

Neutron Magnetic Form Factor G_M^n Measurement at High Q^2 with CLAS12

Lamya Baashen

Brian Raue – FIU Jerry Gilfoyle – University of Richmond Cole Smith – University of Virginia

10/28/2022

Overview

Definition and Meaning of the Elastic Nucleon Form Factor

- Scientific Motivation
- The Ratio Method
- **CLAS12 Detector**

Methods used to validate Neutron detection efficiency (NDE) results

- **D**(e, e'p)& D(e, e'n) Selections
- Summary

Why we need to measure G_M^n

- I. G_M^n : Fundamental quantity related to neutron magnetization.
- **II.** The form factors provide important constraints for GPDs:

$$\int_{-1}^{1} dx H^{q}(x,\xi,Q^{2}) = F_{1}^{q}(Q^{2}) \text{ and } \int_{-1}^{1} dx E^{q}(x,\xi,Q^{2}) = F_{2}^{q}(Q^{2})$$

Where G_E and G_M Related to F_1 and F_2 as: $G_E(Q^2) = F_1(Q^2) - \tau F_2(Q^2)$ and $G_M(Q^2) = F_1(Q^2) + F_2(Q^2)$

How Do We Measure G_M^n on a Neutron? Ratio Method on deuterium

CLAS12 Detectors and Data Set

4

Measure Neutron Detection Efficiency (NDE)

Determine the neutron detection efficiency (NDE) by using:

Select $e' \pi^+$ final state with no other charged particles

$$NDE = \frac{p(e,e'\pi^+n)}{p(e,e'\pi^+)n}$$

Expected Neutron = number of the neutron hit calorimeter Detected neutron = number of the neutron measured in calorimeter

$$e p \rightarrow e' \pi^+(n)$$

Validate NDE Results

- > Fit missing mass distributions in missing momentum p_{mm} bins to extract neutron yield.
- Use Crystal Ball function for both expected and detected neutrons.
- > Take the ratio to get NDE.

Measured G_M^n on a Neutron

Select quasi-elastic (QE) kinematics:

- > using θ_{pq} : the angle between the 3momentum transfer and the nucleon.
- > Calculate E_{beam} in two different way:
 - > Using measured P_e, θ_e
 - \succ Using measured θ_e , θ_p

> Do acceptance matching to select events.

Measured G_M^n on a Neutron

 (ω, \vec{q})

GeV

 $R = \frac{\frac{d\sigma}{d\Omega} (D(e, e'n))}{\frac{d\sigma}{d\Omega} (D(e, e'p))}$

Select quasi-elastic (QE) kinematics:

- \triangleright using θ_{pq} : the angle between the 3momentum transfer and the nucleon.
- \succ Calculate E_{heam} in two different way:
 - \succ Using measured P_e, θ_e
 - \succ Using measured θ_e , $\theta_{p,n}$

 \blacktriangleright Do acceptance matching to select events.

Acceptance Matching

Use the measured **electron** information to predict the trajectory of the QE proton and **neutron**.

Swim the predicted neutron and proton tracks through CLAS12.

Check that both **neutron** and **proton** tracks strike the fiducial volume of CLAS12.

If both strike CLAS12 continue the analysis, otherwise throw it out.

CLAS12 Detector

Conclusion and Outlook

Status:

- Preliminary yields for quasi-elastic D(e, e'p) & D(e, e'n).
- NDE ~ 0.74 at the plateau (p_{mm} > 3.5 GeV) for two different magnetic field configurations with two different beam energies.

Future works :

- \blacktriangleright Validating NDE results by fitting missing mass distributions in missing momentum p_{mm} bins.
- > Improve and optimize quasi-elastic D(e, e'p) & D(e, e'n) Selection.
- Corrections: Fermi motion, radiative corrections, nuclear corrections.

D(e, e'p) Selection

D(e, e'n) Selection

Comparison of MC and Data to investigate quasi-elastic peaks.

The generator used is QUEEG 'QUasi-Elastic EventGenerator'

QUEEG: A Monte Carlo Event Generator for Quasielastic Scattering on Deuterium, G.P. Gilfoyle , J.D. Lachniet , and O. Alam, CLAS-NOTE 2014-007, Sep 5, 2014.