A New Teaching Approach

To Quantum Mechanical Tunneling

G.P.Gilfoyle
Physics Department
University of Richmond, Virginia
ggilfoyl@richmond.edu

Outline

1.
Background and motivation.

2.
The transfer matrix approach to tunneling.

3.
Application to radioactive decay.

4.
Classroom results.

5.
Conclusions.

Background and Motivation

1.
Why bother?

2.
The Program

3.
Is it physically rigorous?

4.
Did it work?

Solving the Schrödinger Equation


The one-dimensional, nonrelativistic Schrödinger equation is

\begin{displaymath}{-\hbar^2 \over 2m} {\partial^2 \psi(x) \over \partial x^2} +
V(x)\psi(x) = E\psi(x) \qquad .
\end{displaymath}


The general solution is

\begin{eqnarray*}\psi_1 (x) &=& A e^{ik_1 x} + B e^{-ik_1x} \quad
(x< 0) \\
\...
...) \\
\psi_3 (x) &=& F e^{ik_1 x} + G e^{-ik_1x} \quad
(a < x)
\end{eqnarray*}



\begin{displaymath}{\rm where} \qquad \hfil
k_1 = \sqrt{2mE/\hbar^2} \qquad
k_2 = \sqrt{2m(E-V_0)/\hbar^2} \quad .
\end{displaymath}


Express this solution as a matrix.

\begin{displaymath}\psi_1 (x) = \pmatrix{ e^{ik_1x} & e^{-ik_1x} \cr}
\pmatrix{ A \cr
B \cr }
= \pmatrix{ e^{ik_1x} & e^{-ik_1x} \cr}
\phi_1
\end{displaymath}


\begin{displaymath}\psi_2 (x) = \pmatrix{ e^{ik_2x} & e^{-ik_2x} \cr}
\pmatrix{ C \cr
D \cr }
= \pmatrix{ e^{ik_2x} & e^{-ik_2x} \cr}
\phi_2
\end{displaymath}


\begin{displaymath}\psi_3 (x) = \pmatrix{ e^{ik_1x} & e^{-ik_1x} \cr}
\pmatrix{ F \cr
G \cr }
= \pmatrix{ e^{ik_2x} & e^{-ik_2x} \cr}
\phi_3
\end{displaymath}


\begin{figure}
\begin{center}
\par\vskip -0.2in
\epsfxsize=3.0in
\leavevmode
\epsfbox{cpp2f1.eps}
\par\end{center}\end{figure}

Get the Particular Solution

Match the wave function and its derivative at the boundaries.

\begin{eqnarray*}A+B &=& C+D \hfil \\
i k_1A - i k_1 B &=& i k_2 C - i k_2 D
\end{eqnarray*}


Write the result in matrix form.

\begin{eqnarray*}\left ( \begin{array}{cc}
1 & 1 \\
ik_1 & -ik_1
\end{array}...
...{\bf n} \left ( \begin{array}{c}
C\\
D
\end{array} \right )
\end{eqnarray*}


Use the definition of the matrix inverse and get

\begin{displaymath}\begin{array}{c}
\left ( \begin{array}{c}
A\\
B
\end{arr...
...( \begin{array}{c}
C\\
D
\end{array} \right )
\end{array}\end{displaymath}

which can be expressed in matrix form as

\begin{displaymath}\phi_1 = \left ( \begin{array}{c} A\\ B \end{array} \right ) ...
...c} C \\ D \end{array} \right )
= {\bf d_{12}} \phi_2 \qquad .
\end{displaymath}

The discontinuity matrix!

Make Things Simple

Shift coordinates.


\begin{figure}
\begin{center}
\par\vskip -0.2in
\epsfxsize=3.0in
\leavevmode
\epsfbox{cpp2f2.eps}
\par\end{center}\end{figure}

Match the wave function and its derivative at the right-hand-side boundary in the new coordinates.

\begin{displaymath}\phi^\prime_2 = {\bf d_{21}} \phi^\prime_3
\end{displaymath}

Relate the two coordinate systems.

\begin{eqnarray*}x^\prime &=& x - a \\
\psi_2(x) &=& \psi^\prime_2(x-a)
\end{eqnarray*}


And obtain the following result.


\begin{displaymath}\phi_2 = \left ( \begin{array}{c}C\\ D \end{array} \right )
...
...ime \\ D^\prime \end{array} \right )
= {\bf p_2}\phi_2^\prime
\end{displaymath}

The propagation matrix!

Pull Things Together


Build the transfer matrix

\begin{eqnarray*}\phi_1 &=& {\bf d_{12}} \phi_2 \\
&=& {\bf d_{12}} \left ( {\...
...left ( {\bf p_{-1}} \phi_3 \right )
\qquad \qquad \qquad \qquad
\end{eqnarray*}



The final result.

\begin{eqnarray*}\phi_1 &=& {\bf d_{12}} {\bf p_2} {\bf d_{21}} {\bf p_{-1}} \ph...
...
\pmatrix{ A \cr B \cr}
&=& \pmatrix{t_{11} F \cr t_{21} F \cr}
\end{eqnarray*}



Get the transmission coefficient.



\begin{eqnarray*}T &=& {\rm Outgoing\ flux \over Incoming\ flux} \\ [15pt]
&=& ...
...
&=& {1 \over \vert t_{11}\vert^2}
\qquad \qquad \qquad \qquad
\end{eqnarray*}


Pull Things Together


Gather the pieces.


\begin{displaymath}\phi_1 = {\bf d_{12}} \phi_2 \qquad
\phi_2 = {\bf p_2}\phi_2^\prime \qquad
\phi_2^\prime = {\bf d_{21}}\phi_3^\prime
\end{displaymath}


Build the transfer matrix.

\begin{eqnarray*}\phi_1 &=& {\bf d_{12}} \phi_2 \\
&=& {\bf d_{12}} \left ( {\...
...left ( {\bf p_{-1}} \phi_3 \right )
\qquad \qquad \qquad \qquad
\end{eqnarray*}



The final result.

\begin{eqnarray*}\phi_1 &=& {\bf d_{12}} {\bf p_2} {\bf d_{21}} {\bf p_{-1}} \ph...
...
\pmatrix{ A \cr B \cr}
&=& \pmatrix{t_{11} F \cr t_{21} F \cr}
\end{eqnarray*}



Get the transmission coefficient.



\begin{displaymath}T = {\rm Outgoing\ flux \over Incoming\ flux}
= {\vert F e^...
... \vert A e^{i k_1 x}\vert^2}
= {1 \over \vert t_{11}\vert^2}
\end{displaymath}

Multiple Barriers


Consider a series of rectangular barriers.


\begin{figure}
\begin{center}
\par\vskip -0.2in
\epsfxsize=6.0in
\leavevmode
\epsfbox{cpp2f3.eps}
\par\end{center}\end{figure}




Build up the transfer matrix.

\begin{eqnarray*}\phi_{left} &=& {\bf d_{01} } {\bf p_1} {\bf d_{12}} {\bf p_2} ...
...
\pmatrix{ A \cr B \cr}
&=& \pmatrix{t_{11} F \cr t_{21} F \cr}
\end{eqnarray*}



And get the transmission coefficient as before.



\begin{displaymath}T = {1 \over \vert t_{11}\vert^2} \qquad \qquad \qquad \qquad \qquad
\end{displaymath}

Programming the Algorithm
in Mathematica



Define a function to calculate the transmission coefficient.

RadDecay[Znuc_,Anuc_,Eout_,Ndiv_] := ( 

(* constants *)
   Mout  = Aout*AtoMeV;
   R0    = r0*(Anuc - Aout)^(1/3);
   Rmax  = Zout*(Znuc - Zout)*e2/Eout;
   step  = (Rmax - R0)/Ndiv;

(* table of barrier heights *)
   Ve    = Table[{r, Zout*Znuc*e2/r},{r, R0, Rmax-step,step}];
              
(* put zeros at each end of the array. *)
   PrependTo[Ve, {R0-step, 0}];
   AppendTo[Ve, {Rmax, 0}];

(* initialize the transfer matrix. *)
   trans = { {1,0}, 
             {0,1} };

(* loop over the barriers *)
   Do[
     V1  = Ve[[i,2]];
     V2  = Ve[[i+1,2]];
     k1  = Sqrt[2*Mout*(Eout - V1)/(hbarc^2) ];
     k2  = Sqrt[2*Mout(Eout - V2)/(hbarc^2) ];
     d   = 0.5*{ {1 + (k2/k1), 1 - (k2/k1)},
                 {1 - (k2/k1), 1 + (k2/k1)} };
     p   = { {E^(I*k2*step),             0}, 
             {0            ,E^(-I*k2*step)} };
     trans = trans.d.p;,
     {i,1,Ndiv+1}
 ];
 
(* get the transmission coefficient. *)  
   tr = Abs[1/(Conjugate[ trans[[1,1]] ]*trans[[1,1]])];
   Print["Transmission Coefficient: ",tr]
)

Comparison With Other Methods



1.
The WKB approximation.

2.
Numerical integration of the Schrödinger equation.

Classroom Results

1.
The method is accessible.

2.
The student response is good.

3.
It's broadly applicable.

4.
Computational laboratories work.

Conclusions



1.
Physically rigorous.

2.
It's pedagogically appealing.

3.
Part of a successful program of incorporating a `hands-on' computational laboratory experience.

Support provided by the United States National Science Foundation and the University of Richmond.



 


1998-09-14