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Abstract

We have measured the asymmetry ALT ′ of the 2H(e, e‘p)n reaction in quasielastic kinematics
at a beam energy of 2.56 GeV over a 4-momentum transfer range Q2 = 0.2 − 2.0(GeV/c)2

with the CLAS detector at Thomas Jefferson National Laboratory. We have performed
a Monte Carlo simulation of the reaction in order to test the analysis code used to extract
ALT ′ associated with the fifth structure function. The Hulthen distribution was used to select
the magnitude of the internal Fermi momentum of the target nucleon and the direction was
chosen isotropically. The direction and Fermi momentum of the target nucleon were weighted
by integrating the elastic cross section in the frame of reference of the moving nucleon over
the CLAS acceptance. A fit to the measured ALT ′ was incorporated into the Monte Carlo
simulation to model the fifth structure function. The GEANT3-based code GSIM was used
to simulate the CLAS detector. Monte Carlo events were analyzed with the same code used
to extract ALT ′ from the experimental data. We simulated quasielastic scattering at a beam
energy of 2.56 GeV using two polarities of the CLAS toroidal magnet. The asymmetry
extracted from Monte Carlo events is consistent with the input function for the asymmetry
within the uncertainties of the calculation1.

Keywords: JLAB, CLAS, asymmetry, Hulthen distribution, deuteron nucleus, elastic differential
cross section.

1 As it appears in the Bulletin of the American Physical Society, 3rd Joint Meeting of the APS Division
of Nuclear Physics, Vol.54, No.10;
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Part I. Scientific Background

1 Modern Atomic Physics

Modern Atomic Physics began at the turn of the 19th century with the discovery of the fundamen-
tal building blocks of matter: electrons, nuclei, ions, photons, and their interactions. The idea that
all matter is composed of smaller fundamental building blocks can be traced back to the Greek
philosophers Democritus and Leucippus. This early philosophical concept of atom was contrary to
the continuum hypothesis embraced by Aristotle, which viewed matter as continuous and therefore
divisible without limit. At the beginning of the 20th century, important advancements were made
that supported the atomos hypothesis. In 1808 John Dalton used the concept of atoms to show
that when chemical elements combine, they do so in a ratio of small whole number2. For example,
carbon and oxygen react to from carbon monoxide CO or carbon dioxide CO2, but not CO3.14.

With the development of accelerators and particle detectors, physicists have the tools needed
to delve deeper into the structure of the nucleus and, finally, the elementary particles. The current
picture is that matter is made up of a combination of quarks, leptons, and force carriers. The most
widely accepted theory of elementary particle physics at present is the Standard Model.

2 An Introduction to the Standard Model

The Standard Model is a theory of three of the four known fundamental interactions and the ele-
mentary particles that take part in these interactions. The first step towards the Standard Model
was Sheldon Glashow’s discovery of a way to combine the electromagnetic force and the weak in-
teraction, most commonly observed in beta decay3. The model includes 12 elementary particles of
spin 1

2 known as fermions, as depicted in Figure 1 [1]:

Fermions can be further categorized as a quark or a lepton by how they interact with other
elementary particles. A quark is an elementary particle with non-whole number electric charge
and unlike the leptons, they interact via the strong or color force. A lepton is also an elementary
particle but with whole number electric charge and they interact via the electromagnetic force or
via the weak interaction.

The model also includes four force mediating particles that have spin 1: photons who mediate
the electromagnetic force between electrically charge particles, the Z0 and W± bosons who medi-
ate the weak interactions between quarks and leptons, and gluons who mediate the strong nuclear
interaction between quarks, commonly observed as the force that binds protons and neutrons to-
gether to form a nucleus.

The Standard Model has correctly predicted the existence of W± and Z0 bosons, as well as
the top and charm quarks before the particles were observed [1]. Their predicted properties were
experimentally confirmed with good precision. For example, the Table 1 compares the measured
masses of the W± and Z0 bosons with the masses predicted by the Standard Model:

2 Dalton’s Law of Multiple Proportions;
3 Type of radioactive decay in which an electron or a positron is emitted;
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Fig. 1: The Standard Model.

The Standard Model, though it still contains several open questions such as why neutrinos have
masses, has been very successful in predicting the structure of matter at the smallest scale. We
know that the atomic nucleus is made up of protons and neutrons bound by the strong nuclear
force. We have experimentally observed that quarks are confined inside the nucleons4, but have
also observed that nucleons are not confined [4]. Therefore, we would like to better understand
what forces hold quarks together. The Standard Model groups two extant theories that have been
developed to describe the behavior and interactions of quarks: The Hadronic Model and the theory
of Quantum Chromodynamics.

4 Collective name for neutrons and protons;

Quantity Measured (GeV) Standard Model Prediction (GeV)
Mass of W boson 80.398 ± 0.025 80.373 ± 0.023
Mass of Z boson 91.1876 ± 0.0021 91.1874± 0.0021

Tab. 1: Predicted and measured masses of the W and Z bosons [2, 3].
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3 Theories of Quark Interactions

The Hadronic Model deals with the interactions between hadrons (particles made up of groups of
two or three quarks bound together by the strong nuclear force) at low energies5 in which nuclei
can be approximated as collections of protons and neutrons. This is the strong force, the residual
force between quarks. Figure 2 demonstrates the success of the Hadronic Model at low energies
[6]. The plot shows the intensity pattern or cross section from a scattering experiment together
with previous SLAC6 data and theoretical calculations. The quantity on the horizontal axis is
the square of the four-momentum transfer, Q2, (a relativistic space-time analog of the classical
momentum transfer) over a range of 0.5 - 6.5 GeV7. The quantity on the vertical axis is the cross
section that describes the probability of interaction in a two-particle initial state. The error bars
represent statistical and systematic uncertainties added in quadrature. Note that the experimental
data points agree very well with the Hadronic Model calculation by Van Orden, et al. (dotted line)
covering five orders of magnitude as shown below:

Fig. 2: Cross section as a function of four momentum transfer: Hadronic Model. The
Hadronic Model correctly explains the behavior of quarks at low energies.

5 For our purposes, this means O(1)GeV;
6 Stanford Linear Accelerator Center;
7 In natural units;
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Quantum Chromodynamics, QCD, is a theory of the color force, describing the interactions of
the quarks and gluons making up hadrons. QCD predicts a property known as asymptotic free-
dom: at very high energies, quarks and gluons behave like free non-interactive particles (except
for the Coulomb force) [7]. Another feature of the theory is confinement, meaning that at large
distances (∼ 0.5 fm) the force between quarks does not decrease as they separate but rather stays
the same, equal to 14 tons. QCD is a correct theory of quark interactions, but has been unpro-
ductive in the sense that it is extremely difficult to use the theory to make quantitative accurate
predictions at energy scales we are capable of creating. At high energies, O(100)GeV, QCD is very
successful [7]. Figure 2 demonstrates the success of QCD; it shows the cross section for proton-
antiproton collisions as a function of ET , the transverse energy flow. There is very good agreement
between the calculated curves (resulting from perturbative8 QCD calculations) and the data points:

Fig. 3: Cross section as a function of transverse energy: QCD Model [7]. The QCD Model
correctly explains the behavior of quarks at high energies.

Note the large differences in the energies scales on the horizontal axes of Figures 2 and 3.
Though the two models described above have been validated experimentally we do not have a tran-
sition model; a model that explains the physical behavior at the energies in between these extremes.
Figure 4 depicts the poorly understood transition from the nucleon picture to the quark model of
QCD [8]. This figure shows a measurement of the deuterium tensor polarization observable t20,

8 This is a style of calculation where one sums series of progressively smaller terms. [5] provides a very
good introductory discussion of the computational methods of perturbative QCD, pQCD;
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which is related to the differential cross section of deuterium9, as a function of Q2 at a low energy
range. As expected, the data points are in good agreement with theoretical predictions of the
Hadronic Model (dotted lines). However, the theoretical QCD prediction (full line), extrapolated
from high Q2 to low Q2, fails to reproduce the data points at the low Q2 range. According to [9, 10]
it is expected that the transition will occur in the GeV region.

Fig. 4: Predictions for QCD at low range energies [8]; the blue line indicates the QCD pre-
diction for low Q2. An ultimate goal of nuclear physics is to better understand the
behavior of quarks at the intermediate energies.

4 Physical Situation

A quantitative understanding of the structure of the deuteron, the nucleus of deuterium10 and
the simplest nuclear system composed of a two-nucleon bound state, has long been considered an
important testing ground for the two models described above: the model of the short range nuclear
interaction and the explicit influence of quark degrees of freedom. In order to study the structure
of the deuteron, an experiment was carried out in the CEBAF Large Acceptance Spectrometer
(CLAS) in Hall B at Jefferson National Laboratory in Newport News, Virginia. The experiment

9 The reader will find that reference [8] contains a detailed mathematical explanation of the relationship
between t20 and the cross section;

10 Deuterium, 2H, is a stable isotope of hydrogen and contains one proton and one neutron;
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was an electron scattering off of a deuteron and detecting a proton, with the neutron as the residual
nucleus, at an energy of 2.56GeV.

Our interest is to measure an asymmetry to reveal useful information about the wave function
of the deuterium nucleus. This is a key to our better understanding of the transition between the
quark-gluon picture and the nucleon model.

5 Objective

The physical goal of this project is to measure the a largely unknown component of the deuteron
wave function, known as the fifth structure function, a term of the cross section of 2H(e, e′p)n,
where 2H denotes the deuterium atom, e is the incident electron, e′ is the scattered electron, p is
the scattered proton, and n is the residual neutron. No measurement of this term exists in this
energy range so this experiment explores new territory of the strong nuclear force.

6 Procedure

We describe here how we performed a computer simulation of the 2H(e, e‘p)n reaction in order
to test the analysis code used to extract the term of the cross section. To explain the procedure
in a cogent manner, this paper is organized into four main sections. Experimental Background

presents the experimental setup and technique. Mathematical Work provides the mathematics and
kinematics analysis leading up to the program. Computational Work presents a description of the
programs used and the methodology, and Results provides the results of our research.

Part II. Experimental Background

The experiment was conducted at Thomas Jefferson National Accelerator Facility (JLAB) in Hall
B using the Continuous Electron Beam Accelerator Facility (CEBAF) Large Acceptance Spectrom-
eter (CLAS). Jefferson Lab, a Department of Energy National Laboratory, was designed to study
the structure of the atomic nucleus, specifically the interaction of the quarks that make up protons
and neutrons. It is comprised of a large electron accelerator, CEBAF, and three experimental
research halls: Halls A, B, and C. The experiments conducted are dedicated to pursue the study of
the three main research topics: the structure of the nucleus, the structure of nucleons, and probing
the Standard Model’s limits. By studying the critical mid-level range of energies11, Jefferson Lab
plays a critical role in developing our understanding of the transition between the Hadronic Model
and the QCD theory.

11 2-6 GeV;
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7 CEBAF

CEBAF is the large electron accelerator and the design consists of two linear accelerators that
accelerate an electron beam, connected by arcs of bending magnets at each end. Electrons are
directed around a racetrack-shaped loop of about 7/8 of a mile around, 25 feet underground. CE-
BAF is capable of producing electron beams with energies 2− 6 GeV, where the electron beam can
travel around the accelerator up to five times near the speed of light. The CEBAF accelerator is
based on superconducting accelerating cavities operating at a very stabilized frequency of 1.5×109

s [11]. The electrons ride on the crest of the accelerator radio frequency wave and then sent to
one of the three halls where it collides with a target and the debris is measured by various detectors.

8 CEBAF Large Acceptance Spectrometer - CLAS

8.1 Introduction

CLAS is a collection of detectors located in the experimental Hall B at JLAB (Fig. 5). The CLAS
spectrometer is designed to measure and identify the debris from a nuclear reaction. The detector
is unique in that it has a very large acceptance; that is to say, it can measure the momentum and
angles of almost all particles produced in the collisions regardless of the scattering angle. Roughly
spherically shaped, the detector measures 30 feet across and weighs 45 tons. It completely sur-
rounds the target with successive layers of different types of particle detectors.

Fig. 5: The CLAS detector [11].
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8.2 Detector Components

CLAS is a six sector magnetic spectrometer with a near 4π solid angle coverage. CLAS consists of six
independent magnetic spectrometers each instrumented with drift chambers, time-of-flight (TOF)
scintillators covering polar angles 8 ◦ < θ < 143 ◦, a gas-filled threshold Cerenkov counter (CC),
and a lead-scintillator sandwich-type electromagnetic calorimeter (EC) covering 8 ◦ < θ < 45 ◦ [6].
A toroidal magnet is used to measure charged particle momentum. With the aid of electrical sig-
nals produced by each detecting element, each collision is reconstructed and the intensity pattern
reveals the forces at play in the particle collision. Figure 6 is a cross section view of the CLAS
detector, where each of the component detectors is visible and labelled. We will now proceed to
describe in greater detail each of the component particle detectors.

Fig. 6: A cross section view of the CLAS detector [6].

A toroidal magnet, situated around the electron beam in CLAS, causes charged particles to
bend as they pass through. The magnetic field generated by the toroidal magnet has two polarity
settings: normal, electrons are in-bending, and reversed, electrons are out-bending. We can set the
magnitude of the field by changing the current.

A drift chamber (see Fig. 6) is a detector for particles of ionizing radiation. It is an advanced
form of the Geiger counter which detects not only the presence of radiation but also its location
[12]. It is a large volume filled with positively charged wires and with a chosen gas. As the charged
particle traverses the chamber, it ionizes the atoms in the gas and displaced electrons drift towards
the positively charged wires. This creates an electric signal. The pattern of hits is used to recon-
struct the trajectory of the particle. As the particle bends in the CLAS magnetic field, one can use
the pattern of hits to measure the momentum.

Time-of-flight (TOF) (see Fig. 6) scintillators can differentiate between a lighter and a heavier
particle with the same momentum using the time from interaction to hitting the scintillator. It is
made up of long scintillating bars, so that when an ionized particle passes through one of these
bars, it emits light [12]. The light is then detected by a photo-multiplier tube, located at the end
of each scintillating bar. The electron beam is pulsed meaning that it consists of a series of discrete
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beam packets. We know when the beam packet strikes the target. Combined with the time when
the scattered particle strikes the scintillator and the path length from the target (determined from
the trajectory measured with the drift chambers) one can extract the particle velocity. With this
velocity and the measured momentum (from the bending of the particle track in the CLAS mag-
netic field) one can extract the mass of the particle and identify it.

The Cerenkov detectors (see Fig. 6) are detectors that separate electrons from pions. The de-
tector is composed of a gas which is optically thicker than air. The concept of the detector is based
on Cerenkov radiation: a particle moving through the gas described above at a velocity above the
speed of light in the gas emits electromagnetic radiation to reduce its speed in the medium [13].
While the electron emits light in the Cerenkov detector, the pion, a heavier particle moving at a
speed less than the speed of light in the gas, does not emit Cerenkov radiation. A coincidence in
the drift chamber and Cerenkov counter would, therefore, signify the presence of an electron.

Electromagnetic calorimeters (see Fig. 6) are the experimental apparatus that are used to mea-
sure the energy of the particles. They are the final layer in the CLAS detector and are made up of
alternating layers of lead and scintillator. Particles interact in the lead creating a shower of particles
that generate photons in the plastic scintillator. These photons are collected and the amount of
light is proportional to the energy. For the purpose of this paper we will define an event when a
particle triggers a signal from successive layers of the CLAS detector. Using the various detectors
in CLAS we can determine the identity of a particle based on its trajectory, charge, momentum,
energy, scattering angle, and velocity.

9 Experimental Setup

For the experiment two reactions were measured in the CLAS detector at the same time and from
the same target to reduce systematic uncertainties. Two data sets were used at two electron-beam
energies, 2.56GeV and 4.2GeV, with normal torus polarity, electrons bend towards the beam. A
third data set at beam energy 2.56GeV, reversed12 torus polarity, was conducted in order to reach
a low Q2. Our research uses the data set at 2.56GeV for both normal and reversed torus polarity
in order to cover a broader Q2 range.

The target nucleus was deuterium. A dual cell target was used consisting of two collinear cells
each 5 cm long - one filled with 1H and one with 2H - and separated by 4.7 cm. The CLAS resolu-
tion of 2 mm enabled us to separate the events from different targets [21].

Part III. Mathematical Analysis

Electron scattering from a deuteron is a crucial tool in understanding the internal structure and
dynamics of the nuclear two-body system [14]. In particular, for this research it is an ideal testing
ground for the models of the nuclear force as described in the Hadronic Model and the quark-gluon
picture in the framework of QCD. Our physical objective is to measure the fifth structure function,
one of the terms of the cross section of the 2H(e, e‘p)n reaction never before measured.

12 Electrons bend away from the beam;
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10 Kinematics Analysis

The cross section of the 2H(e, e‘p)n reaction with a polarized beam and unpolarized target has a
component that is the imaginary part of the interference term between longitudinal and transverse
parts of nuclear current. As featured in Figure 7, the longitudinal direction points in the direction
of the exchanged photon, while the transverse direction is orthogonal to the longitudinal direction.
The azimuthal angle φpq is the angle between the scattering and reaction planes, while the angle
θpq is the angle between the longitudinal direction and the direction of the scattered proton. The

angle θe is the angle between the incoming electron, ~e, and scattered electron, ~e′, and ~q denotes the
three-momentum transfer. A discussion the importance of the angle φpq for the electron scattering
of a deuteron nucleus will follow in Analytical Approach.

Fig. 7: Kinematics electron-deuteron scattering.

Another important feature of the kinematics of this experiment is the limitation of elastic events
in our experimental calculations and simulations. In inelastic events, where kinetic energy is not
conserved, the incoming particle often causes the nucleus it strikes to become excited or break.
In our investigation of the transition between the Hadronic model and the QCD model, we are
interested in elastic collisions where the conserved kinetic energy is exchanged between the electron
and the deuteron nucleus via a virtual photon.

11 Analytical Approach

The differential cross section for elastic electron-deuteron scattering is described by the following
formula,

d3σ

dωdΩedΩp
= σ± = σL + σT + σLT cos(φpq) + σTT cos(2φpq) + hσ′

LT sin(φpq) (1)
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where the right hand side of the equation represents the effective cross-section area in the longitu-
dinal (L), transverse (T ), and their cross terms: LT , TT , LT ′. The electron beam is polarized with
the spin of the electron is either aligned with the momentum of the beam, in which case the helicity
of the beam h = +1, or the anti-aligned, h = −1. On the left hand side of the equation σ denotes
the cross section, dω is the infinitesimal element of the energy transfer, dΩe is the infinitesimal
element of the electron solid angle, and dΩp represents the infinitesimal element of the proton solid
angle.

The last term of the differential cross section equation hσ′
LT sin(φpq) has rarely been measured.

Note also that σ′
LT is the fifth structure function and it represents an unknown component of the

deuteron wave function [14]. For most conventional detectors, the scattering plane is at the same
angle as the reaction plane. However, the fifth term is nonzero only when the angle φpq is nonzero,
and as a result in order to obtain a measurement of the entire cross section of the electron-deuteron
scattering the detector must allow for out-of-plane measurements. As described in the Experimental

Background section, the unique feature of CLAS offered the opportunity for out-of-plane measure-
ments of the fifth term of the differential cross section.

To distinguish among the different models for the transition energy range, high precision is
important. By considering a ratio of the cross-section terms, we reduce the vulnerability to system-
atic uncertainties because the correction terms cancel out [16]. Therefore we define the asymmetry
function:

A′
LT =

σ′
LT

σL + σT

(2)

By taking advantage of the orthogonality of the sine and cosine functions, as shown in Appendix

A, we can express the asymmetry function as follows,

A′
LT = 〈sin(φpq)〉+ − 〈sin(φpq)〉− (3)

where 〈sin(φpq)〉± =
P

data
sin(φ±

i
)

N±
, a weighted average of sin(φpq).

Below, in Figure 8, are the preliminary plots of the extracted function A′
LT at a beam energy

of 2.56 GeV with both normal (left panel) and reversed (right panel) magnetic torus polarity. The
total systematic uncertainty is represented in red at the bottom of the plot and was obtained
by adding the uncertainties for each cut in quadrature. pm denotes missing momentum where
~pm = ~q − ~pp and q is the three-momentum transfer and pp is the ejected proton momentum. The
asymmetry shows clear and statistically significant variation with pm with maximum magnitude of
4-7
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Fig. 8: Extracted asymmetry function varying over missing momentum.

In the following section, Computational Work, we describe how we performed a computer sim-
ulation of the 2H(e, e‘p)n reaction in order to test the analysis code used to extract the asymmetry
function.

Part IV. Computational Work

For the computationally intensive simulations and data analysis of the 2H(e, e‘p)n reaction and the
CLAS detector components, the Supercomputing Cluster at the University of Richmond was used.
It consists of one master node and 52 slave nodes of which 49 are dual 1.4 GHz Athlon class and 3
are 2.0 Ghz Athlon class [18]. The computing cluster runs on Linux operating system and uses the
Beowulf system for managing batch jobs. Programs are written in Fortran, Perl, and C++ and are
submitted to the master node. When received, the master node then sends the commands to the
slave nodes who execute the jobs. A series of programs were employed to simulate CLAS detectors
and to extract the asymmetry function from the events generated.

12 Program Description

Developed and managed by CERN13, the GEANT314 program was initially developed for high
energy physics experiments but it has found applications also outside this domain in the areas of
medical and biological sciences, and astronautics. The program described the passage of elementary
particles through matter. The primary applications of GEANT3 in nuclear physics are to track

13 European Organization for Nuclear Research;
14 Acronym stands for “GEometry ANd Tracking”;
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particles through an experimental setup for simulation of detector response, and it can be used to
generate a graphical representation of the setup and of the particle trajectories.

GSIM is another program used specifically for the CLAS detector at Jefferson Lab. The package
uses the GEANT routines from the CERN libraries as a framework for a Monte Carlo simulation
of the CLAS detector. This is the main simulation program used in our simulation sequence of
the reaction in the CLAS detector. These simulation packages are essential to our experimental
research so we can measure the response of our detector.

13 Simulation Sequence

Table 3 contains an overview of the sequence of programs used to simulate a reaction in CLAS. In
the simulation and analysis process, two event data banks are used: the “PART” bank contains the
thrown events that are generated by QUEEG before they are passed through the CLAS simulation
GSIM, and “EVNT” bank represents the events that actually made it through the detector and
the analysis codes. A summary of the scripts used to simulate and analyze the data is given below.

QUEEG (QUasi-elastic Electron Event Generator)
⇓

txt2part
⇓

GSIM
⇓

gppjlab (GSIM Post Processor Jefferson Lab)
⇓

RECSIS
⇓

n10tmaker
⇓

h2root
⇓

eod5root

Tab. 2: The simulation sequence.

• QUEEG, generates quasi-elastic electron events by creating electron 4-vectors;

• txt2part, converts the QUEEG output files into BOS files (PART bank events);

• GSIM, the main Monte Carlo simulation program;

• gppjlab, makes the GSIM output look more like real data by knocking out dead scintillators
and wires and adding some Gaussian smearing to the data;
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• RECSIS, the standard program for reconstruction of CLAS data written mostly in FOR-
TRAN. It acts as a shell for analyzing CLAS BOS-based data;

• n10tmaker, converts EVNT and PART BOS files (the output of RECSIS) into hbook ntuples
(the input of h2root);

• h2root, converts hbook ntuples into ROOT ntuples;

• eod5root, a ROOT program that allows the user to extract histograms from the output of
h2root and any other final analysis components.

14 Monte Carlo Methods

Monte Carlo methods provide approximate solutions to a variety of mathematical and physical
problems by performing statistical sampling experiments. In experimental nuclear physics, Monte
Carlo methods are used for designing detectors, understanding their behavior, and comparing ex-
perimental data to theory. Monte Carlo methods, though they have different implementations, all
follow the same steps [19]:

1. Define a domain of possible inputs;

2. Generate inputs randomly from the domain using a certain probability distribution;

3. Perform a deterministic computation using the inputs;

4. Aggregate the results of the individual computations into the final result.

There are two main reasons why scientists use Monte Carlo methods: anti-aliasing property, that
is to say the ability to randomly generate inputs (therefore no systematic uncertainties), and abil-
ity to approximate quickly an answer. To exemplify the process of a Monte Carlo calculation we
include Figure 9 [20]. It shows how a triangular distribution with a minimum value of 1, maximum
of 8 and most likely value of 4 is recreated as we iterate through the simulation process. At the
first iteration, only one value has been randomly selected between the limits of the distribution.
However, after 100 iterations it can be seen that values around the most likely value, 4 have been
selected more frequently than those at the extremes. Finally, after 5000 iterations the triangular
distribution can be observed to be sufficiently recreated with the majority of the samples selected
around the most likely value with values spreading out towards the extremes sampled with decreas-
ing frequency.
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Fig. 9: Monte Carlo Simple Distribution Example [20].

In this example only one parameter is shown, but this idea can easily be extended to include
several distributions. Our physical goal is to test the analysis algorithm used to extract the asymme-
try from the reversed and normal polarity 2.56 GeV beam energy data sets. GSIM, the simulation
package used for CLAS simulations, uses a very similar idea to generate events. Using the experi-
mentally measured asymmetry instead of the “triangular distribution” and several other properties
of the experiment, we generate events in CLAS and analyze them with the same analysis code used
to extract the experimentally measure asymmetry. We will now address further methods employed
and discuss in detail how we are able to generate events similar to the experimental features of the
2H(e, e‘p)n reaction.

15 More Computational Methods

As illustrated in the simple triangular distribution Monte Carlo experiment, for the simulation we
need a certain probability distribution which the simulated events will follow. Using the analysis
code we extracted the asymmetry function for both polarities of the torus magnet and fit it to two
polynomial equations, as shown in Figure 10.
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Fig. 10: Polynomial fits to the asymmetry function.

For the normal torus polarity data set (left panel of Fig. 4.2) the equation used to fit the measured
asymmetry is:

f(x) =
δ1x

2 + δ2x
4

1 + δ3x + δ4x2 + δ5x4 + δ6x6
(4)

where δ1 = −0.0344, δ2 = 0.3204, δ3 = −11.1479, δ4 = 35.4709, δ5 = −119.206, and δ6 = 227.042.
For the reversed torus polarity data set (right panel of Fig. 4.2) the equation used to fit the mea-
sured asymmetry is:

f(x) =
ǫ1x

2 + ǫ2x
4

1 + ǫ3x + ǫ4x2 + ǫ5x4 + ǫ6x6
(5)

where ǫ1 = −0.0653, ǫ2 = 0.5031, ǫ3 = −11.0388, ǫ4 = 36.0937, ǫ5 = −126.685, and ǫ6 = 256.143 .
Another distribution included in the Monte Carlo simulation is the momentum distribution of

the target nucleon, the neutron in the deuteron nucleus. A well known distribution was used, the
Hulthen distribution, to select the magnitude of the internal Fermi momentum of the neutron and
the direction was chosen isotropically. The direction and Fermi momentum of the target nucleon
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were weighted by integrating the elastic cross section in the frame of reference of the moving nucleon
over the CLAS acceptance. A graph of the Hulthen momentum distribution is shown in Figure 11.
[21],

Fig. 11: Hulthen momentum distribution.

However in some instances the process of selecting the internal Fermi momentum would give
high uncertainties in the simulated events. Therefore at high pm, missing momentum, we changed
our process of selecting the internal Fermi momentum to increase the minimum of the probability
distribution to get more events in that range. We generated a plot showing the thrown events and
the simulated ones so that we could account for the resolution effects in the simulated ones. Figure
12 shows the resolution effects for high momentum for just a few events. The simulated events
shown in the red curve, are compared to the thrown events, shown in the blue curve. Notice that
the smearing of the events in the simulation spreads out those events (red curve) so they extend
below the minimum pm at pm = 0.35 GeV. As expected, the events of the simulation (red curve)
is below the throw events (blue curve).

Fig. 12: Resolution effects for pm. The vertical axis represents counts and the horizontal axis
is the missing momentum measured in GeV.

Thus, we were able to achieve better statistics for high pm. The fits to the measured A′
LT ,

described above, were incorporated into the Monte Carlo simulation to model the fifth structure
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function. Next, we performed a Monte Carlo simulation of CLAS using GSIM and analyzed the
generated events with the same analysis code used to extract the measured asymmetry.

Part V. Results

Our results are shown in Figure 13:
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Fig. 13: Simulated asymmetry (red curve) with the results of the analysis.

The black points are the results of the simulation for the two torus polarity settings, while the blue
points are the bin-averaged input asymmetry (red curve). Notice that the black and the blue points
agree within the statistical uncertainties of the simulation. In order to achieve low uncertainties, we
performed 22 runs each with 100, 000 events (each run took approximately 24 hours). To properly
compare the simulated asymmetry with the results of the analysis , we averaged over the bins using
the equation below,

〈A′
LT 〉i =

∫
bin

A′
LT (pm) dpm∫
bin

dpm

(6)

In order to assess the validity of our analysis code, we used reduced χ2 as defined below,

χ2 =
1

n

∑
data

(yi − f(xi))
2

σyi

(7)
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where yi are the bin averaged input points, f(xi) are the results of the simulation, σyi
is the

uncertainty in yi, and n represents the degrees of freedom, in our case, the number of data points.
Reduced χ2 for the reversed torus polarity data set is 1.0678 and for the normal torus polarity
1.0728. The reader should note that Appendix E includes the detailed calculation of reduced χ2.

Part VI. Conclusions

The strong force is the fundamental force underlying the dynamics of the nuclear constituents in
the nuclear medium. It is believed that the strong interaction is described within the framework
of QCD, the fundamental quantum field theory, in which gluons act as facilitators of the inter-
action between quarks. However, it is not feasible to describe even the simplest nuclear system,
the deuterium nucleus, starting from the basic equations of QCD. However, we have seen that the
Hadronic Model of nuclear physics can be an effective and practical theory up to energies of a few
GeV. Jefferson Lab plays a vital role in developing our understanding of the transition picture from
the nucleon degrees of freedom to the quark-gluon ones. In order to study the transition from the
Hadronic model at intermediate energies, an experiment was carried out using the CLAS detector
in Hall B. The experiment was an electron scattering off of a deuteron detecting a proton, with the
neutron as the residual nucleus, at an energy of 2.56GeV. Our interest is to measure an asymmetry
to reveal useful information about the wave function of the deuterium nucleus.

We have performed a Monte Carlo simulation of the reaction in order to test the analysis code
used to extract A′

LT associated with the fifth structure function, σ′
LT . As one can observe in Figure

11, the asymmetry extracted from Monte Carlo events is consistent with the input function for the
asymmetry within the uncertainties of the calculation. This establishes the validity of the analysis
algorithms used to extract A′

LT from the experimental data for the 2H(e, e′p)n reaction.
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Appendix A

This appendix will seek to explain in more detail the mathematical steps taken to deduce equation
(2) in the Analytical Approach section, which relates A′

LT to σ′
LT and 〈sin(φpq)〉. We start with

the Rosebluth differential cross section for the deuteron nucleus,

d3σ

dωdΩedΩp
= σ± = σL + σT + σLT cos(φpq) + σTT cos(2φpq) + hσ′

LT sin(φpq) (8)

To isolate the σ′
LT term from the above equation we take advantage of the orthogonality of sine

and cosine functions. For m and n ∈ Z,

∫ π

0
sin(nφpq)sin(mφpq) dφpq = 0, n 6= m (9)

∫ π

0
sin(nφpq)sin(mφpq) dφpq = π, n = m (10)

∫ π

0
sin(nφpq)cos(mφpq) dφpq = 0, ∀n,m (11)

Using the above orthogonality relations and the trigonometric fact that the sinusoidal axis is cen-
tered at zero, the following can be easily verified:

∫ π

−π

σ±sin(φpq) dφpq = hπσ′
LT (12)

In equation (5) observe how the only term surviving the integral on the right hand side of equation
(1) is the fifth structure function term, σ′

LT . Now consider the following integral:

∫ π

−π

σ± dφpq (13)

Again using the fact that the sinusoidal axis is centered at zero observe that the following is true,

∫ π

−π

σ± dφpq = 2π(σL + σT ) (14)

Putting equations (5) and (7), observe that we have obtained an equation for the weighted average
of sin(φpq),

〈sin(φpq)〉± =

∫ π

−π
σ±sin(φpq) dφpq∫ π

−π
σ± dφpq

=
hπσ′

LT

2π(σL + σT )
= ±

σ′
LT

2(σL + σT )
(15)

And finally, these weighted averages can be combined to yield A′
LT :
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〈sin(φpq)〉+ − 〈sin(φpq)〉− =
σ′

LT

2(σL + σT )
−

−σ′
LT

2(σL + σT )
= σ′

LT (σL + σT ) = A′
LT (16)
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Appendix B

Fig. 14: Primary drawing of the E5 dual cell.
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Appendix C

Root script for adding reversed field data points. A similar script exists for adding normal field
data points.

//ROOT SCRIPT FOR ADDING REVERSED FIELD DATA POINTS acc 7/31/09//
//////////////////////////////////////////////////////////////////

TFile ∗ f i l e 1 = new TFile (” summed simevnthists1 . root ”) ; // run1
TFile ∗ f i l e 2 = new TFile (” summed evnt2−7. root ”) ; // run2
TFile ∗ f i l e 3 = new TFile (” summed evnt8−10. root ”) ; // run3
TFile ∗ f i l e 4 = new TFile (” summed simevnthists11 . root ”) ; // run4
TFile ∗ f i l e 5 = new TFile (” summed simevnthists12 . root ”) ; // run5

Double t p m bin edges
[ 1 3 ]= {0 . 0 , 0 . 0 5 , 0 . 1 0 , 0 . 1 5 , 0 . 2 0 , 0 . 2 5 , 0 . 3 5 , 0 . 5 5 , 0 . 7 0 , 1 . 0 , 1 . 2 5 , 1 . 5 , 2 . 0} ;

I n t t n varp mbins = 12 ;

// copy run1

TH1F ∗ hp m s in ph i p lu s run1 = new TH1F(” hp m s in ph i p lu s run1 ” ,”” ,
n varp mbins , p m bin edges ) ;

TH1F ∗hp m unwgt plusrun1 = new TH1F(” hp m unwgt plusrun1 ” ,”” ,
n varp mbins , p m bin edges ) ;

TH1F ∗hp m sin phi minusrun1 = new TH1F(” hp m sin phi minusrun1 ” ,”” ,
n varp mbins , p m bin edges ) ;

TH1F ∗hp m unwgt minusrun1 = new TH1F(” hp m unwgt minusrun1 ” ,”” ,
n varp mbins , p m bin edges ) ;

f i l e 1 −>cd ( ) ;
f i l e 1 −>GetObject (” hp m s in ph i p lu s4 ” ,” hp m s in ph i p lu s run1 ”) ;
f i l e 1 −>GetObject (” hp m unwgt plus4 ” ,” hp m unwgt plusrun1 ”) ;
f i l e 1 −>GetObject (” hp m sin phi minus4 ” ,” hp m sin phi minusrun1 ”) ;
f i l e 1 −>GetObject (” hp m unwgt minus4 ” ,” hp m unwgt minusrun1 ”) ;

// copy run2

TH1F ∗ hp m s in ph i p lu s run2 = new TH1F(” hp m s in ph i p lu s run2 ” ,”” ,
n varp mbins , p m bin edges ) ;

TH1F ∗hp m unwgt plusrun2 = new TH1F(” hp m unwgt plusrun2 ” ,”” ,
n varp mbins , p m bin edges ) ;

TH1F ∗hp m sin phi minusrun2 = new TH1F(” hp m sin phi minusrun2 ” ,”” ,
n varp mbins , p m bin edges ) ;

TH1F ∗hp m unwgt minusrun2 = new TH1F(” hp m unwgt minusrun2 ” ,”” ,
n varp mbins , p m bin edges ) ;
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f i l e 2 −>cd ( ) ;
f i l e 2 −>GetObject (” hp m s in ph i p lu s4 ” ,” hp m s in ph i p lu s run2 ”) ;
f i l e 2 −>GetObject (” hp m unwgt plus4 ” ,” hp m unwgt plusrun2 ”) ;
f i l e 2 −>GetObject (” hp m sin phi minus4 ” ,” hp m sin phi minusrun2 ”) ;
f i l e 2 −>GetObject (” hp m unwgt minus4 ” ,” hp m unwgt minusrun2 ”) ;

// copy run3

TH1F ∗ hp m s in ph i p lu s run3 = new TH1F(” hp m s in ph i p lu s run3 ” ,”” ,
n varp mbins , p m bin edges ) ;

TH1F ∗hp m unwgt plusrun3 = new TH1F(” hp m unwgt plusrun3 ” ,”” ,
n varp mbins , p m bin edges ) ;

TH1F ∗hp m sin phi minusrun3 = new TH1F(” hp m sin phi minusrun3 ” ,”” ,
n varp mbins , p m bin edges ) ;

TH1F ∗hp m unwgt minusrun3 = new TH1F(” hp m unwgt minusrun3 ” ,”” ,
n varp mbins , p m bin edges ) ;

f i l e 3 −>cd ( ) ;
f i l e 3 −>GetObject (” hp m s in ph i p lu s4 ” ,” hp m s in ph i p lu s run3 ”) ;
f i l e 3 −>GetObject (” hp m unwgt plus4 ” ,” hp m unwgt plusrun3 ”) ;
f i l e 3 −>GetObject (” hp m sin phi minus4 ” ,” hp m sin phi minusrun3 ”) ;
f i l e 3 −>GetObject (” hp m unwgt minus4 ” ,” hp m unwgt minusrun3 ”) ;

// copy run4

TH1F ∗ hp m s in ph i p lu s run4 = new TH1F(” hp m s in ph i p lu s run4 ” ,”” ,
n varp mbins , p m bin edges ) ;

TH1F ∗hp m unwgt plusrun4 = new TH1F(” hp m unwgt plusrun4 ” ,”” ,
n varp mbins , p m bin edges ) ;

TH1F ∗hp m sin phi minusrun4 = new TH1F(” hp m sin phi minusrun4 ” ,”” ,
n varp mbins , p m bin edges ) ;

TH1F ∗hp m unwgt minusrun4 = new TH1F(” hp m unwgt minusrun4 ” ,”” ,
n varp mbins , p m bin edges ) ;

f i l e 4 −>cd ( ) ;
f i l e 4 −>GetObject (” hp m s in ph i p lu s4 ” ,” hp m s in ph i p lu s run4 ”) ;
f i l e 4 −>GetObject (” hp m unwgt plus4 ” ,” hp m unwgt plusrun4 ”) ;
f i l e 4 −>GetObject (” hp m sin phi minus4 ” ,” hp m sin phi minusrun4 ”) ;
f i l e 4 −>GetObject (” hp m unwgt minus4 ” ,” hp m unwgt minusrun4 ”) ;

// copy run5

TH1F ∗ hp m s in ph i p lu s run5 = new TH1F(” hp m s in ph i p lu s run5 ” ,”” ,
n varp mbins , p m bin edges ) ;
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TH1F ∗hp m unwgt plusrun5 = new TH1F(” hp m unwgt plusrun5 ” ,”” ,
n varp mbins , p m bin edges ) ;

TH1F ∗hp m sin phi minusrun5 = new TH1F(” hp m sin phi minusrun5 ” ,”” ,
n varp mbins , p m bin edges ) ;

TH1F ∗hp m unwgt minusrun5 = new TH1F(” hp m unwgt minusrun5 ” ,”” ,
n varp mbins , p m bin edges ) ;

f i l e 5 −>cd ( ) ;
f i l e 5 −>GetObject (” hp m s in ph i p lu s4 ” ,” hp m s in ph i p lu s run5 ”) ;
f i l e 5 −>GetObject (” hp m unwgt plus4 ” ,” hp m unwgt plusrun5 ”) ;
f i l e 5 −>GetObject (” hp m sin phi minus4 ” ,” hp m sin phi minusrun5 ”) ;
f i l e 5 −>GetObject (” hp m unwgt minus4 ” ,” hp m unwgt minusrun5 ”) ;

// t a r g e t h i s t s

TH1F ∗ hp m s in ph i p lu sb in1 = new TH1F(” hp m s in ph i p lu sb in1
” , ”” , 1 , 0 . 0 , 0 . 05 ) ;

TH1F ∗hp m unwgt plusbin1 = new TH1F(” hp m unwgt plusbin1
” , ”” , 1 , 0 . 0 , 0 . 05 ) ;

TH1F ∗ hp m sin ph i minusb in1 = new TH1F(” hp m sin ph i minusb in1
” , ”” , 1 , 0 . 0 , 0 . 05 ) ;

TH1F ∗hp m unwgt minusbin1 = new TH1F(” hp m unwgt minusbin1
” , ”” , 1 , 0 . 0 , 0 . 05 ) ;

// bin1

TH1F ∗h1d bin1 = new TH1F(” h1d bin1 ” ,” Sin(#phi ) weighted d i s t r i b u t i o n
f o r p o s i t i v e h e l i c i t y ” , 1 , 0 . 0 , 0 . 05 ) ;

TH1F ∗h2d bin1 = new TH1F(” h2d bin1 ” ,” Sin(#phi ) weighted d i s t r i b u t i o n
f o r negat ive h e l i c i t y ” , 1 , 0 . 0 , 0 . 05 ) ;

h1d bin1 .Sumw2( ) ;
h2d bin1 .Sumw2( ) ;
h1d bin1 . Divide ( hp m s in ph i p lusrun5 , hp m unwgt plusrun5 ) ;
h2d bin1 . Divide ( hp m sin phi minusrun5 , hp m unwgt minusrun5 ) ;
TH1F ∗h12d bin1 = new TH1F(” h12d bin1 ” ,”A {LT} ’ ” , 1 , 0 . 0 , 0 . 05 ) ;
h12d bin1 .Sumw2( ) ;
h12d bin1 .Add( h1d bin1 , h2d bin1 ,0 .9936 , −1.0) ;
Double t binContent = h−>GetBinContent ( bin ) ;
cout<<binContent ;
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Appendix D

A small part of the QUEEG Perl script. These parts are my contribution to the script.
Part 1:

// assume the miss ing momentum w i l l s a t i s f y the c a l i n a cut where we
dec ide below whether or not

// to keep the event i f the miss ing momentum i s l a r g e enough . This i s
a ploy to populate high

// miss ing momentum events more .

be low p m threshold = 1 ;

wh i le ( be low p m threshold==1) {
// p ick fermi momentum in lab frame and d i r e c t i o n from xsec t ab l e .
// modi f i ed to get more high pfermi events above some th r e sho ld .

// big enough = 0 ;
// i f ( htype == PROTON) {
// whi le ( b ig enough == 0) {
// we igh t tab l e p roton−>GetRandom2( cos theta , p fermi ) ;
// i f ( p fermi > 0 . 0 ) {
// big enough=1;
// // cout << ” p f e rmi = ” << pfermi << endl ;
// }
// }
// } e l s e {
// we igh t tab l e neu t ron−>GetRandom2( cos theta , p fermi ) ;
// }

i f ( htype == PROTON){
weigh t tab l e p roton−>GetRandom2( cos theta , p fermi ) ;

} e l s e {
weigh t tab l e neu t ron−>GetRandom2( cos theta , p fermi ) ;

}
s i n t h e t a = sq r t (1 − co s th e t a ∗ co s th e t a ) ;
phi = 2∗PI∗rand−>Rndm() ;
pfermi3 . z = pfermi ∗ co s th e t a ;
p fermi3 . x = pfermi ∗ s i n t h e t a ∗ cos ( phi ) ;
p fermi3 . y = pfermi ∗ s i n t h e t a ∗ s i n ( phi ) ;

// p ick s ca t t e r ed e l e c t r on d i r
t h e t a r f = g e t e l e c t r on an g l e ( htype , pfermi , acos ( co s th e t a ) ) ;
theta = c a l c t h e t a l a b ( i n i t en e r gy , pfermi , acos ( co s th e t a ) , t h e t a r f )

;
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Part 2:

// put in the ca l ina ’ s cut here .

// get p m in order to apply the cut on i t to get more events at
l a r g e p m ( c a l i n a cut ) .

beam . SetPxPyPzE (0 ,0 , i n i t en e r gy , i n i t e n e r g y ) ;
tg t . SetPxPyPzE ( 0 . 0 , 0 . 0 , 0 . 0 ,Md) ; // s e t the mass o f the deuteron tgt

here .
e s c a t t . SetPxPyPzE ( e out3 . x , e out3 . y , e out3 . z , Eprime ) ;
proton4vec . SetPxPyPzE ( nuc3 . x , nuc3 . y , nuc3 . z , s q r t (pow(nuc3mag , 2 ) +

pow(Mp, 2 ) ) ) ;

mis s ing4vec = beam + tgt − e s c a t t − proton4vec ;
mis s ing3vec = miss ing4vec . Vect ( ) ;
missing3vec mag = miss ing3vec .Mag( ) ;
p m = missing3vec mag ;
i f (p m < p mlo ) {
below p m threshold = 1 ;

// cout << ”p m = ” << p m << ” missed the cut . ” << endl ;
cont inue ;
} e l s e {
below p m threshold = 0 ;
// cout << ”p m = ” << p m << ” th r e sho ld= ” << p mlo << endl ;

} // end o f t e s t on p m .
} // end o f loop over p m attempts .

// cout << ”p m = ” << p m << ” end o f l o o p l s t l i s t i n g . ” << endl ;

// f i l l d i agno s t i c h istograms
s c a t t e r e d t h e t a = acos ( e hat . z ) ;
nuc l eon theta = acos ( nuc hat . z ) ;
Qsq = 4∗ i n i t e n e r g y ∗Eprime∗pow( s i n ( s c a t t e r e d t h e t a /2 . 0 ) , 2 . 0 ) ;
nu = in i t e n e r g y − Eprime ;
wsq = M nucleon∗M nucleon − Qsq +2∗M nucleon∗nu ;
i f ( htype == PROTON){

qsq proton−>F i l l (Qsq) ;
} e l s e {

qsq neutron−>F i l l (Qsq) ;
}
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Appendix E

This is the Mathematica file for the reversed torus polarity data set used to obtain reduced χ2. A
similar file exists for the normal torus polarity data set.

(*acc − 4/6/09CHISQUAREDNBFORGPGALTp*)(*acc − 4/6/09CHISQUAREDNBFORGPGALTp*)(*acc − 4/6/09CHISQUAREDNBFORGPGALTp*)
Clear[x];Clear[x];Clear[x];

(*χ2 =
∑ (MCi−<curvei>)2

σi
2

1
NDOF

,whereσiistheMCiuncertainty*)(*χ2 =
∑ (MCi−<curvei>)2

σi
2

1
NDOF

,whereσiistheMCiuncertainty*)(*χ2 =
∑ (MCi−<curvei>)2

σi
2

1
NDOF

,whereσiistheMCiuncertainty*)
n = 8;n = 8;n = 8;

(*NDOF = #points − fitparameters = 8 − 0 = 8*)(*NDOF = #points − fitparameters = 8 − 0 = 8*)(*NDOF = #points − fitparameters = 8 − 0 = 8*)

f [x ]:= − ((−0.0652557∗x∧2)+(0.503095∗x∧4))
(1+(−11.0388∗x)+(36.0937∗x∧2)+(−126.685∗x∧4)+(256.143∗x∧6)) ;f [x ]:= − ((−0.0652557∗x∧2)+(0.503095∗x∧4))
(1+(−11.0388∗x)+(36.0937∗x∧2)+(−126.685∗x∧4)+(256.143∗x∧6)) ;f [x ]:= − ((−0.0652557∗x∧2)+(0.503095∗x∧4))
(1+(−11.0388∗x)+(36.0937∗x∧2)+(−126.685∗x∧4)+(256.143∗x∧6)) ;

(*calina′sfitfunction*)(*calina′sfitfunction*)(*calina′sfitfunction*)
(*NBbinsrunfrom0to13 − thelatterhavenocontent*)(*NBbinsrunfrom0to13 − thelatterhavenocontent*)(*NBbinsrunfrom0to13 − thelatterhavenocontent*)
(* BIN 1 *)(* BIN 1 *)(* BIN 1 *)
Clear[x]; Clear[x0]; Clear[x1];Clear[x]; Clear[x0]; Clear[x1];Clear[x]; Clear[x0]; Clear[x1];
mc1 = 0.00164308; δmc1 = 0.00119103; x0 = 0.0; x1 = 0.050;mc1 = 0.00164308; δmc1 = 0.00119103; x0 = 0.0; x1 = 0.050;mc1 = 0.00164308; δmc1 = 0.00119103; x0 = 0.0; x1 = 0.050;

avgcurve1 = Integrate[f [x],{x,x0,x1}]
x1−x0 ;avgcurve1 = Integrate[f [x],{x,x0,x1}]
x1−x0 ;avgcurve1 = Integrate[f [x],{x,x0,x1}]
x1−x0 ;

χsquared1 = (mc1−avgcurve1)2

δmc12χsquared1 = (mc1−avgcurve1)2

δmc12χsquared1 = (mc1−avgcurve1)2

δmc12

1.71073
(*NBbinsrunfrom0to13 − thelatterhavenocontent*)(*NBbinsrunfrom0to13 − thelatterhavenocontent*)(*NBbinsrunfrom0to13 − thelatterhavenocontent*)
(* BIN 2 *)(* BIN 2 *)(* BIN 2 *)
Clear[x]; Clear[x0]; Clear[x1];Clear[x]; Clear[x0]; Clear[x1];Clear[x]; Clear[x0]; Clear[x1];
mc2 = 0.000755774; δmc2 = 0.00140182; x0 = 0.050; x1 = 0.100;mc2 = 0.000755774; δmc2 = 0.00140182; x0 = 0.050; x1 = 0.100;mc2 = 0.000755774; δmc2 = 0.00140182; x0 = 0.050; x1 = 0.100;

avgcurve2 = Integrate[f [x],{x,x0,x1}]
x1−x0 ;avgcurve2 = Integrate[f [x],{x,x0,x1}]
x1−x0 ;avgcurve2 = Integrate[f [x],{x,x0,x1}]
x1−x0 ;

χsquared2 = (mc2−avgcurve2)2

δmc22χsquared2 = (mc2−avgcurve2)2

δmc22χsquared2 = (mc2−avgcurve2)2

δmc22

0.0561293
(*NBbinsrunfrom0to13 − thelatterhavenocontent*)(*NBbinsrunfrom0to13 − thelatterhavenocontent*)(*NBbinsrunfrom0to13 − thelatterhavenocontent*)
(* BIN 3 *)(* BIN 3 *)(* BIN 3 *)
Clear[x]; Clear[x0]; Clear[x1];Clear[x]; Clear[x0]; Clear[x1];Clear[x]; Clear[x0]; Clear[x1];
mc3 = 0.00239838; δmc3 = 0.00284316; x0 = 0.100; x1 = 0.150;mc3 = 0.00239838; δmc3 = 0.00284316; x0 = 0.100; x1 = 0.150;mc3 = 0.00239838; δmc3 = 0.00284316; x0 = 0.100; x1 = 0.150;

avgcurve3 = Integrate[f [x],{x,x0,x1}]
x1−x0 ;avgcurve3 = Integrate[f [x],{x,x0,x1}]
x1−x0 ;avgcurve3 = Integrate[f [x],{x,x0,x1}]
x1−x0 ;

χsquared3 = (mc3−avgcurve3)2

δmc32χsquared3 = (mc3−avgcurve3)2

δmc32χsquared3 = (mc3−avgcurve3)2

δmc32

1.99533
(* BIN 4 *)(* BIN 4 *)(* BIN 4 *)
Clear[x]; Clear[x0]; Clear[x1];Clear[x]; Clear[x0]; Clear[x1];Clear[x]; Clear[x0]; Clear[x1];
mc4 = 0.0221362; δmc4 = 0.00535747; x0 = 0.150; x1 = 0.200;mc4 = 0.0221362; δmc4 = 0.00535747; x0 = 0.150; x1 = 0.200;mc4 = 0.0221362; δmc4 = 0.00535747; x0 = 0.150; x1 = 0.200;

avgcurve4 = Integrate[f [x],{x,x0,x1}]
x1−x0

avgcurve4 = Integrate[f [x],{x,x0,x1}]
x1−x0avgcurve4 = Integrate[f [x],{x,x0,x1}]
x1−x0

0.0246153
Integrate[f [x], {x, x0, x1}]Integrate[f [x], {x, x0, x1}]Integrate[f [x], {x, x0, x1}]
0.00123076
χsquared4 = (mc4−avgcurve4)2

δmc42χsquared4 = (mc4−avgcurve4)2

δmc42χsquared4 = (mc4−avgcurve4)2

δmc42
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0.214121
(* BIN 5 *)(* BIN 5 *)(* BIN 5 *)
Clear[x]; Clear[x0]; Clear[x1];Clear[x]; Clear[x0]; Clear[x1];Clear[x]; Clear[x0]; Clear[x1];
mc5 = 0.0290465; δmc5 = 0.00924209; x0 = 0.200; x1 = 0.250;mc5 = 0.0290465; δmc5 = 0.00924209; x0 = 0.200; x1 = 0.250;mc5 = 0.0290465; δmc5 = 0.00924209; x0 = 0.200; x1 = 0.250;

avgcurve5 = Integrate[f [x],{x,x0,x1}]
x1−x0 ;avgcurve5 = Integrate[f [x],{x,x0,x1}]
x1−x0 ;avgcurve5 = Integrate[f [x],{x,x0,x1}]
x1−x0 ;

χsquared5 = (mc5−avgcurve5)2

δmc52χsquared5 = (mc5−avgcurve5)2

δmc52χsquared5 = (mc5−avgcurve5)2

δmc52

0.806177
(* BIN 6 *)(* BIN 6 *)(* BIN 6 *)
Clear[x]; Clear[x0]; Clear[x1];Clear[x]; Clear[x0]; Clear[x1];Clear[x]; Clear[x0]; Clear[x1];
mc6 = 0.005432; δmc6 = 0.0126138; x0 = 0.250; x1 = 0.350;mc6 = 0.005432; δmc6 = 0.0126138; x0 = 0.250; x1 = 0.350;mc6 = 0.005432; δmc6 = 0.0126138; x0 = 0.250; x1 = 0.350;

avgcurve6 = Integrate[f [x],{x,x0,x1}]
x1−x0 ;avgcurve6 = Integrate[f [x],{x,x0,x1}]
x1−x0 ;avgcurve6 = Integrate[f [x],{x,x0,x1}]
x1−x0 ;

χsquared6 = (mc6−avgcurve6)2

δmc62χsquared6 = (mc6−avgcurve6)2

δmc62χsquared6 = (mc6−avgcurve6)2

δmc62

1.0657
(* BIN 7 *)(* BIN 7 *)(* BIN 7 *)
Clear[x]; Clear[x0]; Clear[x1];Clear[x]; Clear[x0]; Clear[x1];Clear[x]; Clear[x0]; Clear[x1];
mc7 = −0.0437412; δmc7 = 0.024967; x0 = 0.350; x1 = 0.550;mc7 = −0.0437412; δmc7 = 0.024967; x0 = 0.350; x1 = 0.550;mc7 = −0.0437412; δmc7 = 0.024967; x0 = 0.350; x1 = 0.550;

avgcurve7 = Integrate[f [x],{x,x0,x1}]
x1−x0 ;avgcurve7 = Integrate[f [x],{x,x0,x1}]
x1−x0 ;avgcurve7 = Integrate[f [x],{x,x0,x1}]
x1−x0 ;

χsquared7 = (mc7−avgcurve7)2

δmc72χsquared7 = (mc7−avgcurve7)2

δmc72χsquared7 = (mc7−avgcurve7)2

δmc72

0.95288
(* BIN 8 *)(* BIN 8 *)(* BIN 8 *)
Clear[x]; Clear[x0]; Clear[x1];Clear[x]; Clear[x0]; Clear[x1];Clear[x]; Clear[x0]; Clear[x1];
mc8 = 0.136036; δmc8 = 0.112876; x0 = 0.550; x1 = 0.700;mc8 = 0.136036; δmc8 = 0.112876; x0 = 0.550; x1 = 0.700;mc8 = 0.136036; δmc8 = 0.112876; x0 = 0.550; x1 = 0.700;

avgcurve8 = Integrate[f [x],{x,x0,x1}]
x1−x0 ;avgcurve8 = Integrate[f [x],{x,x0,x1}]
x1−x0 ;avgcurve8 = Integrate[f [x],{x,x0,x1}]
x1−x0 ;

χsquared8 = (mc8−avgcurve8)2

δmc82χsquared8 = (mc8−avgcurve8)2

δmc82χsquared8 = (mc8−avgcurve8)2

δmc82

1.74132
chisquaredfinal =chisquaredfinal =chisquaredfinal =
(χsquared1 + χsquared2 + χsquared3 + χsquared4 + χsquared5 + χsquared6 + χsquared7+(χsquared1 + χsquared2 + χsquared3 + χsquared4 + χsquared5 + χsquared6 + χsquared7+(χsquared1 + χsquared2 + χsquared3 + χsquared4 + χsquared5 + χsquared6 + χsquared7+
χsquared8)/8χsquared8)/8χsquared8)/8
1.0678


