet routine. Unlike analytic in-
medium DGLAP calculations which evolve upwards, numerical Monte-Carlo routines evolve
downwards in virtuality. As such, they are a more natural calculation which reconstructs
the shower forwards in time. One starts with the original produced hard virtual parton and
then constructs the Sudakov factor

∆(Q2, µ2) = exp

[
−αS
2π

∫ Q2

µ2

dq2

q2

∫
dyP (y)

{
1 +K(y−, q−, L−, q2)

}
]
, (5.165)

which yields the probability of no resolvable emission between Q2 and µ2 and uses this to
numerically estimate the probability of the initial parton being produced with a maximum
virtuality of µ2. One then samples the splitting function to estimate the probability that
the produced partons have fractions y and 1 − y of the parent parton. Unlike the case
of the vacuum Sudakov factor, the equation above also contains in addition the medium
dependent kernel K defined in Eq. (5.164). This means that at each point, the shower may
undergo either a vacuum split or a medium induced split. It also clearly demonstrates how
the probability of splitting increases in the medium. At each point, we estimate the location
of the parton based on its formation time, which may be easily obtained from its virtuality
and its energy.

This showering routine is repeated to obtain partons with lower and lower virtuality. We
terminate the shower when the virtuality of the parton reaches Λ0 = 1 GeV. If at this point
the parton is found outside the medium, then it is convoluted with a vacuum fragmentation
function. If it is found inside the medium then it is removed from the final shower. We point
out again that the medium in all these calculations is not a real nucleus, but rather a static
brick. Once the shower is calculated in the medium, it is then repeated in vacuum. Thus,
both numerator and denominator of the ratio of fragmentation functions are calculated by
an identical routine.

Using this implementation we may repeat our calculations in the HERMES-like system-
atics of Fig. 5.78. The results of the Monte-Carlo is represented by the solid black line.
We should mention in passing that the fragmentation function used in the Monte-Carlo
calculation is BKK while that in the DGLAP is KKP. We note that the ratio of fragmen-
tation functions are rather similar. The Monte-Carlo results are for the most part below
the DGLAP calculation. This is because of the mechanism by which we can systematically
remove the partons which fragment in the medium, which can only be done in the MC
calculation. The excess at lower z is partially due to the use of a different fragmentation
function and partially due to some of these partons having a long formation time.

Having tested the Monte-Carlo calculation in HERMES-like systematics (E = 20 GeV
and Q2 = 3 GeV2), we apply the MC calculation to the EIC-like systematics (E = 25, 35, 50
GeV and Q2 = 100 GeV2). First off, we note that even with the larger energies there is a
considerable amount of suppression. This is due to the larger Q2 of the produced jet. Such
jets tend to shower a lot and thus end up being considerably affected by the medium. This
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goes beyond what is known at HERMES that increasing the energy reduces the observed
suppression. We also find a kind of universal suppression at large z which is independent
of energy. This kind of universal suppression was also noted in the DGLAP calculations
performed for comparison with the HERMES data. In the earlier DGLAP calculations, the
reason for the scaling was due to the vanishing of the real part of the evolution equation,
leaving the same virtual corrections for different energies. It is difficult to state at this point
if the scaling observed in the Monte-Carlo calculations is due to a similar reason, i.e., the
vanishing of the real part of the equivalent DGLAP calculation.

If the results reported here are verified by a future EIC, this would represent an in-
teresting observation: to find an almost 50% suppression in the large z yield even for 50
GeV jets. Such high Q2 jets should be describable using perturbation theory over a large
part of their lifetime and would thus yield deep probes of the medium through which they
propagate. This would allow for a much clearer understanding of the gluonic structure of
nucleons inside nuclei. It would also greatly facilitate our understanding of how jets are
modified in a dense extended environment, which would allow for more refined probes of
matter produced in heavy-ion collisions.

Jet evolution in hot and cold matter

Hans J. Pirner

We will discuss jet propagation in hot matter first before addressing jet propagation in
the “cold” matter of electron-nucleus collisions. A common interpretation of the large pion
attenuation in Au+Au collisions at RHIC is parton energy loss, where hadronization occurs
outside of the hot zone and is not affected by the medium. There is no doubt that gluon
radiation plays an important role for the energy loss and the parton evolution at RHIC and
the LHC. The respective virtualities of partons are around Q = 20GeV and Q = 100GeV.
In our modeling of jet evolution [1067, 1068] the parton shower is treated together with the
propagation of the parton in the medium which is more realistic because of the relevant
time scales. A typical shower at RHIC lasts about τevo = 2 fm. The non-perturbative
part of hadronization involves the decay of the resonances at the pre-confinement scale
Q0 = 1− 2GeV into 3-4 pions. The lifetime of the plasma can be estimated at τc = 3.3 fm.
Comparing the two time estimates, we see that at the end of the evolution at RHIC,
resonances interact with hadronic resonance matter. This process can be described by a
hadronic theory with cross sections slightly larger than hadronic cross sections in vacuum.
Because of these large cross sections, absorptive effects play a decisive role in the observed
suppression of hadrons in RHIC experiments. We have advocated two scenarios. Scenario
1 uses the conservative radiative energy loss obtained from QCD and includes pre-hadron
formation and resonance absorption. Scenario 2 neglects the resonance phase but tunes up
the energy loss parameter to fit the data.

In more detail, our model [1067] works as follows: The parton produced in a hard
process radiates successively to reduce its virtuality and become on mass-shell. This parton
shower is modified by scattering in the medium. As both terms enter the same equation,
one cannot separate scattering and radiation. This equation includes truly radiative energy
loss, but without coherence. Quark fragmentation at RHIC and gluon fragmentation at
the LHC should give the essential results. The indices on the fragmentation functions and
the splitting functions can then be dropped and the formalism becomes simpler. For the
in-medium fragmentation function Dm(x,Q2) we include into the DGLAP evolution the
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scattering term S(x,Q2).

∂ Dm(x,Q2)

∂ lnQ2
=
αs(Q

2)

2π

∫ 1

x

dz

z
P (z)Dm

(x
z
,Q2

)
+ S(x,Q2) (5.166)

with

S(x,Q2) ≃ f
ngσ〈q2⊥〉
2msQ2

(
D(x,Q2) + x

∂D

∂x
(x,Q2)

)
. (5.167)

The quantity appearing in the scattering term is the jet transport parameter q̂ ≃ n̄σ̄〈q2⊥〉,
which describes the mean acquired transverse momentum of the parton per unit length.

To allow a direct fit of experimental data with only parton energy loss, we introduce a
possible enhancement factor f in the scattering term. The scattering term is most relevant
at small virtualities Q ≃ Q0 and consequently we have used the scale Q0 in αs to arrive
at an upper boundary for q̂. More explicitly, these expressions give q̂ = 0.5GeV2 / fm
for a temperature of T = 0.3 GeV for RHIC and q̂ = 5.2GeV2 / fm for T = 0.5GeV
corresponding to the LHC. As shown in ref. [1067] we can fit the RHIC data including pre-
hadron absorption in the final state resonance gas. The prediction for LHC gives RAA ≈ 0.4.
If we use an enhancement factor f = 8 which is beyond any higher order QCD correction,
the measurement of hadrons with high transverse momentum would be totally suppressed
at the LHC.

Let us now discuss jets in cold matter resulting from DIS on nuclei. Electron scattering
on a target at intermediate Bjorken x can be treated along similar lines as the DGLAP
evolution of the quark jet in the cold medium, whereas electron-nucleus scattering at low x,
in principle necessitates the evolution of the quark and antiquark produced from photon-
gluon fusion. It is not clear whether the cascades from the two reaction products behave
independently when they propagate through the target. In the Ariadne model, two strings
result from the quark and antiquark produced by photon-gluon fusion. The first string
connects the antiquark with the quark which emitted the gluon. The second string combines
the quark with the remnant di-quark of the proton. Due to the aligned jet configuration, one
of the two strings only contains a few low momentum particles and perhaps may be neglected
in the first approximation. The evolution equation outlined above can then be applied
to jet propagation in cold matter, and applications to an EIC are planned. Scattering
partners of the quark are nucleons and the quantity < σq2⊥ > can be derived from the dipole
cross section on nucleons. The resulting transport parameter at HERMES energies is very
small q̂ = 0.035GeV2 / fm and has been tested in hadronic broadening of the produced
hadrons [1069]. For a high energy machine with an electron-nucleon energy Ecm = 100GeV
the transport parameter will be larger due to the increasing dipole cross section, we estimate
that the transport parameter will increase to about q̂ = 0.1GeV2 / fm. So effects should
well be observable, but smaller than at RHIC.

5.4.3 Target Fragmentation

Fragmentation of nuclei - a critical tool for novel QCD phenomena

Mark Strikman

The main focus of the discussions on quark propagation through the nucleus has been
on current fragmentation processes, e.g., the suppression of the leading hadron spectrum, pt
broadening and jet propagation in nuclear matter. So far, very little attention has been paid
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to nuclear fragmentation in DIS. To some extent, this is due to the lack of experimental
data as such measurements are very challenging. However, while nuclear effects in the
current fragmentation region decrease with increasing Q2 at fixed x, the nuclear effects in
the fragmentation region persist in this limit, and are likely to depend on x. They may help
address a number of important questions:

• Are color tubes formed in propagation of quarks through nuclear media?

• How different are the propagations of gluons and quarks through the nuclear media?

• How different are the propagations of quark and dipole?

To visualize these questions, it is convenient to consider the process in the nuclear rest
frame and distinguish three kinematic regions: (a) For x ≥ 0.1, a quark is knocked out
(or a gluon if we consider for example a leading di-jet or charm production in DIS), (b)
for 0.1 > x ≥ 1/(2RAmN ) the virtual photon converts to a qq̄ pair inside a heavy nucleus,
and (c) for x < 1/2RAmN , γ

∗ → qq̄ transition occurs predominantly before the target, see
Fig. 5.79

In the case of of x > 0.1 and large Q2 corresponding to the knock out of a quark, a color
triplet qq system is left inside the nucleus and it is typically moving along the virtual photon
momentum direction with a relatively small velocity. The knocked out quark fragments into
partons/hadrons at longitudinal distances y ≥ 2pq/∆m

2 ≫ RA, where ∆m2 ∼ 1 GeV2 can
be estimated based on the current DIS data [1014]. It is similar to that for color transparency
processes. As a result, the leading hadron spectrum at large Q2 approaches the universal
limit given by pQCD. This pattern is consistent with the experimental data. Different to
the naive expectations of the parton model, an A-dependent pt broadening in present in
this limit. Naively the hadrons produced in the fragmentation of the quark are formed at
distances given by y ≥ 2ph/∆m

2, so that there should be a depletion in the spectrum at
pcrith ∼ ∆m2RA/2 followed by an enhancement at rapidities close to the nuclear rapidity
(hadron pileup). Since for heavy nuclei pcrith ∼ 10 ÷ 20 GeV/c, one would expect a strong
deformation of the hadron spectrum with a large increase of multiplicity for |y−yA| ≤ 2÷3
for A ∼ 200. In particular, it would be manifested in the strong break up of the heavy
nuclei which is associated with emission of many soft neutrons. One should also expect an
increase of the multiplicity of soft neutrons with an increase of pt of the leading hadron,
since large pt selects events with extra Coulomb exchanges which are more likely for longer
quark paths inside the nucleus and should result in a larger number of wounded nucleons.
These may also lead to the creation of large unscreened color regions in the nucleus - see
Fig.5.80. An open question is how these expectations could be affected by a high degree
of coherence in the emission of the partons in pQCD. Such a coherence may lead to strong
screening effects in the formation of the final state and in particular a reduction of ∆m2

q̄ q̄

x > 0.1 0.1 > x > 1/2RAmN x ≪ 1/4RAmN

γ∗ γ∗ γ∗q
q q

(a) (b) (c)

Figure 5.79. Space-time picture of DIS in the nucleus rest frame for different x
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Figure 5.80. Left: Coulomb exchanges may lead to formation of extended spatial regions where color
is not screened. Right: The E665 data [1070] for the soft neutron multiplicity compared with the
calculation of [1071].

away from the current fragmentation region. Also, if the color tube is very narrow, a chance
that the tube intersects with other nucleons maybe significantly reduced.

For intermediate x ∼ 0.05, the virtual photon also penetrates any point in the nucleus
but it can hit either quark or antiquark, so in principle, by studying the properties of the
leading hadron one can compare the structure of the final state interaction for the removal
of quark and antiquark which maybe different, for example since q̄ can belong to a color
singlet qq̄ cluster.

For small x ≤ 0.03, the virtual photon predominantly transforms into a qq̄ pair before
the target nucleus. In the aligned jet model one would expect that the number of wounded
nucleons would be given by Aσ(eN)/σ(ep) with the hadrons formed at the similar distances
as in the large x case. Hence naively one would expect that many nucleons will be wounded
in a heavy nucleus, leading to a strong excitation of the nucleus which is known to be
associated with multiple neutron emission, and emission of protons with momenta of ≥ 300
MeV/c, see also Section 5.4.3 .

The process of neutron emission in DIS off Pb was studied by the E665 collaboration at
FNAL for average x ∼ 0.05 and Q2 ∼ few GeV2 [1070]. The results of the measurement are
compared the theoretical calculation of [1071] in Fig. 5.80. Calculations using a Monte Carlo
event generator tuned to reproduce the neutron emission in the proton-nucleus scattering
reproduces both the neutron multiplicity and the neutron momentum distribution, provided
only recoil nucleons with energy smaller than 1 GeV are allowed to interact in the nucleus.
Taken at face value, this suggests a very strong reduction of the final state interactions at
large energies which is consistent with the trend of the E665 data to have a smaller neutron
multiplicity for larger ν.

At very small x and moderate Q2, one may reach the black disk regime. In this regime,
the leading hadron spectrum is reduced and the pQCD factorization for the parton fragmen-
tation breaks down in a gross way [981], see also Section 5.3.2. In this limit, the selection of
events with enhanced activity in the nuclear fragmentation region should lead to reduction
of the forward spectrum: this would provide a clear signal for a new regime, since no such
correlation is possible in the leading-twist pQCD regime.

In summary, hadron production in the nuclear fragmentation region is very sensitive
to the dynamics of space-time evolution of the triplet and octet color tubes as well as of
color dipoles. This is one of the unexplored frontiers where the collider kinematics will
allow a qualitative improvements in the data, and likely lead to the discovery of a series of
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new regularities. This may include a much higher degree of coherence in the fragmentation
(hinted at by the E665 data) than suggested by the current models. Understanding of
the fragmentation dynamics will be also of great help for understanding the dynamics in
the nuclear fragmentation region in heavy ion collisions, where high density quark-gluon
systems may be produced.

In-medium hadronization and EMC effects in nuclear SIDIS

C. Ciofi degli Atti, L. P. Kaptari, B. Z. Kopeliovich, and C. B. Mezzetti

The SIDIS process A(e, e′(A − 1))X in which, instead of the leading hadron, a nucleus
(A−1) in the ground or in low excitation states is detected in coincidence with the scattered
electron, can provide new information about the mechanism of hadronization and the origin
of the EMC effect [1072, 1073, 1074, 1075, 1076]. Two main advantages of the new SIDIS
process over the classical SIDIS [1010] and inclusive A(e, e′)X scattering [1077] are worth
mentioning here. Firstly, it can provide a new insight into the space-time development of
hadronization at the early stage, which can be probed only by placing additional scattering
centers at microscopic distances, i.e. by using nuclear targets. By detecting a jet produced
on a nuclear target, one can get information about its time development, but in a rather in-
direct and complicated way, since cascading inside the nuclear medium essentially modifies
the observables. Measuring the recoil nucleus supplies additional and cleaner information
about the dynamics of hadronization; in particular, this process is free of the uncertainties
caused by cascading, and the survival probability of the recoil nucleus is extremely sensitive
to the multiparticle components of the jet [1072]. Secondly, a proper ratio of the cross sec-
tions on a nucleus A taken at different values of the Bjorken scaling variable xBj provides

information on the nucleon structure functions in the medium, F
N/A
2 . Several experimen-

tal projects to investigate the new process at 12 GeV have been proposed thanks to the
development of proper recoil detectors [1078], and the experiment on Deuteron targets has
already been performed [1079].

The basic ingredients of the theoretical calculation are the nuclear momentum distribu-

tions, the nucleon structure function F
N/A
2 in the medium, and the effective cross section of

interaction between the hadronizing nucleon debris and the spectator nucleons. This last
reads [1072]

σeff (z, xBj , Q
2) ≡ σeff (z) = σNNtot + σπNtot

[
nM (z) + nG(z)

]
(5.168)

where σNNtot and σπNtot are the total nucleon-nucleon (NN) and pion-nucleon (πN) cross
sections, and the Q2- and xBj-dependent quantities nM(z) and nG(z) denote the pion mul-
tiplicities due to the breaking of the color string and to gluon radiation, respectively. Their
explicit form directly follows from the hadronization mechanism proposed in Ref. [1080],
leading to a satisfactory description of the grey track production in DIS off nuclei [1032].

The cross section of the A(e, e′(A− 1))X process [1072, 1074] schematically reads

dσA,FSI

dxBjdQ2dPA−1
= F

N/A
2 (xA, Q

2, k2)⊗ nA,FSI0 (PA−1) (5.169)

where xA = xBj/z
(A)
1 , z

(A)
1 = (MAk · q)/(mNPA · q), k is the four-momentum of the bound

nucleon and PA of the target nucleus. In this equation, nA,FSI0 (PA−1) is the distorted
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Figure 5.82. The ratio R(xBj , xBj) of Eq. (5.172) for the process
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calculated with different nucleon structure functions: i) free structure function; ii) off mass-shell (x-
rescaling) structure function; iii) with suppression of point-like configurations (PLC) in the medium
depending upon the nucleon virtuality [1084] (PA−1 ≡ |PA−1|).

momentum distribution of the bound nucleon after final state interaction (FSI) with the
debris nucleon (k1 = −PA−1 in Plane Wave Impulse Approximation):

nA,FSI0 (PA−1) =
1

2JA + 1

∑

MA,MA−1

∣∣∣∣
∫

dr′1e
iPA−1r

′
1〈Ψ0

JA−1,MA−1
|SXNFSI |Ψ0

JA,MA
〉
∣∣∣∣
2

(5.170)

where SXNFSI is the debris-nucleon eikonal scattering S-matrix which differs from the Glauber
form because of the z dependence of σeff [1081]. The results of some calculations are pre-
sented in what follows, using for Deuteron and 3He realistic wave functions [1082] corre-
sponding to the AV18 interaction [1083], and for heavy nuclei single particle mean field
wave functions. A good agreement between our parameter-free calculation [1076] and the
experimental data for 2H(e, e′p)X around θ ≃ 90o is exhibited.

The distorted momentum distributions of 3He and 40Ca at kinematics more appropriate
for an EIC are shown in Fig. 5.81. As already pointed out, the FSI is governed by the details
of σeff and strongly affects the survival probability of (A−1), as it can be seen by comparing
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the results for 3He and 40Ca. Let us denote the cross section (5.169) by σA,FSI . Then, if
our description is correct, the ratio of cross sections on different nuclei,

R(A,A′,PA−1) =
σA,exp(xBj , Q

2, |PA−1|, z(A)1 , yA)

σA
′,exp(xBj , Q2, |PA−1|, z(A

′)
1 , yA′)

→ n
(A,FSI)
0 (PA−1)

n
(A′,FSI)
0 (PA−1)

(5.171)

should be governed only by the FSI, as shown in Fig. 5.81.
In order to tag bound nucleon structure functions, whose nuclear modification is one of

the causes of the EMC effect, one has to get rid of the distorted nucleon momentum distri-
butions and other nuclear structure effects. This can be achieved by considering the ratio
of the cross sections on a nucleus A measured at two different values of the Bjorken scaling
variable, xBj and x

′
Bj , leaving unchanged all other quantities in the two cross sections, i.e.,

the ratio

R(xBj , x
′
Bj , |PA−1|) =

σA,exp(xBj , Q
2, |PA−1|, z(A)1 , yA)

σA,exp(x′Bj , Q
2, |PA−1|, z(A)1 , yA)

≈ F
N/A
2 (xA, Q

2, k2)

F
N/A
2 (x′A, Q

2, k2)
(5.172)

which depends only upon the nucleon structure function F
N/A
2 . Calculations of the ratio

(5.172) have been performed [1076] using three different structure functions, namely, the
free one, giving no EMC effect, and two medium dependent structure functions, yielding
only a few percent difference in the inclusive cross section. It can be seen from Fig. 5.82

that the discrimination of different models of the medium dependence of F
N/A
2 (xA, Q

2, k2)
can indeed be achieved, especially at large PA−1 ≡ |PA−1|.
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Figure 5.83. The production cross section of
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gitudinal production points, normalized to the
corresponding number of events. (The calcula-
tions are preliminary.)

In conclusion, from what shown here and
in the original papers [1073, 1072, 1074,
1075, 1076] it appears that the SIDIS process
A(e, e′(A−1))X, with detection of a complex
nucleus (A − 1), would be extremely useful
to clarify the origin of the EMC effect and to
study the early stage of hadronization at short
formation times. At EIC kinematics (large Q2

and W 2
X), the theoretical assumptions under-

lying Eqs.(5.168)-(5.170) are expected to be
of higher validity than at lower energy. The
problem remains as to whether experiments
of the kind we are discussing, i.e. the de-
tection of low-momentum light nuclei at spe-
cific angles, could be performed at an Elec-
tron Ion Collider. We have calculated the pro-
cess 3He(e, e′d)X at various EIC kinematics
and found that, e.g. at Q2 ≃ 30 GeV2 and
xBj ≃ 0.7, when the Deuteron is emitted at
about 900 in the target rest frame, this cor-
responds to about 10 in the direction of the
incident nucleus in the collider CM frame.

377



Proving the microscopic origin of nuclear forces

Mark Strikman

An important task for the EIC is to probe nuclear forces on the microscopic level using
hard probes. Before describing some of the possible avenues for EIC research, it is worth
summarising what is already known from the analyses of the experimental studies of the
nuclear pdfs.

• The quark distributions at large x are suppressed as compared to the naive expec-
tations based on the picture of the nucleus built of nucleons with internal parton
distributions coinciding with the free nucleon pdfs, the so called EMC effect - for
a review see e.g. [942]. However, the EMC effect modification of the nucleon pdfs
remains small - ≤ 2% for x ≤ 0.5 after one takes into account the Coulomb field
contribution into the wave function of the heavy nuclei and uses the proper scaling
variable xA = AQ2/2q0MA for the comparison of the nuclear cross sections [1085].
The modification of the nucleon pdfs strongly grows with x at x > 0.5 reaching ∼10%
at x = 0.6.

• The A-dependence of the EMC effect at large x indicates that the main contribution
to the EMC effect is due to scattering off the short-range correlations (SRC) in nuclei.

• Experiments at JLab confirm approximate A-independence of the momentum distri-
bution of nucleons in the short-range correlations, though the absolute probability is
a factor of ∼ 5 larger in heavy nuclei than in the deuteron, for a recent review see
[1086].

• The measurements of the antiquark distributions in nuclei were performed using the
Drell-Yan process. No enhancement of the q̄A/q̄N ratio was observed for x ∼ 0.1
where the models of nuclear forces with dynamic pion fields predicted 10÷ 20%.

• Application of the baryon and momentum sum rules indicate that the valence quarks
and gluons are enhanced in nuclei at x ∼ 0.1 [1087, 828].

The region of x ∼ 0.1 is especially interesting for the purposes of studying the QCD
origin of the nuclear forces since it corresponds to the Ioffe distances ∼ 1/2xmN ∼ 1 fm,
characteristic of more medium and short-distance nuclear forces. The regularities listed
above suggest that meson exchanges which lead to the enhancement of the sea quark dis-
tributions are less important than it is suggested in the meson models of the nuclear forces,
while quark and gluon interchanges between nearby nucleons play a significant role. The
inclusive measurements at the EIC will directly measure VA/VN , GA/GN for x ∼ 0.1.

A new tool which will be available at the EIC is exclusive hard processes for which
the QCD factorization theorem has been proven for the processes γL + T → VM + T ′ for
the Bjorken limit and the mass of the final system T ′ being fixed [572]. We will focus on
the processes with deuteron target since in this case it is easier to select scattering off the
compact proton - neutron configurations and measure a complete final state. The rational
here is that the structure of the SRC in nuclei is approximately the same while using a
heavier target, say 4He would increase the impulse approximation interaction rate by a
factor of ∼ 3 only (due to a higher probability of SRCs in 4He). However this apparent
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gain will be compensated to a large extent by the final state absorption/distortions and
multistep processes significantly complicating the interpretation of the observations.

The first question one can address is whether the quark and gluon transverse distribu-
tions in bound nucleon are the same. The simplest possible processes are break up of the
deuteron

γ + 2H → J/ψ + p+ n. (5.173)

and
γ∗L + 2H → ρ− + p+ p. (5.174)

which probe gluon and quark transverse distributions.
The exclusivity of the process could be tested by measuring pt(N1)+pt(N2)+pt(VM) =

0. To avoid an ambiguity which of the nucleons was interacting via the hard process
γ∗ +N → VM +N , one needs to select transverse momenta of the vector meson ≥ 600 ÷
700MeV/c with momentum of the nucleon N1 in approximately the opposite direction. For
the spectator to belong to the SRC one needs to ensure that it has a large momentum in the
deuteron rest frame ≥ 0.3GeV/c. It could be either mostly longitudinal or have a transverse
component sufficiently deviating from the direction opposite to pt(VM).

The measurement involves studying the dependence of the ratio of the cross section of
the reaction (5.173), (5.174) and elementary reaction

R(psp) =

dσ(γ∗+2H→NN+VM)
dWγNdQ2dt,dpsp

dσ(γ∗+N→N+VM)
dWγNdQ2dt

on the momentum transfer to the vector meson - t ≈ −pt(VM)2 for fixed values of psp. De-
viations of the t-dependence from a constant (which can be calculated in the two nucleon
approximation) would signal the change of the size of the bound nucleon. The theoreti-
cal expectation is that such effects are proportional to the nucleon “off-shellness” so they
should rapidly increase with increasing psp, roughly ∝ p2sp [1088, 1084]. It is worth noting
that nucleon deformation along and transverse to the direction between the nucleons may
differ (like in the case of polarization of the atoms in the molecules). Hence a nontrivial
dependence of R(psp) on the angle between psp and pt(VM) is possible (such a dependence
is absent if the deformation depends only on the virtuality). It would be possible to study
the dependence of R(psp) on x (for photoproduction of J/ψ on m2

J/ψ/W
2 probing how the

nucleon deformation depends on x of the gluon in the bound nucleon wave function.
Another possible direction for studies is probing directly the pion exchange mechanism

using exclusive hard processes - for example γ + 2H → J/ψ + π− + pp with transverse
momenta of J/ψ and π− back to back and large deuteron rest frame momenta of both
protons (to ensure that the process occurs off the SRC).

The discussed class of the reactions is well suited also for looking for non-nucleonic
baryonic components in the SRCs (six quarks, ∆∆, ...). For example one can study the
process γ + 2H → J/ψ +∆++ +∆− where transverse momenta of J/ψ and one of ∆’s are
back to back. The advantage of this reaction as compared to medium energy processes is
the absence of a non-vacuum exchange in t-channel.

379



Slow neutrons and final-state interaction length

Kai Gallmeister, Ullrich Mosel

With collider kinematics, it is very instructive to look at “slow” nucleons of energy
less than 10 GeV, considered slow with respect to the (fast) target nucleon [1071], see also
Section 5.4.3. Performing some exploratory simulations within the GiBUU framework (see
Section 5.4.1) we are confronted with a lot of complications. In Fig. 5.83 we show some
distributions of slow neutrons as a function of energy for different production points in
the longitudinal axis, normalized to the corresponding number of scattered electrons. This
result is to be considered as preliminary, since we learned that we need a more accurate
treatment of Pauli-blocking and binding effects in the few MeV region. In addition, we need
to take into account the production of slow nucleons via evaporation and fragmentation.
This work is currently in progress by inclusion of a multi-fragmentation framework (SMM)
[1089] and correcting for effects of the large energy gap between initial interaction and
fragmenting nucleons.

It has been proposed by Ciofi degli Atti and coworkers in many papers (see Section 5.4.3)
that the interaction cross section of the jet particles within a SIDIS event with the debris of
the target nucleus shows interesting formation length dependencies. We see a large potential
for our GiBUU model to study all these questions.

5.4.4 Bose-Einstein Correlations at an Electron-Ion Collider

Gerald P. Gilfoyle

QCD directs the formation of hadrons from quarks and gluons in hard scattering. How-
ever, our understanding of this process is ad hoc; there is no full, QCD-based theory to
explain hadronization and fragmentation. To probe these processes, we propose to take
advantage of an iconic quantum mechanical effect, the symmetrization of the wave function
required for bosons. Particles formed near one another will have overlapping wave functions
and the interference of the wave functions produces correlations in the intensity and mo-
mentum dependence of the final particles. These Bose-Einstein Correlations (BEC) (or the
Hanbury-Brown Twiss effect) are examples of intensity interferometry and can be used to
study the space-time extent of the source of the particles and/or learn about the dynamics
of their formation. They have been used to investigate hot nuclear matter, but there are
only a few cases where e+A interactions have been studied. That work revealed that BECs
can be used to study the QCD string in hard scattering and our simulations show we will
be able to make precise measurements of the BEC source size at an EIC.

Bose-Einstein Correlations arise when two identical bosons are detected and their joint
wave function |p1p2〉 (pi is the particle 4-momentum) must be symmetric under particle
exchange. In other words, when the two bosons are detected from different points in space-
time, the observer cannot distinguish the origin of each particle so their amplitudes must
add. This requirement gives rise to interference terms in the intensity that do not exist
for non-identical particles. In fact, for identical fermions there would an anti-correlation
between the particles. The BEC in energy-momentum space is related to the extent of the
source in its spatial dimensions and the correlation function can be written as

R(Q12) =
dN/dQ12

dNref/dQ12
(5.175)
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Figure 5.84. Left: the measured Bose-Einstein correlation function, R(Q12), together with Gaussian
and exponential fits [1090]. The error bars show the statistical uncertainties. The data points
included in the fit are marked with the circles. The other points are excluded from the fit because
the correlation is dominated by resonance effects. Right: Pythia simulation of π+π+ Bose-Einstein
correlations (BEC) at Electron-Ion Collider kinematics. The BEC parameters were taken from Ref.
[1090]. The Lund fragmentation model was used.

where Q12 =
√

−(p1 − p2)2 is the Lorentz-invariant momentum difference between the iden-
tical bosons and Nref is a reference spectrum constructed with no BECs. The correlation
function is often parameterized as

R(Q12) = α (1 + λΩ(Q12r12)) (1 + βQ12) . (5.176)

In static models of particle sources, Ω(Q12r12) can be interpreted as the Fourier transform
of the spatial distribution of the emission region of bosons with overlapping wave functions
and is characterized by the size parameter r12 of the source. It is typically treated as a
Gaussian (e−Q

2
12r

2
12) or an exponential (e−Q12r12). The parameter λ measures the coherence

of the source, α is a normalization factor, and β accounts for long range correlations.
Existing measurements. There is a long history of the study of BECs in particle and
nuclear physics going back to 1960 when two-pion correlations were measured in pp̄ collisions
[1091]. They have been used to study geometric properties in e + p reactions [1090], the
space-time extent of hot nuclear matter in Au+Au collisions [1092, 1093], and the dynamical
properties of hadrons extracted from Au + Au collisions [1094]. Figure 5.84 shows the
two-pion correlation function from Ref. [1090] for e + p reactions measured at the DESY
collider for an electron momentum pe = 27.6 GeV and proton momenta pp = −820 GeV
and pp = −920 GeV. It shows several of the important features seen in many correlation
functions. There is a clear correlation that is maximal at Q12 = 0 and drops rapidly to unity
and below with increasing momentum difference. The height of the correlation function at
Q12 = 0 measures the coherence in the source. At moderate Q12 the correlation drops below
one, reflecting the usual practice of requiring the integral of the entire correlation function
to go to one. There is a steady rise in R at larger Q12 due to long-range effects. Recall the
denominator Eq. (5.175); It should be free of the correlations arising from Bose-Einstein
statistics, but will not be free of all correlations: momentum conservation will push R up
at large Q12. The width of the peak at Q12 = 0 reflects the size of the source of the two
bosons, i.e. large width in momentum space implies a small spatial source. The width of
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Figure 5.85. Left panel: The size parameter rrms as a function of the mean pair momentum p =
|~p1+ ~p2|/2 is shown for different nuclear targets [1095]. Data from Refs [1096, 1097, 1098] are shown
which correspond to e−16O interactions at initial energy of 5 GeV and Q2 < 0.1(GeV/c)2 are shown
for comparison. Right panel: Preliminary correlation functions for π+π+ from the CLAS detector
at Jefferson Lab [1099].

R in Fig. 5.84 corresponds to r12 ≈ 0.9 fm for an exponential fit and is largely independent
of Q2, the square of the four-momentum transfer.
BECs at an EIC.Measurements with the CLAS detector of a different type of correlations
(i.e., two protons) have been performed on nuclear targets. Some of the results are shown
in the left-hand panel of Fig. 5.85 [1095]. The figure shows the effects on the source size
rrms (extracted from the correlation) of the average pair momentum (p = |~p1 + ~p2|/2) and
the nuclear size on the correlation function. At low average pair momentum rrms increases
for the heavier nuclei and approaches the nuclear size; implying the possible dominance of
proton rescattering. The density of the source was extracted in Ref. [1095] and found to
be about 2-3 times the nuclear density in helium. In the right-hand panel of Fig. 5.85 we
show preliminary results on π+π+ pairs on several nuclear targets [1099]. Below Q12 ≈
0.15 GeV/c the correlations from all nuclei rise to a large positive correlation. Above
Q12 ≈ 0.15 GeV/c the correlation functions overlap one another within the statistical
uncertainty.

Measurement of Bose-Einstein correlations at an EIC will provide a new portal to stud-
ies of cold, high-density nuclear matter and the process of hadronization. The ground-state
properties of nuclei are now well understood. Ab initio calculations of the nuclear ground
state are successful for nuclei up to A = 8 and higher [1100, 1101] and lattice QCD cal-
culations continue to make progress toward a fundamental understanding of the nucleon
[1102]. However, the high-momentum components of the nuclear ground state are only
now being revealed. These high-momentum nucleons are often paired with another, nearby
neutron or proton forming regions of cold, dense nuclear matter. Short-range correlations
have shown the importance of high-density components and the influence of the tensor force
[1103, 1104]. The results of Ref. [1095] (left-hand panel of Fig. 5.85) demonstrated the use
of correlations to extract density information. Measurements at an EIC could also help us
to understand neutron stars [1105] and the EMC effect [1106].
Simulations. We have simulated Bose-Einstein correlations for π+π+ pairs at the kinemat-
ics of an Electron-Ion Collider to investigate the feasibility of measuring BECs at an EIC. For
our starting point we used the results for π+π+ correlations from ep reactions at DESY that
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are shown in Fig. 5.84 [1090]. That measurement covered the range Q2 = 4−8000 (GeV/c)2

and there was limited Q2 dependence in the BEC parameters they extracted. It is reason-
able to believe those parameters may also apply to the EIC kinematics. We chose the π+π+

channel because we expect them to be abundant and there is data from other experiments
that enable us to make comparisons. We took advantage of several existing tools to perform
the simulations. The Pythia program [81] was used to generate events with either Lund
string model or independent fragmentation. The code also includes a feature to simulate
Bose-Einstein correlations [1107, 1108]. The algorithm for the BECs starts with the usual
fragmentation simulation and then pairs of identical particles (i.e. π+π+) are selected. For
these pairs the relative 4-momentum Q12 is modified according to the desired parameteri-
zation (see discussion of Eq. (5.176) above) with the constraint that the total 3-momentum
of the pair remains the same in the center-of-mass (CM). The overall effect of applying the
algorithm is to preserve momentum conservation, but reduce the energy. To compensate
for the energy reduction, the CM momentum vectors are then rescaled.

As a consistency check, we compared the simulated correlation function R for π+π+

pairs with the measurements from DESY shown in Fig. 5.84. The simulated correlation was
weaker than the measured one, R(Q12 = 0) = 1.2 (simulated) versus R(Q12 = 0) = 1.38
(measured), and not as wide, but still experimentally significant. Since we are studying
the possibility of observing BECs, the parameters from Ref. [1090] will provide a more
conservative (and safer) test. We also simulated the BECs at the same kinematics as the
preliminary results shown in the right-hand panel of Fig. 5.85 (pe = 5 GeV and fixed target).
Here we found the simulated correlation disappeared entirely. The multiplicity of the events
generated by Pythia dropped significantly at these kinematics reflecting the limitations of
the code at these lower energies.

At EIC kinematics (pe = 11 GeV/c, pion = −60 GeV/c,
√
s = 51 GeV), we used

the BEC parameters from ZEUS [1090]. Since the EIC will run at energies lower than at
HERA, but above the current ones at Jefferson Lab, our estimates of the BECs are again
conservative ones. Our simulation of R at EIC kinematics is shown in the right panel of
Fig. 5.84. There is, like in the Ref. [1090] data, a sizable correlation at Q12 = 0, a decrease
in R with width ≈ 0.2 GeV/c, a dip below unity (recall discussion of Fig. 5.84) and then the
data approach one at high Q12. The Lund model was used here for the fragmentation and
a calculation using the independent fragmentation model in Pythia yielded similar results.
This result shows we can expect sizeable correlation functions at the EIC.

One of the possible effects we may see at an EIC is the stretching of the QCD color string
at high Q2 and/or changes in the string tension (recall Ref. [1109]). The fragmentation
region may not be spherical as observed in Ref. [1109], but may have different sizes in the
longitudinal and transverse directions. Such a difference was measured in Ref. [1090] where
the longitudinal radius was 0.26 ± 0.03 fm bigger than the transverse one. To search for
such an effect in our simulation requires a different approach to extracting R. We worked in
the longitudinal Center-of-Mass System (LCMS), where the longitudinal components of the
pair momentum add to zero and extracted the transverse and longitudinal 3-momentum
differences ∆p. Our initial results are shown in the left-hand panel of Fig. 5.86. The
transverse (red, filled circles) and longitudinal (blue, open circles) produce the characteristic
shapes seen above for R, but with significant quantitative differences between the two. The
transverse correlation is about twice the longitudinal one at Q12 = 0 and the widths are
similar. The large difference between the correlation functions suggests this may be a
useful tool for studying space-time properties of the emission source. To delve deeper into
this question, we considered the sensitivity of the LT distributions to changes in the size
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Figure 5.86. Longitudinal and transverse (LT ) correlation functions calculated with Pythia. The
left-hand panel shows the correlations functions using the Ref. [1090] parameters. The other two
panels show a comparison between those results and ones from a calculation with a smaller source
size r12.

parameter in the BEC parameterization. The middle and right-hand panels in Fig. 5.86
show a comparison of the same LT correlation functions shown in the left-hand panel
with ones calculated with a smaller size parameter (r12 = 0.73 fm versus r12 = 0.93 fm
from Ref. [1090]). The smaller radius amplifies the shape of the correlation functions (the
maximum at Q12 = 0 increases and the dip at Q12 ≈ 0.6 GeV/c is deeper. We can clearly
separate the two distributions within the Monte Carlo statistics shown here. We expect
the statistical uncertainties for an EIC measurement to be better than the Monte Carlo
statistical uncertainties shown here. The cross sections for these reactions (from Pythia)
multiplied by the EIC luminosity suggest a production rate of 105 Hz. We also fitted the
correlation functions with Eq. (5.176) and obtained uncertainties on the size parameter r12
less than 0.15 fm which is comparable to the precision of the results in Ref. [1090]. Thus,
we will be able to discriminate between different size parameters at least at the 0.2 fm level.
Conclusions. Bose-Einstein correlations will be an important tool at an Electron-Ion
Collider for studying high-density nuclear matter, the dynamics of the QCD string in hard
scattering, and to gain a deeper understanding of fragmentation and hadronization. Our
simulations have shown us that we can expect large (20%) effects in the correlation function
at small Q12. The longitudinal-transverse correlations are sensitive to the size parameter to
a fraction of a fm. Finally, the large π+π+ BECs observed at JLab that are not reproduced
in our simulations hold the promise of new physics to be uncovered with the EIC.
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5.5 e+A Monte Carlo Simulation Tools

5.5.1 A Monte Carlo Generator for Diffractive Events in e+A Collisions

Tobias Toll and Thomas Ullrich

While there is a rich set of Monte Carlo (MC) event generators for e+p collisions available
(e.g. PYTHIA6 [1110], HERWIG++ [1111], LEPTO [91], PEPSI [155], RAPGAP [1112],
ARIADNE [1113], CASCADE [1114], SHERPA [1115]), the situation for eA collisions is
less favorable. The exception is DPMJET [1116] which attempts to describe deep-inelastic
eA events but does not include the rich physics accessible via diffractive events.

In strong interactions, diffractive events can be interpreted as resulting from scattering
via the exchange of a pomeron that carries the quantum numbers of the vacuum, as discussed
in 5.2.3. It was a surprise to see that a large fraction (approximately 15%) of all e+p
events at HERA were diffractive. Calculations predict this fraction to be even larger in
e+A collisions at EIC where the large nuclei remain intact ∼ 25-30% of the time (e.g.
[826, 825]). In fact diffractive events are considered the most sensitive means of studying
saturation since the dipole scattering amplitude is proportional to the square of the gluon
momentum distribution xg(x,Q2). Another fascinating aspect of the study of diffractive
events at an EIC is that that it would allow us to measure the intensity and the spatial
distribution of the strong field that binds the nucleus together [885].

For all the above measurements the most important process to study is the production
of exclusive diffractive vector mesons, such as J/Ψ, φ, and ρ mesons, as well as Deeply
Virtual Compton Scattering (DVCS) photons. These processes give very clean final states,
consisting of the scattered electron and nucleus and one extra particle: a vector meson or a
real photon. This is a process which is dominated by small momentum fractions x < 10−2.
J/Ψ production is particularly well suited for studies of the spatial gluon distribution inside
nuclei due to its well known wave function, narrow decay width, and its large branching
ratio for electromagnetic decays J/Ψ → e+ + e−(or µ+ + µ−).

The measurement of exclusive vector meson production in diffractive events will be one
of the key measurements at an EIC. Therefore these processes has been the starting point
in our efforts to realise a new multi-purpose MC generator.
The Dipole Model: The dipole model is an important tool in investigations of diffrac-
tive processes and for the purpose of applying it to e+A collisions, we needed an impact
parameter dependent model as starting-point. Two known models fulfil this requirement:
bSat (or IPSat)[823] and bCGC [823, 824]. They are the underlying building blocks used
in the generator. In what follows, we will concentrate on the bSat model and not discuss
the technical details of the generator but focus on how the dipole models are applied with
emphasis on the extension to e+A collisions.

The parameters of the dipole models described below have been tuned to inclusive HERA
data, and they describe a wide variety of HERA measurements exceptionally well [823, 824].

The Dipole Model in e + p: The production of exclusive vector mesons and DVCS
photons at small x for ep collisions, e + p → e′ + p′ + V/γ, in the dipole model has been
extensively studied [823, 824]. Here the virtual photon splits into a quark-antiquark dipole
which interacts with the target diffractively via one or many two-gluon pomeron exchanges
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Figure 5.87. (a) shows the dipole cross-section for various impact parameters as a function of
dipole size in the bSat model. (b) and (c) depict the wave overlap functions for J/Ψ and ρ mesons
respectively as a function of r for various Q2 for transversely polarized photons (from [823]).

(see Fig. 3.14). The amplitude for this process is

Aγ∗p→V p
T,L (x,Q,∆) = i

∫
d2r

∫
dz

4π

∫
d2b (Ψ∗VΨ) (r, z)e−ib·∆

dσ
(p)
qq̄

d2b
(x, r,b) (5.177)

Here T and L represent the transverse and longitudinal polarizations of the virtual photon,
r is the size of the dipole, z the energy fraction of the photon taken by the quark, ∆ =

√−t
is the transverse part of the four-momentum difference of the outgoing and incoming proton,
and b is the impact parameter of the dipole. The wave function of the produced vector
meson or real photon is ΨV while that of the incoming photon that splits into the dipole is
Ψ.

In the bSat model the dipole cross-section in terms of the dipole scattering amplitude
N (p)(x, r,b) is

dσ
(p)
qq̄

d2b
≡ 2N (p)(x, r,b) = 2

[
1− exp

(
− π2

2NC
r2αS(µ

2)xg(x, µ2)T (b)

)]
, (5.178)

where µ2 = 4/r2 + µ20 and µ20 is a cut-off scale in the DGLAP evolution of the gluons
g(x, µ2). The nucleon shape function T (p)(b) = 1/(2πBG) exp(−b2/(2BG)). The parameter
BG is determined through fits to HERA data [823]. We use BG = 4 GeV−2. It should
be noted that bSat is a model of multiple two-gluon exchanges and does not contain any
gluon-gluon recombinations. It is however, by construction, a model that obeys unitarity,
so in this respect it is a saturation model.

Figure 5.87(a) shows the dipole cross-section as a function of r for different impact
parameters. Figure 5.87(b) and (c) depict the wave overlap, (Ψ∗VΨ)(r, z), for J/Ψ (b) and
ρ mesons (c) [823] used in Eq. 5.177. It should be noted that the J/ψ is not necessarily
the best suited vector meson for probing saturation effects. Studying saturation implies
probing large dipole radii r >∼ 2 GeV−1 (0.4 fm). However, the wave overlap with the J/Ψ
vanishes almost entirely for these dipole sizes. The lighter vector mesons ρ and φ certainly
appear more suited in this case. Unfortunately the wave functions of the lighter vector
mesons are less well known than that of the J/Ψ increasing the uncertainties in model-data

386



comparisons. This can be overcome in the future by improving our knowledge of the light
vector meson wave functions.
Phenomenological Corrections to the Cross-Section: In the derivation of the dipole
amplitude (eq. (5.177)) only the real part of the S-matrix is taken into account, making the
amplitude purely imaginary. The real part of the amplitude can be included by multiplying
the cross-section by a factor (1 + β2), where β is the ratio of real to imaginary part of the
amplitude. It is calculated using

β = tan
(
λ
π

2

)
, where λ ≡

∂ ln
(
Aγ∗p→V p
T,L (x,Q,∆)

)

∂ ln(1/x)
(5.179)

Also, the two gluons interacting in each event do not carry the same momentum fraction x.
In the leading ln(1/x) limit, this skewedness effect disappears, but can still be accounted
for by a factor Rg(λ), where Rg(λ) = 22λ+3Γ(λ+ 5/2)/Γ(λ + 4)/

√
π.

Rg is multiplied to the gluon distribution xg(x, µ2) and λ is defined as the derivative of
ln(xg(x, µ2)) with respect to ln(1/x). It should be noted that while the correction of the
real part of the amplitude is on firm theoretical footing, the skewedness correction should
be viewed as a purely phenomenological correction. Also, the correction variable λ is only
well behaving for small values of x < 10−2. The combined magnitude of both corrections is
x dependent and is typically of the order of 10− 60%.

Extending the Dipole Model from e + p to e+A: When going from +ep to e+A
scattering we will use the independent scattering approximation (see also eq. (5.95)),

1−N (A) =
A∏

i=1

(
1−N (p)(x, r, |b − bi|)

)
(5.180)

where bi is the position of each nucleon in the nucleus. Here, these positions are generated
according to the Wood-Saxon potential. Combining equations (5.178) and (5.180) the bSat
dipole cross-section for e+A becomes:

dσ
(A)
qq̄

d2b
(x, r,b,Ω) = 2

[
1− exp

(
− π2

2NC
r2αS(µ

2)xg(x, µ2)

A∑

i=1

T (p)(b− bi)

)]
(5.181)

At small gluon momentum fractions, x < 10−2, the dipole interacts coherently with
large volumes of the nucleus. Therefore the configuration of nucleons in the nucleus is not
an observable. To obtain the total cross-section, these nucleon configurations have to be
averaged over:

dσtotal
dt

=
1

16π

〈∣∣A(x,Q2, t,Ω)
∣∣2
〉
Ω

(5.182)

where Ω denotes nucleon configurations.
One defines two different kinds of diffractive events in eA: coherent and incoherent. In

incoherent diffractive processes the nucleus breaks up into two or more color neutral frag-
ments, something not possible in diffractive ep. If the nucleus stays intact the diffractive
processes are coherent. In the Good-Walker picture [1117] (also found in [885]) the incoher-
ent cross-section is proportional to the variance of the amplitude with respect to the initial
nucleon configurations Ω of the nucleus:

dσincoherent
dt

=
1

16π

(〈∣∣A(x,Q2, t,Ω)
∣∣2
〉
Ω
−
∣∣〈A(x,Q2, t,Ω)

〉
Ω

∣∣2
)

(5.183)
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where the first term on the R.H.S is the total cross-section and the second term is the
coherent part of the cross-section.
The Generator: The Monte Carlo event generator is implemented in C++ through a set
of modular classes. A rich set of input parameters let the user select beam energy and
species (A), wave function model, dipole model, kinematic range and the final state particle
to study: ρ, π, J/Ψ, or γ (DVCS). Internally, the variables t, Q2, and W 2 are generated
following a probability density function (pdf). From these three variables, the complete
final state consisting of the scattered electron, the scattered proton or nucleus, and the
produced vector meson or photon can be unambiguously calculated.

Generating Events for ep: The variables are generated from a probability density func-
tion which for ep is

pdf(Q2,W 2, t) =
∂3σtot

∂Q2∂W 2∂t
=

1

16π

∑

T,L

fγ
∗

T,L(Q
2,W 2)

∣∣∣Aγ∗p→V p
T,L (W 2, Q2, t)

∣∣∣
2

(5.184)

where fγ
∗

T,L is the photon flux for transversely and longitudinally polarized photons. The
user may also choose to include the corrections for the real part of the amplitude and/or
the skewedness effect as described above.
Generating Events for eA, the MC-Glauber Approach: For eA the pdf is

∂3σtotal
∂Q2∂W 2∂t

(Q2,W 2, t) =
1

16π

∑

T,L

fγ
∗

T,L(Q
2,W 2)

〈∣∣∣Aγ∗A→V A
T,L (Q2,W 2, t,Ω)

∣∣∣
2
〉

Ω

(5.185)

Here the average of an observable O with respect to the initial nucleon configurations Ω
is defined as 〈O〉Ω ≡ 1

Cmax

∑Cmax
j=1 O(Ωj), where a number of Cmax configurations Ωj are

generated and summed over. This sum will converge to the true average for large Cmax.
We call this way of performing the average the MC-Glauber approach. It should be noticed
that this method of averaging the initial nucleon configurations is different than in previous
publications, e.g. in [826] and [885].

For each event, the coherent part of the cross-section is calculated simultaneously with
the total cross-section, by averaging the amplitude before squaring it. It is then decided
probabilistically that the nucleus breaks up if

(
∂3σtotal

∂Q2∂W 2∂t
− ∂3σcoherent
∂Q2∂W 2∂t

)/
∂3σtotal

∂Q2∂W 2∂t
> R (5.186)

where R is a random number from a uniform distribution on [0 − 1]. When this happens,
the final state does not contain a scattered nucleus but rather the decay products resulting
from the break-up of the nucleus.
Generating Events for eA, the Optical Approach: A simpler and faster way of doing
the average over the initial nucleon configurations is what we call the optical approach.
Here the average is done implicitly in the dipole cross-section which becomes [826]

〈
dσAqq̄
d2b

〉

Ω,Optical

= 2

[
1−

(
1− TA(b)

2
σqq̄(x, r)

)A]
. (5.187)

For processing speed reasons we approximate the integrated dipole cross-section using the
GBW model [819]:

σGBW
qq̄ (x, r) = σ0

(
1− exp

(
−r

2Q2
s(x)

4

))
(5.188)
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Figure 5.88. Left plot. The coherent part of the cross-section as a function of |t| for electron-gold
scattering at Q2 = 10−4 GeV2 and xp = 0.006 averaged over 40, 80, 160 and 500 configurations
respectively. Right plot. The total, coherent, and incoherent cross-sections as a function of |t| for
eAu scattering at Q2 = 10−4 GeV2 and xp = 0.006 averaged over 500 configurations.

where Q2
s(x) = (x0/x)

λ. Here, σ0 = 23.9 mb, λ = 0.287 and x0 = 1.1 · 10−4 [823]. TA is
the projection of the Woods-Saxon potential in the transverse plane. This approximation
is valid for large nuclei. In the optical approach, only the coherent part of the cross-section
can be calculated, since it gives the average of the amplitude, but not of the amplitude
squared. It is implemented in the program as a fast alternative to the more accurate but
CPU-time intensive MC-Glauber approach.
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Figure 5.89. The coherent part of the cross-section
of e+A→ e′+A′ + J/Ψ for two different distribu-
tions of the initial nucleon configurations: Woods-
Saxon and KLN (from [1118]).

Results: In the following we only show re-
sults from the e+A part of the generator. In
Figure 5.88, the coherent part of the cross-
section for e+A ⇒ e′+A′+J/Ψ is shown as
a function of |t|, with Q2 = 10−4 GeV2 and
xp = 0.006. The nucleus used is gold with
A=197. The cross-section is calculated for
different numbers of averaged nucleon con-
figurations Cmax. The target is probed by
the dipole at a scale ∆ which means that
at large |t| the cross-section is much more
sensitive to smaller variations in the posi-
tions of the nucleons than it is for small
|t|. Therefore, for small |t|, the sum over
configurations converges quickly, while for
larger |t|, more configurations are needed
for the sum to converge. As indicated in
Fig. 5.88 approximately 100 configurations
are needed to describe eA scatterings up to
|t| ≈ 0.2 GeV2. In Figure 5.88 the total
cross-section and the incoherent part of the
cross-section are shown as averaged over 500 nuclear configurations. The t-slope of the
incoherent cross-section is close to 6 GeV−2. This is a bit steeper than is found in [827],
where the impact parameter dependence was factorized out in the dipole cross-section and
therefore the t−slope = BG = 4 GeV−2.

In order to measure the spatial distribution of gluons inside the nucleus, the coherent
cross-section has to be well measured as a function of t. The inverse Fourier transformation
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of this will then give the transverse spatial dependence of the amplitude. To do this the
position of the several coherent maxima in the t-distribution have to be measured accurately.

Experimentally, this requires the suppression of the large incoherent fraction, which is
of course also of great interest in itself [825]. Coherent and incoherent processes can be
separated by detecting the nuclear-breakup, i.e., detecting the nuclear fragments. While
this is experimentally straight forward in fixed target experiments it is rather challenging
at an EIC since the charged fragments are transported along the ion beam line. The most
promising approach is the measurement of emitted neutrons via zero-degree-calorimeters,
a technique used extensively at RHIC. Preliminary studies using de-excitation models (e.g.
Gemini++ [1119] and SMM [1120]) and a realistic layout of an EIC interaction region
showed that rejection factors of larger than 105 can be achieved.

In Fig. 5.88, the nucleon configurations have been explicitly generated according to the
Woods-Saxon configuration. Fig. 5.89 shows the same Woods-Saxon distribution in the
optical approach compared with a KLN distribution motivated by the CGC as discussed in
[1118]. It can be seen that the difference when using different initial nucleon distributions
within the nucleus is considerable and easily measurable by an EIC. It also demonstrates
the flexibility of the generator in adapting different models at all stages of the generation
process.
Summary and Outlook: A new event generator for the generation of diffractive events
in ep and eA collisions has been implemented based on an impact parameter dependent
dipole model. It describes the coherent and incoherent contributions to the cross-sections.
In its current version it is limited to the production of exclusive vector mesons and DVCS
photons. We intend to include more general diffractive processes in the same framework,
e+p/A→ e′+p′/A′+X where X is a general final state consisting of two or more hadrons.
When completed it will be the first diffractive event generator for eA collisions with a broad
range of processes relevant for the physics of a future EIC.

Acknowledgments: The authors would like to thank the INT for their hospitality and sup-
port. Also many thanks to G. Beuf, M. Diehl, A. Dumitru, W. Horowitz, H. Kowalski,
T. Lappi, and R. Venugopalan for many helpful discussions.

5.5.2 Parton propagation and hadronization simulations: overview

Alberto Accardi

The “Parton Propagation and Fragmentation” working group is currently working on
several Monte Carlo simulations to address hadronization in the cold nuclear medium. More
information, references and links are available on the PPF working group wiki [1121].

• PyQM. The “Pythia Quenching Model” is an energy-loss simulation based on Pythia,
see Section 5.5.3. The partons created in the hard scattering are allowed to lose
energy according to the Salgado-Wiedemann quenching weights, and then fed into
the Lund string fragmentation Pythia module. The goal is to determine if the Lund
string fragmentation leads to observable differences compared to using Fragmentation
Functions to describe leading hadron attenuation (as implemented e.g. in PQM, see
below), and to provide a simulation for a broader range of hadron flavors.

• Q-Pythia extension to DIS. Q-Pythia is an energy loss simulation by Armesto,
Cunqueiro and Salgado based on medium-modified DGLAP evolution equations. Cur-
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rently, only energy loss in the QGP is implemented, and we are working on imple-
menting energy loss in the cold nuclear target. Pursuing this simulation is likely to
have a very big pay-off: it will allow to study jet nuclear modifications, the effects of
medium modified DGLAP evolution on hadron observables, and compare this to the
BDMPS energy loss formalism in the integrated PQM simulation, and the implemen-
tation of the Higher-Twist energy loss formalism. Comparison to simulations done
with Q-Herwig, would also allow one to gauge the effects of cluster vs. Lund string
hadronization.

– PQM. The “Parton Quenching Model” is a simulation by Dainese, Loizides and
Paic, which uses Pythia as a parton level generator, and then applies the Salgado-
Wiedemann quenching weights to determine the parton energy loss before using
Fragmentation Functions to determine single hadron attenuation. It has been
integrated in Q-Pythia by C. Loizides.

– PyQM integration. It will be interesting to integrate PyQM in Q-Pythia, to
provide a direct comparison between hadronization performed according to the
Lund string model and using Fragmentation Functions.

• Higher-Twist energy loss. The Higher-Twist energy loss formalism has recently
been extended to include a resummation of all higher-twist contributions, and inm-
plemented in a Monte-Carlo simulation, see Section 5.4.2.

• GiBUU. This is (among other things) a simulation of nuclear modifications of hadron
production in DIS based on the Lund string model and BUU coupled-channel trans-
port equation for the (pre)hadrons, and completely neglects energy loss, see Sec-
tion 5.4.1. It has been extensively tested on HERMES and EMC data, and is ready
to use at the EIC energy. It will be interesting to implement the few variations in the
space-time prehadron production schemes available on the market and investigate pos-
sible observable differences. Inclusion of target fragmentation is currently in progress
in the multi-fragmentation framework (SMM) [1089] and correcting for effects of the
large energy gap between initial interaction and fragmenting nucleons.

5.5.3 PyQM: a pure energy loss Monte-Carlo simulation

Raphaël Dupré and Alberto Accardi

Pure quark energy loss models are widely used to describe jet quenching in relativistic
heavy ion collisions (RHIC), however most of the calculations were never applied to the
nDIS experiments, which are usually at lower energy, making any comparison difficult.
EIC is the chance to have data of both processes at similar kinematic, in this context it is
natural to develop PyQM, a pure energy-loss Monte-Carlo simulation for nDIS based on the
Salgado-Wiedemann quenching weights formalism [1122] widely used to analyze RHIC data.
This simulation will be utilized as a tool to evaluate the future EIC capabilities concerning
quark energy loss measurement; since it also provides rate estimates and the kinematics of
particles to detect, this information will be used to discuss the relevance and interest of
various observables and the accelerator and detector requirements to access them.

The PyQM Monte-Carlo simulation is based on PYTHIA [81] for the DIS interaction
and the fragmentation process, which is described by the Lund string model. Between the
intial hard scattering and string fragmentation, we apply quark energy loss on the struck
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parton, using a nuclear density profile [1123] to estimate the quantity of matter the quark
has to go through, and the Salgado-Wiedmann quenching weights [1124] to calculate the
energy loss itself. To account for the geometry of the nuclei, we follow Ref. [1125], and pick
randomly the interaction point according to the nuclear density distribution; the thickness

of the nuclear matter seen by the parton is then given by R =
2ω̄2

C(~b,y)∫∞
y dzq̂A(~b,z)

with y the

position along the propagation direction with its origin at the interaction point, and ~b the
transverse position of the y axis relative to the center of the nucleus. The characteristic
energy ωC , and the local transport coefficient q̂ are given by

ωC(~b, y) =

∫ ∞

y
dz(z − y)q̂A(~b, z) q̂A(~b, y) =

q̂0
ρ0
ρA(~b, y) (5.189)

Then the only free parameter for the quenching weights, and indeed for the whole simulation,
is q̂0, the transport coefficient at the center of the nucleus. This is found to be q̂0 = 0.6 GeV2

fm−1 from a fit of the HERMES data [1029] (figure 5.90), in agreement with the analytic
calculations of [1125, 1010]. A full description of the results of this simulation compared
to HERMES would be beyond the scope of this presentation; here we note that its results
are satisfactory for the multiplicity ratio, but require a seemingly too large q̂ compared to
HERMES data on pion pT -broadening. We are currently working on an implementation
of pT -broadening in our simulation, which, puzzingly, appears instead to produce the right
amount of integrated pT broadening as a function of A. This issue is directly linked to the
quenching weight calculation and work is in progress to better understand it.
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5.6 Connections to Other Fields

5.6.1 Gluon Tomography in Nuclei - The Heavy Ion Collision Initial State

William A. Horowitz

The main purpose of colliding large nuclei is the creation and study of the quark-gluon
plasma (QGP), the deconfined state of QCD matter at high temperatures (T ∼ 200 MeV)
and low baryon chemical potential (µ ∼ 0). Measuring the properties of the QGP is
interesting as it is a known phase of the strong force, one of the four known forces in
Nature. The QGP is fascinating from a theoretical standpoint as there exists the possibility
of experimentally measuring the emergent many-body properties of the non-linear, non-
Abelian QCD field theory. It was hoped that the collision of large, ultra-relativistic nuclei
in a heavy-ion collision (HIC) might provide an experimental window with which to observe
the properties of the QGP, and it appears that just such a novel phase of matter has been
created at RHIC [1126, 1127, 1128, 1129, 1130].

But what are the properties of this QGP that has been created? Qualitatively: is the
medium strongly or weakly coupled; what are its relevant degrees of freedom; does viscous
relativistic hydrodynamics describe the bulk physics of the QGP; does either pQCD or the
phenomenological string theory methods of the AdS/CFT correspondence or neither de-
scribe the physics of either the bulk medium or the high momentum probes of the medium?
Quantitatively: what is the viscosity of the medium; what are the values of its transport
coefficients? Is the QGP at RHIC the most perfect fluid created by mankind? The difficulty
faced when trying to answer these questions is that a heavy-ion collision is an incredibly
complex event. It is useful to think about a HIC, as currently best understood, as a series
of separate stages: 1) t = −∞, the time before overlap, when the nuclei are boosted to 200
GeV per nucleon at RHIC; 2) t = 0, the actual collision of the nuclei and creation of large
chromodynamic fields; 3) 0 . t . 1 fm/c, the initial large chromodynamic fields rapidly
thermalize; 4) 1 . t . 3 fm/c, evolution as a QGP; 5) 3 . t . 4 fm/c, hadronization; 6) 4
fm/c . t→ ∞, evolution as a hadron gas. A cartoon of a typical central heavy ion collision
is shown in figure 5.91.

Figure 5.91. Cartoon of the stages of a heavy ion collision. Timescales are approximate.

As one can see, the system is in the QGP phase for only a brief period of its entire
spacetime evolution! These times are important to understand not only because they are
interesting in their own right—What are the non-linear evolution effects on the color charge
density of highly boosted nuclei? How do very large chromodynamic fields thermalize so
rapidly? How does hadronization occur?—but also because the interpretation of experi-
mental observables associated with the QGP is sensitive to the details of the physics of
the other stages of a HIC. Any new means of experimentally extending our understanding
of these other stages would provide a qualitative leap forward in our understanding of the
QGP created at RHIC. Of particular importance are the initial conditions of a heavy-ion
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Figure 5.92. (a) Initial spatial anisotropy evolves into momentum anisotropy in non-central heavy
ion collisions. Hydrodynamics aims to quantitatively model this process to gain information on the
medium and its properties. (b) Comparison of data and theoretical predictions using viscous rela-
tivistic hydrodynamics for vh2 (Npart) (left) and v

h
2 (pT ) (right). Viscous hydrodynamics predictions

use Glauber-like initial conditions (top) or a simplified implementation of color glass condensate
(CGC) physics (bottom). Note the 100% difference in extracted η/s from the two naive geometry
models. figures adapted from [1131, 881].

collision, from t = −∞ to t ∼ 1 fm/c, from the time before the collision up through ther-
malization. An electron-ion collider that probes gluons at x ∼ 10−3 could provide precisely
this qualitatively new physics understanding of the initial conditions.

The two most striking discoveries of the RHIC heavy-ion program so far are perfect
fluidity and jet suppression. The naive interpretation of the measured flow of low momentum
particles is that the QGP is a strongly coupled fluid whose properties are described by
AdS/CFT; the naive interpretation of the measured jet suppression is that the QGP is a
weakly coupled plasma whose properties are described by pQCD. These two interpretations
are both mutually exclusive and highly dependent upon the initial conditions of HIC.
Hydrodynamics. The stunning success of ideal relativistic hydrodynamics at RHIC as
compared to its failure in lower energy machines [1132, 1133, 880], led to the proclamation
of the creation of a perfect fluid at RHIC [1134, 1135, 1136]. In HIC particle spectra are
often conveniently reported as

dNh

dpT
(pT , φ, Npart) =

dNh

dpT
(pT , Npart)

(
1 + 2vh2 (pT , Npart) cos 2φ+ . . .

)
, (5.190)

where φ is the angle of the observed particle with respect to the semiminor axis of the
overlap region; see figure 5.92 (a). As pictured in figure 5.92 (a) the vh2 develops from
pressure gradients that build up as a result of the spatial anisotropy created in the initial
overlap of the two nuclei.

The nearly ideal fluid flow as surmised from hydrodynamics is exciting because the
extracted value of η/s, the shear viscosity to entropy ratio, is smaller than for any other
known substance [1137]. From a theoretical standpoint, this nearly ideal flow is a huge
success for string phenomenology: the lower bound for η/s in a strongly-coupled liquid
as computed using the AdS/CFT correspondence is 1/4π, in natural units. This value of
1/4π ≃ 0.1 should be compared to the naive estimate from pQCD, η/s ∼ 1. Conservative
estimates of the extracted value of η/s from comparison between theoretical calculations and
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Figure 5.93. (a) A plot of the early success of pQCD energy loss calculations in describing RAA(pT ),
Eq. 5.191. (b) Cartoon of the energy loss from a high-pT parton in the QGP medium. The longer
the pathlength L the greater the energy loss: the spatial anisotropy manifests as a suppression
anisotropy, which is represented by vh2 . (c) pQCD (∆E ∼ L2) energy loss significantly underpredicts
the anisotropy while AdS/CFT (∆E ∼ L3) loss is consistent. The simultaneous description of RAA
and v2 seems to require both L3 energy loss and a CGC-like initial state. figures adapted from
[1140, 884].

experimental data yield η/s ∼ 0.1−0.5 [1137]. Hydrodynamics is a set of partial differential
equations: initial conditions, for which hydrodynamics can tell us nothing, must be supplied.
Figure 5.92 (b), in which a 2+1D viscous hydrodynamics calculation is compared with data,
shows the at least factor of 2 uncertainty in the extracted value of η/s that arises from the
poorly constrained mean value of the initial geometry. The uncertainty from fluctuations
[1138], in which hot and cold spots appear in the initial conditions, might also be very
large [1139]. This very large range of η/s means that one cannot definitively claim that the
medium is better understood as strongly coupled and near the lower bound set by AdS/CFT
or weakly coupled, with pQCD providing a good physical description.
High-pT Physics. Originally, high-pT particles were hoped to provide a tomographic
probe of the QGP medium produced at RHIC. Jet tomography, then, would provide a
means, independent of hydrodynamics, for determining many medium properties; most
important, jet tomography could be a tool to investigate the initial geometry of the HIC.
While early work showed great promise, see figure 5.93 (a), there are several observables
for which the perturbative energy loss calculations do not provide a good description of the
data (see, e.g., figure 5.93(c)). There is currently not much theoretical control over the in-
medium energy loss experienced by high-pT partons: different assumptions about the best
physics approximations have yielded very different energy loss calculations (see, e.g., [1141,
1011]), and all these calculations suffer from large, mostly unquantified uncertainties due
to simplifying mathematical approximations [1142]. Nevertheless, qualitatively fascinating
discoveries can be made from high-pT observables. In particular, one may compare the
results of strong coupling calculations derived using the AdS/CFT correspondence to those
derived using traditional pQCD methods; in this way, energy loss holds out the possibility of
rigorously investigating, independent of hydrodynamics, whether RHIC creates a strongly-
coupled perfect fluid or a weakly-coupled plasma.

High-energy particle spectra are often reported as normalized by the p + p spectrum
multiplied by Ncoll(Npart), where Ncoll(Npart) is the expected number of p + p-like hard
collisions in an A+A collision with a given number of participants:

RhAA(pT , φ, Npart) =
dNh

AA

dpT
(pT , φ)

/
Ncoll(Npart)

dNh
pp

dpT
(pT ), (5.191)
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where h is the measured hadron species and φ is the same angle as was defined in the
discussion of hydrodynamics. This ratio is also often reported as a Fourier expansion, with
vh2 again representing twice the first Fourier coefficient (the same vh2 as in hydrodynamics).
However the physical understanding of the origin of the high-pT vh2 is very different from
the hydrodynamics physics which dominates the generation of the low-pT vh2 . For high-
pT observables, vh2 comes from high-pT partons traversing a medium asymmetric from the
initial geometry: less energy loss occurs for partons traveling the short direction of the
almond-shaped overlap region compared to those partons that travel the long direction.
A cartoon of this physical picture is shown in figure 5.93 (b). The size of vh2 is then an
entangled measure of the geometry of the medium and the pathlength dependence of the
energy loss mechanism: perturbative elastic energy loss, which goes as L1, produces less
vh2 for a given geometry than perturbative inelastic energy loss, which goes as L2, which
produces less vh2 than strong-coupling energy loss, which, for light partons, goes as L3 and
as exp(−L) for heavy partons. vh2 is of particular interest because it was recently measured
out to pT ∼ 13 GeV, well beyond momentum scales where hadronization effects might be
important. That the observed vh2 is significantly larger than that predicted by perturbative
methods, shown in figure 5.93 (c), is perhaps the best high-pT experimental evidence that
AdS/CFT, as opposed to pQCD, is the best approximation to the relevant physics at RHIC.

As the theoretical prediction of high-pT v
h
2 comes directly from the azimuthal anisotropy

of the QGP medium, knowledge and constraint of the initial geometry is crucially important
for a rigorous scientific conclusion to be made: the sharper the produced medium the larger
the vh2 , regardless of energy loss mechanism. As one can see from figure 5.93, there are
reasonable initial conditions for which no known energy loss calculation describes the data.
And just as in hydrodynamics, fluctuations may play an important, even outsized, role.
Measuring the Initial State. From the above discussion it is clear that knowledge
of the initial conditions at RHIC is crucial for interpreting the experimental data. The
density of the charged and neutral matter density of nuclei at rest is well understood from
diffraction pattern experiments (see, e.g., [1143]). Knowledge of the rest frame density of
protons and neutrons in nuclei has been used extensively in estimating the initial matter
density created in HIC. Matter production in HIC, though, depends on the distribution of
quarks and, especially, gluons in the nuclear wavefunction. Below some value of Bjorken
x that is not yet precisely known, non-Abelian, non-linear QCD evolution effects become
important. The (mostly) gluonic initial state medium at midrapidity at RHIC consists of
particles of x ∼ pT /

√
s ∼ 10−3, which is at the order of magnitude for which small-x physics

likely becomes relevant. Unfortunately the theory of small-x physics in A+ A collisions is
very complicated, and current knowledge is incomplete. Additionally, the aforementioned
theoretical calculations of vh2 are in fact most sensitive to the the quantitative shape of
the edge of the initial nuclear overlap in HIC; it is just in this region that many of the
theoretical tools developed for small-x physics study break down. It turns out, though,
that through careful measurements, diffraction patterns may be measured at an electron-
ion collider using deeply-virtual Compton scattering and vector meson production. These
diffraction patterns, in turn, may be inverted to constrain the initial gluon and quark
densities of the highly boosted nuclei. Fortuitously, these experimental measurements give
the most sensitive determination of these densities at the edge of the nucleus, the region of
the overlap which hydrodynamics and energy loss calculations are most sensitive to.
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5.6.2 Constraining initial conditions in A+A collisions

Adrian Dumitru

Understanding small-x gluon production in the initial state of relativistic A+A collisions
constrains the amount of additional entropy produced via “final-state” interactions such as
parton thermalization / QGP formation [1144] and its subsequent hydrodynamic expansion.
If these processes provide a significant contribution, then that should presumably show in
the centrality dependence of the multiplicity in the final state: final state interactions should
be much more prevalent for a head-on collision of two large nuclei than for a grazing shot
or p+A or (minimum bias) p+p collisions. It is therefore very important to test models for
initial particle production over a broad range of centralities – perhaps down to the level of
p+p collisions – in order to constrain entropy production due to thermalization and viscous
hydrodynamic expansion [1145].

To compute the number of small-x gluons released from the wavefunctions of the colliding
nuclei, one frequently employs the k⊥-factorization formalism [742, 1146],

dN

d2r⊥dy
= N Nc

N2
c − 1

∫
d2p⊥
p2⊥

∫ p⊥

d2k⊥ αs(Q
2)

× φA(x1,
(p⊥ + k⊥)2

4
; r⊥) φB(x2,

(p⊥−k⊥)2

4
; r⊥) , (5.192)

where Nc = 3 is the number of colors, and p⊥, y are the transverse momentum and the
rapidity of the produced gluons, respectively. x1,2 = p⊥ exp(±y)/

√
sNN denote the light-

cone momentum fractions of the colliding gluon ladders,
√
sNN is the collision energy, and

typically one chooses Q2 = max((p⊥ + k⊥)2, (p⊥−k⊥)2)/4. The normalization factor N
can be fixed from peripheral collisions, where final-state interactions should be suppressed.
It effectively also absorbs NLO corrections and the contribution from sea (anti-)quarks.
The unintegrated gluon distribution φ is related to the dipole scattering amplitude in the
adjoint representation, NG, through a Fourier transform [1147]:

φ(x, k2⊥; r⊥) =
CF

αs(k⊥) (2π)3

∫
d2s⊥ e

−ik⊥·s⊥ ∇2
s⊥
NG(x, s⊥; r⊥) . (5.193)

The multiplicity in heavy-ion collisions. Figure 5.94 (left) shows the centrality depen-
dence of particle production for heavy-ion collisions at 200GeV and 2760GeV, respectively,
obtained by integrating eq. (5.192) over the transverse overlap of the colliding nuclei. The
unintegrated gluon distributions are solutions of the local (impact parameter independent)
Balitsky-Kovchegov (BK) equation with running-coupling corrections according to the Bal-
itsky prescription [751]. The impact parameter dependence is due entirely to the initial
condition where it has been assumed that essentially Q2

s(x0; r⊥) = Q2
0 σ0 TA(r⊥) increases

in proportion to the thickness of the nucleus (Q0 and σ0 denote constant scales; for details
see ref. [896]). Neglecting the impact parameter dependence of the dipole scattering ampli-
tude NG in a nucleon relies on the scale separation RA ≫ RN ≫ Q−1s where RA is the size
of the overlap region in the collision [1150].

Apparently, the model calculation describes both the centrality and the energy depen-
dence of particle production fairly well. If so, this constrains final-state entropy production
and correlates the thermalization time and the shear viscosity to entropy density ratio:
extremely rapid thermalization and/or η/s>∼ 0.3 would be excluded by stringent entropy
production bounds [1145].
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Figure 5.94. Left: Centrality dependence of the multiplicity at 200GeV and 2760GeV, respectively,
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details). PHOBOS data: [891] (Au+Au), [1148] (Cu+Cu); ALICE data from ref. [894]. Right: v2/ε
versus the transverse particle density [1149]; v2/εCGC has been scaled by 1/2 for better visibility.

Several caveats remain. As already mentioned above, the absolute normalization of the
gluon density at small x (alternatively, the factor N in the k⊥ factorization formula) can
be fixed in practice only from very peripheral A+A or p+p collisions9. For p+p collisions,
however, the impact parameter dependence of the dipole scattering amplitude over distance
scales ∼ RN can not be neglected, see for example ref. [1151].

Furthermore, it may be important to consider in more detail the structure of running
coupling corrections to the k⊥-factorization formula (5.192) [897] and the effect of a full
NLO treatment of BK evolution. Indeed, if such corrections modify the centrality depen-
dence of particle production in A+A collisions then they will also affect entropy production
constraints and thus the fundamental understanding of the thermalization processes and
time scales as well as estimates of the shear viscosity of thermal QCD.
The eccentricity in heavy-ion collisions. Other quantities of relevance for the inter-
pretation of heavy-ion collisions exhibit even greater sensitivity to the actual distribution
of produced gluons in the transverse r⊥ plane than its integral dN/dy. A collision of two
heavy ions at non-zero impact parameter, neglecting fluctuations of the local density of par-
ticipant nucleons, leads to a momentum asymmetry called “elliptic flow”, v2 ∼ 〈cos 2φ〉, as
described in section 5.6.1. In the absence of any scales (such as the freeze-out temperature
Tf , the phase transition temperature Tc, or a non-vanishing mean free path λ), hydro-
dynamics predicts that v2 is proportional to the eccentricity ε of the overlap area [1152],
ε = 〈y 2−x 2〉/〈y 2+x 2〉. The average is taken with respect to the distribution of produced
gluons in the transverse x-y plane. Clearly, ε involves large cancellations of the contribu-
tions of gluons produced near the center r⊥ ∼ 0 of the overlap zone and so is more sensitive
to particle production in the periphery.

A simple geometry based initial condition assumes that by analogy to the Glauber model
for soft particle production dN/dyd2r⊥ ∼ ρavepart(r⊥) ≡ (ρApart(r⊥)+ ρBpart(r⊥))/2, where ρ

i
part

is the density of participants of nucleus i per unit transverse area. High-density QCD
(the “Color-Glass Condensate”) predicts a somewhat different distribution of gluons in
the transverse plane, corresponding to a higher eccentricity ε. In particular, in the “p+A
limit” when one of the nuclei is very dense while the other is dilute, the number of produced
particles is proportional only to the density of the dilute collision partner, whose partons add

9Small-x partons do not contribute significantly to the momentum sum rule and a precise matching to
the parton distributions at large x and low Q2 is lacking.
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up linearly. Hence, in the reaction plane, dN/dyd2r⊥ ∼ min(Q2
s,A, Q

2
s,B) ∼ min(ρApart, ρ

B
part)

drops more rapidly as one moves towards the edge of the overlap zone than dN/dyd2r⊥ ∼
ρavepart [1153]. Thus, a higher eccentricity is a generic effect due to a dense target or projectile.
Specific numerical estimates rely on an accurate determination of the unintegrated gluon
distribution, however. Ref. [896] finds that the energy dependence of ε from RHIC to LHC
is very weak.

Figure 5.94 (right) shows the elliptic flow v2 measured in heavy-ion collisions at RHIC
scaled by the eccentricity ε of the overlap zone [1149]. As already mentioned above, in the
absence of any scales such as a non-zero mean free path, v2/ε would be independent of the
transverse density of particles. Indeed, if the v2 data is scaled by the eccentricity obtained
from a CGC model implementation then the required breaking of scale invariance is lower
than for purely geometry based (Glauber-like) initial conditions. Actual solutions of viscous
hydrodynamics (for v2) appear to confirm this simple observation in that the slope of v2/ε
versus transverse density is sensitive to the distribution of produced particles [1154].

More recent studies attempt to understand also the relation of higher moments of
anisotropic flow vn to corresponding moments of the initial eccentricity εn – such as the
“triangularity” [1155, 1156, 1157, 883, 1158], which is non-zero because of fluctuations of
the large-x sources in the transverse impact parameter plane before the collision. A quanti-
tative interpretation of the “response” vn of the Quark-Gluon Plasma medium to the initial
geometry will also rely on a good understanding of particle production in high-energy QCD.

5.6.3 Particle production at low-x and gluon saturation: from p + A to
e + A

Kirill Tuchin

In the beginning of the RHIC era, the p(d)+A program was perceived as merely a useful
baseline reference for the heavy-ion program. It very soon turned out that due to a wise
choice of colliding energy, RHIC probes the transition region to a new QCD regime of gluon
saturation. While the first hints of gluon saturation were observed in DIS experiments at
HERA, it is fair to say that gluon saturation was discovered in dA collisions at RHIC. At
present, as we are heading toward the era of EIC, it is important to review what we have
learned at RHIC and how it can be used to optimize the EIC program. The purpose of this
section is to review phenomenological studies of gluon saturation at RHIC.

The reason why pA and eA high energy physics programs are closely related is provided
by the Pomerantchuk theorem, which states that all high energy scattering processes are
mediated by the exchange of a collective gluon state – known as a Pomeron – that has
vacuum quantum numbers. For this reason, inclusive processes in both programs share
many similarities in the low x region. The main distinction arises from the difference in the
characteristic scales of the projectile: in protons it is a soft scale Λ, while in virtual photons,
it is the photon virtuality Q2, which depends on the electron kinematics. A possibility to
control the Q2 is a great advantage of DIS. In particular, it allows one to study the total
cross sections/structure functions. However, in practice, the requirement to keep x low
significantly restricts the range of Q2’s available for low x studies.

The relation between pA and eA scattering at low-x becomes particularly apparent in
the framework of the dipole model [737]. In the dipole model, the cross section for eA→ X
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or pA→ X scattering, where X is an arbitrary final state, can be represented as

dσp(γ∗)+A→X =

∫
d2r⊥ Φp(γ

∗)(r⊥) dσd+A→X(r⊥) , (5.194)

where d stands for color dipole (letter d is reserved for deuteron) of size r⊥ in the transverse
plane. Eq. (5.194) is based on the separation of scales: the interaction length ℓi ∼ RA (in
the target rest frame) is much smaller than the coherence length ℓc = γ/MN , where γ ≫ 1 is
the Lorentz factor andMN is the nucleon mass. Φp(γ

∗)(r⊥) is the light-cone “wave function”
describing the Fourier decomposition of a projectile into dipoles; it can be calculated in QED
(for γ∗), or modeled (for proton), see e.g. [1159, 1160]. The main theoretical concern in
low x pA/eA scattering is calculation of the dipole-nucleus cross section, which is universal
for both processes. With this observation in mind, we are going to consider some of the pA
processes at RHIC that are of relevance for low-x physics at EIC.
Inclusive hadron production: p + A → h +X. The cornerstone for phenomenological
applications of the Color Glass Condensate (CGC), which is the theory of gluon saturation,
is the factorization theorem proved in [1147], where the cross section was derived that re-
sums all leading logarithmic contributions αs ln(1/x) ∼ 1 (LLA) for a heavy nucleus in the
quasi-classical limit α2

sA
1/3 ∼ 1. A similar result was reported in [1161, 1162, 1163]. One

does not expect that any of the hard perturbative QCD (hpQCD) factorizations apply in
this case because higher twist interactions of valence quarks and gluons give contributions
of order unity. Nevertheless, despite the fact that individual diagrams break factoriza-
tion in covariant and light-cone gauges, the final re-summed expression can be cast in the
kT -factorized form. Unlike in hpQCD, the physical quantity that is factorized – the uninte-
grated gluon distribution ϕ(x,Q2) – can be calculated perturbatively owing to the existence
of a hard scale Qs ≫ ΛQCD. Another surprising fact is that contrary to naive expectations,
ϕ(x,Q2) is related not to the momentum space Fourier-image of the nucleus gluon-field
correlation function 〈A⊥(0⊥) ·A⊥(x⊥)〉, but rather to the Fourier-image of ∇2

rN(r⊥, b⊥, y),
where N(r⊥, b⊥, y) is the imaginary part of the forward elastic scattering amplitude of a
color dipole of size r⊥ at impact parameter b⊥ and rapidity y = ln(1/x) in the heavy nu-
cleus. Although the inclusive gluon production in pA collisions is the only known case were
kT -factorization holds, factorization of the multipoles in the transverse coordinate space is
a general feature of the low-x cross sections. It must be stressed that this multipole factor-
ization does not imply hpQCD factorizations (kT or collinear ones) and neither opposite is
generally true.

The kT -factorization formula derived in [1147] led to successful phenomenology of in-
clusive hadron production in dA collisions at RHIC, where the suppression of hadrons at
forward rapidities and Cronin enhancement at mid-rapidity were qualitatively predicted
[1164, 1165] and then quantitatively described in the CGC framework [1166, 1167, 1168].
The production of valence quarks in the forward direction gives an important contribution to
inclusive hadron production at large-x of the proton and was discussed in [1169, 1170, 1171].

By integrating the gluon spectrum over p⊥, one arrives at the total hadron yield as a
function of rapidity y. It is rather weakly dependent on the details of the gluon distributions.
Therefore, a simple model suggested in [1172] is able to describe inclusive hadron yield with
remarkable accuracy.
Open charm (beauty) production: p + A → D + X. The production of heavy
quarks in pA collisions at low-x was calculated in [1173, 905, 1174]. One expects that the
hpQCD factorization is applicable if the saturation momentum is much smaller than the
quark mass m [1175]. At RHIC, Qs ∼ m for charm and bottom, hence factorization is
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broken in both cases. Indeed, analysis of [1176] indicates that semi-classical calculations
of [905] disagree with kT -factorization by about 10% at the t-channel gluon transverse
momenta around m. hpQCD factorization is restored in the kinematic region where the
operator product expansion is applicable, i.e. at transverse momenta much higher than the
saturation momentum.

The phenomenology of open heavy quark production at RHIC was developed in [1177],
where it was found that the production pattern of heavy quarks is qualitatively similar
to that of light quarks and gluons, although the magnitude of nuclear effects (Cronin and
suppression) slowly decrease with increasing quark mass. These qualitative features are in
good agreement with preliminary data.
Inclusive production of J/Ψ: p+A → J/Ψ +X. In addition to the scales ℓi and ℓc
mentioned earlier, the production of a charmonium state is characterized by another scale:
formation length ℓf = γ/∆M , where ∆M is its binding energy. The key theory observation
is strong ordering of the scales at high energies: ℓi ≪ ℓc ≪ ℓf [977, 1178]. Consequently,
we can distinguish three stages of J/Ψ production. (i) g∗ → cc̄ described by the light-cone
amplitude ψg(k⊥, z) often referred to as gluon’s light-cone wave function, (ii) interaction of
the gluon or the cc̄ with the target depending on whether the splitting has occurred after
or before the interaction, and (iii) formation of charmonium wave function. Unlike stages
(i) and (ii), which can be described using perturbation theory owing to the weakness of the
strong interaction at the J/Ψ-mass scale, stage (iii) is non-perturbative because ∆M ≪M .
This, however, does not preclude us from using perturbation theory for calculating the
J/Ψ production cross section, since the fragmentation process is independent of energy and
atomic weight (ℓf ≫ RA). In other words, fragmentation happens in the vacuum long after
any interaction with the target.

Thus, the problem of calculating the J/Ψ production cross-section reduces to the cal-
culation of the cross section of d + A → [cc̄(1−−)] + X dipole-nucleus scattering. This
calculation was done in [1179, 1180]. Note, that interaction depends on the quantum state
of the cc̄ pair, which must be in the 1−− color singlet state. Therefore, only those higher
twist contributions may be taken into account that lead to this quantum state, and which are
also enhanced by α2

sA
1/3 ∼ 1. At the lowest order in αs, the projectile gluon in the proton

wave-function has two interaction possibilities: (i) leading twist processes g+ g → J/Ψ+ g,
which is of order O(α5

sA
1/3) and (ii) higher twist process g + g + g → J/ψ (initial gluons

come from different nucleons), which is of the order O(α6
sA

2/3). Since α2
sA

1/3 ∼ 1, the
higher twist mechanism (ii) is parametrically enhanced. Notice, that this leading contri-
bution explicitly breaks kT -factorization as it is proportional to xG(x1)[xG(x2)]

2. Results
reported in [1179, 1180] show strong coherence effects consistent with expectations of CGC
theory.
Electromagnetic probes. The main advantage of electromagnetic probes, such as photons
and dileptons, is that they are directly observable without an intermediate hadronization
process, in contrast to quarks and gluons. Therefore, they are a cleaner probe of low-
x nuclear matter. Their disadvantage is a low production rate due to the smallness of
electromagnetic coupling. Prompt photon production in pA collisions was considered in
[1181] through the process qA → γqX. The production of di-leptons in a similar process
qA → l+l−qX was addressed in [1182, 1183, 1184]. At higher energies, gluons become
much more abundant than quarks in the central rapidity region which implies that photon
(dilepton) production will go via the process g∗A → qq̄Xγ(l+l−). It is suppressed by αs
but enhanced by a positive power of energy. There have been no detailed phenomenological
studies of electromagnetic probes in pA collisions at RHIC.
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Double inclusive hadron production and correlations. Azimuthal correlations are
an important tool to investigate properties of QCD at low x. In [1185] it was proposed
that azimuthal correlations of hadrons produced at large rapidity separation (∆y ≫ 1) may
be depleted due to a quasi-classical nature of the saturated gluon fields. Unfortunately,
accurate theoretical calculations in the region of large but finite ∆y are challenging as they
must involve complicated NLO BFKL effects. Important progress has been made in the
investigation of azimuthal correlations at smaller ∆y.

It has been suggested in [1186] that correlations at small ∆y in the forward direction
can be effectively used to study gluon saturation. Indeed, the forward direction corresponds
to low -x of the nucleus where gluon saturation effects are strongest. Theory predicts
that back-to-back correlations are suppressed due to gluon saturation. Phenomenological
models based on the CGC were suggested in [1186, 1187] and [1188] and rely on different
approximations. An approach of [1186, 1187] is based on the dipole model [737] in which
double inclusive gluon [1189], quark–anti-quark [1173, 905, 1174] and valence quark – gluon
[1186] cross sections were calculated. Another approach [1188] is based on an approximate
kT -factorization and relies on calculation of double-inclusive production based on NLO
BFKL [1190, 1191].

Both models give a reasonable quantitative description of experimental data. However,
in order to use azimuthal correlations to study low-x physics in the most effective way, much
phenomenological work remains to be done to reconcile the existing approaches and reduce
model-dependencies in calculations. Measurements of forward azimuthal correlations in eA
will have a clear advantage over that in pA due to much better theoretical control of the
projectile current.
Diffraction. One of the most sensitive probes of low-x QCD is diffraction. This is because
scattering in the high energy limit of QCD is mediated by the same collective gluon state
(Pomeron) as the diffractive scattering. Saturation effects on diffractive processes in pA
collisions were investigated in [1159, 1192, 1193, 1160, 1194] where the main focus was on
diffractive hadron production. (In [1195, 1196] this work was extended to DIS).

In diffraction on nuclear targets, it is important to distinguish two processes: coherent
and incoherent diffraction, depending on the final state of the target. Coherent diffractive
hadron production in pA collisions is a process p+A→ X + h+ [LRG] +A, where [LRG]
stands for Large Rapidity Gap. Coherent diffractive production exhibits a much stronger
dependence on energy and atomic number than the corresponding inclusive process. Indeed,
the diffractive amplitude is proportional to the square of the inelastic one. At asymptotically
high energies, coherent diffractive events are expected to constitute up to a half of the total
cross section, the other half being all inelastic processes. Therefore, coherent diffraction is
a powerful tool for studying the low-x dynamics of QCD.

In all phenomenological applications of the CGC formalism, one usually relies on the
mean-field approximations in which only the lowest order Green’s functions are relevant.
Although corrections to the mean-field approximation, i.e. quantum fluctuations about the
classical solution, are assumed to be small in pA collisions at RHIC, their detailed phe-
nomenological study is absent. An observable that is directly sensitive to quantum fluctu-
ations is incoherent diffraction: p + A → X + h + [LRG] + A∗, where A∗ denotes excited
nucleus that subsequently decays into a system of colorless protons, neutrons and nuclei
debris. Incoherent diffraction measures fluctuations of the nuclear color field. Calculations
show that unlike the nuclear modification factor for coherent diffractive gluon production,
the nuclear modification factor for incoherent diffraction is not expected to exhibit a signif-
icant rapidity and energy dependence [1194]. Therefore, the two diffractive processes can in
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principle be experimentally distinguished and yield unique information about low-x QCD.
Unfortunately, the study of diffraction in pA collisions at RHIC is a virgin subject in part
due to technical difficulties associated with measurements at very small forward angles.
Instead of a summary. Studying particle production in DIS at low x has two main
advantages: (i) one has much better theoretical understanding of the forward kinematic
region owing to the weakness of the QED coupling and (ii) new kinematic regions open
up for investigation depending on values of momentum scales Q2, k2⊥ and Q2

s, where Q
2

is photon virtuality, Q2
s is saturation scale and k⊥ is transverse momentum of produced

hadron.

5.6.4 Small-x dynamics in ultraperipheral heavy ion collisions at the LHC

Mark Strikman
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Figure 5.95. The kinematic range in which UPCs
at the LHC can probe gluons in protons and nuclei
in quarkonium, di-jet and di-hadron production.
For comparison, the kinematic ranges for J/ψ at
RHIC, FA2 and σAL at eRHIC and Z0 hadropro-
duction at the LHC are also shown.

Experiments at HERA have demon-
strated that reactions with quasi real pho-
tons provide an effective tool of probing
pQCD which complements studies of DIS
processes. In the near future it will be pos-
sible to extend these studies to ultra-high
energy photon - nucleus collisions via the
study of ultra-periperal collisions (UPCs) of
heavy ions (protons and ions) at the LHC.
The feasibility and the possible reach of
these investigations was explored in a five
year long study undertaken by the collab-
oration of theorists and experimentalists.
The results of the study were published as
a volume of Physics Reports [979]. Due to
the high energy of the colliding nuclei and
very good acceptance of the CMS and AT-
LAS detectors at large rapidities, UPCs at
the LHC allows to study a wide range of the
processes sensitive to the small-x dynamics
for WγN ≤ 1 − 2 TeV. This would extend
the x range probed at HERA down by at
least by a factor of ten. A further advantage
for the search for non-linear effects will be
the use of the nuclear targets.

The kinematic range for which studies of several processes of interest will be feasible is
presented in figure 5.95 (taken from [979]) as a function of x and Q which is the typical
gluon virtuality which, as the transverse momentum of the jet or leading pion, sets the scale
for dijet and ππ production respectively. The typical gluon virtuality scale for exclusive
quarkonium photoproduction is shown for J/ψ and Υ. Below we list some of the directions
of the planned studies.
Dijet production. Dijet production in the discussed kinematic range is dominated by
photon - gluon fusion. Estimates of the counting rates including cuts due to the acceptance
of the CMS detector were performed in [1197]. It was found that measurements of the
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nuclear gluon pdfs will be feasible down to x ∼ 10−4 via study of several channels: dijet,
charm, beauty jets, providing a number of cross checks. Use of the zero degree calorimeters
(ZDCs) will also allow the separation of diffractive events and hence measure the nuclear
gluon diffractive pdfs in the same kinematics. Hence, it will be possible to test a prediction
of the leading twist theory of nuclear shadowing that the probability of the gluon induced
coherent diffraction at large pT and small x should be of the order 10− 15% [812].

The cutoff pt(jet) ≥ 6 − 8 GeV/c (necessary for selecting dijet production) reduces
non-linear effects in dijet production. The parameter which governs non-linear effects is
RNL = C2

Fαs(Q)xGT (x,Q
2)/πr2TQ

2, where C2
F is the Casimir operator, equal to 4/3 for qq̄

and 3 for gg, and rT is the transverse area of the target. For the smallest x, pT corner, RNL
for the UPC processes RNL is about the same as for F2A(x,Q

2 ∼ 2− 4GeV 2) for the lowest
x which could be reached at the EIC.

It will be also possible to reach larger RNL at smaller virtualities and x ∼ 10−4 using
leading pion production in the central detectors |y| ≤ 2.4 - see dashed area in figure 5.95.
This is a kinematics similar to the production of two forward pions in d+Au collisions at
RHIC. Within the mechanism of fractional energy losses [981, 1198], one expects a strong
suppression of the two pion yield as compared to the single pion yield which would allow
one to perform clean tests of the onset of the black disk regime (BDR).

Another sensitive probe of the onset of BDR would be exclusive diffractive production
of two jets in the process γ +A→ 2 jets +A. In the case of light quark jets, this process is
strongly suppressed in the pQCD regime, while it is a dominant contribution to the diffrac-
tion mechanism in the BDR [981].

The interaction of small dipoles with nuclear media. In the leading twist approx-
imation, the suppression of onium coherent production is given by the square of the ratio
of the gluon densities in the nucleus and the proton gluon pdfs. It will be feasible to inves-
tigate the suppression of coherent J/ψ,Υ production in nucleus-nucleus collisions down to
x ∼ monium/2(EA/A) corresponding to production at the central rapidities. At rapidities
away from zero, photons of smaller energies dominate in the production of J/ψ, making it
very difficult to probe smaller x for virtualities ∼ 3 GeV2 characteristic for J/ψ coherent
photoproduction. However, the use of incoherent diffractive onium production appears to
solve this problem as one can use production of soft neutrons to determine which of the
nuclei emitted a photon and which was involved in the strong interaction [979]. As a result,
there is a potential for probing J/ψ production down to x ∼ 10−6, see figure 5.95.

A complementary method of tracking a small dipole through the nuclear media will
be provided by the J/ψ production in the −t ≥ few GeV2 process γ + A → J/ψ +
rapidity gap + Y [982]. It is possible in this case to select the kinematics where xg of
the gluon involved in the hard process is xg ≥ 0.01. In this case, scattering at central
impact parameters dominates and one can probe the propagation of a small dipole through
∼ 10 fm of the nuclear media up to WγN ∼ 1 TeV.

In conclusion, it appears that UPC studies to be performed at the LHC in the next few
years will allow for the search of several signals of the onset of the BDR. However, it will
not be possible to perform a precision scan of the range of moderate Q2 sensitive to the
transition between non-linear and linear regimes in the x range to be covered by the EIC.
Hence the UPC - LHC and EIC programs will nicely complement each other.
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6.1 Electroweak Physics at the EIC

Krishna Kumar, Yingchuan Li, William J. Marciano

6.1.1 Introduction

The SU(3)C × SU(2)L × U(1)Y standard model of particle physics has been extremely
successful in describing strong and electroweak interactions. Its unbroken gauge symme-
try, SU(3)C or Quantum Chromodynamics (QCD), taken on its own, represents a “perfect
theory”’ with no arbitrary free parameter. Nevertheless, it beautifully encompasses all the
basics of strong interactions: quark confinement, chiral symmetry breaking, asymptotic
freedom, etc. The electroweak sector is potentially much more mutable. In addition to
its, as yet, undiscovered Higgs scalar remnant of SU(2)L × U(1)Y symmetry breaking, it
contains many arbitrary free masses, couplings and mixing angles. They are accommodated
but not understood at a deep level. Questions such as: why parity violation, why 3 genera-
tions of quarks and leptons? etc suggest that simplifying principles must await future new
discoveries. However, precision measurements and searches for rare phenomena still have
important roles to play. They have the capability of indirectly probing scales of physics
beyond collider facilities and expanding the horizons of electroweak physics.

The EIC is being proposed mainly for the study of strong interactions but also has a
unique ability to measure parity violating structure functions involving W± and Z boson
mediated interactions. The high energy and luminosity combined with polarized electrons
and protons as well as a variety of heavy ion targets will provide a wealth of data in an area
never explored before.

Two EIC capabilities for electroweak measurements, outlined in table 6.1, are: 1) Pre-
cision measurements of the weak mixing angle over a broad range in Q2 and 2) Searches for
e→ τ flavor changing conversion. For the former, we show how parity violating, right-left,
deep-inelastic polarized ep and ed asymmetries can be used to precisely determine the run-
ning sin2θW (Q) as a function of Q2. The comparison of those measurements with precision
values obtained from other lower energy or Z-pole studies can be used to find hints of “new
physics”. Alternatively, the overall World average of sin2θW can be compared with precisely
determined quantities such as αEM , GF , mZ , and mW to test the SM at the quantum loop
level and probe “new physics” effects. In the case of e − τ conversion, the ep → τX reac-
tion is examined, including isolation cuts and τ identification. First estimates suggest that
backgrounds are under control and the high luminosity goals of the EIC allow the search of
reactions well beyond HERA sensitivities.

Deliverables Observables What we learn Phase I Phase II

Weak mixing Parity violating physics behind EW good precision high precision

angle asymmetries in symmetry breaking over limited over wide range

ep- and ed-DIS & BSM physics range of scales of scales

flavour violation

e-τ conversion ep → τ ,X induced by BSM challenging very promising

physics

Table 6.1. Science Matrix for Electroweak physics at an EIC.
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6.2 Measuring the Weak Mixing Angle via Polarized Elec-
tron Scaterring Asymmetries

Krishna Kumar, Yingchuan Li, William J. Marciano, Seamus Riordan

6.2.1 Introduction

The nature of spontaneous gauge symmetry breaking implies that the masses and
couplings of weak gauge bosons W and Z are related by natural lowest order relations
sin2θ0W = e20/g

2
0 = 1 − m0

W
2
/m0

Z
2
. The weak mixing angle plays a central role in those

correlations. In the context of the Standard Model (SM) as a complete stand alone theory,
the renormalized weak mixing angle is related to the other precisely measured quantities

α−1 = 137.03599959(40) (6.1)

Gµ = 1.1663788(7) × 10−5 GeV−2

mZ = 91.1871(21) GeV

via

sin22θW (mZ)MS =
4πα√

2Gµm2
Z [1−∆r̂(mt,mH)]

, (6.2)

where ∆r̂ denotes loop corrections that depend on the top quark and Higgs masses while
the renormalized weak mixing angle is defined by modified minimal subtraction MS [1199,
1200]. The value of sin22θW (mZ)MS can be determined from parity violating asymmetries
and other weak interaction measurements. A comparison of the parameters in equation 6.2
at a high level of precision was used in the past to constrain the top quark mass (before
its discovery) and more recently, to provide an upper bound on the Higgs boson mass, the
missing particle of the SM. After the Higgs mass is directly measured, equation 6.2 will be
used to probe for “new physics” effects at the tree or loop level.

Incorporating mW = 80.398(25) GeV via

sin2θW (mZ)MS =
πα√

2Gµm2
W [1−∆r(mZ)MS − 0.0085S −O(1)m2

W /m
2
W ∗ ]

, (6.3)

with ∆r(mZ)MS = 0.0696(2) representing loop corrections insensitive to mt and mH , one
has another handle on “new physics” parameters such as S [1201, 1202], a measure of
possible new heavy chiral doublets such as a 4th generation, or mW ∗ , the scale of possible
Kaluza-Klein excitations.

The most precise determinations of sin2θW come from two measurements at SLAC [1203]
and CERN [1204]

sin2θW (mZ)MS = 0.23070(26) (SLAC) (6.4)

sin2θW (mZ)MS = 0.23193(29) (CERN),

with both extracting sin2θW at the Z pole and carrying an error of roughly 0.1% level.
Unfortunately, they disagree by about 3 sigma and therefore, individually provide com-
pletely different implications for the Higgs mass and possible “new physics”. For example,
the SLAC left-right asymmetry result weighs heavily in the leptonic Z pole average which
indicates a Higgs mass of

mH ≈ 50+34
−23 GeV (6.5)
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Figure 6.1. The past, currently running, and future experiments on extracting sin2θW (Q).

with the center value significantly below the LEP II direct search limit [3]

mH > 114 GeV (95%C.L.). (6.6)

On the other hand, the LEP Z → bb̄ forward-backward asymmetry weights heavily in the
hadronic Z pole average which implies a rather heavy Higgs [1205]

mH ≈ 480+350
−230 GeV. (6.7)

The often quoted bound mH < 150 GeV results mainly from the Z-pole world average
sin2θW (mZ)MS = 0.23125(16). Is the world average correct? We may have to wait and see
what the LHC tells us.

In addition to experiments at the Z pole, several precision measurements of sin2θW have
been carried out at lower Q2, including atomic parity violation [1206], polarized Moller
scattering [1207], and deep-inelastic neutrino scattering [1208], but with uncertainties about
an order of magnitude larger, i.e. O(1%). Together all such measurements play an important
role in constraining “new physics” appendages to the SM, such as heavy Z ′ bosons of O(1
TeV) and are useful for demonstrating the running of sin2θW (Q), due to γ−Z loop mixing,
at about the 6 sigma level.

It is highly desirable to have other experimental extractions of sin2θW with a preci-
sion roughly comparable to Z pole measurements, given the 3 σ discrepancy between the
two best values. Fortunately, several new measurements are in progress or planned at Jef-
ferson lab, including Qweak using elastic ep scattering [1209] (±0.0008), polarized Moller
scattering [1210] (±0.00025), and SOLID using polarized ed-DIS (±0.0006), which aim to
extract sin2θW at low Q2 in very high luminosity fixed target experiments. Their projected
uncertainties are shown in figure 6.1.

Here, we focus on the feasibility of measuring sin2θW at high Q2 using an Electron-Ion
Collider (EIC). Since the center of mass energy of the EIC is expected to be much higher than
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fixed target experiments, parity violating asymmetries are larger and, therefore, potentially
more sensitive to weak interaction effects. In addition, the EIC enables one to extract
sin2θW (Q) and demonstrate its evolution over a wide range of Q2. Those measurements will
test the predicted running of sin2θW (Q2), improve the world average sin2θW (mZ)MS , and
test for “new physics” such as Z ′ bosons via comparison with Z-pole and low Q2 results. We
demonstrate those capabilities for an EIC with integrated luminosity of 200 fb−1,

√
s ≈ 140

GeV and electron (as well as perhaps hadron) polarization. A statistical determination of
sin2θW (Q2) to about ±0.25% is found for a range of Q2 with overall precision roughly equal
to the best Z-pole and proposed polarized e−e− measurements.

6.2.2 Extracting sin2θW from parity-violating right-left polarization asym-
metries

Various parity violating asymmetries in ep- and ed(deuteron)-DIS can be obtained from
ratios of differences and sums of cross-sections with opposite polarizations

dσ̄(Pe, Pp,d)− dσ̄(−Pe,−Pp,d) ∝ (6.8)

1

2
Σifi(x)

{
(Pe + f̃i(x)Pp,d)(dσ

i
RR − dσiLL)

+ (Pe − f̃i(x)Pp,d)(dσ
i
RL − dσiLR)

}

and

dσ̄(Pe, Pp,d) + dσ̄(−Pe,−Pp,d) ∝ (6.9)

1

2
Σifi(x)

{
(1 + f̃i(x)PePp,d)(dσ

i
RR + dσiLL)

+ (1− f̃i(x)PePp,d)(dσ
i
RL + dσiLR)

}
,

where Pe and Pp,d are longitudinal polarizations of the electron and proton (deuteron)
beams. The α and β in dσiαβ(α, β = R,L) label polarizations of the electron and quark of
type i, respectively. The fi(x) is the unpolarized parton distribution function and

f̃i(x) ≡ ∆fi(x)/fi(x) (6.10)

is the ratio of polarized and unpolarized parton distribution function. The quantity f̃i(x)Pp,d
can be viewed as the effective quark longitudinal polarization in a polarized proton (deuteron).

The polarized electron-quark cross-sections are proportional to [1211]

dσiRR ∝
(
QγReQ

γ
Ri

Q2
+

QZReQ
Z
Ri

Q2 +M2
Z

)2

dσiLL ∝
(
QγLeQ

γ
Li

Q2
+

QZLeQ
Z
Li

Q2 +M2
Z

)2

dσiRL ∝
(
QγReQ

γ
Li

Q2
+

QZReQ
Z
Li

Q2 +M2
Z

)2

(1− y)2

dσiLR ∝
(
QγLeQ

γ
Ri

Q2
+

QZLeQ
Z
Ri

Q2 +M2
Z

)2

(1− y)2. (6.11)
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Left-handed and right-handed couplings of electrons and quarks to the photon are the
same

QγL = QγR ≡ Qγ (6.12)

while those to the Z are different (giving rise to parity violation)

QZL =
e

sinθW cosθW
(T3L −Qγsin2θW )

QZR =
e

sinθW cosθW
(−Qγsin2θW ), (6.13)

with

Qγu =
2

3
, Qγd = −1

3
, Qγe = −1,

T u3L =
1

2
, T d3L = T e3L = −1

2
. (6.14)

For an ep collider, there are two single-polarization parity violating right-left asymme-
tries

Aeep ≡ dσ̄(Pe, Pp = 0)− dσ̄(−Pe, Pp = 0)

dσ̄(Pe, Pp = 0) + dσ̄(−Pe, Pp = 0)
(6.15)

= Pe
Σifi(x)

[
(dσiRR − dσiLL) + (dσiRL − dσiLR)

]

Σifi(x)
[
(dσiRR + dσiLL) + (dσiRL + dσiLR)

] ,

and

Apep ≡ dσ̄(Pe = 0, Pp)− dσ̄(Pe = 0,−Pp)
dσ̄(Pe = 0, Pp) + dσ̄(Pe = 0,−Pp)

(6.16)

= Pp
Σi∆fi(x)

[
(dσiRR − dσiLL)− (dσiRL − dσiLR)

]

Σifi(x)
[
(dσiRR + dσiLL) + (dσiRL + dσiLR)

] ,

with electron and proton separately polarized.
These asymmetries are simplified for an ed collider since the deuteron is an iso-singlet.

Restricting to the large x region (x > 0.2), the anti-quark contributions can be neglected.
To first approximation, the parton distributions of u and d quark are the same (up to charge
symmetry violation effects) in the deuteron and can thus be factored out of the sum over
quark flavors. They then cancel in the asymmetries

Aeed|x>0.2 ≡ dσ̄(Pe, Pd = 0)− dσ̄(−Pe, Pd = 0)

dσ̄(Pe, Pd = 0) + dσ̄(−Pe, Pd = 0)
(6.17)

= Pe
Σi
[
(dσiRR − dσiLL) + (dσiRL − dσiLR)

]

Σi
[
(dσiRR + dσiLL) + (dσiRL + dσiLR)

]

and

Aded|x>0.2 ≡ dσ̄(Pe = 0, Pd)− dσ̄(Pe = 0,−Pd)
dσ̄(Pe = 0, Pd) + dσ̄(Pe = 0,−Pd)

(6.18)

= f̃DPd
Σi
[
(dσiRR − dσiLL)− (dσiRL − dσiLR)

]

Σi
[
(dσiRR + dσiLL) + (dσiRL + dσiLR)

] .
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Figure 6.2. The right-left asymmetries Aeep and A
e
ed as functions of Q for ep- and ed- DIS at

√
s = 140

GeV with polarized electron (Pe = 0.8).

This leads to some simplification in the case of the single-polarization asymmetry Aeed(x) for
the ed collider over Aeep(x) for the ep collider. Both Aeep(x) and A

e
ed(x) are proportional to

electron polarization Pe and thus carry smaller uncertainties than asymmetries Apep(x) and
Aded(x) which are proportional to the hadron polarization Pp,d which has a larger uncertainty.
In fact, the single-polarization asymmetries Apep(x) and Aded(x) with a hadron beam polarized
would hardly play any role for the purpose of measuring sin2θW to high precision due to the
large uncertainty in Pp,d expected to be O(±5%). Instead, hadron polarization (or quark
polarization) may be precisely determined from the asymmetries.

The double-polarization asymmetries

Aep,edep,ed ≡
dσ̄(Pe, Pp,d)− dσ̄(−Pe,−Pp,d)
dσ̄(Pe, Pp,d) + dσ̄(−Pe,−Pp,d)

(6.19)

=
Σifi(x)

{
(Pe + f̃i(x)Pp,d)(dσ

i
RR − dσiLL) + (Pe − f̃i(x)Pp,d)(dσ

i
RL − dσiLR)

}

Σifi(x)
{
(1 + f̃i(x)PePp,d)(dσ

i
RR + dσiLL) + (1− f̃i(x)PePp,d)(dσ

i
RL + dσiLR)

}

for both ep and ed collider running depend on hadron polarization; however, there are
circumstances for which the asymmetry can be simplified and carry a reduced uncertainty.
First, the dσRL,LR are proportional to (1− y)2 and thus suppressed in the kinematic region
y → 1. Second, the double-polarization asymmetry can be further simplified for a ed collider
at large x. As a result, the asymmetry

Aeded|y→1,x>0.2 ≈ Peff.
Σi(dσ

i
RR − dσiLL)

Σi(dσ
i
RR + dσiLL)

(6.20)

is proportional to the effective polarization

Peff. ≡
Pe + f̃(x)Pd

1 + f̃(x)PePd
(6.21)

which carries a reduced fractional uncertainty.
From the above discussion, it is clear that with regard to precision sin2θW measurements,

the most useful asymmetries are the two single-polarization asymmetries Aeep and A
e
ed with

only the electron polarized for ep and ed collisions, respectively, and the double-polarization
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Figure 6.3. The figure of merit of measuring the asymmetries Aeep and Aeed at an ep and ed collider
with

√
s = 140 GeV and polarized electron (Pe = 0.8), integrated luminosity of 200 fb−1, for bin

size of 10 GeV. A cut of x > 0.2 is imposed for ed collisions.

asymmetry Aeded for the ed collision, since they carry the smallest systematic polarization
errors.

In general, the high energy EIC gains some advantage over experiments at low energy.
For example, the error from higher 1/Q2 twist effects should be negligible at high Q. In
addition, since the uncertainty from parton distributions largely cancel in Aeed, the major
source of systematic error comes from the polarization of electron beam Pe which is expected
to carry an uncertainty of roughly ±0.5%. This leads to an uncertainty of ±0.5% in the
single-polarization asymmetries Aeep,ed and roughly ±0.25% in sin2θW . One possible way

to obtain some leverage on extracting sin2θW with further reduced systematic error is to
make use of the y dependence to extract the term proportional to the vector coupling
geV ∝ 1 − 4sin2θW of electrons to the Z boson. It is well known that this coupling is very
sensitive to sin2θW . An accuracy of 1% of the asymmetry proportional to this coupling
determines sin2θW at the 0.1% level. This may help with the systematic precision but
unlikely with the statistical one since the latter would decrease in extracting various pieces
from the y dependence. To assess the statistic error in measuring sin2θW , we carry out a
Monte Carlo simulation for polarized ep- and ed- DIS at

√
s = 140 GeV as an example. We

use the parton distribution functions of CTEQ6L [82]. We have included u and d quark
and anti-quark contributions. For ed-DIS, a cut of x > 0.2 is imposed to suppress the
anti-quark contribution as needed to simplify the asymmetry in equation 6.17. We show
the asymmetries Aeep and Aeed for ep and ed collider with polarized electron (Pe = 0.8) in
figure 6.2. The asymmetries grow with Q and reach 14% and 17% for Q ≈70 GeV, for ep
and ed collisions, respectively.

Based on these polarized cross-sections, one can further obtain the statistical figure of
merit (F.O.M.) A2N/(1−A2) ≈ A2N for measuring the asymmetry and the statistical errors
for a given luminosity. In figure 6.3, we show the figure of merit for ep and ed collisions
with integrated luminosity of 200 fb−1 as function of Q, with bin size of 10 GeV.

The corresponding statistical errors, ∆A/A ≈ (A2N)−1/2, are shown in figure 6.4 for
ep and ed colliders. For an ed collider, the energy of the deuteron beam is shared by the
proton and neutron, thus effectively the CM energy for e-nucleon is reduced from 140 GeV
to roughly 100 GeV. For both ep and ed collider, with 10 GeV bin, the statistical error
is about ±0.5% for Q between 10 and 50 GeV. For Q > 50 and Q < 10 GeV region, the
statistical error is significantly higher. However, a smaller error is achievable for Q > 50
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Figure 6.4. The statistical error expected for the asymmetries Aeep and Aeed for ep and ed collider at√
s = 140 GeV with polarized electron (Pe = 0.8), and with luminosity of 200 fb−1, for bin size of

10 GeV. A cut of x > 0.2 is imposed for ed collider. The statistical error for sin2θW (Q) is roughly
1/2 the percentage error on Aeep or Aeed.

GeV region if a larger bin is used. Overall, the error in extracting sin2θW is roughly half of
the error in the asymmetry. Therefore, the statistical error in extracting sin2θW for most
of the Q region between a few GeV and Z-pole is below ±0.25% level.

6.2.3 Conclusions

The advantage of measuring sin2θW at a polarized EIC lies in its highQ2, which enhances
the parity violating asymmetry, reduces some of the uncertainty from higher twist effects,
and most importantly enables one to extract sin2θW over a wide range of Q from a few
GeV to Q ≈ mZ . We demonstrated the capability of measuring sin2θW for an EIC with
integrated luminosity of 200 fb−1,

√
s ≈ 140 GeV and electron (as well as perhaps hadron)

polarization. A statistical determination of sin2θW (Q2) to about ±0.25% is found for most
of the region of Q with overall precision roughly equal to the best Z-pole measurements. In
figure 6.1, we have plotted values of sin2θW (Q) obtained from past, ongoing and planned as
well a possible EIC measurements. The running of sin2θW (Q) is based on ref. [1212, 1213].
The error bar for EIC measurements only represents the statistical error based on figure 6.4.
A combination of all the measurements of sin2θW at various scales will play very important
roles in revealing the physics behind EWSB and other “new physics”.
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6.3 Electron-to-Tau Conversion

Abhay Deshpande, Cyrus Faroughy, Matthew Gonderinger, Krishna Kumar, Swad-
hin Taneja

6.3.1 Introduction and Motivation

Every conservation law in the Standard Model (SM) is anticipated to have a symme-
try associated with it. We have no knowledge of a symmetry that asserts Lepton Flavor
Conservation in the Standard Model (SM) of particle physics and yet its (direct) violation
has never been seen. Although discovery of neutrino oscillations [1214, 1215] indicates that
charged Lepton Flavor Violation (LFV) processes such as µ→ eγ should be allowed (within
the SM), its rate is expected to be very small (BR(µ → eγ) < 10−54) due to the very small
values of the neutrino masses. This level of sensitivity is beyond the reach of any present
or planned experiment. However, many models of physics Beyond the SM (BSM) predict
rates of charged lepton flavor violation significantly higher than those within the SM, some
of them even within the reach of present or planned experiments. LFV hence becomes a
very attractive process for experimental discovery of physics beyond the Standard Model.

Many searches for specific reactions which violate lepton flavor have been performed.
The most sensitive include searches for µ+N → e+N using low energy muons (from the
SINDRUM II collaboration [1216]), the muon decay µ → eγ (MEGA collaboration [1217,
1218]), and decays of kaons ([1219]). The limits from these processes, though extremely
precise, are all sensitive to e ↔ µ transitions (abbreviated LFV(1,2)) and not to e ↔ τ
transitions (LFV(1,3)). Also, each of these processes involve specific quark flavors: in
some, only the 1st generation quarks participate; in others the same quark flavor must
couple to the initial and final leptons, or strange quarks must participate. These stringent
bounds are related to the opportunities for such searches afforded by specific experimental
apparatuses. None of these searches involved the τ lepton either in the initial or in the final
state. Since a general model with lepton flavor violation may involve a τ lepton and also
initial and final state quarks of different flavors (not necessarily including strange quarks),
the above measurements would be blind to such LFV mechanisms. Existing best limits on
e ↔ τ conversion come from the BaBar Collaboration (τ → eγ) [1220] and the BELLE
Collaboration (τ → 3e) [1221]. These are notably worse than the limits on e↔ µ by several
orders of magnitude. LFV searches at proposed future experiments would further improve
limits on e↔ µ transitions.

The search for LFV involving τ leptons has been performed by the high energy lepton
- hadron collider experiments H1 and ZEUS. The LFV process could proceed via exchange
of a leptoquark (LQ), a color triplet boson – scalar or vector – with both lepton and
baryon quantum numbers which appears naturally in many extensions of the SM such as
GUTs, supersymmetry, compositeness, and technicolor (for a concise review of LFV in
several such models, see [1222]). The most recent limits on the search for ep → µX and
ep→ τX were set by the H1 collaboration using HERA collisions at 320 GeV center-of-mass
energy and an integrated luminosity of 0.5 fb−1. They did not find any evidence for lepton
flavor violation [1223, 1224], and in turn they put limits on the mass and couplings of the
leptoquarks in the Buchmüller-Rückl-Wyler (BRW) effective model [1225].

A high energy, high luminosity electron-proton/ion collider (EIC) is being considered
by the US nuclear science community with a variable center-of-mass energy of 50 → 160
GeV and with 100 − 1000 times the accumulated luminosity of HERA over a comparable
operation time, see sections 7.1 and 7.2. In a recent study [1226] it has been argued that a
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90 GeV center-of-mass e-p collider with 10 fb−1 of integrated luminosity could set a limit
on leptoquark coupling-over-mass ratios that would surpass the current best limits from
HERA experiments. The study also shows that the proposed EIC could compete or surpass
the updated leptoquark limits from τ → eγ for a subset of quark flavor diagonal couplings.
Lastly, the authors found that although e → τ LFV is indeed severely suppressed, e → τ
transition could still exist within the reach of the EIC, under certain situations [1226].
The present study of search for leptoquarks at the EIC was motivated by these exciting
possibilities.

For completeness, we studied leptoquark couplings with first, second and third genera-
tion leptons (e→ e, µ, τ) in our simulations, although the main focus of this study was the
e→ τ transition. We comment here on all three.

1. Leptoquark decays to first generation leptons lead to final states similar to those in SM
deep inelastic scattering (DIS) neutral current (NC, ep → eX) and charged current
(CC, ep→ νX) interactions. These processes contribute as backgrounds by mimicking
the final state signature of the signal events, and hence are indistinguishable. Other
SM backgrounds arise from photo-production γp→ X, lepton-pair production (ep →
el+l−X), and W production (ep → eWX). We simulate them and study the angular
correlations of the final states and the missing momentum spectra in cases where
neutrinos are involved in the final state. Possibilities of misidentification of events
due to detector inefficiencies will be commented upon in section 6.3.7.

2. Leptoquark decays with a µ in the final state give a back-to-back muon and hadronic
system event characteristic in the transverse plane. Since muons typically deposit a
very small fraction of their energy in a calorimeter, in real experiments, such events
are characterized by a large missing calorimetric transverse momentum. Additionally,
such muons are typically required to be isolated, well separated from the hadronic
jets or tracks in such an event. Such selections strongly suppress the NC component
of the SM backgrounds, which mainly arise from muon-pair production and muonic
decays of W bosons. See details in [1223, 1224].

3. The 1→3 transition, ep → τX, is the principle focus of this study; it is studied
using three τ decay channels: electronic, muonic and hadronic. Electronic decays
τ → eνeντ have a topology similar to high Q2 NC events, except for missing transverse
momentum due to the escaping neutrinos, which can be exploited to reduce this
background. Muonic decays τ → µνµντ result in similar final states as the electronic
decay of τ and hence a similar criteria for their selection is used. Hadronic decays of
τ lead to a high transverse momentum, narrow jet resulting in a signal topology of a
di-jet event with no leptons. These events can be selected using various well known
algorithms to identify and separate the τ -jet from other hadronic jets in NC DIS and
photoproduction events.

Many of the above mentioned strategies require detailed detector simulation of the
response. This is not done in the present study. However, we studied the event topologies
of the SM processes and the leptoquark events through simulations with beam energies and
detector acceptance guidelines suggested on the INT website [131]. The differences in event
topologies generated by pmissT (the missing transverse momentum) and the angle φ (between
the τ -jet and the missing transverse momentum vector) present in SM and LQ events with
final state neutrinos were studied. We ask in this study: are they different enough to be
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distinguishable from one another at the EIC energies, and for what range of leptoquark
couplings and masses could the LFV LQ events be differentiated from a SM event at the
EIC.

This report proceeds as follows. In section 6.3.2, the leptoquark framework is introduced
and the findings of [1226] are summarized and updated to reflect recent developments re-
garding higher EIC integrated luminosities and the proposed reach of Super-B experimental
searches for τ → eγ. Section 6.3.3 discusses the possibility of e → τ searches at the EIC
in the broader context of an effective operator framework. Concluding remarks for the
theoretical analysis are presented in section 6.3.4. An experimental analysis begins with
section 6.3.5 in which we present the SM process generation and its study for the above
correlations. In section 6.3.6 we detail the MC generator study for the leptoquark and
study some of its parameters (leptoquark mass dependence and the coupling strength de-
pendence) on the observable missing pT and φ spectra. In section 6.3.7 we compare some
of the selected spectra from SM and the leptoquark and show potentially how leptoquarks
may be identified at a future EIC. We then conclude with a comment on the limitations of
this study and a brief plan for the near future.

6.3.2 Theory I: Leptoquark Framework

We begin our study of e→ τ conversion at the EIC by assuming a leptoquark framework.
Leptoquarks (abbreviated LQs) are particles coupling to leptons and quarks which arise in
models such as Pati-Salam color-SU(4) and SU(5) GUTs. Leptoquarks provide a useful
framework for an initial analysis of e→ τ conversion because they allow for the conversion
process to occur at tree level, as described further below, and so larger cross sections may
be expected relative to other models which induce LFV through loop effects. Additionally,
searches for leptoquark-induced e→ τ were performed at HERA, and so direct comparisons
can be made between limits from HERA and potential limits from the EIC.

The class of particles which may be described as “leptoquarks” have a variety of proper-
ties: spin 0 or 1; fermion number F = 3B+L = 0 or ±2; SU(2)L singlet, doublet, or triplet
representations; and chiral couplings to L- or R-handed leptons. We use the Buchmüller-
Rückl-Wyler (BRW) parameterization of LQs [1225]. In this parameterization, there are
14 different LQs encompassing all allowed combinations of the listed properties; their in-
teractions with quarks and leptons are given by the renormalizable SM gauge-invariant
Lagrangian in equation (6.22).

LLQ = LF=0 + L|F |=2

LF=0 = hL1/2ūRℓLS
L
1/2 + hR1/2q̄LǫeRS

R
1/2 + h̃L1/2d̄RℓLS̃

L
1/2

+ hL0 q̄LγµℓLV
L
0
µ
+ hR0 d̄RγµeRV

Rµ
0 + h̃R0 ūRγµeRṼ

Rµ
0

+ hL1 q̄Lγµ~τℓL
~V Lµ
1 + h.c.

L|F |=2 = gL0 q̄
c
LǫℓLS

L
0 + gR0 ū

c
ReRS

R
0 + g̃R0 d̄

c
ReRS̃

R
0 + gL1 q̄

c
Lǫ~τℓL

~SL1

+ gL1/2d̄
c
RγµℓLV

Lµ
1/2 + gR1/2q̄

c
LγµeRV

Rµ
1/2

+ g̃L1/2ū
c
RγµℓLṼ

Lµ
1/2 + h.c.

(6.22)

In equation (6.22), qL and ℓL are the SU(2)L doublet quarks and leptons, uR, dR, eR
are the SU(2)L singlet quarks and charged lepton, ǫ is the SU(2)L antisymmetric tensor
(ǫ12 = −ǫ21 = +1), ~τ = (τ1, τ2, τ3) are the Pauli matrices, and the charge conjugated fermion
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is defined as ψc ≡ Cψ̄T = iγ2γ0ψ̄
T in the Dirac basis for the γ matrices. Color, SU(2)L, and

flavor (generation) indices have been suppressed. We follow the notation used in the recent
literature where spin-0 leptoquarks are S and spin-1 are V , the subscript indicates the
SU(2)L quantum number (0 for a singlet, 1/2 for a doublet, 1 for a triplet), the superscript
L,R indicates the chirality of the lepton coupling to the leptoquark, and a tilde (̃ ) is used
to distinguish between leptoquarks which have different hypercharges but are otherwise
identical. The dimensionless coupling constants g and h (which we assume to be real) carry
the same lepton chirality and SU(2)L labels as their associated leptoquarks. Lepton flavor
violating processes mediated by LQs arise if the couplings — which are matrices in flavor
space — have non-zero off-diagonal elements.

The e → τ conversion process mediated by LQs is shown at the partonic level in the
Feynman diagrams in figure 6.5. For simplicity, the couplings g and h in equation (6.22)
have been replaced by λij where the first index corresponds to the lepton generation and
the second index the quark generation. The cross section for the deep inelastic scattering
conversion process e−+p→ τ−+X mediated by a single leptoquark is calculated using the
Feynman rules derived from the Lagrangian of equation (6.22) and convoluting the partonic
subprocess with the appropriate parton distribution functions for the initial state quark or
antiquark. In the high mass approximation, where the LQ mass is much larger than the
center-of-mass energy and all fermion masses are neglected, the momentum dependence of
the LQ propagator can be neglected, effectively shrinking the propagator to a four fermion
contact interaction. The cross section is then given by [1227]

σF=0 =
∑

α,β

s

32π

[
λ1αλ3β
M2
LQ

]2{∫
dxdy xq̄α (x, xs) f (y)

+

∫
dxdy xqβ (x,−u) g (y)

}
,

σ|F |=2 =
∑

α,β

s

32π

[
λ1αλ3β
M2
LQ

]2{∫
dxdy xqα (x, xs) f (y)

+

∫
dxdy xq̄β (x,−u) g (y)

}
.

(6.23)

The functions f and g are defined differently for scalar and vector leptoquarks:

f (y) =

{
1/2 (scalar)

2 (1− y)2 (vector)
, g (y) =

{
(1− y)2 /2 (scalar)

2 (vector)
. (6.24)

The parton distribution functions for the quarks and antiquarks are q
(
x,Q2

)
and q̄

(
x,Q2

)
,

respectively, evaluated at momentum fraction x and energy scale Q2. Also, u = xs (y − 1)
and both x and y are integrated from 0 to 1. As equation (6.23) shows, in the high mass
approximation the unknown leptoquark couplings and masses appear in the cross section
as the ratio λ1αλ3β/M

2
LQ.

In the e±p collisions at HERA, no e → τ conversion events were observed. Limits on
the LQ ratios λ1αλ3β/M

2
LQ were set by both the ZEUS [1228] and H1 [1224] collaborations.

In our analysis, we determine how the EIC might improve on these limits set by ZEUS and
H1 by answering the question, to what values of the ratios λ1αλ3β/M

2
LQ would the EIC be

sensitive? As with the ZEUS and H1 analyses, we consider all combinations of the quark
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Figure 6.5. Feynman diagrams showing the leptoquark-mediated e → τ conversion process. α and
β are the quark generation indices.

generations α and β (excluding the top quark) for all 14 BRW leptoquarks. It is assumed
that one of the BRW LQs dominates the cross section and the LQs in SU(2)L multiplets
are degenerate in mass. Full results of this analysis can be found in [1226]; in this report,
we summarize the results and discuss a few representative examples.

With 1000 fb−1 of integrated luminosity (attainable within a reasonable length of time at
a high luminosity machine such as the EIC), the EIC would in principle be sensitive to e→ τ
conversion cross sections at a level of 0.001 fb.1 This would yield on the order of one e→ τ
conversion events (not accounting for backgrounds, τ reconstruction efficiency, etc.). Using
this number for the cross section, and assuming a center-of-mass energy

√
s = 90 GeV, the

LQ ratios λ1αλ3β/M
2
LQ can be calculated from equation (6.23). Generally, for nearly all

leptoquarks and combinations of quark generations α and β, the EIC could probe values of
the ratios λ1αλ3β/M

2
LQ that are smaller than the HERA limits by a factor between 10 and

200. This is demonstrated for the LQ SR0 in figures 6.6 and 6.7 where the cross sections for
the different quark generation combinations (αβ) are plotted as a function of the number
z, defined to be the LQ ratio λ1αλ3β/M

2
LQ scaled by the corresponding HERA limit. For

example, the cross section for first generation initial and final state quarks (the red line in
figure 6.6) is equal to 0.001 fb at z ≃ 0.05. This means that the EIC could improve the
HERA limit on the ratio λ11λ31/M

2
LQ for the leptoquark SR0 by as much as a factor of 20;

or, if such a leptoquark exists and has properties such that λ11λ31/M
2
LQ is between 0.05

and 1 times the HERA limit, this LQ could induce a number of e → τ conversion events
sufficiently large enough to be observed at the EIC.

Also shown in figure 6.6 are the values of the LQ ratios λ1αλ3β/M
2
LQ (again scaled by the

HERA limits) to which future Super-B experiments may be sensitive2; these are indicated

1Reference [1226] focused on a lower integrated luminosity and a larger cross section.
2Reference [1226] used only the current τ → eγ limit.
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Figure 6.6. The e → τ cross section for the leptoquark SR0 plotted as a function of z, defined to
be the ratio λ1αλ3β/M

2
LQ scaled by the HERA limit. A cross section of 0.001 fb, corresponding to

order 1 events with 1000 fb−1 integrated luminosity, is indicated with a gray dashed line. The cross
section is plotted for the different quark generation combinations, (αβ). Shown here are the quark
flavor-diagonal contributions with α = β. The vertical dashed lines indicate the range of these ratios
to which the Super-B experiments may be maximally sensitive from τ → eγ searches.
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Figure 6.7. As for figure 6.6, but shown here are the quark flavor-off-diagonal contributions with
α 6= β. No τ → eγ limits exist in this case.
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Figure 6.8. Feynman diagrams showing the leptoquark loops contributing to the τ → eγ∗ process.
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with vertical dashed lines in the figure. The scalar leptoquarks can contribute to the τ → eγ
decay through loop diagrams shown in figure 6.8.3 Limits on the LQ ratios are derived as
follows. The amplitude for the process τ → eγ∗ has the general form [1229]

Mτ→eγ∗ =eǫ∗νue
(
p′
) [(

q2γν − qν (q · γ)
) (
AL1 PL +AR1 PR

)

+imτq
ασνα

(
AL2PL +AR2 PR

)]
uτ (p) ,

(6.25)

where the A1s and A2s are model-dependent factors. For a real photon, q2 = 0, and so
|M|2 depends only on the factors AL,R2 . Then, the τ decay rate ratio is given by

R (τ → eγ) ≡ Γ (τ− → e−γ)
Γ (τ− → e−ν̄eντ )

=
48π3αEM

G2
µ

(∣∣AL2
∣∣2 +

∣∣AR2
∣∣2
)
. (6.26)

Recent work by the BABAR collaboration [1220] has set a 90% C.L. limit Γ (τ → eγ) /Γtotal ≤
3.3×10−8. The current consensus is that future Super-B experiments will be able to improve
this limit by a single order of magnitude, and so we take R ≤ 1.85× 10−8. The coefficients
AL2 and AR2 can be determined for each scalar leptoquark by computing the amplitude for
the τ → eγ loop diagrams and picking out terms proportional to the magnetic moment
operator qασνα. When neglecting the lepton masses and expanding in powers of m2

q/M
2
LQ,

at zeroth order the A2s will depend on a sum over α of the ratios λ1αλ3α/M
2
LQ (here, α = β

since there is only one quark present in the loop). Thus, the experimental limit on R deter-
mines a range of upper limits on the LQ ratios: the stronger upper limit is set by assuming
all three quark generations contribute to the A2 coefficients equally, while the weaker upper
limit assumes only a single quark generation contributes to the A2 coefficients. Both upper
limits on λ1αλ3β/M

2
LQ (again scaled by the HERA limit) are indicated by vertical dashed

lines for each quark generation in figure 6.6.
As figure 6.6 shows for the SR0 LQ, the EIC could potentially surpass upper limits on

the LQ ratios derived from an improved Super-B factory τ → eγ limit. For the other
scalar leptoquarks, it is generally true that the EIC would be competitive with or surpass
the future limits from Super-B factories. The EIC also has two additional advantages over
τ → eγ searches. First, τ → eγ only constrains those leptoquark ratios λ1αλ3β/M

2
LQ for

which α = β, while the EIC can probe all combinations of quark generations. Second, it is
possible for the LQ-induced τ → eγ to be suppressed relative to e→ τ conversion: the first
non-zero contribution to the A2 coefficient may be proportional to m2

q/M
2
LQ ≪ 1 because of

a cancellation of electric charges in the zeroth order term. Under these circumstances, the
τ → eγ yields relatively weak upper bounds on the LQ ratios. This occurs for the scalar
leptoquark S̃L1/2.

Finally, we discuss the impact of LFV(1,2) searches on the leptoquark limits. As in
the case of the effective operators below, a priori there is nothing in the BRW leptoquark
parameterization that relates the LQ couplings to second generation leptons to LQ couplings
to third generation leptons. Therefore, experimental limits on µ → e conversion, µ → eγ,
and µ → 3e do not necessarily affect the expected size of the cross sections expected for
leptoquark-mediated e→ τ conversion at the EIC. Only by considering a specific model with
an additional symmetry does a connection between LQ-induced LFV(1,2) and LFV(1,3)
exist. An example is the SU(5) GUT studied in [1230, 1231]. The leptoquark present in this
model has the same spin and gauge group quantum numbers as the BRW leptoquark S̃L1/2.

3The contribution of the vector leptoquarks is less clear, for reasons explored in [1226], so we restrict our
discussion to the scalar LQs.
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Figure 6.9. Feynman diagrams showing the contributions of the magnetic moment (OσL,R), four
lepton (OℓL,R), and four fermion (Oℓq) operators to the e→ τ conversion process.

As mentioned above, this particular LQ evades limits from τ → eγ as well as µ→ eγ for the
same reason. Additionally, the SU(5) symmetry implies that the leptoquark couplings are
proportional to the neutrino mixing angles and squared mass differences, and the stringent
experimental bounds on µ → e conversion further constrain the LQ couplings. Imposing
all of these limits, the LQ couplings can still yield an e→ τ conversion cross section within
reach of the EIC with 1000 fb−1 integrated luminosity (for details, see [1231, 1226]). In
particular, the e− + p → τ− + X cross section is dominated by the partonic subprocess
e+ d → τ + b, implying that a τ plus a b-jet may be a unique experimental signatature of
this particular SU(5) GUT at the EIC.

6.3.3 Theory II: Effective Operators

We now examine the e → τ conversion process at the EIC from the perspective of
model-independent effective operators. A complete list of SU(3)C×SU(2)L×U(1)Y gauge-
invariant dimension-5 and -6 operators built from the SM field content can be found in [1232]
(for an updated list, see [1233]). There are three classes of operators which can contribute
to e→ τ conversion and are of particular interest [1234, 1235]:

1. magnetic moment operators (written here after electroweak symmetry breaking)

OσL = imj ℓ̄Liσ
µνℓRjFµν + h.c. ; (6.27)

2. four lepton operators
OℓL = ℓ̄Liℓ

C
Lj ℓ̄

C
LkℓLm ; (6.28)

3. four fermion (two quark, two lepton) operators

Oℓq = ℓ̄iΓℓℓj q̄Γqq (6.29)

We use indices i, j, k, l to indicate the lepton generations and suppress the gauge group
indices; the superscript C indicates charge conjugation. Note that analogous operators with
right-handed fields can also be constructed. These operators can contribute to the deep
inelastic electron-to-tau conversion process, as shown in figure 6.9.

The leptonic current for the photon exchange diagrams in figure 6.9 (left and middle)
has a general parameterization similar to the τ → eγ amplitude in equation (6.25):

jµ = ūe
[(
q2γµ − qµ (q · γ)

) (
AL1PL +AR1 PR

)

+imτqνσ
µν
(
AL2 PL +AR2 PR

)]
uτ .

(6.30)
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τ → 3e Γ (τ− → e−e+e−) /Γtotal < 3.6 × 10−8

τ → eµµ Γ (τ− → e−µ+µ−) /Γtotal < 3.7 × 10−8

τ → µee Γ (τ− → µ−e+e−) /Γtotal < 2.7× 10−8

τ → 3µ Γ (τ− → µ−µ+µ−) /Γtotal < 3.2× 10−8

τ → eγ Γ (τ− → e−γ) /Γtotal < 3.3× 10−8

τ → µγ Γ (τ− → µ−γ) /Γtotal < 4.4 × 10−8

Table 6.2. All limits are taken from [3] and are at a 90% C.L.

The two structures in this current are the charge radius term, q2γµ − qµ (q · γ), with AL,R1

coefficients, and the magnetic moment term, imτqνσ
µν , with AL,R2 coefficients. The loop

diagram (middle) in figure 6.9 which contains the four fermion and four lepton operators
contributes to the charge radius term of the leptonic current, and so the Wilson coeffi-
cients of the operators OℓL,R and Oℓq appear in the coefficients AL,R1 . These contributions
are loop-suppressed but receive potentially large logarithmic enhancements which go like
ln
(
Λ2
LFV /m

2
)
(where m is the mass of the quark or lepton in the loop and ΛLFV is the

scale at which new degrees of freedom that induce LFV are no longer integrated out of the
theory) [1234]. The left photon exchange diagram in figure 6.9 containing the magnetic
moment operator implies that the AL,R2 factors in the leptonic current depend on the Wil-
son coefficients of the OσL,R operators. These effective operators also are loop suppressed
since they appear in the effective theory when heavy particles in loop diagrams (e.g., the
leptoquarks in figure 6.8) are integrated out of the full theory.

The four fermion operator in figure 6.9 (right), similar to the Fermi theory for weak
interactions, is a contact interaction that arises when a massive propagator is integrated
out of the full theory at external momentum scales much smaller than the propagator’s mass.
This operator contributes to e → τ conversion at tree level. Its cross section is expected
to be larger than the cross sections from the other diagrams and operators discussed above
(assuming the Wilson coefficients for all of the operators in equations (6.27)-(6.29) are all
roughly the same order).

Limits on the magnetic moment and four lepton operator coefficients can be determined
directly from relevant τ decay limits, some of which are listed in table 6.2. The smallness
of the limits on these τ decays, in conjunction with loop suppression factors, ensures that
the contributions of the OσL,R,OℓL,R coefficients to the leptonic current in equation (6.30)
are negligible. Therefore, as stated previously, it is expected that the greatest contributions
to e→ τ conversion will come from the four fermion operators Oℓq, while photon exchange
contributions will be negligibly small. Limits on the four fermion operators’ coefficients can
be determined from the limits on the leptoquark ratios λ1αλ3β/M

2
LQ. The 14 leptoquarks

in the BRW parameterization correspond to 7 of the four fermion operators listed in [1232],
as shown in table 6.3 (though the correspondence is not one-to-one). Hence the leptoquark
limits set by direct e → τ searches at HERA as well as the rare process searches cited by
the HERA analyses [1228], such as τ → πe and decays of B and K mesons, allow limits to
be set on the four fermion operator coefficients.

We conclude our discussion of the effective operators by noting that searches for µ → e
conversion, µ → eγ, and µ → 3e bound the coefficients of the operators in (6.27)-(6.29)
which mix first and second generation leptons. However, a priori, limits on such LFV(1,2)
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O(1)
ℓq ℓ̄LγµℓLq̄Lγ

µqL

(
SL0 ,

~SL1

)
;
(
V L
0 ,

~V L
1

)

O(3)
ℓq ℓ̄Lγµτ

aℓLq̄Lγ
µτaqL

(
SL0 ,

~SL1

)
;
(
V L
0 ,

~V L
1

)

Oeu ēRγµeRūRγ
µuR SR0 ; Ṽ

R
0

Oed ēRγµeRd̄Rγ
µdR S̃R0 ;V

R
0

Oℓu ℓ̄LuRūRℓL SL1/2; Ṽ
L
1/2

Oℓd ℓ̄LdRd̄RℓL S̃L1/2;V
L
1/2

Oqe q̄LeRēRqL SR1/2;V
R
1/2

Oqde ℓ̄LeRd̄RqL

Oℓq ℓ̄LeRǫq̄LuR

Table 6.3. List of four fermion operators. For the operator names, we follow the notation of [1232].
In the middle column, we maintain the same notation as in equation (6.22). The right column
lists the leptoquarks from which these operators are obtained upon integrating out the LQs. Some
operators are a linear combination of different LQs which are enclosed in parentheses.

operators do not constrain the LFV(1,3) operators relevant for e → τ conversion. Only
by assuming the existence of an additional symmetry or a particular underlying model
can the two sets of operators be related. One example of such an additional symmetry
is the theory of minimal flavor violation (MFV) in the lepton sector [1236]. Under the
assumptions of MFV, the breaking of the lepton flavor symmetry group SU(3)L × SU(3)E
(for the left-handed doublets and the right-handed charged leptons) arises solely from the
charged lepton and neutrino mass matrices.4 As a result, all higher-dimensional lepton
flavor violating operators constructed from the lepton bilinears ℓ̄iLΓℓ

j
L, ē

i
RΓℓ

j
L, and ēiRΓe

j
R

are suppressed by one or more powers of lepton masses and/or neutrino mixing parameters.
This is true even of the four fermion type operators. Under the MFV hypothesis, the e→ τ
conversion cross section is unobservably small; it is probable that any observation of e→ τ
conversion at the EIC would therefore rule out the MFV hypothesis.

6.3.4 Theory III: Conclusions and Future Work

The theoretical analysis of the e → τ DIS process presented in [1226] and section 6.3.2
shows that leptoquarks provide a framework in which e → τ conversion searches at the
EIC are feasible. Present leptoquark limits are not prohibitive, and the EIC would be
competitive with future Super-B experiments (τ → eγ searches) on similar time scales, for
several reasons: the EIC would have high luminosity and be sensitive to small cross sections;
the EIC like HERA can set limits for all combinations of quark generations while τ → eγ is
more limited in this region; and the EIC could probe leptoquarks which may evade τ → eγ
searches.

Limits from LFV(1,2) searches may or may not be relevant for leptoquarks. While the
BRW framework implies no connection between LFV(1,2) limits and LFV(1,3) processes,
in general it is presumed that leptoquarks will arise from physics at the high scale which
does in fact constrain LFV(1,3) processes given the current stronger limits on LFV(1,2)
processes. However, at least one model, the SU(5) GUT discussed above, exists in which

4We limit our discussion here to the scenario of “minimal field content” described in [1236].
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limits from LFV(1,2) searches (µ → e conversion, µ → eγ), τ → eγ searches, and the
neutrino sector can be implemented and still allow for observable e → τ conversion cross
sections at the EIC.

An estimation of e → τ cross sections using model-independent effective operators and
present limits on LFV processes suggests that the best hope for observing e→ τ conversion
at the EIC is with models which give rise to four fermion operators through tree level
processes at low energies. Four lepton and magnetic moment operators are generally too
suppressed to give rise to large enough e→ τ cross sections via photon exchange, especially
when the relevant limits (e.g., τ → 3e, τ → eγ) are imposed on the operator coefficients.
Limits from additional LFV(1,2) searches like µ→ e conversion and µ→ eγ can be applied
to the effective operator analysis if an additional symmetry such as MFV is imposed. MFV
results in a suppression of all the LFV operators, including the four fermion operators, and
hence negligibly small e→ τ cross sections.

There are several theoretical topics worthy of further attention for the e→ τ EIC search.
First is the study of leptoquarks and LFV(1,3) flavor structure at LHC. While studies of
LQ searches at the LHC have been performed in the past (as an example, see [1237]), such
work has focused only on first generation fermions coupling to leptoquarks and has not
considered LFV leptoquark final states. Further work is required to determine the extent
to which the EIC and the LHC may provide complementary probes of the leptoquark flavor
violating parameter space.

An additional topic which merits further study is a broader analysis of model-dependent
e→ τ searches at the EIC. Non-leptoquark models or symmetries may give promising results
for the e → τ conversion process. For example, R-parity violating supersymmetry allows
for tree level e→ τ conversion mediated by squarks; this suggests that large cross sections
perhaps may be expected. Furthermore, depending on the models which give rise to the
effective operators discussed above, there may be large log enhancements in the charge
radius contribution to photon exchange e→ τ which could overcome the limits on the four
lepton operators.

Finally, we observe that many experiments have over many years placed limits on a wide
variety of flavor-violating processes. Many of these experiments constrain the leptoquark
parameter space, as analyzed in [1238]. Updated limits from experimental searches for
other flavor-violating processes may exist and still need to be considered in analyzing the
potential of the EIC (and LHC) to search for LQ-mediated LFV events. Such limits may
also be relevant for non-LQ scenarios. Improved limits from ongoing and future experiments
searching for LFV(1,2) processes also need to be included, depending on the context for the
e→ τ analysis.

This concludes the discussion of the theoretical analysis of leptoquark-induced e → τ
conversion in deep-inelastic scattering at the EIC. The analysis so far has been optimistic
and disregarded important experimental considerations that would impact a search for
e → τ events. The next several sections address the questions of SM backgrounds and τ
detection.

6.3.5 Experiment I: Standard Model Backgrounds & the Analysis Strat-
egy

In this section, we discuss the main SM processes that could mimic the LFV(1,3) signal
at the EIC. In the SM, ep scattering is caused by the exchange of an electroweak gauge
boson between the electron and a quark inside the proton. Photon exchange dominates when
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the momentum transfer Q is low, but the amplitude of weak gauge bosons becomes more
important as |Q2| approaches M2

W± and M2
Z0 . Standard Model NC and CC DIS processes

are shown in figure 6.10. The EIC acceptance from the beampipe (0.1◦ < θ < 179.9◦)
restricts all EIC kinematics to Q2 > 0.01 GeV2 [1239]. This cut was implemented in the SM
simulations at low momentum transfer. However, we focused our SM background analysis
on events with very high Q2 since a cut of Q2 > 1000 GeV2 was used in all simulations
involving leptoquarks (given the range of LQ masses chosen, see table 6.6).

Figure 6.10. NC and CC DIS diagrams.

Ignoring rare processes, the final state τ in the LFV(1,3) event can decay in three
different ways: electronic channel, muonic channel, and hadronic channel. Like previous
searches done at HERA [1223, 1224], we consider five different SM events whose final states
could be misidentified with a decaying τ : NC DIS, CC DIS, photoproduction, lepton-pair
production, and real W boson production.

SM processes lead to final state particles that could be misidentified as our candidate τ .
In other words, they produce particles that leave tracks in the detector that look like the
leptons or hadrons produced in a τ decay. However, the geometry of the SM events and
the LFV(1,3) events do differ. Indeed, the identified τ lepton in an ep → τX conversion
must be back-to-back in azimuth with the hadronic sector X. In addition, the angular
distribution in the θ direction of the decay products of scalar LQs, vector LQs, and SM
DIS background will differ because their corresponding cross sections have a different y
dependence.5 By inspecting equations (6.23) and (6.24) we can see that in the s-channel
(see figure 6.5) vector LQs are distributed according to dσ/dy ∝ (1 − y)2, whereas scalar
LQs decay isotropically (flat dσ/dy distribution) in their rest frame (and vice-versa in the
u-channel). In contrast, NC DIS events have dσ/dy ∝ y−1/2, and this difference between
LQ and SM y spectra could be exploited to identify background DIS events [1240].

At the detector level, the events in all channels at the EIC must be accepted by a trigger
for a large imbalance in the transverse energy flow. The energy flow summation runs over
all energy deposits in the calorimeters and missing transverse momentum is associated to
the neutrinos that escape the detector without any energy deposit. In this initial analysis,
the missing transverse momentum pmissT is defined as:

pmissT =
√

(
∑

Px,i)2 + (
∑

Py,i)2 (6.31)

where i runs over all final state particles in an event, excluding all neutrinos.
PYTHIA 6.4.23 is used to generate all SM events with the CTEQ 5L parametrization

5The Bjorken scattering variable is given by y = Q2/sepx = 1/2(1 − cos θ̂) where θ̂ is the decay polar
angle of the lepton relative to the incident proton in the center-of-mass frame.
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of the parton distribution functions of the proton [1241]. Initial and final state radiation
are included. No GEANT simulation of the EIC detector has been used. Two different
energies are chosen for the ep MC simulations: 20×325 GeV with

√
s = 161.25 GeV and

10×250 GeV with
√
s = 100.01 GeV. Although not directly relevant for the conclusions of

this topological study, we allowed ourselves the possibility of gathering a total integrated
luminosity of 1000 fb−1 as suggested on this workshop’s web page [1239].

Standard Model Event Generation

NC DIS: (ep→ eX)

NC DIS events are mediated by a photon or a Z0 boson, and the final state includes an
electron. The final state event topology of the tau electronic decay (τ → eνeντ ) is therefore
very similar to that of high Q2 NC DIS. By energy-momentum conservation the

∑
(E−Pz)

distribution for NC DIS events is peaked at 2E0, where E0 is the electron beam energy (10
or 20 GeV). We can also select NC events by implementing an upper and lower cut to the
quantity

∑
(E −Pz) measured. In contrast, the τ decay exhibits a large missing transverse

momentum due to the neutrinos in the decay.

CC DIS: (ep→ νX)

CC DIS events are mediated by a W± boson and are characterized by high missing
transverse momentum pmissT and higher Q2.

Photoproduction: (γp→ X)

Events from photoproduction processes occur in the low Q2 limit and may contribute
to the final selection if a narrow hadronic jet fakes the tau signature or is misidentified
as an electron. For γp events simulated with PYTHIA, the photon can be either direct
(point-like) or resolved (VMD and GVMD/anomalous). A photon is assumed to be direct
(point-like) when it can only interact in processes which explicitly contain the incoming
photon [81], such as fiγ → fig. A photon is considered to be resolved when it interacts
through its constituent quarks and gluons. Each photoproduction subprocess leads to a
different event structure and has a cross section that depends strongly on the virtuality of
the photon. For high virtualities (high Q2), DIS events dominate, and the photon is very
virtual (γ∗). For very low Q2, however, the photon can be treated as real and can have a
partonic structure that can interact in different ways with the proton’s quark (e.g., resolved
photoproduction).

However, the LFV processes were simulated with a Q2 > 1000 GeV2 cut and hence the
SM photoproduction background will automatically be reduced to zero. As table 6.4 below
suggests, most of the background that concerns us is therefore in the DIS region where the
photon is very virtual.

Lepton-pair Production: (ep→ el+l−X)

Lepton-pair production events contribute to the background because they may lead to
high momentum leptons in the final state. An analysis of the event geometry is required
to avoid misidentifying the three pencil-like tracks in the tau decay with the tracks left
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Subprocess % of tot. events, Q2 > 0.01 % of tot. events, Q2 > 1000

VMD 61.56 0

Direct 11.28 0

Anomalous 9.05 0

DIS (γ∗q → q) 18.11 100

Table 6.4. Event statistics for photoproduction/DIS subprocesses simulated at 20×325 GeV with
Q2 > 0.01 GeV2 and Q2 > 1000 GeV2.

by l+, l− and X when the scattered electron is missed. The background samples include
e+e−, τ+τ− and µ+µ− production. The simulation of these processes was not included in
this analysis due to its very low cross section given the chosen EIC energy range. However,
they can be included in the future using a better suited generator with improved efficiency
compared to PYTHIA.

W Production: (ep→ eWX)

Real W boson production leads to final states with isolated leptons with high transverse
momentum. The simulated W production samples include hadronic W decays (which can
fake a tau decay) and leptonic (lν̄l) decays that contribute to the missing transverse mo-
mentum and could potentially produce a non-LFV τ . However, the cross section of this
process (2.449× 10−13 mb for 10× 250 and 5.343× 10−11 mb for 20× 325) at EIC energies
and luminosities is negligible.

Results

Figures 6.11 and 6.12 include all SM processes. Shown are the pmissT and acoplanarity
∆φmiss−τjet found in events due to missing neutrinos. The plots are made for two different
beam energy combinations (top and bottom). It is apparent that beam energies do not
matter, the plots are very similar. Two different Q2 conditions were studied: left and right,
which isolate predominantly high and low Q2 events, respectively. With no Q2 cut, the event
sample is dominated by low Q2 photo-production background. If a cut of Q2 > 1000 GeV2

is made the EW-physics (W) events become apparent. Figure 6.12 shows the acoplanarity
∆φmiss−τjet, the angle between the reconstructed τ -jet direction and the missing momentum
direction (presumably the neutrinos in the primary collision) for the two different energies
and virtualities. The figures also reveal that the shapes of the curves are very similar for
the two different center-of-mass energies.

The particles in table 6.3.5 are primarily produced from the decays of hadrons in the
hadronic sector X; e.g., τs can be produced from Ds meson decay, but also include leptons
from the processes mentioned above. The low PT suggests that these background particles
can be partially avoided by restricting the kinematics phase space to high Q2 and high
transverse momentum.
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Figure 6.11. pmissT at 10×250 and 20×325 GeV with low Q2 and Q2 > 1000 GeV2.
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Figure 6.12. Acoplanarity ∆φmiss−τjet at 10×250 and 20×325 GeV with low Q2 and Q2 > 1000
GeV2 .

6.3.6 Experiment II: Leptoquark Simulation Study

Type of Leptoquark Studied: Parameter Space

In this work we present the distribution of pmissT generated from a LFV signal Monte
Carlo sample of the leptoquark S̃L1/2.

6 The mass of the leptoquark is determined from the

ratios z ≡ λiλj
M2 . The smallest value of the these ratios [1242] which the EIC will potentially

probe are listed in table 6.6. The LFV signal Monte Carlo events were generated using a LQ
generator called “LQGENEP” [1243]. LQGENEP is a LQ generator for electron/positron-
proton scattering which simulates processes involving LQ production and exchange using the
BRW [1225] effective model. The generator is interfaced with the PYTHIA event generator.
The value of λi = λj = 0.3 is taken throughout this study. The values of λ are correlated
with z through their relation to the mass of the leptoquarks, MLQ.

6See section 6.3.2 for a description of the notation. This leptoquark’s interactions are given by the
Lagrangian terms λd̄RℓLS̃

L
1/2 + h.c. Also note that this leptoquark evades limits from τ → eγ as explained

in section 6.3.2.
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Particle ID N1 N2 10×250 20×325

τ− 531 316 pT < 4, θp ∼ 2 pT < 4, θp ∼ 2

τ+ 512 385 pT < 4, θp ∼ 1 pT < 4, θp ∼ 1

µ− 38771 27849 pT < 2, θp ∼ 4 pT < 2, θp ∼ 4

µ+ 38691 27523 pT < 2, θp ∼ 4 pT < 2, θp ∼ 4

ντ 1043 701 pT < 1, θp ∼ 4 pT < 1, θp ∼ 4

νµ 37200 26170 pT < 2, θp ∼ 4 pT < 2, θp ∼ 4

νe 38343 27255 pT < 2, θp ∼ 4 pT < 2, θp ∼ 4

ν̄τ 1043 701 pT < 1, θp ∼ 4 pT < 1.5, θp ∼ 4

ν̄µ 37280 26496 pT < 2, θp ∼ 4 pT < 2, θp ∼ 4

ν̄e 38836 28004 pT < 2, θp ∼ 3 pT < 2, θp ∼ 4

Table 6.5. Statistics of selected SM background particles for 10 million e−p collisions generated with
PYTHIA. N1 and N2 are the number of times the particle is produced out of the 10 million events
at energies of 20×325 GeV and 10×250 GeV respectively. θp is the peak of the particle’s polar
angle distribution in degrees with a FWHM∼ 11◦ and pT is the transverse momentum in GeV. All
φ distributions are flat.

(qiqj) z(TeV −2) Mass(GeV )

11 0.024 1936.5

13 0.03 1732.0

22 0.039 1519.1

23 0.047 1383.8

31 0.03 1732.0

32 0.06 1224.7

33 0.084 1035.1

Table 6.6. The initial and final quark flavors (qiqj) in the subprocess eqi → τqj , the ratio z and the
mass of the LQ for λi = λj = 0.3.

Leptoquark Event Characterization

Electron-to-tau events were generated using the LFV generator LQGENEP for two
EIC energies, namely, 10x250 GeV and 20x325 GeV, in ep scattering. These events were
restricted to sub-processes with a specific intermediary BRW LQ, S̃L1/2. The kinematic

region was restricted to Q2 > 1000GeV 2 and y > 0.1.

Electronic & muonic τ decays

The leptonic decays of the tau, τ → eνeντ , µνµντ , were studied. Background for these
events is present from SM neutral current events in ep DIS. The pmissT distribution for 10x250
and 20x325 are shown in figure 6.3.6 (left) and (right), respectively. The plots shown are for
electron final states. The muon final state plots are identical. The different panels indicate
the pmissT spectrum for each combination of quarks i, j involved. The pmissT spectrum is
wider at higher center-of-mass energies, but otherwise the spectra are generally similar.
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Figure 6.13. Missing transverse momentum in the electronic τ decay channel in the ep scattering with
10x250 (left) and 20x325 (right) energies and the ratios, z, from table 6.6 for (qiqj) ≡ 13,22,23,31,32
and 33. The lepton-quark couplings are λi = λj = 0.3.

Hadronic τ decays

The hadronic decay of high-PT τ leptons results in a characteristic narrow “pencil-
like” jet with three pions. The event ep → τX would look like a a di-jet event with one
narrow and one wide/high multiplicity jet. The jet associated with the τ decay is narrow.
Thus one narrow and one wide jet in a di-jet event is a potential candidate for the signal.
Various standard algorithms are used to identify such events [1224]. We did not simulate
the detector response – this is a topic for a future detector study – but we studied the event
characteristics and topology for such events.

The pmissT distribution for 10x250 and 20x325 are shown in figure 6.3.6 (left) and (right),
respectively. Also plotted is the acoplanarity, ∆φmiss−τjet, between the τ -jet and the miss-
ing transverse momentum. ∆φmiss−τjet for the EIC energies 10x250 and 20x325, shown
in figure 6.3.6 (left) and (right) respectively. Figure 6.3.6 shows the same results as pre-
vious two figures but with an additional requirement of ∆φmiss−τjet below 20◦. A small
∆φmiss−τjet requirement means that the missing transverse momentum in the event, in the
form of a τ neutrino, is aligned with the τ jet. These should be the events in which the τ
decayed with neutrinos in the final state.

6.3.7 Experiment III: Concluding Remarks

We have studied the topological differences between events in the SM and a BRW-
leptoquark extension of the SM. Leptoquark searches in electron-hadron machines are sen-
sitive to the ratio of the product of coupling constant to the square of the leptoquark mass.
Motivated by recent theoretical expectations first presented in [1226] and summarized above
in section 6.3.2, we have studied this for a range of leptoquark masses. While we studied the
topologies of leptoquark-mediated transitions between the electron and all three generations
of charged leptons, we limit our comments to the LFV(1,3) transition, for now.
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Figure 6.14. Missing transverse momentum in the hadronic τ decay channel in the ep scattering with
10x250 (left) and 20x325 (right) energies and the ratios, z, from table 6.6 for (qiqj) ≡ 13,22,23,31,32
and 33. The lepton-quark couplings are λi = λj = 0.3.
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Figure 6.15. The acoplanarity, ∆φmiss−τjet , between the τ − jet and the missing transverse mo-
mentum in the hadronic τ decay channel in the ep scattering with 10x250 (left) and 20x325 (right)
energies respectively and the ratios, z, from table 6.6 for (qiqj) ≡ 13,22,23,31,32 and 33.The lepton-
quark couplings are λi = λj = 0.3.
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Figure 6.16. The acoplanarity, ∆φmiss−τjet , between the τ − jet and the missing transverse mo-
mentum in the hadronic τ decay channel in the ep scattering with 10x250 (left) and 20x325 (right)
energies respectively and the ratios, z, from table 6.6 for (qiqj) ≡ 13,22,23,31,32 and 33. The
lepton-quark couplings are λi = λj = 0.3. ∆φmiss−τjet is required to be below 20◦.

Observations

The topological features of a SM event that produces a τ lepton which decays and an
event in which a τ is created as a decay of a leptoquark are distinct in two different variables
routinely studied in colliders. They are: 1) pmissT spectrum, transverse missing momentum
in such an event, and 2) ∆φmiss−τjet, defined as the transverse angle φ between the τ created
in the event and the vector direction of missing momentum.

As shown in figure 6.17, the pmissT spectrum is extremely narrow for SM events with
final state leptonic or hadronic decays of the τ created in the collisions. This implies that
the neutrinos released in the decay of the SM-produced τ are boosted in the direction of
the τ and hardly any noticeable transverse momentum is lost. In contrast, the τ produced
in a leptoquark decay tends to have a larger spread in the pmissT spectrum. These general
features of the pmissT spectra do not depend on the center-of-mass of the collision: the top
histograms in figure 6.17 correspond to 100 GeV center-of-mass energy, while on the bottom
they correspond to 160 GeV. Note that these plots are not normalized amongst themselves.

Figure 6.18 shows the acoplanarity plots, the angle between the τ -jet in the event and the
missing momentum vector reconstructed in the transverse plane using all other observable
hadronic and leptonic activity (whether part of a jet or not). The left plots at each center-
of-mass energy are unnormalized acoplanarity distributions showing that the SM events
are distributed widely over the φ range, while the leptoquark-produced τ jets are narrowly
peaked at 180o. If a proximity requirement cut of 20o is made – meaning that the missing
neutrinos were very close in φ angle with the direction of the generated τ – the distribution
switches sides, indicating two categories of such events (the plots on the right of figure).
Again, the top two histograms are for 100 GeV center-of-mass energy and the bottom are
for 160 GeV. They show no differences based on these center-of-mass energies. This feature
by itself will be less deterministic of the event topology of the leptoquarks, but we expect (as
was done in previous searches [1223]) the pmissT spectrum and the acoplanarity distributions
together will be utilized in a maximum likelihood or neural network analysis to search for
excesses seen in future EIC events.
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Figure 6.17. SM and LQ (both hadronic and electronic channels) pmissT at 10×250 and 20×325 GeV
with Q2 > 1000 GeV2. These plots are not normalized amongst themselves.
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Figure 6.18. Acoplanarity ∆φmiss,τjet at 10×250 and 20×325 GeV with Q2 > 1000 GeV2. The two
plots in the right side have a ∆φ < 20o cut implemented on the LQ simulation. In this case, the LQ
preserves the quark flavor: (qi = 1 qj = 1). These plots are not normalized amongst themselves.
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Outlook

The study we performed is only a beginning. The estimates made in the theoretical
motivation in section 6.3.2 and [1226] assume a 100% efficiency of final state leptonic and
hadronic decay reconstruction of the τ created in the final state. The experimental publi-
cations [1223, 1224] indicate that their detailed simulation of the H1 detector resulted in a
range of 7% to 15% in the reconstruction efficiency of the τ in those final states. BELLE
and BaBar detectors have reported higher efficiencies reaching about 20%. It is reasonable
to assume that a future EIC detector may be able to achieve at least that. Assuming this
we note that the luminosity requirements stated in section 6.3.2 and [1226] for the EIC to
probe e→ τ cross sections at the level stated are an underestimate by about 10-to-5 times.
This means at 90 GeV center-of-mass, the stated 10 fb−1 could be as high as 100 or as low
as 50 fb−1.

The studies we performed were based on HERA studies in which the collision energies
were about 300 GeV in the center-of-mass frame. The efficiencies of some cuts and selection
criteria would certainly be better at those energies than at the EIC 100 and 160 GeV center-
of-mass energies, so the cut efficiencies may not transfer exactly as it has been assumed in
these estimates. However, it is not unreasonable to assume that a similar but equally (if not
more) efficient set of cuts and analysis techniques may be eventually found for this search
at the future EIC.

The group now formed hopes to continue these studies with detailed detector simulation
as it will become available in near future.
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7.1 High-energy high-luminosity electron-ion collider eRHIC

Vladimir N. Litvinenko, Joanne Beebe-Wang, Sergei Belomestnykh, Ilan Ben-Zvi,
Michael M. Blaskiewicz, Rama Calaga, Xiangyun Chang, Alexei Fedotov, David
Gassner, Harald Hahn, Lee Hammons, Yue Hao, Ping He, William Jackson, Animesh
Jain, Elliott C. Johnson, Dmitry Kayran, Jörg Kewisch, Yun Luo, George Mahler,
Gary McIntyre, Wuzheng Meng, Michiko Minty, Brett Parker, Alexander Pikin, Ed-
uard Pozdeyev, Vadim Ptitsyn, Triveni Rao, Thomas Roser, Brian Sheehy, John
Skaritka, Steven Tepikian, Yatming Than, Dejan Trbojevic, Evgeni Tsentalovich,
Nicholaos Tsoupas, Joseph Tuozzolo, Gang Wang, Stephen Webb, Qiong Wu, Wen-
can Xu, Anatoly Zelenski

7.1.1 Introduction

In this paper, we describe a future electron-ion collider (EIC), based on the existing
Relativistic Heavy Ion Collider (RHIC) hadron facility, with two intersecting superconduct-
ing rings, each 3.8 km in circumference [1244]. The replacement cost of the RHIC facility
is about two billion US dollars, and the eRHIC will fully take advantage and utilize this
investment. We plan adding a polarized 5-30 GeV electron beam to collide with variety of
species in the existing RHIC accelerator complex, from polarized protons with a top energy
of 325 GeV, to heavy fully-stripped ions with energies up to 130 GeV /u.

Brookhavens innovative design, (figure 1), is based on one of RHICs hadron rings and a
multi-pass energy-recovery linac (ERL). Using the ERL as the electron accelerator assures
high luminosity in the 1033-1034cm−2sec−1 range, and for the natural staging of eRHIC,
with the ERL located inside the RHIC tunnel. eRHIC will provide electron-hadron collisions
in up to three interaction regions. We detail eRHICs performance in subsection 7.1.2.

Since the first paper on eRHIC in 2000, its design has undergone several iterations.
Initially, the main eRHIC option (the so-called ring-ring, RR, design) was based on an
electron ring, with the linac-ring (LR) option as a backup. In 2004, we published the detailed
“eRHIC 0th-Order Design Report” including a cost-estimate for the RR design [1245]. After
detailed studies, we found that an LR eRHIC has about a 10-fold higher luminosity than
the RR. Since 2007, the LR, with its natural staging strategy and full transparency for
polarized electrons, became the main choice for eRHIC. In 2009, we completed technical
studies of the design and dynamics for MeRHIC with 3-pass 4-GeV ERL. We learned much
from this evaluation, completed a bottom-up cost estimate for this $350M machine, but
then shelved the design.

In the same year, we turned again to considering the cost-effective, all-in-tunnel six-
pass ERL for our design of the high-luminosity eRHIC (figure 7.1). In it, electrons from the
polarized pre-injector will be accelerated to their top energy by passing six times through
two SRF linacs. After colliding with the hadron beam in up to three detectors, the e-beam
will be decelerated by the same linacs and dumped. The six-pass magnetic system with
small-gap magnets [1246] will be installed from the start. We will stage the electron energy
from 5 GeV to 30 GeV stepwise by increasing the lengths of the SRF linacs.

We considered several IR designs for eRHIC. The latest one, with a 10 mrad crossing
angle and β∗ = 5cm, takes advantage of newly commissioned Nb3Sn quadrupoles [1247].
Subsection 7.1.3 details the eRHIC lattice and the IR layout.

The current eRHIC design focuses on electron-hadron collisions. If justified by the EIC
physics, we will add a 30 GeV polarized positron ring with full energy-injection from the
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(a) (b)

Figure 7.1. (a) Layout of the ERL-based, all-in-RHIC-tunnel, 30 GeV x 325 GeV high-energy
high-luminosity eRHIC. (b) Location of eRHICs six recirculation arcs in the RHIC tunnel.

eRHIC ERL. This addition to the eRHIC facility provides for positron-hadron collisions,
but at a significantly lower luminosity than those attainable in the electron-hadron mode.

As a novel high-luminosity EIC, eRHIC faces many technical challenges, such as gener-
ating 50 mA of polarized electron current. eRHIC also will employ coherent electron cooling
(CeC) [1248] for the hadron beams. Staff at BNL, JLab, and MIT are pursuing vigorously
an R&D program for resolving addressing these obstacles. In collaboration with Jlab, BNL
plans experimentally to demonstrate CeC at the RHIC. We discuss the structure and the
status of the eRHIC R&D in subsection 7.1.4 .

7.1.2 Main eRHIC parameters

eRHIC is designed to collide electron beams with energies from 5- to 30-GeV1 with
hadrons, viz., either with heavy ions with energies from 50- to 130-GeV per nucleon, or
with polarized protons with energies between 100- and 325-GeV. Accordingly, eRHIC will
cover the C.M. energy range from 44.7- to 197.5-GeV for polarized e-p, and from 31.6- to
125-GeV for electron heavy-ion-collisions.

Several physics and practical considerations influenced our choice of beam parameters
for eRHIC. Some of these limitations, such as the intensity of the hadron beam, the space
charge and beam-beam tune shift limits for hadrons, come from experimental observations
at RHIC or other hadron colliders. Some of them, for example β* = 5 cm for hadrons, are
at the limits of current accelerator technology, while others are derived either from practical
or cost considerations. For example, from considering the operational costs, we limit the
electron beam’s power loss for synchrotron radiation to about 7 MW, corresponding to a
50 mA beam current at 20 GeV. Above 20 GeV, the electron beam’s current will decrease
in inverse proportion to the fourth power of energy, and will be restricted to about 10 mA
at an energy of 30 GeV. It means that the luminosity of eRHIC operating with 30 GeV
electrons will be a 1/5th of that with 20 GeV.

1 There is no accelerator problem with using lower energy electron beams.. According to statements from
EIC physicists, using electron energies below 5 GeV would not contribute significantly to the physics goals.
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Since the ERL provides fresh electron bunches at every collision, the electron beam can
be strongly abused, i.e., it can be heavily distorted during a collision. The only known effect
that might cause a serious problem is the so-called kink instability. The ways of suppressing
it within range of parameters accessible by eRHIC is well-understood [1249] and it no longer
presents a problem.

We list below some of our assumed limits and parameters:
1. Bunch-intensity limits:

a. For protons: 2 1011

b. For Au ions: 1.2 109

2. Electron-current limits:
a. Polarized current: 50 mA
b. Un-polarized current: 250 mA

3. Minimum β* = 5 cm for all species
4. Space-charge tune shift for hadrons: ≤0.035
5. Proton (ion) beam-beam parameter: ≤0.015
6. Bunch length (with coherent electron-cooling):

a. Protons: 8.3 cm at energies below 250 GeV, 4.9 cm at 325 GeV
b. Au ions: 8.3 cm in all energy ranges

7. Synchrotron radiation intensity limit is defined as that of a 50 mA beam at 20 GeV
8. Collision rep-rate ≤ 50 MHz.
The limitations on luminosity resulting from various considerations are involved. The

main trend is that eRHIC’s luminosity does not depend on the electron beam’s energy (below
20 GeV) and reaches its maximum at the hadron beam’s highest energy. We mentioned the
exception for energies of electrons above 20 GeV. The top eRHIC performance for various
species is shown in table 7.1.

Table 7.2 lists the luminosity of a polarized electron-proton collision for a set of electron-
and proton-energies. Table 7.3 contains this information for a polarized electron beam
colliding with Au ions, while tables 7.4 and 7.5 provide data for the case of unpolarized
electrons.

An additional major parameter describing eRHIC’s overall performance is its expected
average luminosity. Since the plans for eRHIC are to use coherent electron cooling to
control the parameters of hadron beam, its lifetime will be affected only by scattering
on residual gas, and by burn-off in collisions with electrons. Hence, the hadron beam’s
luminosity lifetime could be as long as a few days, and, in the most likely scenario, the
average delivered luminosity will be determine by the reliability of RHIC systems. Hence
we anticipate that the average luminosity will be ∼ 70% of that listed in the tables.

7.1.3 The eRHIC interaction region

The current high-luminosity eRHIC IR design incorporates a 10 mrad crab-crossing
scheme; thus, hadrons traverse the detector at a 10 mrad horizontal angle, while electrons
go straight through. Figure 7.2 plots this scheme. The hadron beam is focused to β*=5cm
by a special triplet wherein the first magnet is a combined function magnet (1.6 m long with
2.23 T magnetic fields and a -109 T/m gradient). It has two functions; it focuses the hadron
beam while bending it 4 mrad. Two other quadrupoles do not bend the hadron beam but
serve only for focusing. Importantly, all three magnets provide zero magnetic fields along
the electron beam’s trajectory. Quadrupoles for this IR require very high gradients, and
can be built only with modern superconducting technology [1247, 1250]
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e p 2 He 3 79 Au 197 92 U 238

Energy, GeV 5-20 325 215 130 130

CM energy, GeV 80-161 131 102 102

Number of bunches or distance be-
tween bunches

74 nsec 166 166 166 166

Bunch intensity (nucleons), 1011 0.24 2 3 3 3.15

Bunch charge, nC 3.8 32 30 19 20

Beam current, mA 50 420 390 250 260

Normalized emittance of hadrons
95% , mm ·mrad

1.2 1.2 1.2 1.2

Normalized emittance of elec-
trons, rms, mm ·mrad

5.8-23 7-35 12-57 12-57

Polarization, % 80 70 70 none none

RMS bunch length, cm 0.2 4.9 8.3 8.3 8.3

β*, cm 5 5 5 5 5

Luminosity per nucleon, 1034

cm-2s-1
1.46 1.39 0.86 0.92

Table 7.1. Projected eRHIC luminosity for various hadron beams at top energy.

❳
❳
❳
❳
❳
❳
❳
❳
❳
❳
❳

Electrons
Protons

100 GeV 130 GeV 250 GeV 325 GeV

5 GeV 0.62.1033 1.4.1033 9.7.1033 15.1033

10 GeV 0.62.1033 1.4.1033 9.7.1033 15.1033

20 GeV 0.62.1033 1.4.1033 9.7.1033 1.5.1033

30 GeV 0.12.1033 0.3.1033 1.9.1033 3.1033

Table 7.2. Projected eRHIC luminosity (in cm-2 sec-1) for polarized electron-proton collisions.

❳
❳
❳
❳
❳
❳
❳
❳
❳
❳
❳

Electrons
Au ions

50 GeV/u 75 GeV/u 100 GeV/u 130 GeV/u

5 GeV 0.49.1033 1.7.1033 3.9.1033 8.6.1033

10 GeV 0.49.1033 1.7.1033 3.9.1033 8.61033

20 GeV 0.49.1033 1.71033 3.9.1033 8.6.1033

30 GeV 0.1.1033 0.34.1033 0.8.1033 1.7.1033

Table 7.3. Projected eRHIC luminosity (in cm-2 sec-1) for polarized electrons and Au ions.
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❳
❳
❳
❳
❳
❳
❳
❳
❳
❳
❳

Electrons
Protons

100 GeV 130 GeV 250 GeV 325 GeV

5 GeV 3.1.1033 5.1033 9.7.1033 15.1033

10 GeV 3.1.1033 5.1033 9.7.1033 15.1033

20 GeV 0.62.1033 1.4.1033 9.7.1033 15.1033

30 GeV 0.12.1033 0.3.1033 1.9.1033 3.1033

Table 7.4. Projected eRHIC luminosity (in cm-2 sec-1) for polarized protons and unpolarized electrons.

❳
❳
❳
❳
❳
❳
❳
❳
❳
❳
❳

Electrons
Au ions

50 GeV/u 75 GeV/u 100 GeV/u 130 GeV/u

5 GeV 2.5.1033 8.3.1033 11.4.1033 18.1033

10 GeV 2.5.1033 8.3.1033 11.4.1033 18.1033

20 GeV 0.49.1033 1.71033 3.9.1033 8.6.1033

30 GeV 0.1.1033 0.34.1033 0.8.1033 1.7.1033

Table 7.5. Projected eRHIC luminosity (in cm-2 sec-1) for unpolarized electrons and Au ions.

Figure 7.2. Layout of the right side of eRHIC IR from the IP to the RHIC arc. The spin rotator is
the first element of existing RHIC lattice remaining in place in this IR design.
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This configuration guaranties the absence of harmful high-energy X-rays from syn-
chrotron radiation. Furthermore, the electron beam is brought into the collision via a
130 meter long merging system (figure 7.3). The radiation from regular bending magnets
would be absorbed. The last 60 meters of the merging system use only soft bends: down-
wards magnets have strength of 84 Gs ( for 30 GeV beam ) and the final part of the bend
used only 24 Gs magnetic field. Only 1.9 W of soft radiation from the later magnets would
propagate through the detector.

One important factor in the IR design with low β*=5 cm is that the chromatism of the
hadron optics in the IR should be controlled, which is reflected in the maximum β-function of
the final focusing quadrupoles. Figure 7.4a shows the designed β- and dispersion-functions
for the hadron beam. The values of the β-function are kept under 2 km, and the chromaticity
held at the level typical for RHIC operations with β∗ ∼ 1 m. We are starting full-fledged
tracking of hadron beams in RHIC, including characterizing beam-beam effects and all
known nonlinearities of RHIC magnets: we do not anticipate any serious chromatic effects
originating from our IR design.

(a) (b)

Figure 7.3. (a) Vertical trajectory of 30 GeV electron beam merging over 130 meters into the IP.
(b) Spectra of the radiation from various part of the merger. Only 1.9 W of soft X-ray radiation
will propagate through the detector; the absorbers intercept the rest of it.

Furthermore, we introduced the bending field in the first quadrupole for the hadrons
thereby to separate the hadrons from the neutrons. Physicists considering processes of
interest for EIC science requested our installing this configuration. Since the electrons are
used only once, the optics for them is much less constrained. Hence, it does not present any
technical- or scientific-challenges, and so we omit its description here.

Finally, beam-beam effects play important roles in eRHIC’s performance. While we will
control these effects on the hadron beam, i.e., we will limit the total tune shift for hadrons to
about 0.015, the electron beam is used only once and it will be strongly disrupted during its
single collision with the hadron beam. Consequently, the electrons are strongly focused by
the hadron beam (pinch effects), and the e-beam emittance grows by about a factor of two
(disruption) during the collision. These effects, illustrated in figure 7.5, do not represent a
serious problem, but will be carefully studied and taken into account in designing the optics
and the aperture .

More details on the lattice and IR design are given in reference [1251].
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(a) (b)

Figure 7.4. (a) Hadron beam’s optics at the eRHIC IR. The 5 cm β* is matched into the RHIC’s
arc lattice that starts about 60 m from the IR. (b) Tracking of hadrons with an energy deviation of
±0.1% through the first four magnets at the IR.

(a) (b)

Figure 7.5. (a) The optimized e-beam envelope during collision with the hadron beam in eRHIC;
(b) Distribution of electrons after colliding with the hadron beam in eRHIC.

7.1.4 eRHIC R&D

The list of the needed accelerator R&D on eRHIC is quite extensive, ranging from the
50 mA CW polarized source [1252, 1253, 1254] to Coherent Electron Cooling [1248]. It
includes designing and testing multiple aspects of SRF ERL technology in BNL’s R&D
ERL [1255].

Coherent Electron Cooling (figure 7.6) promises to cool both ion beams by an order
of magnitude (both transversely and longitudinally) in under half an hour. Traditional
stochastic or electron cooling techniques could not satisfy this demand. Being a novel
unverified technique, CeC will be tested in a proof-of-principle experiment at RHIC in a
collaboration between scientists from BNL, JLab, and TechX [1256].

Another important R&D effort, supported by an LDRD grant, focuses on designing
and prototyping small-gap magnets and vacuum chamber for cost-effective eRHIC arcs
[1246]. In addition to their energy efficiency and inexpensiveness, small-gap magnets assure
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a very high gradient as room-temperature quadrupole magnets. Figure 7.7 shows two such
prototypes; they were carefully tested and their fields were mapped using high-precision
magnetic measurements. While the quality of their dipole field is close to satisfying our
requirements, the quadrupole prototype was not manufactured to our specifications. We will
continue this study, making new prototypes using various manufacturers and techniques.

Figure 7.6. Possible layout of RHIC CeC system cooling for both the yellow and blue beams.

(a) (b)

Figure 7.7. (a) A prototype of eRHIC quadrupole with 1 cm gap; (b) Assembled prototype of eRHIC
dipole magnet with 5 mm gap.

Another part of our R&D encompasses testing the RHIC in the various modes that will
be required for eRHIC’s operation.

7.1.5 Conclusions and Acknowledgements

We are making steady progress in designing the high-energy, high-luminosity electron-
ion collider eRHIC and plan to continue our R&D projects and studies of various effects
and processes. So far, we have not encountered a problem in our proposal that we cannot
resolve. Being an ERL-based collider, eRHIC offers a natural staging of the electron beam’s
energy from 5-6 to 30 GeV. During this year, we will complete our cost estimate of all eRHIC
stages.

The authors would like to acknowledge contributions and advice from E.-C.Aschenauer,
D. Bruhwiler, G. Bell, A. Cadwell, A. Deshpande, R. Ent, W. Gurin, A. Hutton, H. Kowal-
ski, G. Krafft, M. Lamont, T. W. Ludlam, R. Milner, M. Poelker, R. Rimmer, B. Surrow,
B. Schwartz, T. Ullrich, S. Vigdor, R. Venugopalan, and W. Vogelsang.
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7.2 A Polarized Medium-Energy Electron-Ion Collider at
JLab

B. Terzić, Y. Zhang, S. Abeyratne, S. Ahmed, A. Bogacz, P. Chevtsov, Ya. Der-
benev, B. Erdelyi, A. Hutton, A. Kondratenko, G. Krafft, R. Li, S. Manikonda,
F. Marhauser, V. Morozov, P. N. Ostrumov, F. Pilat, R. Rimmer, T. Satogata, H.
Sayed, M. Spata, M. Sullivan, H. Wang, B. Yunn

The conceptual design of MEIC, a polarized ring-ring electron-ion collider based on
CEBAF, has been continuously optimized for best supporting the nuclear science program.
MEIC covers a medium CM energy region up to 65 GeV (for 6 T superconducting dipole
magnets) and achieves a luminosity of above 1034cm−2s−1 for one high-luminosity and one
full-acceptance detectors. The unique compact figure-8 shaped collider rings, designed to
accommodate 3 to 11 GeV electrons and up to 96 GeV protons or 48 (38) GeV/u for light
(heavy) ions (128 GeV protons or 64 (51) GeV/u light (heavy) ions for 8 T superconducting
magnet), provide a great advantage for delivering and preserving high polarization of ion
beams (including polarized deuterons) for collisions at multiple interaction points. The
design is upgradable to accommodate 20 GeV electrons and about 250 GeV proton energies
at a late stage, with luminosities up to 1035cm−2s−1. The present focus of the Jefferson Lab
accelerator team is to develop a coherent machine design that integrates all of the design
features that have been explored over recent years, based upon state-of-the-art performance
criteria. Various collider components including ion linac and boosters, spin rotators, and
interaction regions have been designed and integrated into a unified design. These advances
will be discussed in detail.

7.2.1 Introduction

Over the last decade, Jefferson Lab has been developing a conceptual design of an
electron-ion collider for future nuclear physics research. This facility, fully utilizing the 12
GeV upgraded CEBAF, will provide collisions between polarized electrons and polarized
light ions or unpolarized light to heavy ions up to lead over a wide CM energy range at
multiple interaction points (IPs). Requirements of the science programs drive the design
efforts to focus on achieving ultra-high luminosity (1034cm−2s−1 or above) per detector,
and high polarization (over 80%) for both electron and light ion beams.

Our primary design focus at the present time is a Medium-energy Electron-Ion Collider
(MEIC), with a CM energy up to 65 GeV, which covers electron energy up to 11 GeV,
proton energy up to 96 GeV and ion energy up to 48 GeV per nucleon. It is considered
as an optimal compromise between science, technology and project cost. We also maintain
a well-defined upgrade capability to higher energies, ELIC, which can reach up to 20 GeV
electron energy, and 250 GeV proton energy or 100 GeV/u heavy ion energies (typically, for
heavy ions the proton number is about 40% of the atomic mass number). In both instances,
high luminosity and high polarization remain the main design drivers.

The present MEIC design features a traditional ring-ring collider with a high luminosity
at a level of 1034cm−2s−1 per detector, over up to three IPs, by taking full advantage of
an electron beam from the upgraded 12 GeV CEBAF recirculated SRF linac. As a design
concept, the high luminosity of MEIC is attained by utilizing high bunch repetition rate,
crab-crossing colliding electron and ion beams with short bunch length and small transverse
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emittances, and strong final focusing at collision points. Our choice of this luminosity
concept was motivated by the remarkable success of two electron-positron colliders at KEK
and SLAC B-factories, which had reached luminosities over 2 × 1034cm−2s−1. In a way,
Jefferson Lab is poised to replicate the same success in a collider involving hadron beams.
The new concept requires the colliding ion beams of MEIC to be very different from all
existing or previously operated hadron colliders in terms of bunch intensity (very small),
bunch length (very short), transverse emittances (very small) and repetition frequency (very
high), while, at the same time, it pushes the final focusing parameter β∗ to be much smaller
than what has been achieved in hadron colliders. To support such a conceptual design,
extensive R&D programs have been established at Jefferson Lab, supplemented by several
external collaborations.

As a design strategy, we are taking a conservative technical position by limiting many
MEIC design parameters within or close to the present state-of-the-art in order to minimize
technical uncertainty. This conservative technical design will form a baseline for future
design optimization guided by the evolution of the science program, technology innovations
and R&D advances.

7.2.2 Baseline Design

The MEIC main parameters are summarized in table 7.2.2 for a design point of 60 GeV
proton and 5 GeV electron. Figure 7.8 presents luminosities as a function of CM energy for
both proton and ions. In deriving this set of design parameters, we have imposed certain
limits on several key machine or beam parameters in order to reduce technical risk and the
accelerator R&D challenges and to improve robustness of the design. These limits, based
on largely previous lepton and hadron collider experiences and state-of-art of accelerator
technologies, are:

• Average current of the stored beams are up to 1 A for protons/ions and 3 A for
electrons,

• Electron synchrotron radiation power density is less than 20 kW/m,

• Peak bending field of ion superconducting dipole is no larger than 6 T,

• The maximum betatron value at the beam extension area near an IP is no larger than
2.5 km,

• Frequency of accelerating RF cavity in the electron ring is less than 1 GHz.

Also, different nuclear programs usually require different detector acceptances and arrange-
ment of interaction regions (IR). While such detector requirements are still in a formation
stage, we have considered two different types of IR designs, one for a full-acceptance detec-
tor (with 0.5 to 179.5 degree solid angular acceptance before the ion final focusing magnets,
and the apertures of the latter sufficient to allow particles with angles up to 0.5 degrees to go
through the bore of the magnet for downstream detection), the other for a high-luminosity
detector. The key difference of the IR designs is a space between the collision point and the
location of the first final focusing quad, and values of these distances for the two detectors
are 7 m and 4.5 m respectively for ion beams, while the space for electron beams can be as
low as 3 m for both cases. The relatively short distance of 4.5 m enables a further reduction
of the final focusing β∗ to 8 mm, thus resulting in a more than a factor two increase of
luminosity for that detector configuration as shown in table 7.2.2.
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Quantity Unit p− beam e beam

Beam energy GeV 60 5

Collision frequency MHz 749

Particles per bunch 1010 0.416 2.5

Beam current A 0.5 3

Polarization % > 70 ∼ 80

Energy spread 10−3 0.3 0.71

RMS bunch length mm 10 7.5

Horiz. emit. (norm.) µm 0.35 53.5

Vertical emit. (norm.) µm 0.07 10.7

Horizontal β∗ cm 10 (4) 10 (4)

Vertical β∗ cm 2 (0.8) 2 (0.8)

Vertical beam-beam tuneshift 0.015 0.03

Laslett tuneshift 0.06 small

Distance from IP to 1st final focusing quad m 7 (4.5) 3.5

Luminosity per IP 1033cm−2s−1 0.56 (1.42)

Table 7.6. MEIC design parameters for the full-acceptance detector. Values for the high-luminosity
detector are given in parentheses.

The MEIC design calls for the construction of a green-field ion accelerator complex and
two collider rings, one for electrons and the other for medium energy ions, as shown in
figure 7.9. There are four crossing points of these figure-8 collider rings which will accom-
modate three detectors, at least two of which are available for medium-energy collisions,
and the other for low-energy collisions with ions stored in a large booster. As presently
envisaged, the two collider rings of identical circumferences are vertically stacked and the
ion beams are transported into the plane of the electron ring via a vertical chicane, where
horizontal crab crossings were used to collide the two beams at the collision points.

Figure 7.8. MEIC and its high-energy upgrade ELIC in CM energy-luminosity space.

The ion complex consists of ion sources, a 200 MeV SRF linac, a 3 GeV pre-booster
and a large booster with energy up to 20 GeV. The ion beams are formed and accelerated
in multiple stages in the low-energy ion complex, and are then filled into the collider ring
for further acceleration to the colliding energy and stored for collision. A large figure-8
ring, also drawn in Fig. 7.9 (in grey), accommodates high-energy ion beams in a future
energy upgrade. In that case, the compact medium-energy collider ring will act as another
large booster. On the electron side, a 12 GeV upgraded CEBAF SRF linac will serve as a
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full-energy injector into the electron collider ring, which could also be operated in a top-off
mode in order to maintain high beam current. It is possible to continue the fixed target
program for the CEBAF whenever there is a need, since each filling of the electron ring is
very short.

Figure 7.9. Layout and side view of the MEIC and
cross-section of tunnel.

The MEICs figure-8 shape in all
rings is an optimal solution to preserve
full polarization of light ion beams by
avoiding spin resonances during accel-
eration in multiple booster and collider
rings. It is also the only practical way
to accelerate polarized deuterons and
to arrange for longitudinal spin polar-
ization at IP. The figure-8 layout al-
lows for energy independence of the
spin tune, as well as the transverse po-
larization of deuterons.

An essential component of every
version of Jefferson Lab electron-ion
collider design is an electron cooling fa-
cility, which is required for reducing ion
beam transverse emittance and along
with strong RF bunching, shortening
the bunch length to 1 cm.

7.2.3 Ion Complex

Being primarily a lepton lab, Jef-
ferson Lab does not have an ion com-
plex at this time. This is usually con-
sidered a disadvantage to the Jefferson
Lab electron-ion collider design effort,
since a new ion complex is usually more
expensive than a new electron complex.
However, a green-field ion complex pro-
vides an excellent opportunity for ap-

plying new concepts and accelerator technologies which have been developed, tested and
perfected over the last half century. Therefore, the MEICs ion complex could, in principle,
be built to be far superior to the existing or legacy hadron facilities, thereby offsetting the
relatively high project cost.

The main design goal of MEIC ion complex is to create and accelerate polarized or
un-polarized ion beams with appropriate time, spatial and phase space structure matching
the electron beam in order to implement the new luminosity concept. It is important to
note that, while, on the one hand, the MEIC design requires bunch length and transverse
emittances order of magnitude smaller than that of the conventional ion beams, on the other
hand, due to a high bunch repetition rate, the MEIC ion bunch intensity is unusually low
(at 4×109), approximately 50 times smaller than RHIC ion beam, thereby drastically easing
the process of forming such ion beams and intensity dependent collective beam instabilities.

The MEIC ion complex is shown in figure 7.9. Its layout also characterizes the scheme of

447



ion beam acceleration and formation. The ions, coming out from the polarized or unpolar-
ized sources, will be accelerated step-by-step to the colliding energy in the following major
machine components: a 200 MeV SRF linac, a 3 GeV pre-booster, a 20 GeV large booster
and finally a medium-energy collider ring of 20 to 60 GeV. All rings are in figure-8 shape
for the benefit of ion polarization. We will present a brief description on each component in
the rest of this section. The pre-booster is also an accumulator ring, accepting and stacking
ions (0.5 to 1 A average current) from a SRF linac in a multi-turn injection with assistance
of a conventional DC electron cooling (except the case of H−/D− for which a phase space
paint technique will be used). The accumulated ion beam in the pre-booster will become
a coasting beam and will be re-bunched later in the medium-energy collider ring in order
to decouple the RF frequencies in the linac and collider rings, as well as to suppress space
charge tune-shift at low-energy stage.

Ion Sources

The MEIC ion sources will rely on existing and mature technologies. We will have an
Atomic Beam Polarized Ion Source (ABPIS) with Resonant Charge Exchange ionization
for producing polarized light ions H+/D+ and 3He++. For unpolarized light to heavy ions,
we will utilize Electron-Beam Ion Source (EBIS) which is current in operation at BNL. It
is a realistic extrapolation, given future R&D, that an ABPIS should be able to deliver
10 mA polarized H+/D+ pulses at 5 Hz repetition frequency, over a 0.5 ms pulse length
with a polarization better than 90%. An EBIS, on the other, hand is expected to generate
unpolarized 208Pb30+ pulses also at 5 Hz repetition rate and about 1.6 mA averaged current
over a much shorter pulse length of 10 to 40 µs. Alternatively, an Electron Cyclotron
Resonance Source (ECR) can generate heavy ion beams with similar averaged currents, but
10 to 50 times longer pulse lengths, resulting in a factor of 10 or more pulse charges. In all of
these instances, the present ion source technologies should be able to meet the requirement
of the MEIC.

Ion Linac

A technical design of an advanced SRF ion linac, originally developed at Argonne Na-
tional Laboratory as a heavy-ion driver accelerator for Rare Isotope Beam Facility, has been
adopted for the MEIC proposal. This 150-m-long linac, as shown in figure 7.10, is very ef-
fective in accelerating a wide variety of polarized and unpolarized ions from H (285 MeV)
to 208Pb67+ (100 MeV/u). Economic acceleration of lead ions up to 100 MeV/u requires a
stripper with an optimal stripping energy of 13 MeV/u. The stripping efficiency of 208Pb
ion beam to the most abundant charge state 67+ is 21%.

 

Figure 7.10. Schematic drawing of MEIC SRF linac conceptual design.
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Pre-Booster/Accumulator Ring

The pre-booster ring, as shown in figure 7.11, is an essential component of the ion
accelerator complex, which accepts beam pulses of any ions from the ion linac and, af-
ter accumulation and/or acceleration, transfers the beam to the subsequent large booster
for further acceleration. The exact mechanisms of pre-booster operation depend on the
ion species, relying on either combined longitudinal and transverse paint technique for
H−/D− or conventional DC electron cooling for lead or other heavy metals during multi-
turn injection from the SRF linac. One important design consideration of the pre-booster
is sufficiently high transition gamma, such that the ions never cross the transition energy
during acceleration in order to prevent associated particle loss. In addition, the betatron
motion working point should be carefully chosen such that the tune footprint does not cross
low-order resonances.

Length Crossing angle Max. beam size γ for 3 GeV particles Transition γ Mom. compaction

234 m 75 deg 2.3 cm 4.22 5 0.04

Table 7.7. Parameters for the pre-booster ring.

 

Figure 7.11. A figure-8 shaped pre-booster ring.

Large Booster

The MEIC large booster shares the same tunnel as the electron and ion collider ring. It
accelerates protons from 3 GeV to 12 to 20 GeV before sending them to the medium-energy
collider ring. The extraction energy will be determined in the further design optimization.
The boosters can handle all ion species. However, the energy will be affected by the ratio
of charge and mass of the ion species. In principle, higher extraction energy is preferred.
The key design requirements are that the ring must be also a figure-8 shape, its magnetic
lattice should be built by warm magnets and a crossing of the transition energy must be
avoided. It should be pointed out that the large booster will be also used as a low-energy
collider ring for collision energies in the region of 5 to 20 GeV per nucleon over only one
detector. Special insertions such as an interaction region and an electron cooling facility
must be inserted or added to meet such physics demand.
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7.2.4 Collider Rings

Figure 7.12 shows a scaled layout of the electron and ion collider rings. When designing
the optics of the electron and ion collider rings, the following geometric constraints must
be taken into account:

• Figure-8 shape, and four intersection points in two straights,

• Two short (20 m) straights in the middle of the two arcs for two Siberian snakes,

• A 60 m Universal Spin Rotator consisting of two solenoids and two sets of arc bending
dipoles on each end of two electron arcs,

• Layouts of the interaction regions must match for both electron and ion rings,

• Footprints of the two collider rings must be very close so that they can be housed in
one tunnel,

• The ion ring circumference must be equal to the big boosters length and be an integer
multiple of the pre-boosters length for the purpose of RF matching.

The circumferences of the electron and ion rings are about 1340 m. The circumferences
can be modified by adjusting length of straights, crossing angle and arc radii. The figure-8
crossing angle is 60o. The electron and ion rings IPs coincide. The maximum separation of
the electron and ion beam lines in the design is less than 4 m, which can be further reduced
to be within the required limits once the optics design concept is finalized. The parameters
of the electron ring and optics design are summarized in table 7.8.
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Figure 7.12. Layout of the electron and ion collider rings.

Arc’s net bend Crossing angle Arc length Arc avg. radius straight length circumference

240 deg 60 deg 405.75 m 96.86 m 264.46 m 1340.41 m

Table 7.8. Parameters for the collider ring.

7.2.5 Interaction Region

Detector

The primary detector of the MEIC will be unique in its ability to provide almost full
acceptance for the produced particles of electron-ion collisions. To accomplish this, a high
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level of integration with the interaction region of the accelerator is required. The central
detector will be built around a solenoid barrel, providing tracking, particle identification,
and calorimetry for all particles, and two end-caps focusing on the detection of electrons
and hadrons respectively. See section 7.3 for further discussion.

Crab Crossing

With a 749 MHz bunch repetition rate for both colliding beams of MEIC, the bunch
spacing is about 40 cm. A crab crossing of the colliding beams provides a simple way to
separate quickly the two colliding beams near an IP to avoid undesired parasitic collisions.
In the present MEIC IR design, the horizontal crabbing angle is 50 mrad. There are two
ways currently under consideration to tilt the orientation of the electron or ion bunches in
horizontal plane by a half crab crossing angle in order to restore head-on collisions. The
first approach is placing crab cavities on each side of an IP. Such approach has been proved
recently at KEK-B factory, which led to a record-high luminosity. It has been estimated
that we need approximately 1.26 and 16.2 MV integrated transverse kicking voltage for 5
GeV electron and 60 GeV protons respectively. While a KEK-type squashed crab cavity
should be readily adopted for the MEIC electron ring, the ion ring needs a set of such KEK
crab cavities to achieve the design goal. At Jefferson Lab, a new type of crab cavity, which
is more compact and promises much higher field, has been recently conceptually designed
using transverse electromagnetic field (TEM), as another candidate of crab cavities for the
MEIC. An alternative approach is dispersive crabbing, in which tilting of a bunch is achieved
through purposely leaking the horizontal dispersion in the normal accelerating RF cavities.

Interaction Region Design

As mentioned earlier, the two collider rings of MEIC are stacked vertically. In an early
version of the IR design, the electron beam was vertically bent into a crab crossing, while
the ion ring remains in a plane. Such design layout was abounded due to several problems:
(i) bending electrons will generate excessive synchrotron radiation near an IP, which, con-
sequently, interferes with the detector and degrades the background; (ii) the synchrotron
radiation and quantum excitations in a beam extension area (betatron values are still very
large) could enlarge the electron beam emittance by an order of magnitude; (iii) polariza-
tion decrease caused by vertical bend could be also very significant. The present MEIC
IR design now requires the ions to undergo a vertical excursion to facilitate a horizontal
crab crossing at an IP. For a 50 mrad crab crossing angle, the required bending field of the
dipoles is quite modest for our ion energy range.

A typical magnet lattice layout of the MEIC interaction region is illustrated in fig-
ure 7.42. At a medium-energy region, the ion beams are modestly asymmetric in two
transverse dimensions, as a result of balance of electron cooling and intra-beam scatterings.
For instance, the emittance aspect ratio of a 60 GeV proton bunch is about 5. For such
modestly flat beams, a final focusing quad doublet is a good choice.

For the MEIC IR design with a 2 cm or less β∗, chromatic aberration of the final focusing
quads is one important issue that special attention must be paid. The chromaticity, defined
as a ratio of betatron tune shift and momentum spread, could be as high as 110 per IR.
A dedicated chromaticity compensation block, consisting of a set of sextupoles, will be
inserted in the beam extension area on both sides of an IR to mitigate the problem. The
initial studies indicate that, with proper values of these sextupoles, the chromaticity can be
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reduced dramatically to single digits. Particle tracking simulations for dynamic aperture
are currently underway.

7.2.6 Electron Cooling

Cooling of the ion beam is essential to achieve high luminosity in MEIC. At low energy,
DC electron cooling is employed to help stacking of the ions in the pre-booster. At the
collider ring, we rely on a concept of staged cooling of bunched ion beams of medium
energies. Electron cooling is first called in the injection energy for reduction of the area
that the ion beam occupies in the 6D phase space. After ions are accelerated to the collision
energy, electron cooling will be utilized again for conditioning the beam to the design values.
And most importantly, electron cooling will be continued during the collision mode to
suppress the intra-beam scattering induced beam heating and emittance growth. Shortening
the bunch length (down to 1 cm or less) that results from electron-cooling of the ion beam
captured in a high voltage SRF field, in particular, it is critical for the high luminosity
in MEIC, since it facilitates two important advances: an extreme focusing of the colliding
beams and implementation of crab crossing at the IPs for achieving the highest bunch
collision rate (up to 1.5 GHz) and luminosity.

A schematic drawing of the MEIC ERL based electron cooler is shown in figure 7.13.
Two technologies, namely, energy recovery linac (ERL) and circulator ring, play critical
roles to the success of this facility. A high-charge electron bunch from a photo-cathode is
accelerated in a SRF ERL linac to required energy 10 to 50 MeV and then sent to a specially
designed circulator cooler ring, with optics matching the cooling channel for cooling of a
proton or ion bunch. The photo-injector and SRF linac ensure a high quality of the injected
cooling bunch. An individual bunch circulates a large number of revolutions (up to a few
hundred) in the ring before its quality is degraded by intra- and inter-beam scatterings,
after which it returns to the same SRF linac for energy recovery. The recovered energy
will be used for accelerating a new electron bunch. This circulator ring reduces the average
current from a photo-cathode by a factor equal to the number of recirculation. Therefore,
it provides a near-perfect solution for two bottlenecks of the facility: the high current and
high power of the cooling electron beam. For example, a 3 A, 50 MV (e.g. 150 MW of
power) cooling beam can effectively be provided by 30 mA, 2 MV (e.g 60 kW of active beam
power) from the electron injector.

7.2.7 R&D

For an advanced accelerator design like MEIC, there are many R&D issues needed to be
completed to solidify the design. We have identified a list of critical R&D issues: electron
cooling of the bunch ion beams at medium energy; crab crossing and crab cavity; polar-
ization life time and spin tracking; beam-beam effects; non-linear collective beam effects
and feedback systems; interaction region design and dynamic aperture, etc. The Jefferson
Lab accelerator team and its collaborators are currently working on each of these issues.
The details of the ongoing research are reported in a number of publications: overall design
[1257, 1258], lattice design [1259, 1260], ion complex [1261, 1262], beam-beam simulations
[1263, 1264], crab cavity [1265], electron cloud [1266], beam instabilities [1267], and others.
For brevity, here we only highlight one topic from our R&D list – beam-beam simulations.

Beam-beam interactions present a key limitation to collider performance, because they
may lead to appreciable emittance growth of colliding beams and rapid reduction of lumi-
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Figure 7.13. Schematic of electron cooling for the MEIC.

nosity. Such nonlinear collective beam effects can pose a significant design challenge when
the machine parameters are pushed into a new regime. In order to lend credibility to the
conceptual design, we use computer simulations to examine beam-beam instabilities, to
optimize and explore limits of machine parameters.

A first phase of the beam-beam simulations of MEIC at Jefferson Lab, featuring a simpli-
fied model with linear transfer map, head-on collisions, and perfect chromaticity correction,
has been already carried out for the current medium-energy configuration [1263, 1264, 1268]
using the state-of-the-art beam collision code BeamBeam3D [1269]. These studies estab-
lished that both designs were safely away from coherent beam-beam instabilities.

Furthermore, we use an evolutionary (genetic) algorithm [1270, 1271] to search for the
optimal working point in the tune space, and demonstrated that such an approach is orders
of magnitude more efficient than the simple tune scans [1272]. Figure 7.14 illustrates how
the evolutionary algorithm successfully navigates the 4D betatron tune space (2 tunes for
each beam) to find a (near-)optimal working point for which the luminosity exceeds the
design luminosity by about 30%.

7.2.8 Summary

The MEIC is the future of nuclear physics at Jefferson Lab. It is optimized to collide
a wide variety of polarized light ions and unpolarized heavy ions with polarized electrons.
It covers an energy range matched to the science program proposed by the Jefferson Lab
nuclear physics community (∼ 4200 GeV2), with luminosity exceeding 1034cm−2s−1. An
upgrade path to higher energies (250 × 20 GeV2) has been developed and should provide
luminosity of close to 1035cm−2s−1. The design is based on a figure-8 ring for optimum
polarization, and an ion beam with high repetition rate, small emittances and short bunch
lengths.

We reported on the status of the design for the MEIC at Jefferson Lab. Our design is
both mature, having addressed all the required aspects of the design in the various level
of detail, and flexible, being able to accommodate revisions in design specifications and
advances in accelerator R&D. We have identified the critical accelerator R&D topics for the
MEIC, and are presently working on them.
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7.3 Kinematics and Detector Designs for the different EIC
Machine Designs

E.C. Aschenauer, R. Ent, T. Horn, P. Nadel-Turonski, H. Spiesberger

7.3.1 Kinematics and Requirements for an EIC Detector

The physics program of an EIC imposes several challenges on the design of a detector,
and more globally, the extended interaction region, as it spans a wide range in center-of-mass
energy, different combinations of both beam energy and particle species, and several dif-
ferent physics processes. The various physics processes encompass inclusive measurements
(ep/A → e′ +X), which require detection of the scattered lepton and/or the full scattered
hadronic debris with high precision; semi-inclusive processes (ep/A → e′ + h +X), which
require detection in coincidence with the scattered lepton of at least one (current or target
region) hadron; and exclusive processes (ep/A → e′ +N ′/A′ + γ/m), which require detec-
tion of all particles in the reaction. The following figures in this section demonstrate the
differences in particle kinematics of some representative examples of these reaction types, as
well as differing beam energy combinations. For these plots, the directions of the beams are
defined as for HERA at DESY: the hadron beam is in the positive z direction (0o) and the
lepton beam is in the negative z-direction (180o). The upper panel of fig. 7.15 illustrates
that the lower Q2 is, the closer the momentum of the scattered lepton is to the original
lepton beam energy. For all lepton-hadron beam energy combinations (indicated by the
panel in each of the plots), the scattered lepton goes in the direction of the original lepton
beam for low Q2 and more and more into a central detector acceptance for higher Q2. For
a fixed hadron beam energy the lepton scattering angle becomes smaller at a fixed Q2 with
increasing lepton energy.

Fig. 7.16 shows the x-Q2 plane for two different center-of-mass energies. In general,
the correlation between x and Q2 for a collider environment is weaker than for fixed target
experiments. Nonetheless, it becomes stronger for small scattering angles or corresponding
small inelasticity y, and momentum and scattering angle resolution for the scattered lepton
become an issue, at HERA roughly at y = 0.1. To circumvent this problem, HERA re-
constructed the lepton kinematics from the hadronic final state using the Jacquet-Blondel
method [1273, 1274], and has reached successful measurements down to y of 0.005. The
main reason why this hadronic method renders better resolution at low y follows from the
equation yJB = E − P hadz /2Ee, where E − P hadz is the sum over the energy minus the
longitudinal momentum of all hadronic final-state particles and Ee is the electron beam
energy. This quantity has no degradation of resolution for y < 0.1 as compared to the elec-
tron method, where ye = 1− (1 − cosθe)E

′
e/2Ee. This is directly correlated to the relative

resolutions for both quantities: ∆yJB/yJB ∼ constant and ∆ye/ye ∼ 1/ye.
Typically, one can obtain for a given center-of-mass energy squared roughly a decade of

Q2 reach at fixed x when using only an electron method to determine lepton kinematics,
and roughly two decades when including the hadronic method. If only using the electron
method, one can increase the range in accessible Q2 by lowering the center-of-mass energy,
as can be seen from comparing the two panels of fig. 7.16. This may become relevant
for some semi-inclusive and exclusive processes. The advantages and disadvantages of this
solution are discussed in the two machine-specific detector sections of this section.

In general, one would like to access as large a range in Q2 at fixed x as possible for
a given beam energy combination, and reach as low yJB as possible. This requirement
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Figure 7.15. Q2 vs. momentum (upper panel) and Q2 vs. scattering angle (lower panel) of the
scattered lepton in the laboratory frame. The following cuts have been applied in both figures:
Q2 > 0.1 GeV2, 0.01 < y < 0.95. The lepton-hadron beam energy combinations are indicated by
the panel in each individual plots
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directly implies two important considerations for the detector design:

• good hadronic coverage in the forward direction

• low noise and/or good noise suppression algorithms in the hadronic calorimeter to
allow for hadron detection down to 0.5 GeV. More detailed detector simulations are
needed to confirm these requirements.
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Figure 7.16. The x-Q2 plane for center-of-mass energy 45 GeV (left) and 140 GeV (right). The
black lines indicate different y-cuts placed on the scattered lepton kinematics.

It is important to point out that the reconstruction of the event kinematics from the hadronic
final state is also important in suppressing events with radiation of a real or virtual photon
from the incoming or outgoing lepton (radiative corrections); for details please see section
7.3.2.

One should keep in mind that there are additional complications at low y for the mea-
surement of asymmetries and/or polarized cross sections, to for example extract the helicity-
dependent parton distributions. A depolarization factor, defined in [1275] as:

D =
y[(1 + γ2y/2)(2 − y)− 2y2m2

e/Q
2]

y2(1− 2m2
e/Q

2)(1 + γ2) + 2(1 +R)(1− y − γ2y2/4)
(7.1)

is needed to correct the measured helicity-dependent asymmetries (A||). The depolarization
factor corrects for the polarization transfer from the lepton to the virtual photon, and is
small at low y. This reduces the effective polarized luminosity and increases the uncertainties
of the measured polarized quantities at low y (δA1 = δA||/D). Therefore, the x−Q2-plane of
precision polarized cross section measurements will be reduced as compared to unpolarized
ones, for fixed center-of-mass energy.

Fig. 7.17 shows the momentum versus scattering angle distributions in the laboratory
frame for pions originating from semi-inclusive reactions, for different lepton and proton
beam energy combinations. For lower lepton energies, pions are scattered more in the for-
ward (ion) direction. For fixed low lepton energy of 5 GeV, this pattern remains more or less
constant as a function of proton energy. With increasing lepton beam energy, the hadrons
increasingly populate the central region of the detector, and at the highest lepton energies,
hadrons are even largely produced going backward (i.e. in the lepton beam direction). The
kinematic distributions for kaons and protons, applying the same cuts as for pions, are
essentially identical to those of the pions. The distributions for semi-inclusive events in
electron nucleus collisions may be slightly altered due to nuclear modification effects, but
the global features will remain.
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Figure 7.17. Momentum vs. scattering angle in the laboratory frames for pions from non-exclusive
reactions. The following cuts have been applied: Q2 > 1 GeV2, 0.01 < y < 0.95 and 0.1 < z < 0.9

Fig. 7.17 also indicates a shift of the momentum range of pions towards higher momenta
in the central-angle region for higher lepton energy, to typical momenta of about 10 GeV/c,
which has implications for the required particle identification (PID). To be able to identify
the different hadron types over a wide momentum and angular range an EIC detector needs
to have detectors capable of good PID in the forward, central and backward direction. For
the higher hadron momenta, typically in the forward ion direction and also in the backward
direction for higher lepton beam energies, the most viable detector technology is a Ring-
Imaging Cherenkov (RICH) detector with dual-radiators. In the central detector region
a combination of high resolution time-of-flight (ToF) detectors (preferentially with timing
resolutions δt ∼ 10ps), a DIRC, or a proximity focusing Aerogel RICH may be adequate
detector technologies.

For certain kinematics, the hadrons (both charged and neutral) will be produced in
the backward ion direction (see fig. 7.18) and need to be disentangled from the scattered
leptons. The kinematic region in rapidity η, over which hadrons and photons need to be
suppressed with respect to electrons, shifts to more negative rapidity with increasing center-
of-mass energy. This can be cross-correlated with the angular and momentum patterns for
scattered leptons of fig. 7.15. For the lower center-of-mass combination, electron, photon
and charged hadron rates are roughly comparable at 1 GeV/c total momentum and η =
-3. For the higher center-of-mass energy, electron rates are a factor of 10-100 smaller than
photon and charged hadron rates, and comparable again at a 10 GeV/c total momentum.

This adds another requirement to the detector: good electron identification. The kine-
matic region in rapidity η over which hadrons and also photons need to be suppressed,
typically by a factor of 10 - 100, shifts to more negative rapidity with increasing center-
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of-mass energy. Measuring the ratio of the lepton energy and momentum, E′e/p
′
e, typically

gives a reduction factor of ∼ 100 for hadrons. This requires the availability of both tracking
detectors (to determine momentum) and electromagnetic calorimetry (to determine energy)
over the same rapidity coverage. This availability also immediately suppresses the misiden-
tification of photons in the lepton sample, by requiring that a track must point to the
electromagnetic cluster. Of course, the availability of good tracking detectors over simi-
lar coverage as electromagnetic calorimetry similarly aids in y resolution at low y from a
lepton method only (see earlier), as the angular as well as the momentum resolution for
trackers are much better than for electromagnetic calorimeters. The hadron suppression
can be further improved by adding a Cherenkov detector to the electromagnetic calorime-
try. Combining the electromagnetic calorimeter response and the response of Cherenkov
detectors may especially help in the region of low-momentum scattered leptons, about 1
GeV/c. Other detector technologies, such as transition radiation detectors, may provide
another factor 100 hadron suppression for lepton momenta greater than 4 GeV/c.

An additional advantage of a collider detector over a fixed target experiment is the large
coverage in transverse momentum. This is especially important for measurements linking
the perturbative high-transverse momentum pT region to the region of small transverse mo-
mentum, pT ∼ ΛQCD, where single-spin asymmetries as functions of pT , x,Q

2, z and φ are
the prime observable to extract TMDs - Transverse Momentum Dependent Parton Distri-
butions (see chapter 2), like the Sivers function. Fig. 7.19 shows the coverage in hadron pT
measured with respect to the virtual photon vs. z = Eh/ν assuming an angular acceptance
of a detector 0.5o < θ < 179.5o. One can see that for all beam energy combinations a large
range in transverse momentum is achievable. In general, such physics does not drive the
most forward (or backward) detector requirements, leaving ample phase space in transverse
momentum with respect to the virtual-photon direction - typically more central.

There is specific interest in detecting events with heavy quarks (charm or bottom). To
measure the inclusive structure functions, Fc2, F

c
L, and FB2 for heavy quarks, it is sufficient

to tag the charm and the bottom quark content via the detection of additional leptons
(electron, positron, muons) to the scattered lepton. The leptons from charmed mesons
can be identified via a displaced vertex of the second lepton (< τ >∼ 150µm). This
can be achieved by integrating a high-resolution vertex detector into the detector design.
For measurements of the charmed (bottom) fragmentation functions, or to study medium
modifications of heavy quarks in the nuclear environment, at least one of the charmed
(bottom) mesons must be completely reconstructed to have access to the kinematics of
the parton. This requires, in addition to measuring the displaced vertex, good particle
identification to reconstruct the meson via its hadronic decay products, e.g. D0 → K±+π∓.

Fig. 7.20 (upper panel) shows the momentum versus scattering angle distributions for
pions following from an exclusive reaction with a ρ0 vector meson production (Q2 > 1.0
GeV2), in the laboratory frame and for different beam energy combinations. As in fig.
7.17, two familiar patterns arise. For increasing lepton beam energy, the pion distribution
goes from being more peaked in the forward-angle direction to a distribution with both
a peak in the forward and backward ion direction, and the momentum in the forward-
ion direction is slightly reduced. Most of the forward-ion direction pions in fig. 7.20 are
correlated with lower-Q2 processes, though possibly of less interest for these processes. If
one would use a Q2 > 10 GeV2 cutoff in these exclusive processes, only a peak in the
backward-ion direction would remain and in that sense, lower lepton energies correspond
to lower hadron momenta on average and reduced particle identification requirements. The
distributions for kaons from exclusive φ-mesons production as well as for muons/electrons
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Figure 7.18. The number of photons and hadrons as well as the number of scattered leptons in
a rapidity bin vs momentum having 5 GeV leptons colliding with 100 GeV protons and 20 GeV
leptons colliding with 250 GeV protons. No kinematic cuts are applied.
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Figure 7.19. Transverse momentum vs. z for pions applying the following cuts Q2 > 1 GeV2, 0.01 <
y < 0.95, 0.5o < θ < 179.5o and p > 1 GeV. A momentum cut is applied to simulate the threshold
of potential particle-identification-detectors.

from exclusive J/ψ production look very similar, see lower panel of fig. 7.20. The most
challenging constraints on the detector design for exclusive reactions compared to semi-
inclusive reactions is, however, not given by the hadrons originating from vector mesons,
but from the detection of the exclusive hadronic state remaining.

As one specific example of an exclusive reaction, deeply virtual compton scattering
(DVCS) was chosen, fig. 7.21 (top) shows the energy versus scattering angle distributions
of photons in the laboratory frame, for different beam energy combinations. A cut of Q2 >
1 GeV2 is assumed, although larger values of Q2 may be required. Lower lepton energies
show a more symmetric distribution, and higher lepton energies are more backward-ion
angle peaked. The distributions show relatively homogeneous distributions of the DVCS
photons from forward to backward, with a small preference for the backward direction. The
latter is true for all lepton-hadron beam energy combination.

Fig. 7.21 (bottom) correlates the distribution of the photon angle and the electron
scattering angle in the laboratory frame, for different beam-energy combinations. With
increasing lepton beam energy, the photon and scattered lepton tend towards the same
detector hemisphere. Following fig. 7.21 (top), electromagnetic calorimetry is required
over the entire rapidity range of the detector. Fig. 7.21 (bottom) illustrates that tracking
and electromagnetic calorimetry capabilities covering similar rapidity range will greatly aid
the separation of the photon and lepton, reducing a difficulty encountered by the ZEUS
collaboration in their DVCS event reconstruction.

For exclusive reactions in general, with DVCS as the example above, it is extremely
important to ensure that the remaining nucleon (or the nucleus) remains intact during the
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Figure 7.20. Upper Panel: Momentum vs. scattering angle in the laboratory frames for pions
following from exclusive ρ0 vector meson production. The following cuts are applied: Q2 > 1.0
GeV2, 0.01 < y < 0.95.

Lower Panel: Momentum vs. scattering angle in the laboratory frames for muons following
from exclusive J/ψ vector meson production. No cuts on Q2 have been applied as a hard
scale for the process is given by the J/ψ mass.
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..

..

Figure 7.21. Upper panel: Energy vs. scattering angle in the laboratory frame for photons from
DVCS. The following cuts have been applied: Q2 > 1.0 GeV2, 0.01 < y < 0.95 and Eγ > 1. GeV.
Lower Panel: The scattering angle in the laboratory frame of the photon vs. that of the scattered
lepton for DVCS events. The following cuts have been applied: Q2 > 1.0 GeV2, 0.01 < y < 0.95
and Eγ > 1. GeV
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scattering process. Hence, one has to ensure exclusivity by measuring all products. Fig.
7.22 illustrates the kinematic requirements for the DVCS case, showing the scattered proton
momentum versus its scattering angle for three different beam energy combinations. In gen-
eral, for exclusive reactions one wishes to map the four-momentum transfer (or Mandelstam
variable) t to the hadronic system, and then obtain an image by a Fourier transform, at
relatively low t of up to 1-2 GeV. The angle of the recoiling hadronic system is directly cor-
related with t and the proton energy Ep, as

√
t/Ep. As can be seen in fig. 7.22, the proton

scattering angle requirements indeed linearly (and inversely) scale with proton energy.
Even at a proton energy of 50 GeV, the proton scattering angles only range to about

1-2◦. At proton energies of 250 GeV, this number is reduced to one fifth. In all cases,
one obtains small to extremely small scattering angles, extending to or completely within
the 0.5◦ angular detector cutoff often used above. Because of this, the detection of these
protons, or more general recoil baryons, is extremely dependent on the exact interaction
region design and will therefore be discussed in more detail in the machine-dependent part
of this chapter.
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Figure 7.22. Scattered proton momentum vs. scattering angle in the laboratory frames for DVCS
events with different beam energy combinations. The following cuts have been applied: 1 GeV2 <
Q2 < 100 GeV2, 10−5 < x < 0.7 and 0 < t < 2 GeV2.

Detection of the intact nucleus following an exclusive reaction in eA collisions is even
more complicated. The binding energy in heavy nuclei is of the order 8 MeV per nucleon.
In general, the smallest measurable outgoing angle of heavy scattered or fragmented nuclei,
θmin, is limited by the beam angular divergence and the requirement to have a ∼ 10 σ clear-
ance of any detector element (often ‘Roman pots’) from the beam. For a beam divergence
of say 0.1 mrad and an ion beam of 100 GeV/u, the transverse momentum required in the
nuclear breakup to be beyond the so-called machine ‘beam-stay-clear’ area of ∼ 10 σ is 100
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MeV, well beyond the 8 MeV (or so) needed for a single nucleon. This would assume that
the transverse momentum is equal to the excitation energy of the nucleus.

The diffractive slope at t = 0 depends on the size of the nucleus. Fig. 5.88 shows, for
small t ∼ 1/R2

A, a very steep t dependence, ∼ exp(−tR2
A/3), and then several diffractive

minima (RA = (1.12fm)A1/3 - (0.86fm)A−1/3, for details see [1276]). The incoherent
background starts to dominate at t values at which the coherent cross section has fallen to
1/e. These t values can be estimated by exp(−|t|B0A

2/3) = 1/A, with B0 = (1.12fm)2/3.
These values of t are much smaller than the t value corresponding to the first minimum in the
coherent cross section and the t-values corresponding to the smallest measurable outgoing
angle of scattered heavy nuclei. Therefore the strategy to ensure exclusive production on a
nucleus is to veto nuclear breakup, by detecting the neutrons from incoherent events.

Another possibility can be to require a rapidity gap between the hadron beam and the
produced jet, (vector) meson or real photon (where all events represent the sum of elastic
and incoherent events). The left panel of fig. 7.23 shows the rapidity distribution of the
most forward particle in deep-inelastic scattering (blue filled distribution) and diffractive
events (unfilled histogram), respectively, for a 5 GeV electron and a 100 GeV proton beam
energy combination. The 100 GeV is here chosen to mimic the 100 GeV/u ion beam. The
right panel of fig. 7.23 shows the efficiency and purity for diffractive events to DIS events
(1:1) as function of rapidity, varying the lepton beam energy while keeping the hadron beam
energy fixed. If one requires 4 units of rapidity between the hadron beam and a produced
jet, vector meson or real photon, an efficiency of above 60% and a purity close to 100% for
diffractive events would be obtained. A detector with wide rapidity coverage is essential for
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Figure 7.23. Left: Rapidity distribution of DIS and diffractive events for the most forward particle
(MFP) in the event. Right: Efficiency and Purity for diffractive events with respect to DIS events
(1:1) as a function of the detector rapidity coverage and the center-of-mass energy.

such events.
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7.3.2 Radiative Corrections

The radiation of real and virtual photons leads to large additional contributions to
the observable cross section of electron scattering at high energies. Precision measure-
ments of the nucleon structure require a good understanding of these radiative corrections.
For neutral-current lepton nucleon scattering, a gauge-invariant classification into leptonic,
hadronic and interference contributions can be obtained from Feynman diagrams. The
Feynman diagrams for leptonic corrections are shown in fig. 7.24. Leptonic corrections
dominate and strongly affect the experimental determination of kinematic variables.

Usually, the cross section is measured as a function of Q2 and Bjorken-x, xB , defined as

Q2 = −(l − l′)2, xB =
Q2

2P · (l − l′)
, (7.2)

where l and l′ denote the 4-momenta of the incoming
and outgoing lepton, respectively, and P is the 4-
momentum of the incoming nucleon. The true values
of these variables seen by the nucleon when a photon
with 4-momentum k is radiated are, however, given
by (see fig.)

Q̃2 = −(l− l′− k)2, x̃B =
Q̃2

2P · (l − l′ − k)
. (7.3)

If the photon momentum is large and balancing the
transverse momentum of the scattered lepton, Q̃2

can be shifted to small values, leading to an en-
hancement of the radiative corrections. This effect
is similar to the radiative tail of a resonance.

..

Kinematics of leptonic radiation.

..

Figure 7.24. Feynman diagrams for leptonic radiation in lepton-quark scattering.

The effect of radiation of photons from the lepton can be described with the help of
radiator functions R̃i(l, l

′, k). There is one R̃i for every structure function Fi, i = 2, L.
The radiator functions comprise both real radiation from the initial and the final state
as well as the contribution from vertex and self-energy diagrams. Using x̃B and Q̃2 from
equation (7.3) to parametrize the integration over the phase space of emitted photons, one
can express the observed structure functions as convolutions,

F obs
i (xB , Q

2) =

∫
dx̃BdQ̃

2Ri(xB , Q
2, x̃B , Q̃

2)F true
i (x̃B , Q̃

2) . (7.4)
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The integration limits are determined by the energy allowed for the radiated photon which,
in the photon-nucleon center-of-mass frame, is given by

Emax
γ =

√
1− xB
xB

Q2 . (7.5)

Radiative corrections are, therefore, large at large Q2 and small xB. In contrast, at small
Q2 and large xB , the phase space for photon emission is restricted and negative virtual
corrections dominate.

From equation (7.4) it is obvious that the determination of the true structure functions
F true
i (x̃B , Q̃

2) requires unfolding, a procedure which is in general only possible in an iter-
ative way and with reasonably chosen assumptions about the starting values. Moreover,
the observed structure functions depend on the way in which the kinematic variables are
measured. For example, if the momentum of the hadronic final state, pX , could be mea-
sured, x̃B and Q̃2 would be known. In practice this will be difficult to achieve; however,
any information about the hadronic final state could contribute to a narrowing down of the
phase space available for photon emission, thereby reducing the size of radiative corrections.

The radiator functions are dominated by peaks in the angular distribution for the
collinear radiation of photons from the initial state (ISR) or from the final state (FSR).
At high energies, it is a good approximation to assume that photon radiation can be de-
scribed by a simple rescaling of the lepton momentum, l → zl for ISR and l′ → l′/z for
FSR. The radiator function in the collinear approximation takes the simple, universal form

Rcoll =
α

2π
log

Q2

m2
e

(
1 + z2

1− z

)

+

(7.6)

so that the cross section is obtained from

dσISR =

∫
dz

z
Rcoll(z) dσBorn(l

µ → zlµ) (7.7)

(and similarly for FSR). The potentially large logarithm logQ2/m2
e may reach the order of

10% at large Q2.
As an example, we show numerical results for electron proton scattering at two typical

sets of beam energies: Ee = 5 GeV with Ep = 50 GeV (left panel of fig. 7.25) and Ee = 30
GeV with Ep = 325 GeV (right panel). The figures show the correction factor

rc(y) =
dσ/dy|O(α)

dσ/dy|Born
− 1 (7.8)

where y = Q2/Q2
max, Q

2
max = xBS, S = 2l · P . The different curves correspond to different

ranges of xB: at the lower center-of-mass energy (left panel of fig. 7.25, from the bottom
up): 0.1 < xB < 0.4, 10−2 < xB < 10−1 and 10−3 < xB < 10−2; at the higher center-of-
mass energy (right panel, again from the bottom up): 0.1 < xB < 0.4, 10−2 < xB < 10−1,
10−3 < xB < 10−2, 10−4 < xB < 10−3, and 10−5 < xB < 10−4. The general features
following from the preceding discussion are clearly visible: corrections are large at large y
and small xB, while corrections become negative at large xB and small y.

Lacking a full Monte Carlo event simulation for scattering with heavy nuclei at present,
we have studied the influence of a simple cut on the invariant mass of the hadronic final state.
Imposing the condition Whad > 1.4 GeV would remove the elastic tail and the contribution
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Figure 7.25. y-dependence of the leptonic radiative correction factor for electron proton scattering
with different beam energies and in different xB ranges. Left: Ee = 5 GeV, Ep = 30 GeV and the
curves from the bottom up correspond to 0.1 < xB < 0.4, 10−2 < xB < 10−1, 10−3 < xB < 10−2;
Right: Ee = 30 GeV, Ep = 325 GeV and 0.1 < xB < 0.4, 10−2 < xB < 10−1, 10−3 < xB < 10−2,
10−4 < xB < 10−3, 10−5 < xB < 10−4 (full and dashed lines alternating for better visibility).
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Figure 7.26. Influence of a cut on the mass of the hadronic final state on the leptonic radiative
correction factor for a proton target in different xB ranges and beam energies as indicated in the
figures. Dashed curves are without a cut, full curves are obtained after a cut of Whad > 1.4 GeV.
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from low-lying resonances. A similar effect can be achieved cutting on E − pz from the
Jacquet-Blondel method. The effect of such a naive cut is shown in fig. 7.26. The reduction
of the radiative corrections is considerable at largest y and at small xB, but probably not
yet sufficient at larger values of xB . From similar studies for electron-nucleus scattering at
HERA [1277, 1278, 1274], one can expect to obtain a much stronger reduction of radiative
corrections, if more refined prescriptions for the measurement of kinematic variables are
found.
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Figure 7.27. Left: Radiative corrections for electron scattering off a Au nucleus at 5×130 GeV2 beam
energies, 10−3 < xB < 10−2, Q2 > 1 GeV2,Whad > 1.4 GeV with different models for nuclear PDFs:
EPS09 (full curve), EPS08 (dash-dotted line), EKS98 (dashed line) and HKN (dotted line). Right:
Radiative corrections for different nuclei with CTEQ61M PDFs modified by the EPS09 prescription.
Beam energies and kinematic range as in the left figure. From the bottom up: proton, 4He, 56Fe,
197Au.

Since the determination of the true structure functions requires an iterative unfolding
procedure, it is important to show that the radiative corrections do not depend too strongly
on the assumed input structure functions. In fig. 7.27a we show the correction factor rc(y)
as defined above for the case of electron scattering off an 197Au nucleus, assuming different
parameterizations of parton distribution functions corrected for nuclear effects, as available
in the literature [38, 828, 1279, 40]. Although differences at the level of 10% are visible, one
can still observe a similar overall behavior of radiative corrections. Finally, in fig. 7.27b,
we show results for scattering off different nuclei, again supporting the assumption that a
common unfolding procedure would allow one to obtain the true structure functions.

Corrections due to the emission of photons from the hadrons, or quarks in the deep
inelastic regime, require a careful separation into contributions which should be considered
as a part of the hadron structure (leading to an electromagnetic contribution to scaling
violations [1280]) and contributions which can, in principle, be related to the observation of
direct photons radiated from quarks. The interference of radiation from the lepton and the
quark is small [1277]. In certain phase space regions one may expect higher than one-photon
corrections to be important. For example, soft-photon exponentiation will be necessary at
small y and large xB . The procedure is well-known and straightforward. Finally, multi-
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photon radiation may become important at large y and small xB . In this case, the collinear
approximation is sufficient to reach a precision at the level of one percent [1281].

7.3.3 Detector Design for eRHIC

The BNL design of an EIC allows for collisions at three interaction regions: one at IP-12
with a new dedicated EIC detector, and at IP-6 and IP-8 with the current RHIC detectors
STAR and PHENIX. In the following, first the design considerations for a dedicated EIC
detector are described and then the capabilities of PHENIX and STAR for ep / eA collisions
are discussed.

A dedicated EIC detector

Combining all the requirements described in section 7.3.1 and in the physics chap-
ters before, a schematic view of the emerging dedicated eRHIC detector is shown in fig.
7.28. As already discussed, it is important to have equal rapidity coverage for tracking and

..
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Figure 7.28. A schematic view of a dedicated EIC detector. Details of the GEANT-3 model can be
found at https://wiki.bnl.gov/eic/index.php/Detector Design.

electromagnetic calorimetry. This will provide good electron identification and give bet-
ter momentum and angular resolutions at low inelasticity y than with an electro-magnetic
calorimeter alone.

The significant progress in the last decade in the development of Monolithic Active Pixel
Sensors (MAPS), in which the active detector, analog signal shaping, and digital conversion
take place in a single silicon chip (i.e. on a single substrate; see [1282] and references
therein), provides a unique opportunity for a µ-vertex detector for an eRHIC detector.
These devices, built using CMOS technology, use an epitaxial layer as the active sensing
element. Ionization deposited in the epitaxial layer is collected by N+ wells embedded in
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the epitaxial layer. The “pixel” pitch is determined by the location of the N wells so there
is no need for actual segmentation of the detector as is done with traditional hybrid pixel
detectors. As a result, CMOS pixel detectors can be built with high segmentation, limited
primarily by the space required for additional shaping and digital conversion elements. The
key advantage of CMOS MAPS detectors is the reduced material required for the detector
and the (on substrate) on-detector electronics. Such detectors have been fabricated and
extensively tested (see e.g. [1283]) with thicknesses of about 50 µm, corresponding to
0.05% of a radiation length.

For tracking at larger radii, there are several possibilities which need to be investigated
first through Monte Carlo studies for position resolution and material budget, and later
through R&D and building prototypes. The two most prominent options for the barrel
tracker are a TPC and a cylindrical GEM-Tracker. For large radii, forward tracking GEM-
Trackers are the most likely option. The projected rates for a luminosity of 1034 cm−2 s−1

range, depending on the center-of-mass energy, between 300 and 600 kHz, with an average
of 6 to 8 charged tracks per event. These numbers do not impose strong constraints on the
technology for a tracker.

Due to the momentum range to be covered, the only solution for PID in the forward
direction is a dual radiator RICH, combining either Aerogel with a gas radiator like C4F10 or
C4F8O if C4F10 is no longer available, or combining the gas radiator with a liquid radiator
like C6F14.

In the barrel part of the detector several solutions are possible, as the momenta of the
majority of the hadrons to be identified are between 0.5 GeV and 5 GeV. The technologies
available in this momentum range are high resolution ToF detectors (t ∼ 10ps), a DIRC or
a proximity focusing Aerogel RICH.

For the electromagnetic calorimetry in the forward and backward direction, a solution
based on PbWO4 crystals would be optimal. The advantages of such a calorimeter would
be a small Molière radius of 2 cm and a factor of two better energy resolution and higher
radiation hardness than, for example, lead-glass. To increase the separation of photons and
π0s to high momenta and to improve the matching of charged tracks to the electromagnetic
cluster, it would be an advantage to add, in front of all calorimetry, a high resolution
pre-shower. We follow for the barrel part of the detector the concept of very compact
electromagnetic calorimetry (CEMCal). A key feature is to have at least one preshower
layer with 1–2 radiation lengths of tungsten and silicon strip layers (possibly with two
spatial projections) to allow separation of single photons from π0 to up pT ≈ 50GeV, as
well as enhanced electron-identification. A straw-man design could have silicon strips with
∆η = 0.0005 and ∆φ = 0.1. The back section for full electromagnetic energy capture could
be, for cost effectiveness and good uniformity, an accordion Lead-Scintillator Design, which
would provide gain uniformity and the ability to calibrate the device. A tungsten- and
silicon-strip-based pre-shower would also be a good solution for the forward and backward
electromagnetic calorimetry.

To achieve the physics program as described in earlier sections, it is extremely important
to integrate the detector design into the interaction region design of the collider. As already
described, particularly challenging is the detection of forward-going scattered protons from
exclusive reactions, as well as of decay neutrons from the breakup of heavy ions in non-
diffractive reactions. Previous experience of electron colliders (SLAC, KEK B-factories)
and HERA, an electron-proton collider, indicated difficulties with synchrotron radiation
coming from bending the electron beam close to the interaction region (IR). The newest
large improvements in luminosity at KEK in Japan, by introducing crab cavities, show
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that colliding heavy ions or protons with electrons could be obtained without bending the
electrons close to the IR, but that it is possible to use the crossing angle between the
two beams without losing luminosity. This is the path chosen in the eRHIC design: a 10
mrad crossing angle between the protons or heavy ions during collisions with electrons.
This choice removes potential problems for the detector induced by synchrotron radiation.
To obtain luminosities higher than 1034 cm−2 s−1, very strong focusing close to the IR is
required to have the smallest beam sizes at the interaction point. A small beam size is
only possible if the beam emittance is also very small. The focusing triplets are 4.5 meters
away from the interaction point (IP). The strong focusing quadrupoles induce very large
chromaticities. The current eRHIC design has its highest values of the amplitude betatron
functions of the same size as the present operating conditions of the RHIC collider. In
addition the design allows a correction of the first, second and third order chromaticities
by using sextupoles at the triplets as well as 180 degrees away from the quadrupoles source
(as shown in fig. 7.29).

..

Figure 7.29. The Beta-function along the eRHIC hadron ring.

While the above accomplishes a small-emittance electron beam, the ions and protons
need to be cooled by coherent electron cooling to have small emittance. The eRHIC inter-
action region design relies on the existence of small emittance beams with a longitudinal
RMS of 5 cm, resulting in β∗ = 5 cm. Strong focusing is obtained by three high-gradient
quadrupole magnets using recent results from the LHC quadrupole magnet upgrade program
(reaching gradients of 200 T/m at 120 mm aperture). To ensure the previously described
requirements from physics are met, four major requirements need to be fulfilled: high lu-
minosity (> 100 times that of HERA), the ability to detect neutrons, measurement of the
scattered proton from exclusive reactions (i.e. DVCS) and the detection of low-momentum
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protons (p∼p0/2.5) from heavy-ion breakup. The eRHIC IR design fulfills all these re-
quirements: the first magnet in the high focusing quadrupole triplet is a combined function
magnet producing a 4 mrad bending angle of the ion/proton beam (see fig. 7.30). The 120
mm diameter aperture of the last quadrupole magnet allows detection of neutrons with a
solid angle of ± 4 mrad, as well as the scattered proton from exclusive reactions, i.e. DVCS,
up to a solid angle of ∼ 9 mrad. The electrons are transported to the interaction point
through the heavy ion/proton triplets, seeing zero magnetic field as shown in fig. 7.30.

.. ..

Figure 7.30. Combined-function magnet of the hadron beam high focusing quadrupole triplet.

Fig. 7.31 shows the current eRHIC interaction region design in the direction of the
outgoing hadron beam. The other side of the IR is mirror symmetric for the incoming
hadron beam. For the outgoing lepton beam we are currently investigating how to best
integrate a low scattering-angle lepton tagger. Such a tagger is critical for any low Q2

physics, like elastic J/ψ production in eA collisions (see section 5.5).

..

Figure 7.31. Schematic view of the eRHIC interaction region design in the direction of the outgoing
hadron beam.

The scattered proton from DVCS events were tracked through this design and beam
optics using HECTOR [1284]. The DVCS events have been generated with MILOU, a MC
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code dedicated to DVCS [673]. From fig. 7.32 it is clear that protons from DVCS events
can be measured in ‘Roman Pots’ after the high-focusing quadrupole triplet with a high
detection efficiency for hadron beam energies starting from 100 GeV (as example are shown
the results for 50 GeV and 250 GeV). More studies are needed to determine the momentum
and angular resolution that can be achieved depending on the ‘Roman Pot’ design.

As pointed out previously, equally challenging is the detection of the breakup neutrons
from heavy ions to veto incoherent events. The nuclear breakup of Au nuclei depending on
the excitation energy E∗ was simulated using the Monte Carlo generator GEMINI++ [1285]
and SMM [1286]. The MC simulation showed that whenever the nucleus breaks up there
will be at least one neutron emitted. At very low excitation energies there is the possibility
that only a photon is emitted, while the nucleus remains intact. The possibility of detecting
these photons still needs to be investigated. Fig. 7.33 shows the angular distribution of the
breakup neutrons for three different excitation energies. The aperture of 120 mm diameter
of the last quadrupole magnet allows detection of neutrons with a solid angle of ±4 mrad,
which is indicated by the simulations to be sufficient.

Fig. 7.34 shows the detection inefficiency for these neutrons for three different excitation
energies as function of the maximal aperture of the last magnet. For apertures discussed
for the IR design the inefficiencies are 10−2 or much lower for all excitation energies. This
assumes a 100%-efficient zero degree calorimeter (ZDC). The critical question is: to suppress
incoherent events at high t in eA collisions, can the detection inefficiencies be controlled on
the 10−3 to the 10−4 level?

There are many detector, interaction region and machine parameters still to be worked
out in detail, but one of the hardest questions for an EIC will be to estimate the limiting
factors for the systematic uncertainties. Due to the high luminosity, many inclusive and
semi-inclusive physics observables will be systematics-limited after a relatively short time of
data taking, assuming a 50% operations efficiency. This requires great care to be taken to
consider the possible systematic limitations from the beginning and to integrate solutions
to minimize them into the design. Only some of the possible limiting systematic effects that
will need to be addressed with great care in the design are listed here. Their impact on key
physics observables still needs to be studied.

• Absolute luminosity measurements between different beam energy combinations. This
is extremely important for measurements like the structure function FL.

• Relative luminosity measurements between bunches with different bunch helicities, i.e.
++,−−,−+ and +−. Here it will be important to investigate whether Bremsstrahlung
can be used for this measurement, as the Bremsstrahlung cross section has a term that
is dependent on polarization.

• The measurements of the absolute hadron and electron beam polarization. To date
the best precision in the measurement of lepton beam polarization at high energies
in a collider was obtained during HERA-I running with 1.6% [1287]. At RHIC the
best hadron polarization measurement achieved to date is ∼5% [1288, 1289, 1290] for
a polarized proton beam. For high energy polarized 3He beams, R&D is needed to
determine how to measure an absolute polarization.
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Figure 7.32. Row-1: Spatial distribution of the scattered protons from DVCS events at 20m from the
IP for 2 different beam energy combinations. Row-2: As Row-1, applying the aperture limitations
due to the magnets. Row-3: As Row-2, applying the limitations due to the 10 σ beam clearance and
the acceptance of ‘Roman Pots’ as currently used by pp2pp at STAR. Row-4: Comparison of the pT
spectrum of generated protons (black), those accepted by the quadrupole aperture (blue) and those
detected in the ‘Roman Pots’ (red).
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Figure 7.33. The angular distribution of neutrons from the breakup of a Au nucleus depending on
the excitation energy.

.. .. ..

Figure 7.34. The inefficiency to detect the neutrons from the breakup of a Au-nucleus as function
of the maximal aperture of the last magnet for different excitation energies.

ePHENIX

PHENIX is one of the two large dedicated RHIC detectors, located at IP-8. The
PHENIX detector consists of two muon spectrometer arms and two central arms sitting
in a 1 tesla solenoid. Over the years the detector has been upgraded to the configuration
shown in fig. 7.35. Fig. 7.35 and the upper plot of fig. 7.36 show clearly that PHENIX
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Figure 7.35. A schematic view of the current (2011) configuration of the PHENIX detector.

in its current configuration has only a very small acceptance (|η| <0.35) for the scattered
lepton. This makes the current PHENIX detector basically not usable for DIS physics.

For the RHIC decadal plan covering the period 2010 - 2020, PHENIX has proposed a
major upgrade of the current detector [1291]. The decadal plan outlines an exciting program
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Figure 7.36. Rapidity coverage of the current PHENIX detector compared to the strawman new
PHENIX detector. The central barrel detector covers |η| < 1.0; the forward detector has tracking
coverage for -4 < η < -1, with full EMCal and HCAL coverage for -4.0 < η < -2.0 - (-1.5) with the
exact range dependent on the final design configuration
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in heavy ion and spin physics in polarized pp collisions, focused on an investigation of the
interplay between perturbative and nonperturbative physics in QCD and on the relative
importance of strong and weak coupling. The physics aims have been translated into an
extensive set of required physics observables to answer the key scientific questions, leading to
the design of the new PHENIX detector. The upgrade plan involves replacing the PHENIX
central magnet with a new compact solenoid. The limited aperture provided by the outer
central arm detectors would be replaced with a compact EMCal and a Hadronic Calorimeter
covering two units in pseudorapidity and full azimuth, complemented by the existing VTX
and FVTX inner silicon tracking. Two additional tracking layers would be added. We
highlight that the large acceptance and excellent detector capability is combined with high
rate and bandwidth. The limited forward coverage of the current PHENIX detector does not
allow one to adequately address the questions driving the nucleon structure and cold nuclear
matter community, nor does it provide any capabilities for e+p or e+A collisions. Hence,
an upgrade is being considered where one muon arm would be replaced by a new large-
acceptance forward spectrometer with excellent PID for hadrons, electrons, and photons
and full jet reconstruction capability. The modified detector layout is shown schematically
in fig. 7.37. The increase in overall acceptance is shown in the lower part of fig. 7.36. The
new compact barrel component at midrapidity is designed for excellent jet reconstruction
and PID for photons, electrons, and π0 in p+p, proton-nucleus, through central nucleus-
nucleus collisions. The forward upgrade design is driven by nucleon structure physics and
cold nuclear matter physics. Such a forward spectrometer added to PHENIX would not
only allow measurements of the single spin asymmetry at forward rapidity to test the QCD
prediction that the Sivers function in Drell-Yan and SIDIS is opposite, but would also allow
the unique possibility to detect the scattered lepton in e+p/e+A collisions in the era of
an eRHIC to virtualities Q2 > 0.1 GeV2. To realize these physics goals it is necessary to
upgrade significantly the current PHENIX detector to a detector with high acceptance at
forward rapidity 1 < η < 4.0 .

The strawman design for the central barrel has already been described. The forward
detectors of the strawman design consist of a RICH, a preshower, an EMCal, an HCal, and
additional tracking detectors to provide good momentum definition of the particles going
forward. This combination of detectors is motivated by both Drell-Yan and e+p/e+A
physics to emphasize the detection of electrons with high efficiency and purity.

It must be stressed again that the PHENIX detector upgrades as discussed above are
driven by p+p, p+A, A+A physics. But, comparing the requirements for the physics
program at an EIC as described in section 7.3.1, it becomes clear that this detector upgrade
also provides opportunities to carry out an e+p and e+A physics program, referred to as
ePHENIX. The upgraded PHENIX is well suited for

• Inclusive e+p physics to measure polarized and unpolarized structure functions.

• Inclusive e+A physics to measure unpolarized structure functions and derive nuclear
parton distribution functions (nPDFs).

• e+p / e+A physics involving charm and bottom

• Elastic diffractive physics, i.e. elastic vector meson production and deeply virtual
Compton scattering. These measurements require the addition of ‘Roman pot’ detec-
tors.
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nearly independent of the center-of-mass energy and lepton and hadron beam combination.
Unfortunately due to the limited PID capabilities of the ePHENIX design, most of the
SIDIS physics program for an EIC will not be possible.

There are still several open question on the detailed performance of the upgraded
PHENIX detector in ep / eA collisions, which need to be studied in the next months.
Some examples are given below. Of course, some of these concerns can easily be solved by
addressing them by design changes.

• How can ePHENIX be integrated in the current IR design of eRHIC?

• What does the current material budget do to the momentum and angular resolution
of the scattered lepton?

• Does the current compact solenoid provide enough bending power to achieve sufficient
momentum resolution for the scattered lepton at low Q2?

• How can a luminosity measurement for ep/eA collisions be integrated in the design?

• Are the currently planned electromagnetic calorimeter designs suited in energy reso-
lution to separate leptons from hadrons via E/p, and to get the required resolution
for the DVCS photon?

eSTAR

STAR is the other of the two large dedicated RHIC detectors, located at IP-6. Fig. 7.38
shows STAR in the configuration anticipated in 2014.

The unique strength of STAR (solenoidal tracker at RHIC) [1292] is its large, uniform
acceptance capable of measuring and identifying a substantial fraction of the particles pro-
duced in heavy ion collisions. The heart of STAR is its main tracking device: a TPC,
covering full azimuthal angle and ±1.5 units of pseudo-rapidity. A dE/dx resolution of ∼
8% can be achieved by requiring the tracks of charged particles to have at least 20 out of a
maximum of 45 hits in the TPC. Detailed descriptions of the TPC and its electronics sys-
tem have been presented in [1293, 1294]. The TPC sits in a 0.5 tesla solenoid, surrounded
by electromagnetic calorimetry (EMC Barrel, EMC End Cap, FMS) covering -1 < η < 4,
muon identification (MTD) covering -1 < η < 1 and a high-resolution time of flight system
(MRPC ToF Barrel) covering -1 < η < 1. The tracking in STAR will be further improved
by 2014 by adding a forward GEM tracker (FGT) covering 1 < η < 2 and a high-resolution
silicon detector (HFT) covering -1 < η < 1. The HFT gives the possibility to separate
events with charmed mesons from those with beauty mesons through the detection of the
displaced vertex for charmed mesons. Identification in the lepton sector will be enhanced
with the Muon Telescope Detector (MTD), which will tag muons for -1 < η < 1. This will
enable dilepton studies in the µ − µ and e − µ channels, with a focus on separating the
Upsilon states and constraining charm backgrounds to the thermal continuum in intermedi-
ate mass dileptons. Another unique feature of STAR is the ‘Roman Pots’ around the main
detector; their main focus is to detect protons from elastic diffractive events in pp collisions.

In addition to large coverage in tracking and electromagnetic calorimetry, STAR has
good particle identification capabilities. For stable charged hadrons, the TPC provides
π/K (π+K/p) identification to pT ∼ 0.7 (1.1) GeV/c by the measurement of ionization
energy loss (dE/dx). The STAR PID capability is further enhanced by the TOF system
with a time resolution of < 100 ps, which is able to identify π/K (π+K/p) to pT ∼ 1.6 (3.0)
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Figure 7.38. Schematic drawing of the STAR detector in 2014.

.. ..

Figure 7.39. Left: 1/β vs. momentum for π±, K±, and (pp̄) from 200 GeV d+Au collisions.
Separation between pions and kaons (kaons and protons) is achieved up to pT ∼ 1.6 (3.0) GeV/c.
The insert shows m2 = p2(1/β2− 1) for 1.2 < pT < 1.4 GeV/c. Right: Distribution of log10(dE/dx)
as a function of log10(p) for electrons, pions, kaons and (anti-)protons. The units of dE/dx and
momentum (p) are keV/cm and GeV/c, respectively. The color bands denote the ±1σ dE/dx
resolution.
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GeV/c, as demonstrated in the left panel of fig. 7.39. In addition, with the relativistic rise
of dE/dx from charged hadrons traversing the TPC at intermediate/high pT (>3 GeV/c)
and diminished yields of electrons and kaons at this pT range, pions and protons can be
identified up to very high pT (∼ 10 GeV/c) in p+p, p+A and A+A collisions (see right
panel fig. 7.39).

STAR has, like PHENIX, provided a decadal plan outlining the physics program for
pp, dA and AA collisions in the next 10 years [1295]. Contrary to PHENIX, the STAR
upgrade plans are much more moderate and focus on forward rapidity (2< |η| <4). On the
side of the STAR detector at which the FMS is situated, the plan is to improve charged
particle tracking by adding more tracking planes to the FGT to cover rapidities 2.5< η <4.
To improve lepton/hadron and γ/π0 discrimination, as well as baryon/meson separation, a
RICH detector and a preshower detector will be added in front of the FMS. The addition
of a hadronic calorimeter behind the FMS will further improve the lepton/hadron separa-
tion, as well as give the possibility of measuring the energy due to neutral particles in jet
reconstruction. The motivation for this upgrade is, like in the case of the PHENIX forward
upgrade, transverse spin physics in pp collisions (Sivers asymmetry in Drell Yan) and the
study of cold nuclear matter, i.e. parton saturation at small x.

The upgrade in rapidity -4< |η| <-1 is driven solely towards improving the detection
capabilities of STAR for the scattered lepton in ep/eA collisions during the era of eRHIC.
Currently, proposals include the addition of tracking and electromagnetic calorimetry as
well as an additional ToF for PID. For tracking, it is proposed to combine high-resolution
with electron identification by for example integrating a Cherenkov detector in the tracking
detector.

Combining all these upgrades in fig. 7.40 shows that STAR will have very good accep-
tance for both the scattered lepton and for the hadrons produced by the current jet at the
first stage of eRHIC, with 5 GeV electron beams colliding with proton beams with energies
as high as 325 GeV. From these figures it is also obvious that the upgrade at negative
rapidity is essential to provide good coverage for the scattered lepton below Q2 of 10 GeV2.
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Figure 7.40. Kinematic coverage of the STAR detector in the (x,Q2) plane. Left: electron. Right:
struck quark. The electron beam energy is 5 GeV, and the nucleus beam energy is 100 GeV/u. Lines
of constant laboratory energy of the electron and the struck quark are shown.

The list of questions which need to be answered is very similar to that listed in the
ePHENIX section, and many further detailed simulations must be performed to understand
in detail the performance of STAR for ep/eA collisions. However from the first studies it is
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clear that eSTAR will be able to make key measurements such as:

• Inclusive e+p physics to measure polarized and unpolarized structure functions.

• Inclusive e+A physics to measure unpolarized structure functions and derive nuclear
parton distribution functions (nPDFs).

• Elastic diffractive physics, i.e. elastic vector meson production and deeply virtual
Compton scattering. Here the great advantage is that eSTAR already possesses ‘Ro-
man pot’ detectors.

• The good particle ID capabilities also open the possibility of studying many of the
semi-inclusive observables in ep/eA collisions, i.e. to do a flavour separation of the
quark polarizations to understand both the helicity structure and the transverse spin
structure (via Sivers and Collins functions) of the proton.

7.3.4 Detector Design for MEIC/ELIC

The Jefferson Lab design of an EIC is based on a novel figure-8 ring-ring design optimized
for polarization preservation. The initial version of this EIC is termed the Medium-Energy
EIC, or MEIC, which is upgradable to a higher-energy version termed Electron Ion Collider,
or ELIC. The MEIC/ELIC will have minimal impact on continued operation of the Jefferson
Lab (JLab) 12 GeV fixed-target program.

The ring-ring design of the MEIC/ELIC allows simultaneous operation at high luminos-
ity of multiple detectors located at different interaction points (IPs). Due to the nature of
the figure-8, four IPs are foreseen with different functions. The MEIC detector/interaction
region has concentrated on maximizing acceptance for deep exclusive processes and pro-
cesses associated with very-forward going particles, which are the most challenging from
the detector point of view. This section will describe the baseline full-acceptance detec-
tor in more detail, where it is understood that the various MEIC/ELIC interaction points
can house detectors employing different technologies and having a slightly different physics
focus.

Given that the detailed design of various subsystems does not have to be frozen for
another decade or so, and dedicated pre-R&D projects are only now under way, the focus
of the JLab effort has been on formulating requirements, identifying and addressing critical
design issues, and integrating the detector with the interaction region of the accelerator.
A tentative detector configuration with estimates based on realistic projections has been
adopted, however, to provide users with input for simulations.

The Medium-energy EIC (MEIC)

The current effort is geared towards the MEIC, for which the guiding principle has
been based upon science motivation and design choices close to present state-of-the-art
whenever possible. The exception to the latter is the ion beam properties, which have been
established for electron-positron colliders but fundamentally depend on electron cooling for
proton/ion beams. The fundamental choice for the MEIC design has been to assume short
bunches, each carrying a small charge, and to achieve the requirements for the proton beam
quality assume extrapolations from conventional electron cooling that have been successfully
employed at Fermilab, albeit at modest proton energies. Extending this technology may be
incremental, rather than transformational in nature.
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While ELIC would have a circumference of about 3 km, and support proton energies
up to 250 GeV (as well as heavy ions up to 100 GeV/A), and electrons post-accelerated up
to about 20 GeV, the MEIC would be somewhat smaller than the 1.4 km of the CEBAF
accelerator, from which it would inject electron or positron beams between 3 and 11 GeV.
The maximum proton energy would be around 100 GeV (or 40 GeV/A for heavy ions),
but the often quoted design point for which performance parameters are being worked out
in detail, is 60 GeV. The choice of a mid-range energy for these studies is primarily based
on two considerations. On the accelerator side, a proton energy of 60 GeV is a somewhat
more conservative value for which one could anticipate the performance projections for the
electron cooling to become valid at an early stage of operations. On the physics side, a
range of measurements, for instance related to the 3D structure of the nucleon, place strong
demands on the resolution in t and the luminosity at modest values of proton energy,
corresponding to s ∼ 2000 GeV2.

To further illustrate the importance of a mid-range energy for detailed imaging studies
through exclusive reactions, we come back to the kinematics associated with these processes,
but for a cut in Q2 > 10 GeV2, a likely must for the valid partonic interpretation of such
studies. If one implies a Q2 > 10 GeV2 cutoff in such exclusive processes, the kinematic
patterns of earlier fig. 7.20 drastically change. The upper panels of fig. 7.41 shows how the
momentum distribution of mesons associated with exclusive pseudoscalar meson production
change with lepton and proton energy. Compared to fig. 7.20, the peak in the forward-ion
direction has disappeared completely. Lower lepton energies also push towards lower hadron
momenta in the central-angle region, and thus reduced particle identification requirements.
The bottom panels of fig. 7.41 show one of the most challenging constraints on the detector
and interaction region design for exclusive reactions from the need for detection of the
exclusive hadronic state remaining in the exclusive process. The figures show the direct
correlation between t and proton energy, scaling like 1/Ep, and shows the remaining baryonic
state goes very much in the forward-ion direction, but far less so (and with lower momenta)
for lower proton energies, which are thus much easier to peel off from any beam-stay-clear
area. Even more, assuming a fixed resolution in t, there are obvious benefits of lower proton
energies for imaging. Of course, any high-energy ELIC would in turn greatly benefit from
the experience gained from the construction and operation of the MEIC.

While maintaining a future upgrade path to the high-energy ELIC is important and
always folded into the MEIC design, emphasis has been placed on ensuring that ELIC
will not simply supersede the MEIC, but rather provide a complementary capability. The
MEIC is thus designed to excel in the kinematic range that it will cover (i.e., on one hand
having an overlap with JLab 12 GeV, and on the other with HERA data with y < 0.3).
Overlap in science goals is in part achieved by various accelerator features. Perhaps one of
the most prominent is the figure-8 shape, which could allow storage of polarized deuterium
beams. By tagging the spectator proton in the small-angle ion spectrometer (discussed
below), this will allow to carry out measurements on quasi-free (polarized) neutrons. A
high luminosity over a broad kinematic range will make it possible to accumulate sufficient
statistics for multiple beam energy settings. The capability to vary the beam energies
is essential for some measurements (e.g., FL), but also makes it possible to optimize the
data taking by reducing reliance on data taken at extreme values of y, where the systematic
uncertainties grow. This can be achieved by having a lepton beam energy that can be varied
continuously, and a series of closely spaced discrete ion beam energies. In the MEIC, the
latter can be accomplished by changing the number of stored ion bunches by one, and the
bunch separation distance accordingly - a scheme facilitated by the high bunch repetition
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Figure 7.41. The momentum distribution of the exclusive hadronic final state as a function of the
scattering angle for three different center of mass energies,

√
s=31.6, 44.7, 100 GeV (upper three

panels), and the t distribution as a function of scattering angle of the recoiling baryon in exclusive
reactions for proton beam energies Ep=50 GeV and 250 GeV (lower two panels). A cut of Q2 > 10
GeV2 is applied to select the kinematic range of interest for exclusive processes. For lower center of
mass energies, the momentum distribution tends towards more central scattering angles and covers
lower momenta. The angle of the recoiling hadronic system is directly and inversely correlated with
the proton energy. It thus decreases with increasing proton energy. For instance, as shown here, the
baryon scattering angle ranges to about 1-2◦ at a proton energy of 50 GeV and is reduced to one
fifth of that as the proton energy increases to 250 GeV.
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frequency. Independently varying beam energies also makes it possible to choose the most
suitable lab kinematics at a certain value of s, potentially improving acceptance, resolution,
and particle identification for the reaction of interest (see also fig. 7.41).

Having small, short ion bunches with a high bunch repetition frequency also facilitates
the use of SRF crab crossing cavities, which were originally developed for KEKB to allow
beams collide at an angle without significant loss of luminosity. In the context of an EIC,
these were pioneered in the ELIC design, and the possibility of creating a significant crossing
angle (at least 50 mrad) became early on a key feature of the small-angle detection for the
MEIC (see section 7.3.4).

Detector Placement and Backgrounds

The figure-8 ring can support two IPs per straight section, one of which will be a “high-
luminosity” IP with the full crossing angle. In order to minimize backgrounds, the two
high-luminosity IPs will be located close to where the ion beam exits the arc, and far away
from the arc where the lepton beam exits. The latter helps to decrease synchrotron radiation
(and the secondary neutron flux) at the IP, which is anyway already reduced due to the
use of crab crossing (with the ion beam, not the electron beam, making the horizontal bend
correction). The synchrotron background is reduced even further by lowering the strength
of the last arc dipoles. The short distance between the ion arc and IP suppresses detector
backgrounds from interactions of the beam with residual gas in the beam pipe by providing
a smaller “target” with line-of-sight to the detector. A shorter section of the beamline is
also easier to bake and keep at at ultra-high vacuum. A comparison with HERA, also taking
into account the lower p− p (and p−A) cross section and lower hadron multiplicity at the
100 GeV, suggests that the hadronic background will be about an order of magnitude lower
in the MEIC at comparable vacuum and ion beam current, leaving a lot of headroom to
increase the latter. Due to the bends associated with the horizontal crossing, the secondary
IPs on each straight section will not have a line-of-sight along the full straight section, but
there this is less of an issue since they are intended to either have diagnostics equipment
(e.g., polarimetry), or special detectors which are less sensitive to backgrounds or intended
to operate at lower beam currents.

Detector and Interaction Region Layout

A global outline of the fully integrated MEIC detector and interaction region is given in
fig. 7.42. We will in the subsequent subsections go in more detail over the central detector
region, defined as the region of the detectors operating within the solenoid, the electron
and ion endcaps, and the strategy to accomplish a full-acceptance detector. The latter has
two ingredients, a relatively simple approach to incorporate low-Q2 electron detection and
a more challenging solution to measure forward and ultra-forward (in the ion direction)
going hadronic or nuclear fragments. Here, we make critical use of various ingredients of
the MEIC detector/interaction region design: i) the 50 mrad crossing angle; ii) the range of
proton energies; iii) a small 1-2 Tm dipole field to allow measurement down to 0.5◦ before
the ion final focusing magnets; iv) ion final focusing magnets with apertures sufficient for
particles with angles up to at least 0.5◦; and v) a large 20 Tm dipole field much more
downstream to peel off spectator particle and allow for very small-angle detection.

The strategy will be that various detector elements, amongst which zero degree calorime-
ters for neutron detection and various small-angle detectors, will be placed in the region
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Figure 7.42. Interaction region and central detector layout, and its placement in the general inte-
grated detector and interaction region. The central detector includes endcaps in both the electron
and ion direction.

between the ion final focusing quads and the 20 Tm dipole field, and also beyond this 20 Tm
dipole field. This then results in an essentially 100% full acceptance detector. The electron
beam traverses the center region of the solenoid, while the proton/ion beam traverses at the
crab crossing angle. This choice minimizes any electron steering and synchrotron radiation.
Note that the 50 mr crab crossing angle also facilitates the small-diameter electron final
focusing quads to be moved in to 3.5 meter distance of the interaction point. The lower
electron beam energies and hence lower-field requirements for the electron beam allows
the construction of relatively small-sized quadrupoles, much simplifying the electron optics
design.

Central Detector

To fulfill the requirement of hermeticity, the central detector will be built around a
solenoid magnet (with a length of about 5 m). Due to the asymmetric beam energies, the
interaction point (IP) will be slightly offset towards the electron side (2 m + 3 m). This will
allow more distance for the tracking of high-momentum hadrons produced at small angles,
and a larger bore angle for efficient detection of the scattered beam leptons.

The characteristics of the solenoid are guided by the desire to optimize the tracking
resolution, which at central angles scales like ∆p/p ∼ σp/BR2, where σ is the position
resolution, p the particle momentum, B the magnetic field, and R the radius of the central
tracker. At forward angles, however, the resolution depends on the scattering angle, but
is independent of R as the particle leaves the cylindrical central tracking system from the
front side (see the left panel of fig. 7.43). The resolution will then deteriorate rapidly given
the lack of transverse field along the central axis of a solenoid. This will later be remedied
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by adding a small dipole field, as high ion energies boost the outgoing hadrons to high
momenta at forward angles and one wishes to optimize resolutions also in the forward-ion
direction. To obtain a roughly better than 1% momentum resolution for central angles and
particles in the 5-10 GeV/c momentum range, a field B in the 2-4 T range seems highly
desirable. This high field requirement suggests a magnet with a reasonably small diameter,
preferably not larger than about 4 m, putting radial space at a premium. Of course, a
smaller diameter has the advantage of simplifying the magnet design, with the additional
advantage of reducing detector cost (which scale with the radius for the barrel calorimeter
and roughly as the radius squared for the endcaps). An alternate solution may be to increase
the space for tracking in the central solenoid while reducing the required solenoid field, as
illustrated in the right panel of fig. 7.43. Here, the resolution improvement for pions with
10 GeV/c momentum and a scattering angle of 90◦ is shown as a function of the tracking
length and solenoidal field. Thus, there is strong incentive to reduce the space requirements
for particle identification detectors within the central solenoid as much as possible, to use
available space for tracking, or reduce the solenoid diameter.

..

Figure 7.43. (left) The resolution as a function of lab angle for a particle (pion) momentum of 5
GeV/c in a 4 T ideal solenoidal field and with a cylindrical tracker of radius 1.25 m; (right) The
resolution as function of solenoidal field strength and tracker radius for a particle (pion) momentum
of 10 GeV/c and a scattering angle of 90◦.

The central detector would contain a tracker, particle identification, and calorimetry.
A three layer configuration of the central tracker was suggested at the JLab EIC detector
workshop (June 4-5, 2010)2. The first layer would consist of a low-mass vertex tracker with
sufficient resolution to separate primary and secondary vertices in charm production. The
middle layer would be a Time-Projection Chamber (TPC) with GEM-based readout, and
the outer layer would be a cylindrical GEM tracker. The position resolution of the TPC
would be about 50 µm, which is a factor two improvement over the inner drift chambers of
CLAS12. In conjunction with the outer GEM layer, it should provide adequate (r, θ, φ) in-

2http://conferences.jlab.org/eic2010
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formation. Ongoing R&D for vertex and micropattern detectors (including GEMs), suggest
that such a high-performance tracker could be built for the EIC detector. Nevertheless, a
radius of at least 1 m would be required.

Particle identification in the central detector is the most open design question. At
low momenta, dE/dx (in the TPC) or TOF can be helpful. With precise timing, the
momentum range of the latter could be extended somewhat (although this would require
a comparable uncertainty on the track length determination in order to get a good t0).
The most challenging requirement is, however, for a radially compact detector providing
π/K identification over a sufficiently wide momentum range. Taking up 8 cm of radial
space, a BaBar-type DIRC could satisfy this condition, providing 3σ π/K separation up
to 4 GeV/c, e/π separation close to 1 GeV/c, and p/K separation up to 7 GeV/c. An
aerogel barrel RICH could provide almost comparable performance. Neither is sufficient
for the exclusive (GPD) or semi-inclusive (TMD) programs. The current baseline design
thus includes a Low-Threshold Cherenkov Counter (LTCC) with C4F10 or C4F8O gas in
addition to the DIRC. This would provide e/π separation between 1 and 3 GeV/c, and π/K
separation from 4 to 9 GeV/c, but at a price of 50-70 cm of radial space. Adding C4F10

to a barrel RICH would increase the radius by at least 80-90 cm, although a RICH could
extend the momentum coverage to 14 GeV/c. Ultimately the allocation of radial space to
PID and tracking is a matter of priorities, and with multiple detectors one could easily
imagine that these would offer complementary capabilities. On the other hand, if one could
improve the θc resolution for a DIRC by about a factor of two, its 3σ π/K separation could
be extended to about 6 GeV/c, with the upper limits for the other particle species shifting
accordingly, eliminating the need for the gas Cherenkov. Given the size of the EIC detector,
an all-crystal electromagnetic calorimeter would be financially expensive and only needed
in critical regions. Tungsten powder / scintillating fiber or other technologies may provide a
more affordable alternative for the barrel without an excessive loss of resolution. If needed,
the return yoke of the solenoid magnet can be used as part of a hadronic calorimeter, and
as an absorber for muon detection (along the lines of CMS).

Detector Endcaps

The electron side endcap would face requirements quite similar to those of CLAS12,
and it is natural to adopt a similar design. Due to the offset of the IP, lower particle
momenta, and simpler small-angle detection (see section 7.3.4), the electron side is not
nearly as crowded as the ion one. For lepton detection at small polar angles (θ), the main
priority of the tracking would be to provide good θ resolution, as this directly impacts the
reconstruction of the event kinematics. The inner part of the endcap tracker should thus
be an extension of the vertex tracker, using semiconductor detectors. At larger angles, the
requirements are not as demanding and the choice of technology is not as crucial. It could
include planar GEMs or even cheaper drift chambers with a small cell size. Given the
generous space constraints, a final tracking region could be added outside of the solenoid
itself to improve tracking performance. Lepton identification will also use an electromagnetic
calorimeter and a High-Threshold Cherenkov Counter (HTCC) with CF4 gas or equivalent.
The light can be collected by mirrors, producing a cost-effective readout. In this endcap
region, hadron identification will be partially provided by a TOF detector, for which the
endcap is more suitable than the barrel due to the longer flight path. The π/K identification
range, again in the electron endcap region, could be extended through the use of a Low-
Theshold Cherenkov Counter (LTCC) with C4F8O gas or equivalent, possibly operating
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slightly above atmospheric pressure to lower the pion detection threshold. Of course, to
push π/K identification to larger momenta, ∼ 10 GeV/c, a RICH detector may need to be
considered, but there does not seem to be a compelling need in this electron endcap region
for the MEIC. Given the space available on the electron side, there is no strong requirement
for a compact electromagnetic calorimeter. Since the momentum resolution from tracking
deteriorates at small angles, where also the rates go up, the ideal configuration would involve
an inner circle of high-resolution, radiation-hard crystals, and a more budget-friendly outer
part. Both could be covered by the same pre-shower calorimeter.

The ion side endcap would have to deal with hadrons with a wide range of momenta,
some approaching that of the ion beam. The forward tracking would thus greatly benefit
from good position resolution (e.g., planar GEMs), at least on par with the 50 µm of the
TPC. The smallest angles can be covered by semiconductor detectors as on the electron
side. Of course, a good position resolution will also put significant demands on the detector
alignment and field knowledge. The most important feature of the forward tracker, however,
is related to the ion beam crossing angle with respect to the electron beam. In addition to
being a key component of the small-angle detection, this turns the tracking resolution into a
2D problem. Whereas the momentum resolution in a solenoidal field deteriorates rapidly at
small angles with respect to the axis, the hadron scattering angle is essentially defined with
respect to the ion beam line. Given that the proton/ion beam traverses the solenoid at a 50
mr (crab crossing) angle, so already encounters some transverse magnetic field component,
hadrons scattered away from the electron beam will end up in a part of the detector with
better momentum resolution than those scattered towards the electron beam. Taking the
2D character of the problem into account, and the significant 50 mr beam crossing angle,
the spot of poor resolution will be moved into the periphery covering and only a small range
in the azimuthal angle φ will be affected. For most processes, all particle tracks will remain
in the zone of good resolution. In contrast, if the crossing angle is small, all particle tracks
at very forward angles will suffer from poor momentum resolution, as shown in the right
panel of fig. 7.43.

To identify particles of various species over the full momentum range, one would ideally
want to use several radiators. A typical combination could include aerogel (perhaps with
more than one index of refraction), C4F10 or equivalent gas, and CF4. This would make
some kind of RICH detector an attractive option, in particular if the endcap radius was
not too large. Still, there are several possible approaches which eventually will need to be
studied in detail. One could, for instance, imagine a dual radiator gas RICH combined
with a disk DIRC (as in PANDA), with the latter providing π/K identification up to about
4 GeV/c. Having the longest flight path from the IP, the ion endcap is also where one
could achieve the best results with high-resolution TOF (perhaps even integrated with the
readout of the RICH). Regardless of technical solution, the total thickness of the stack of
PID detectors is assumed not to exceed 1.5 m. Calorimetry in the ion endcap will include
both electromagnetic and hadronic parts. The main focus of the former will be to study
various reaction products rather than the scattered lepton. However, the same resolution
arguments apply as for the electron endcap, and a solution with an inner high-resolution
circle, and a more cost-effective outer part makes sense here as well. The magnetic enclosure
of the endcap can, as in the case of the return yoke of the central detector, be integrated
with a hadronic calorimeter, and serve as an absorber for muon detection.
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Small-angle Detection

The design for the full-acceptance detector envisions small-angle detection on both sides
of the central detector. The naming convention used here will be that the “ion side” or “ion
endcap” refers to the side of the outgoing ion and incoming electron beam. The “electron
side” refers to the other one.

..

Figure 7.44. Forward ion detection with 50 mrad crossing angle for the full-acceptance detector.
Note that the distance to the final focusing quadrupoles are located 7 m from the IP.

On the ion side, the detection will be performed in three stages as illustrated in fig. 7.44.
The first stage is the endcap (discussed in section 7.3.4), which will cover all angles down
to the acceptance of the forward spectrometer. This in turn has two stages, one upstream
of the ion Final Focus Quadrupoles (FFQs), covering down to 0.5◦, and one downstream
covering up to at least 0.5◦. The former will use a 1-2 Tm dipole to augment the solenoid
in the range where the resolution is poor. The magnet will be about 1 m long and cover the
distance to the electron beam (corresponding to the horizontal crossing angle of 50 mrad),
and about twice that in the other directions, for a total acceptance of 150 mrad in the
horizontal and 200 mrad in the vertical plane. An important feature of the magnet design
is to ensure that the electron beam line stays field free. The dipole will have trackers at the
entrance and exit, and a calorimeter covering the ring-shaped area in front of the first ion
FFQ. For neutrons, the primary goal of this calorimeter is to have good angular resolution.
This intermediate stage is essential for providing good coverage and resolution in −t, and
to investigate target fragmentation. The former is of particular importance for the study
of exclusive processes, essential for the 3D imaging of the nucleon, requiring detection of
the recoil baryon. Since t ∼ θ2pE

2
p , the t-resolution depends on the angular resolution that

can be achieved. With a 50 GeV proton beam, a −t of 1 GeV2 corresponds to about 27
mrad (see fig. 7.41). With an angular resolution of 1 mrad, the intermediate detection stage
would be able to cover −t up to 2 GeV2 with a resolution of about 40-50 MeV2 a value
that would scale with angular resolution of the inner silicon forward tracker. Recoil baryons
with larger values of −t would be detected in the endcap. At higher ion beam energies the
t-acceptance of the dipole increases, but the resolution deteriorates rapidly (due to the E2

p

factor). Going to lower ion energies, the opposite is true.
The last stage is the ultra-forward detection that is crucial for the tagging of spectator

protons in deuterium, as well as other recoil baryons/nuclei. The design is heavily integrated
with the accelerator (see fig. 7.45), using two key features. One is, again, the horizontal
crossing angle for the ion beam, which needs to be “corrected” some distance downstream
of the interaction point (IP). For a 50 mrad crossing angle, this corresponds to a bend of
close to 100 mrad, and the required 20 Tm dipole(s) can also serve as a dedicated forward
spectrometer, using the long drift space beyond for detection of both charged and neutral
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Figure 7.45. The integration of particle detection in the accelerator.

particles. The other feature is a beam optics requiring low quadrupole gradients, allowing
large aperture magnets. In the current design, the maximum quad gradient is less than 65
T/m. With a 10 cm aperture, this creates a 6.5 T peak field (simply the product of the
aperture radius and gradient), which the magnet design should be able to support if larger
peak fields were acceptable, the apertures would increase accordingly. The gradients are
further arranged so that they drop off faster than the distance from the IP to that specific
location, allowing the apertures to become correspondingly larger, and thereby making sure
that no bottlenecks are created. This defines a geometrical acceptance through the ion
final-focusing quads (FFQs) of 10 mrad, or well beyond 0.5◦, on each side of the beam (20
mrad in total). To focus the 250 GeV beams in ELIC, the maximum quadrupole gradients
would have to be 2.5 times larger than for the 100 GeV of the MEIC, and the apertures
reduced accordingly.

The acceptance for charged particles depends on both the polar and azimuthal angles
(since quads focus in one plane and defocus in the other), as well as their momentum. This
can be optimized by placing a dipole spectrometer relatively close to the FFQs. To give
a numerical example, a 100 mrad bend to a deuterium beam would equate to a 200 mrad
bend for a spectator proton. Over a drift space of 10 m (a relatively modest distance), the
spectator proton would acquire a transverse separation of 1 m from the main beam. For
heavy nuclei (A/Z = 2.5) with a negligible scattering angle at close to the beam momentum,
this would increase to 1.5 m, while fragments with other A/Z ratios would be lined up in
between (in particular, N=Z would be at 25 cm, while neutron rich fragments would be
deflected to the other side). Ions scattered at zero degrees and having 98% of the beam
momentum would be 2 cm from the beam after 10 m of drift. Due to the large deflection
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in a well known field (including the few preceding elements), the momentum resolution of
the spectrometer would be excellent. Since no position measurements would be possible
within the beam-stay-clear area, the angular resolution would depend on the knowledge of
the optics between the IP and detection point. The reconstruction of the angle would be
aided by the scattered particles quickly exiting the beam-stay-clear area after having passed
the spectrometer, with multi-point tracking to be applied in the drift region. Nevertheless,
some some low-momentum particles scattered at large angles will not make it all the way to
the dipole spectrometer. To detect these particles, some ad hoc detectors (“Roman pots”)
may be placed along the way, although an interesting idea currently under investigation is
to have a small-diameter compensating solenoid between the FFQs and the 20 Tm dipole.
In addition to its benefits for the accelerator, such a magnet could help in tracking charged
particles that do not reach the final spectrometer dipole.

The low-Q2 tagger on the electron side will complement the electron detection in the
central detector and electron side endcap. Since the electron quad gradients required for 11
GeV beams are very small compared with what is needed for 100 GeV protons, one can make
the apertures very large without being constrained by peak fields (the different apertures on
the incoming and outgoing sides do not affect the optics). The optimal transition point from
the calorimeter to tagger coverage will ultimately be determined by physics simulations. The
quads would be followed by a dipole spectrometer with sufficient drift space (8 m in the
current layout) to detect leptons with a significant fraction of the beam energy.

Beam Helicity Reversals

The electron and ion beam polarimetry has been given a special “interaction region”
in the MEIC/ELIC design, in part due to the often large amount of space needed for
Compton polarimetry. With the anticipated work in systematic understanding of Compton
polarimetry in both JLab Halls A and C, and further plans to cross-calibrate this with
atomic beam Moller polarimetry for a future demanding parity-violating Moller experiment,
electron beam polarization determination through Compton polarimetry may well achieve
sub-0.5% uncertainties. Ion beam polarimetry remains more complicated, although efforts
to reduce uncertainties are underway and possibilities are studied in elastic and inelastic
electron-proton scattering experiments in situ.

The MEIC design will need both fast electron spin helicity reversal or flip for double-spin
experiments and a program of deep-inelastic parity-violating experiments, and fast ion-spin
flip for single-nucleon spin asymmetry experiments. The latter can also be an alternate
method for double-spin experiments. The MEIC design, with its 750 MHz bunch trains,
does not assume bunch-to-bunch spin flips, but also does not need it. A helicity-reversal
frequency of 0.1 Hz will be at about the level needed for experiments.

For double-spin experiments, it is to first order equivalent to perform fast helicity rever-
sals of electron or ions. The choice is a question of detailed precision, as shown later. For
single-spin asymmetry experiments, these techniques are however totally different, and can
not replace each other. Single-electron spin asymmetry (flipping electrons only) is mostly
useful for parity violation experiments, while single-nucleon spin asymmetry (flipping ions)
is mostly useful for nucleon transverse-spin and other TMD experiments. Both type of
experiments are routinely performed at JLab, and both will become an important part of
the EIC science program.

The rate of the required helicity flips is closely related to the systematic understanding
of the precision. Typically, although already very difficult, one can control the systematic
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uncertainties between two helicity states to about 1%. To further reduce this asymmetry,
to a level of 10−8 for the case of typical parity-violating experiments at JLab, or to a level of
10−5 for transverse-spin experiments, one has to provide a suppression faction of 10−6 (for
electron spin flip) or 10−3 (for ion spin flip) by fast spin flip techniques. The suppression
factor by such fast helicity reversal is proportional to 1/

√
N , where N is the number of pairs

of spin flip. If we assume a typical single-nucleon spin asymmetry experiment of 3 months of
continuous running (assuming one can keep control of the systematic uncertainties between
the two helicity states at the 1% level for the full period), one needs to accumulate 106 pairs
to reach a suppression of 1000, or about 8 flips per minute. This is the root of the present
0.1 Hz beam helicity reversal assumption mentioned above.
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(2003).

[754] E. Levin and K. Tuchin, Nucl. Phys. B573, 833 (2000).

[755] E. Iancu, K. Itakura, and L. McLerran, Nucl. Phys. A708, 327 (2002).

[756] J. Jalilian-Marian, A. Kovner, A. Leonidov, and H. Weigert, Nucl. Phys. B504, 415 (1997).

[757] J. Jalilian-Marian, A. Kovner, A. Leonidov, and H. Weigert, Phys. Rev. D59, 014014 (1999).

[758] J. Jalilian-Marian, A. Kovner, A. Leonidov, and H. Weigert, Phys. Rev. D59, 034007 (1999).

[759] J. Jalilian-Marian, A. Kovner, and H. Weigert, Phys. Rev. D59, 014015 (1999).

[760] A. Kovner, J. G. Milhano, and H. Weigert, Phys. Rev. D62, 114005 (2000).

[761] H. Weigert, Nucl. Phys. A703, 823 (2002).

[762] E. Iancu, A. Leonidov, and L. D. McLerran, Phys. Lett. B510, 133 (2001).

[763] E. Ferreiro, E. Iancu, A. Leonidov, and L. McLerran, Nucl. Phys. A703, 489 (2002).

[764] F. Gelis and R. Venugopalan, Nucl. Phys. A776, 135 (2006).

[765] F. Gelis and R. Venugopalan, Nucl. Phys. A779, 177 (2006).

[766] E. Iancu, A. Leonidov, and L. McLerran, hep-ph/0202270.

[767] E. Iancu and R. Venugopalan, Quark Gluon Plasma 3 (World Scientific, 2004), hep-
ph/0303204.

[768] Y. V. Kovchegov, J. Kuokkanen, K. Rummukainen, and H. Weigert, Nucl. Phys. A823, 47
(2009).

[769] J.-P. Blaizot, E. Iancu, and H. Weigert, Nucl. Phys. A713, 441 (2003).

[770] I. Balitsky, Nucl. Phys. B463, 99 (1996).

[771] S. Jeon and R. Venugopalan, Phys. Rev. D70, 105012 (2004).

[772] S. Jeon and R. Venugopalan, Phys. Rev. D71, 125003 (2005).

[773] Y. Hatta, E. Iancu, K. Itakura, and L. McLerran, Nucl. Phys. A760, 172 (2005).

[774] Y. V. Kovchegov, L. Szymanowski, and S. Wallon, Phys. Lett. B586, 267 (2004).

[775] L. D. McLerran and R. Venugopalan, Phys. Rev. D59, 094002 (1999).

[776] R. Venugopalan, Acta Phys. Polon. B30, 3731 (1999).

[777] F. Gelis, T. Lappi, and R. Venugopalan, Phys. Rev. D78, 054019 (2008).

[778] F. Gelis, T. Lappi, and R. Venugopalan, Phys. Rev. D78, 054020 (2008).

[779] F. Gelis, T. Lappi, and R. Venugopalan, Phys. Rev. D79, 094017 (2009).

[780] B. Z. Kopeliovich, L. I. Lapidus, and A. B. Zamolodchikov, JETP Lett. 33, 595 (1981).

[781] N. Nikolaev and B. G. Zakharov, Z. Phys. C53, 331 (1992).

[782] J. Kogut and D. Soper, Phys. Rev. D1, 2901 (1970).

[783] J. Bjorken, J. Kogut, and D. Soper, Phys. Rev. D3, 1382 (1971).

[784] S. Brodsky and A. Mueller, Phys. Lett. B206, 685 (1988).

516



[785] J. B. K. J. M. Bjorken, Phys. Rev. D8, 1341 (1973).

[786] J. Kopeliovich and B. Povht, Z. Phys. A356, 467 (1997).

[787] B. Kopeliovich, J. Raufeisen, and A. Tarasov, Phys. Lett. B440, 151 (1998).
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[799] B. Z. Kopeliovich, J. Nemchik, A. Schäfer, and A. V. Tarasov, Phys. Rev. C65, 035201
(2002).

[800] J. L. Albacete et al., Phys. Rev. D71, 014003 (2005).

[801] B. Z. Kopeliovich, I. K. Potashnikova, and I. Schmidt, Phys. Rev. C81, 035204 (2010).

[802] B. Z. Kopeliovich, E. Levin, I. K. Potashnikova, and I. Schmidt, Phys. Rev. C79, 064906
(2009).

[803] L. Frankfurt and M. Strikman, Eur. Phys. J. A5, 293 (1999).

[804] V. A. Abramovsky, V. N. Gribov, and O. V. Kancheli, Sov. J. Nucl. Phys. 18, 308 (1974).

[805] L. Frankfurt, V. Guzey, and M. Strikman, Phys. Rev. D71, 054001 (2005).

[806] V. Guzey and M. Strikman, Phys. Lett. B687, 167 (2010).

[807] L. Frankfurt, V. Guzey, and M. Strikman, to be submitted to Phys. Rep.

[808] J. C. Collins, Phys. Rev. D61, 019902 (2000).

[809] H1 Collaboration, A. Aktas et al., Eur. Phys. J. C48, 715 (2006).

[810] A. Donnachie and P. V. Landshoff, Phys. Lett. B296, 227 (1992).

[811] N. Armesto, A. B. Kaidalov, C. A. Salgado, and K. Tywoniuk, Eur. Phys. J. C68, 447
(2010).

[812] L. Frankfurt, V. Guzey, and M. Strikman, Phys. Lett. B586, 41 (2004).

[813] H. Abramowicz, L. Frankfurt, and M. Strikman, Surveys High Energ. Phys. 11, 51 (1997).

[814] A. I. Shoshi, F. D. Steffen, and H. J. Pirner, Nucl. Phys. A709, 131 (2002).

[815] A. I. Shoshi, F. D. Steffen, H. G. Dosch, and H. J. Pirner, Phys. Rev. D66, 094019 (2002).

[816] J. Nian and H. J. Pirner, Nucl. Phys. A833, 119 (2010).

[817] H. J. Pirner and F. Yuan, Phys. Rev. D66, 034020 (2002).

517



[818] J. Bartels, K. Golec-Biernat, and L. Motyka, Phys. Rev. D81, 054017 (2010).

[819] K. J. Golec-Biernat and M. Wusthoff, Phys. Rev. D60, 114023 (1999).

[820] J. L. Albacete et al., arXiv:1012.4408.

[821] J. Bartels, K. J. Golec-Biernat, and H. Kowalski, Phys. Rev. D66, 014001 (2002).

[822] A. P. Bukhvostov, G. V. Frolov, L. N. Lipatov, and E. A. Kuraev, Nucl. Phys. B258, 601
(1985).

[823] H. Kowalski, L. Motyka, and G. Watt, Phys. Rev. D74, 074016 (2006).

[824] G. Watt and H. Kowalski, Phys. Rev. D78, 014016 (2008).

[825] H. Kowalski, T. Lappi, C. Marquet, and R. Venugopalan, Phys. Rev. C78, 045201 (2008).

[826] H. Kowalski, T. Lappi, and R. Venugopalan, Phys. Rev. Lett. 100, 022303 (2008).

[827] T. Lappi and H. Mantysaari, Phys. Rev. C83, 065202 (2011).

[828] K. J. Eskola, V. J. Kolhinen, and C. A. Salgado, Eur. Phys. J. C9, 61 (1999).

[829] S. Forte, Acta Phys. Polon. B41, 2859 (2010).

[830] G. Altarelli, R. D. Ball, and S. Forte, Nucl. Phys. B799, 199 (2008).

[831] F. Caola, S. Forte, and J. Rojo, Nucl. Phys. A854, 32 (2011).

[832] E. R. Cazaroto, F. Carvalho, V. P. Goncalves, and F. S. Navarra, Phys. Lett. B669, 331
(2008).

[833] I. Balitskyi, Phys. Rev. D75, 014001 (2005).

[834] Y. V. Kovchegov and H. Weigert, Nucl. Phys. A784, 188 (2007).

[835] I. Balitsky and G. A. Chirilli, Phys. Rev. D77, 014019 (2008).

[836] V. S. Fadin, E. A. Kuraev, and L. N. Lipatov, Phys. Lett. B60, 50 (1975).

[837] I. Balitsky and G. A. Chirilli, Nucl. Phys. B822, 45 (2009).

[838] I. Balitsky and G. A. Chirilli, Phys. Rev. D79, 031502 (2009).

[839] I. Balitsky and G. A. Chirilli, Phys. Rev. D83, 031502 (2011).

[840] I. Balitsky, hep-ph/0101042.

[841] A. H. Mueller and J.-w. Qiu, Nucl. Phys. B268, 427 (1986).

[842] A. H. Mueller, Nuclear Physics B335, 115 (1990).

[843] L. Cornalba, M. S. Costa, and J. Penedones, JHEP 03, 133 (2010).

[844] J. Bartels and A. Kyrieleis, Phys. Rev. D70, 114003 (2004).

[845] J. Bartels, D. Colferai, S. Gieseke, and A. Kyrieleis, Phys. Rev. D66, 094017 (2002).

[846] J. Bartels, S. Gieseke, and A. Kyrieleis, Phys. Rev. D65, 014006 (2002).

[847] I. Balitsky and G. A. Chirilli, Phys. Lett. B687, 204 (2010).

[848] G. A. Chirilli, L. Szymanowski, and S. Wallon, Phys. Rev. D83, 014020 (2011).

[849] S. J. Brodsky, G. P. Lepage, and P. B. Mackenzie, Phys. Rev. D28, 228 (1983).

[850] E. Gardi, J. Kuokkanen, K. Rummukainen, and H. Weigert, Nucl. Phys. A784, 282 (2007).

[851] Y. V. Kovchegov and H. Weigert, Nucl. Phys. A789, 260 (2007).

[852] J. L. Albacete, Phys. Rev. Lett. 99, 262301 (2007).

518



[853] M. A. Braun, Phys. Lett. B348, 190 (1995).

[854] E. Levin, Nucl. Phys. B453, 303 (1995).

[855] V. Gribov and L. Lipatov, Sov. J. Nucl. Phys. 15, 438 (1972).

[856] G. Altarelli and G. Parisi, Nucl. Phys. B126, 298 (1977).

[857] Y. L. Dokshitzer, Sov. Phys. JETP 46, 641 (1977).

[858] L. Lipatov, Sov. J. Nucl. Phys. 23, 338 (1976).

[859] K. J. Golec-Biernat, L. Motyka, and A. M. Stasto, Phys. Rev. D65, 074037 (2002).

[860] J. L. Albacete et al., Phys. Rev. D71, 014003 (2005).

[861] A. H. Mueller and D. N. Triantafyllopoulos, Nucl. Phys. B640, 331 (2002).

[862] S. Munier and R. B. Peschanski, Phys. Rev. Lett. 91, 232001 (2003).

[863] S. Munier and R. B. Peschanski, Phys. Rev. D69, 034008 (2004).

[864] S. Munier and R. B. Peschanski, Phys. Rev. D70, 077503 (2004).

[865] M. Bramson, Mem. Am. Math. Soc. 44, 285 (1983).

[866] U. Ebert and W. van Saarloos, Physica D146, 1 (2000).

[867] J. Berger and A. Stasto, Phys. Rev. D83, 034015 (2011).

[868] G. Beuf, arXiv:1008.0498.

[869] A. H. Mueller, Nucl. Phys. A724, 223 (2003).

[870] K. Dusling, F. Gelis, T. Lappi, and R. Venugopalan, Nucl. Phys. A836, 159 (2010).

[871] M. Froissart, Phys. Rev. 123, 1053 (1961).

[872] K. J. Golec-Biernat and A. M. Stasto, Nucl. Phys. B668, 345 (2003).

[873] C. Marquet and L. Schoeffel, Phys. Lett. B639, 471 (2006).

[874] A. Bialas and R. B. Peschanski, Phys. Lett. B378, 302 (1996).

[875] A. Bialas and R. B. Peschanski, Phys. Lett. B387, 405 (1996).

[876] C. Marquet, Phys. Rev. D76, 094017 (2007).

[877] Y. V. Kovchegov and A. H. Mueller, Nucl. Phys. B529, 451 (1998).

[878] C. Marquet, B.-W. Xiao, and F. Yuan, Phys. Lett. B682, 207 (2009).

[879] V. P. Goncalves, M. S. Kugeratski, and F. S. Navarra, Phys. Rev. C81, 065209 (2010).

[880] T. Hirano et al., Phys. Lett. B636, 299 (2006).

[881] M. Luzum and P. Romatschke, Phys. Rev. C79, 039903 (2009).

[882] J. Jia and R. Wei, Phys. Rev. C82, 024902 (2010).

[883] B. Schenke, S. Jeon, and C. Gale, Phys. Rev. Lett. 106, 042301 (2011).

[884] J. Jia, W. A. Horowitz, and J. Liao, arXiv:1101.0290.

[885] A. Caldwell and H. Kowalski, Phys. Rev. C81, 025203 (2010).

[886] R. D. Woods and D. S. Saxon, Phys. Rev. 95, 577 (1954).

[887] T. Hirano and Y. Nara, Nucl. Phys. A743, 305 (2004).

[888] A. Kuhlman, U. W. Heinz, and Y. V. Kovchegov, Phys. Lett. B638, 171 (2006).

[889] J. Jalilian-Marian and Y. V. Kovchegov, Prog. Part. Nucl. Phys. 56, 104 (2006).

519



[890] B. Hahn, D. G. Ravenhall, and R. Hofstadter, Phys. Rev. 101, 1131 (1956).

[891] PHOBOS Collaboration, B. B. Back et al., Phys. Rev. C65, 061901 (2002).

[892] PHENIX Collaboration, S. S. Adler et al., Phys. Rev. C71, 034908 (2005).

[893] PHOBOS Collaboration, B. Alver et al., Phys. Rev. C80, 011901 (2009).

[894] The ALICE, B. Abelev et al., Phys. Rev. Lett. 105, 252301 (2010).

[895] ALICE Collaboration, K. Aamodt et al., Phys. Rev. Lett. 106, 032301 (2011).

[896] J. L. Albacete and A. Dumitru, arXiv:1011.5161.

[897] W. A. Horowitz and Y. V. Kovchegov, Nucl. Phys. A849, 72 (2011).

[898] J. R. Forshaw, R. Sandapen, and G. Shaw, Phys. Rev. D69, 094013 (2004).

[899] C. Marquet, R. B. Peschanski, and G. Soyez, Phys. Rev. D76, 034011 (2007).

[900] R. Enberg, J. R. Forshaw, L. Motyka, and G. Poludniowski, JHEP 09, 008 (2003).

[901] G. G. Poludniowski, R. Enberg, J. R. Forshaw, and L. Motyka, JHEP 12, 002 (2003).

[902] A. Deshpande, R. Milner, R. Venugopalan, and W. Vogelsang, Ann. Rev. Nucl. Part. Sci.
55, 165 (2005).

[903] L. D. McLerran and R. Venugopalan, Phys.Rev. D49, 3352 (1994).

[904] H. Fujii, Nucl. Phys. A709, 236 (2002).

[905] J. P. Blaizot, F. Gelis, and R. Venugopalan, Nucl. Phys. A743, 57 (2004).

[906] F. Dominguez, C. Marquet, and B. Wu, Nucl. Phys. A823, 99 (2009).

[907] C. Marquet, R. B. Peschanski, and G. Soyez, Nucl. Phys. A756, 399 (2005).

[908] H. G. Dosch, T. Gousset, G. Kulzinger, and H. J. Pirner, Phys. Rev. D55, 2602 (1997).

[909] G. Kulzinger, H. G. Dosch, and H. J. Pirner, Eur. Phys. J. C7, 73 (1999).

[910] G. Soyez, Phys. Lett. B655, 32 (2007).

[911] A. Caldwell and H. Kowalski, arXiv:0909.1254.

[912] M. Alvioli, H. J. Drescher, and M. Strikman, Phys. Lett. B680, 225 (2009).

[913] B. Z. Kopeliovich, J. Nemchik, A. Schafer, and A. V. Tarasov, Phys. Rev. C65, 035201
(2002).

[914] J. Hufner, Y. P. Ivanov, B. Z. Kopeliovich, and A. V. Tarasov, Phys. Rev. D62, 094022
(2000).

[915] E. Eichten et al., Phys. Rev. D21, 203 (1980).

[916] W. Buchmuller and S. H. H. Tye, Phys. Rev. D24, 132 (1981).

[917] C. Quigg and J. L. Rosner, Phys. Lett. B71, 153 (1977).

[918] A. Martin, Phys. Lett. B93, 338 (1980).

[919] M. V. Terent’ev, Sov. J. Nucl. Phys. 24, 106 (1976).
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Passek-Kumerički, Kornelija, 185
Pikin, Alexander, 437
Pilat, F., 445
Pire, Bernard, 222
Pirner, Hans J., 272, 332, 371
Pisano, Cristian, 120
Pozdeyev, Eduard, 437
Prokudin, Alexei, 95
Ptitsyn, Vadim, 437

Qian, Xin, 95
Qiu, Jian-Wei, 125

Radici, Marco, 138
Radyushkin, Anatoly, 156
Rao, Triveni, 437
Rimmer, R., 445
Ringer, Felix, 61
Riordan, Seamus, 61, 408
Rogers, Ted, 125
Rojo, Juan, 279
Roser, Thomas, 437
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