Goal: Align the SVT to reach the resolution design specification of $\approx 65 \, \mu m$.

2. Build accurate and complete representation of the SVT geometry and materials as part of the CLAS12 Common Tools.

3. Provide the geometry for the *gemc* simulation and the CLAS12 reconstruction from a common set of parameters.

4. Develop algorithms to measure and correct misalignments in the SVT.

5. Document it.
SVT Geometry Package Classes

1. Main author: Peter Davies, University of Surrey

2. SVTConstants
 - Connects to CCDB.
 - Loads core parameters.
 - Loads alignment shift data from file.

3. SVTStripFactory

4. SVTVolumeFactory

5. SVTAlignmentFactory
 - Fiducial points.
 - I/O for alignment data.

6. AlignmentFactory
 - Applies alignment shifts to points and volumes.

7. Util

8. Matrix

Merged with JCSG in Common Tools

Jerry Gilfoyle
Assessment and Validation

Surveyors measured three fiducial points on each module - CU+, CU-, and Pk.

Comparison of fiducial data: Factory Ideal from Survey Ideal before corrections.

Comparison of fiducial data: Factory Ideal from Survey Ideal after corrections.
Next Steps for SVT Geometry Package

1. Finish the CLAS-NOTE.
2. Make the code thread safe.
3. Tune the geometry to eliminate Geant4 overlap warnings for small (10’s of microns) overlaps.
4. Combine many files into a few.
5. Replace redundant utilities.
6. Test with cosmics (simulated and measured).
7. Test with events from the target (simulated).
8. Write code to correct misalignments.
Track-based alignment of SVT requires fitting many parameters - up to 792 here.

Program millepede does linear least squares with many parameters.

- Matrix form of least squares method.
- Global parameters: the geometry misalignments. Same in all events.
- Local individual track fit parameters. Change event-to-event.
- Requires first partial derivatives of residuals with respect to the local (fit) parameters and global parameters (geometry misalignments).

Analysis chain: red boxes - Java; green boxes - C++.

Full chain has been tested and validated using gemc simulation and cosmic data for simplified case (Type 1 events).
Some Results and Next Steps

1. Algorithm applied successfully to measured Type 1 cosmics.
2. Works on gemc cosmics with shifted regions.
3. Status:
 - Type 2 events selected. Algorithm for Type 2’s has problems.
 - gemc version 4a.0.2 in use.
 - Java/Groovy scripts updated to coatjava 4a.3.0.
4. Next steps:
 - millepede codes are built for Centos 6.5 - need to upgrade to Centos 7.
 - Get Type 2 algorithm working.
 - Test with cosmics (simulated and measured).
 - Test with gemc events from the target.