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ABSTRACT OF THE DISSERTATION
NEUTRON MAGNETIC FORM FACTOR G}; MEASUREMENT AT HIGH @?
WITH CLAS12
by
Lamya Baashen
Florida International University, 2023
Miami, Florida

Professor Brian A. Raue, Major Professor

The neutron magnetic form factor, G, is a fundamental quantity that describes how
magnetic properties are distributed within a neutron. This measurement provides
insights into the internal structure of the neutron. Furthermore, by measuring
7. alongside three other form factors (G%, G%, G%,), we can test the predictions
of Quantum Chromodynamics (QCD), which is the fundamental theory governing
the strong force that binds quarks and gluons. Additionally, these measurements
play a significant role in constraining Generalized Parton Distributions (GPDs) and
contribute to determining the angular momentum of the quarks within nucleons
The G7, was measured using the ratio of quasi-elastic e — n to e — p scatter-
ing from a deuteron target. The measurement covered a range of four-momentum
transfer squared, Q?, from 5 to 12 GeV?, using three different beam energies (10.2,
10.4, and 10.6 GeV). The data is compared with previous measurements and several
theoretical models. The preliminary results reveal that G, exceeds the predictions
of the standard dipole parametrization by 12-20%, based on RG-B passl data. It is
expected that this deviation from the standard dipole parametrization will dimin-
ish as we transition to using RG-B pass2 data, aligning G}, more closely with the
dipole form factor. The ongoing RG-B pass2 analysis in CLAS12 holds consider-

able promise for significant improvement. This enhancement is achievable through

vil



collaborative efforts aimed at refining tracking efficiency, momentum correction, cal-

ibration, and alignment.
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INTRODUCTION

The modern model of the atom is a dense nucleus surrounded by an electron cloud
and revealed by Rutherford’s gold foil experiment in 1911 [1]. Later, it was discov-
ered the nucleus itself is made up of smaller objects that we refer to as nucleons
(protons and neutrons). The fact that the proton’s magnetic moment is p, = 2.79
pn instead of p, = pn for a point-like charged particle with spin 1/2 demonstrates
that the proton has a structure. Similarly, the neutron’s magnetic moment of u, =
-1.91 py is different from the magnetic moment of a point neutral particle which
is pt, = 0. This is one indication that protons and neutrons are very complicated
objects that we now know are made up of fundamental particles called quarks and
gluons.

Quarks have six “flavors” known as up (u), down (d), strange (s), charm (c),
bottom (b), top (t), and strange and carry color charges (blue (B), red (R), or green
(G)). They interact with each other by exchanging massless particles, called glu-
ons through the strong interaction. The strong interaction between the quarks and
gluons is described by the theory of Quantum Chromodynamics (QCD) and the
strength of the interaction can be determined by the strong coupling constant, as,

which is dependent on Q? according to [2]

oy 127
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where Q? is the four-momentum transfer squared from the incident electron to the
nucleon, Ny is the number of quark flavors, and Agcp is a parameter in QCD (/0.22
GeV) [3, 4]. In the limit of very large values of Q? (short distance scale), « is small.
Therefore, the quarks are weakly interacting, which can be considered to be “free”.
This is asymptotic freedom. On the other hand, when Q? is small (large distance

scale), «ay is large and quarks are strongly interacting parties and bind to form



nucleons.

Understanding the quark-gluon dynamics and the nucleon structure is currently
the central problem of nuclear physics. The electromagnetic form factors of the
nucleons are basic observables that provide insight into the nucleon structure. These
observables describe the distribution of charge and magnetization within the nucleon
at low Q? and the behavior of quarks at high Q2. The unique tool to obtain these
observables experimentally is through high-energy electron-nucleon scattering.

Many experiments over the last several decades have studied the nucleon form
factors at different accelerator facilities [5]. One of these facilities is the Continous
Electron Beam Accelerator Facility (CEBAF) at the Thomas Jefferson National
Accelerator Facility (Jefferson Lab or JLab) in the United States. The Jefferson
Lab experiments measured the form factors for both the proton and neutron up to
Q? = 5 GeV? (see [6] and references therein). In 2015, JLab completed the upgrade
of CEBAF from 6 GeV to 12 GeV, which has provided the opportunity to extend
the measurement of form factors to higher Q?>. Measuring nucleon form factors at
high 2 will shed light on many topics related to the nucleon structure such as the
behaviors of the up and down quark contributions [7], the orbital angular momentum
of the quarks [8], etc. There are several experiments in Hall A to measure all four
elastic electric, Gg, and magnetic, GG);, form factors for the proton and neutron at
high Q? and one experiment in Hall B. The listing of experiments for measuring
the elastic electromagnetic form factors in the Jefferson Lab 12-GeV era is shown
in Table 1.

In experimental Hall A a new Super BigBite Spectrometer (SBS) will be used
to measure the nucleon form factors and their ratios, G%,, G%/G%,, G% /G, and
the G, 9], see Table 1. In experimental Hall B, the new CLAS12 spectrometer has

measured G%, up to Q* = 12 GeV?2.



This dissertation will describe the measurement of G, in Hall B using the
CLAS12 detector. The dissertation is organized as follows: Chapter 1 will present
the definition and interpretation of the elastic form factors, provide a review of the
previous data on G, and describe some of the theoretical models of the form fac-
tors. In Chapter 2, we will present the experimental setup to measure G'};, which
includes a description of the CLAS12 detector and how it work. In Chapter 3, we
will explain our method to measure the neutron detection efficiency, which is one of
the most important experimental quantities necessary to measure G, and a source
of systematic uncertainty. In Chapter 4, will present the procedures that we use to
measure the ratio R of quasi-elastic (QE) cross sections for e — n to e — p scattering
on a deuteron target. All corrections to the ratio required to extract G, will be
presented in Chapter 5. Finally, the preliminary results of G, and the systematic

uncertainty on G, will discuss in Chapter 6.

Quantity|  Exp. Method Target |Q? GeV?|Hall Status
G%, |E12-07-108| Elastic Scattering LHy, |[2.0-15.7] A PRL!
G%/Gh, |[E12-07-109|Polarization transfer| LH, [6.4 - 10.5] A Fall 2023
G?,  |E12-07-104| e —n/e —pratio |LDy, LHy| 5-12.0 | B Complete?
G%, |E12-09-019| e —n/e —pratio |LDy, LHy| 1.9-99| A Complete?
% /GR, |E12-09-016 | Double polarization |polarized | 2.1 - 8.4 | A Complete?
asymmetry 3He
% /Gh, | E12-17-004 | Polarization transfer| LDo 4.3 A | Summer 2023

G /G, [E12-11-009|Polarization transfer| LDy  [up to 6.9| A |To be scheduled

Table 1: Listing of the electromagnetic form factors of the nucleons experiments.

'Phys. Rev. Lett., 128, 102002 (2022)
2Data collection completed but not yet published.



CHAPTER 1
NUCLEAR FORM FACTORS

This chapter describes how elastic electron-nucleon scattering is used to determine
the internal structure of the nucleons. We will begin by deriving the differential cross
section for elastic electron-nucleon scattering, described by the theory of Quantum
Electrodynamics (QED). Then, we will discuss how the electric Gg and magnetic
Gy form factors are related to the distribution of charge and current within the
nucleon.

This chapter also describes the experimental methods to measure G}, and some of

the theoretical models describing G;.

1.1 Elastic Electromagnetic Form Factors

Elastic electron scattering off the nucleon is described by Feymman diagram shown

in Fig. 1.1 and defined by
e(k) + N(p) = e(k') + N (), (1.1)

where the incident and scattered electron has four-momenta k& = (E, E) and k' =
(k?’ , E'), respectively, and the initial and final nucleon state are p = (p, Ey) and p’ =
(p7 , Ey), respectively. The four-momentum transfer from the electron is through
the exchange of a virtual photon Q = k — k' = —q. According to Feynman rules
for QED, the amplitude for elastic scattering can be written as a product of an

electronic and nucleon currents, j* and J*, respectively [10]:

. . _Z v
—iM = g (%) e, (1.2)



. e
L = - yd
\\kl p.'/,/
AN lg v e
AN - g
b q

NYAVYAVYAVAVYA
- #) >y A /s
-iey*
a
//
/'é)
o k

Figure 1.1: Feynman diagram for electron-nucleon scattering. The shaded circle on
the right side of the diagram represents the structure inside the nucleon while the
black dot on the left side represents the electron as a point like particle emitting a
virtual photon.

where
j = (k) (—iex")u(k) and  J* = a(p')(—iel* u(p), (1.3)

where (%) is the virtual photon propagator, @(k), u(k') are four-component
Dirac spinors for the initial and final electron states, respectively, while @(p), u(p)
are Dirac spinors for initial and final nucleon states, respectively. The quantity ~*
represents the Dirac matrices and g, is the Minkowski tensor. The electronic cur-
rent contains —zey*, which represents the electromagnetic vertex function. On the
other hand, the nucleon current involves —iel'¥, which is the photon-nucleon vertex
function. The factor I'* contains all information about the internal electromagnetic
structure of the nucleon and can be defined in terms of Dirac (F}) and Pauli (F5)
form factors as [10]

ko' gy

M = | R(QY) + i

B(QY)], (1.4)

where o is the antisymmetric product of the gamma matrices defined as o" =

5", 7"], u # v, K represents the anomalous magnetic moment of the nucleon, and



M is the mass of the nucleon. By using this expression for the nucleon current, the

amplitude of elastic scattering becomes

2

M= %a(k’)vﬂu(k)gm P) |7 FR(Q%) +

159" a
oM

F(Q%) | u(p).  (L.5)

By using the above amplitude we can express the cross section for elastic electron-
nucleon scattering in terms of the invariant amplitude M given by Fermi’s Golden
Rule [? ]

1 -
= —— | M?2|dS). 1.
do = s [MP[dQ (1.6)

Therefore, the differential cross section for unpolarized elastic electron-nucleon scat-

tering in terms of Dirac F; and Pauli F5 form factors becomes

do 9 9 Q2 Q2
I Ay ye SWE

FQ) + (Fl + KJFQ)Q taHQ(g) s (17)

where 0 is the electron scattering angle, o0 is the Mott cross section for a point-

like nucleon

9
E’ cos (5)
o 1.8
and o ~ -L is the fine structure constant. The dlfferentlal cross section is related

137

to the probability that an electron interacts with a target and scatters into the solid
angle dQ2. Equation (1.7) is known as the Rosenbluth formula and contains the
interference term of Dirac and Pauli form factors.

The Sachs form factors, Gg and Gy, [11], were introduced as
Gp(Q*) = 11(Q°) — TH(Q") (1.9)

Gu(Q%) = F1(Q%) + F2(Q7), (1.10)

where 7 = -2 . The functions G g and G are linear combinations of Dirac F; and

aM2? -

Pauli F5, form factors. With this redefinition of the form factors, we can rewrite the



Rosenbluth formula as

do GH(Q%) +7G3,(Q%)
aq Mot 147

+27G3,(Q?) tanz(g) : (1.11)

The advantage of using the Sachs form factor is that there is no term interference,
for example, the cross section in Eq. 1.7 is o< F}F5. In addition, the Sachs form
factors are related to charge and magnetic current densities, as discussed below.
The Sachs electric G and magnetic G, form factors depend on Q2. In the
static limit, where Q% — 0, the virtual photon probe is no longer able to resolve
the nucleon’s substructure. In this case, the virtual photon should only observe a

point-like particle of charge gy and magnetic moment py of the nucleon.

GE(Q2 = 0) = dgn,

(1.12)
Gu(Q*=0) = pn.
The magnetic moment for a point-like particle is given by [12]
q ) h
=g\ = 1.1
v =9(517) 3 (1.13)

where g is the g-factor which is close to 2 and h is the Planck constant A divided
by 2m. The magnetic moment has been experimentally measured to be p, = 2.79
for the proton [13] and pu,, = —1.91 for the neutron [14].

GH(@ =0)=1, Gh(Q=0) = 1, = 279
(1.14)

GR(Q*=0)=0, G}(Q°=0)=p, =—-191.

In early measurements, the nucleon form factors could be described, to first

order, by a dipole form as

Gp=—"= T Gp, (1.15)



where

GD<@2>=(1+ — ) (1.16)
)2

0.71(GeV/c

The dipole model is successful in describing the experimental form factor data at
low Q2. However, it cannot be used for the neutron electric form factor because at
Q? = 0 the dipole model goes to 1 while the value of G% should go to the charge
of the neutron, which is zero. Therefore, the Galster parametrization [15] is usually
used to describe the neutron electric form factor

CHQ) =~ 5= Cn(@). (1.17)

1.2 Interpretation of Nucleon Form Factors

The physical meaning of the Sachs electric Gg and magnetic G, form factor can be
understood in the Breit frame, which is defined as the reference frame where energy
transfer is zero. The virtual-photon four-momentum is given by ¢ = (0, q) and Q* =
lq|>. In this frame, the four components of the nucleon current, J#(p',p) = (J°,J),

are related to the charge and magnetic moment distributions [16] by

J°(p,p) = —ieu(p’)Gpu(p),

10 X q

(1.18)
J('p) = —ieﬁ(p’)[ SM GM] u(p),

where o are the Pauli matrices. The nucleon current operator is then given by

GM(qz)) : (1.19)

Comparing equation 1.19 to the classical current density in 7 space

Jh(r) = (epen(r), & x Vpu(r)), (1.20)



leads equation (1.19) to the interpretation of Gg and G in the Breit frame as

Fourier transforms of charge and magnetization distributions given by

Ge(Q?) = % rdrpe (1) sin Qr,

(1.21)
Gu(Q*) = %/rdrupm(r)sinQr.

Therefore, the nucleon charge and magnetization densities can be obtained from the
inverse Fourier transformations of experimental data Gg and Gj; in the limit of
Q?* — 0.

At very low Q?, G and Gy can be related to RMS charge and magnetic radii
of the nucleon by using a Taylor series expansion of Eq.(1.21) [2], given by

Ge(Q?) = /47rr2 drpen(r) — éQQ/élm“Q drr? pen(r) + ..., ( |
1.22

1
= ]_ — 6Q2 < TQE > +,
and

Gu(@Q*) /= /47r7"2 drpp, (1) — %Q2 /47‘('7”2 drr? pp (1) + ..., L2

1
=1- §Q2 < i >4
where p denotes the nucleon magnetic moment. Hence, the RMS charge and mag-

netic radii of the nucleon are given as

dGg 1 dG
< T%‘ >= —0 TQQ Qz_o, < 7"?\4 >= —6; TQ2 o . (124)

This interpretation of charge and magnetization densities is only valid in the non-
relativistic regime. Kelly [17] studied the systematic behavior of the elastic elec-
tromagnetic form factors (EEFFs) with Q? using various prescriptions taking into
account relativistic effects. He related Gg and G); in equation (1.21) to the rest

frame charge and magnetization densities of the nucleon in the Breit frame as

pen(k) = Ge(Q*)(1 +7)°8, (1.25)



o (k) = Gar(Q%)(1 + 7)™, (1.26)

where the intrinsic form factors p(k) are related to the densities by the Fourier

transform:

k) =2 / " Ao (kr)o(r), (1.27)

T

and k is the intrinsic spatial frequency defined as

Q2
E? = . 1.2
1+7 ( 8)

The Ag and Ajp; in Egs. 1.25 and 1.26 are model-dependent constants. The nucleon
form factors Gg and G, in Eqgs. 1.25 and 1.26 can be obtained by fitting the results
of the nucleon form factor data available in 2004 [18] as shown in Fig. 1.2. The

charge and magnetization densities for both the proton and the neutron are shown

in Fig 1.3.
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Figure 1.2: Kelly Fits to nucleon electromagnetic form factors [18].

The neutron’s magnetization density p,, is very similar to that of the proton,
despite the interior precision not being as good in the experimental data because of

large uncertainties at high Q2. The neutron charge distribution has a positive core
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Figure 1.3: The charge and magnetization distributions of the proton and the neu-
tron obtained from nucleon form factor data by Kelly [17].

with an extended negative tail, which can be interpreted as a neutron with a proton
core dressed by a 7~ cloud. The neutron charge density p., has an error band that
is significantly broader due to the limitations in the range and quality of the G,
data that were available at the time.

In 2007, Gerald A. Miller [19] introduced a fresh perspective to elastic scatter-
ing experiments involving neutrons. His approach provided insight into the spatial
distribution of charges within the neutron. Miller’s re-evaluation of the data indi-
cated the presence of a negative charge at the neutron’s core, situated within its
positive region. Meanwhile, inelastic experiments that measure quark momentum

consistently indicated that highly energetic quarks, particularly negatively charged
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down quarks, are more likely to be located closer to the center of the neutron [19].
Consequently, higher Q* data will enhance the precision of neutron densities and
provide a deeper understanding of their distribution. The next section will show the

available world data of G, and describe methods of measuring G7,.

1.3 Motivation for Measurements of G,

The nucleon form factor Gg and G, are fundamentally important to understand
the electric charge and magnetic moment within the neutron at low Q? and the
behavior of quarks at high Q% Measuring G%, at higher Q% with the other three
form factors (G%, G, and G7,) allows extraction of the individual up and down
quark contributions. The formula connecting nucleon form factors and the up and

down quark contributions are [§]

Flloy = 2F}y) + Flpy and  F(y) = 2F](y) + F(y), (1.29)

where Fj (o) are the Dirac (Pauli) form factors and there are no contributions from
heavier quarks. The result of this process is represented in Fig. 1.4 [8]. It shows the
down quark appears to scale roughly as 1/Q* above Q? = 1.5 GeV?, while the up
quark appears to scale as 1/Q?. The interpretation of the very different behaviors
can possibly be explained through diquark correlations. The current experiment
when combined with the other form factors will allow the flavor decomposition at
Q? up to 10 GeV?2, where the behaviors of the individual quark contributions, as
well as the calculations will be further tested [8].

In addition, the nucleon form factors including G, play a crucial role in the
understanding and interpretation of various other quantities. A few examples of

this are:
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Figure 1.4: The flavor decomposition of proton form factors shows the behavior of
the dependence u and d quarks contributions on Q? [8].
e Parity-violating electron scattering experiments designed to probe the strange

content of the nucleon [20].

e Determining the charge and magnetization radii of nuclei and interpreting

electron scattering experiments from nuclei [21].

e First moments of the Generalized Parton Distributions relating to Dirac and

Pauli form factors [22].

1.4 Experimental Measurements of G,

Several experiments were performed in order to measure the neutron form factor
at different electron accelerators around the world. The data for the neutron form
factors are less well known compared to proton form factors due to the lack of a
free neutron target, since a free neutron will decay with a half-life of about 14.7
minutes via 8~ decay, or n — p + e~ + v.. Therefore, most neutron experiments

were done using deuterium targets, which contain both a proton and a neutron. In
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this case, we use a bound neutron as a target so nuclear corrections must be applied
to account for the nuclear structure of deuterium. There are two main methods to

measure G'};; unpolarized and polarized electron-nucleon scattering.

1.4.1 Polarized Measurements

There are two experiments that have extracted G7, using polarized targets, which
were both done at low Q2. The first experiment was done by Gao et al. [23] at
the MIT-Bates laboratory by measuring the transverse asymmetry Az in 3Ife(€, e).
Then G7, is extracted by fitting the data to theoretical calculations of *He structure.
The experimental asymmetry can be written in terms of electric and magnetic form
factors as

AT/ Apps

N

:QTUT/ cos G*G?M(Q25+ 21/27(1 + 7)vrp sin 0% cos ¢* G p(Q*) G (Q?)
(1+ 1) G% + 2107 G2,

Aexp = Pth

Y

(1.30)
where 6* and ¢* are the polar and azimuthal angles of target spin with respect to

the virtual photon momentum ¢, P, and P; are the beam and target polarizations,

respectively, vy = %, vp = % + tan?(0/2), vrp = \%% tan(6/2), and vy =

tan(6/2) % + tan?(6/2). The asymmetry corresponding to 8* = 0° is called the
transverse asymmetry, A7, while the asymmetry corresponding to 8* = 90° is called
the transverse-longitudinal asymmetry Azz,. The transverse asymmetry Az (G7,)

can be written as a function of the neutron magnetic form factor G, as

N 1+ aGh,?
Ap(Gh*) = IW:—GT%’ (1.31)
M

where a, b and ¢ are the fit parameters from the calculations of Salme et al. and
Schulze et al. [23]. This experiment obtained G%, at Q* = 0.19 GeV?, see Fig. 1.5

the hollow star point. The large uncertainty on G7%; is dominated by statistical
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uncertainties, with a small contribution from nuclear-model uncertainties.

The second experiment that obtained G, using this technique was done at
Jefferson Lab [24, 25, 26] and is represented by the blue points in Fig. 1.5. In
this experiment, G7, was extracted in the range Q? = 0.1-0.6 GeV2. The error bars
shown in the figure represent both statistical and systematic uncertainties.

The polarized method provides valuable information on G%, at lower Q? values.
However, in this analysis, the main focus is on measuring G%, at high Q? values

in the range of approximately 5-12 GeV?, which is extracted using an unpolarized

method.
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Figure 1.5: The measurements of G}, from polarized electron-deuteron experiments.
Graph from Ref. [7].
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1.4.2 Unpolarized Measurements

Most G, measurements were extracted using an unpolarized electron beam incident
on a deuterium target. Figure 1.6 shows the world data of the G}, measurements

at different Q? values. Previous measurements of G%, were done by four methods:
e Inclusive quasielastic electron-deuterium scattering ?H(e, €’).
. . . . . 2 Vi
e Coincidence quasielastic electron-neutron cross-section “H(e, €'n) measurements.

e Anti-coincidence quasielastic electron-deuterium cross-section ?H(e, 'p) mea-

surements.

e The ratio of quasielastic electron-neutron to quasielastic electron-proton cross

section®H(e, ¢'n) /?H(e, ¢'p) measurements.
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| M Rock(1982) V Esaulov (1987) B
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I @ Markowitz (1993) 4 Anklin (1994) -
15— JL Bruins (1995) 4= Kubon (2002) 1
- »Lachniet (2009)
a -
(& N
c
3. L I
T I B -
1.0—1-——.";'——-,
0.5— —
1 1 11| I 1 1 1 1 111 \ 1 1 1 1 1 L1
10" 1 10
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Figure 1.6: The world data on G}, from unpolarized electron-deuteron experiments.
Graph from [27].

The first method requires subtraction of the proton contribution from the measured

cross section and also a good knowledge of the deuterium model, which leads to
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large systematic uncertainties. This method was done by Hughes et al. [28], Rock
et al. [29], Esaulov et al. [30], Arnold et al. [31] and Lung et al. [32].

To avoid subtracting the proton contribution, Stein et al. [33], Bartel et al. [34]
and Markowitz et al. [35] extracted G%, using coincidence *H(e, ¢'n) measurements,
where the neutron is detected in this method. This method still requires a good
knowledge of deuteron structure. In addition a precise measurement of the neutron
detection efficiency is needed.

Due to the difficulties of detecting neutrons, Hanson et al. [36] measured G, us-
ing an anti-coincidence ?H(e, €¢'p) measurement, wherein one detects proton D(e, €'p)
and does not detect proton D(e,e’p) which assumes to be equivalent to the detec-
tion of a neutron. Thus, it is possible to relate the experimental ratio ep/ep to the
ratio of the elastic en/ep scattering cross sections. This method also requires good
knowledge of the deuteron structure as well as accurate background subtraction to
account for all the non-detected protons.

To minimize the uncertainties due to the nuclear effects in the deuterium model,
the ratio method was used by Anklin et al. [37], Bruins et al. [38], Kubon et al. [39]
and Lachniet et al. [40]. In this case, the protons and neutrons are detected in
coincidence with scattered electrons from the deuterium target. This method only
requires knowledge of neutron detection efficiency, which reduces the systematic un-
certainties. There is still a nuclear model dependence as a function of Q?, but it is
reduced in the ratio method especially at the higher (? measured here.

The highest Q? measurement of G, was primarily measured at SLAC by Rock
et al. [29]. In this experiment, G, was measured in the Q* range of 2.5 - 10 GeV?
using the inclusive quasielastic electron-deuterium method. The results from this
experiment are represented by the brown points in Fig. 1.7. Another SLAC experi-

ment, performed by Lung et al. [32], used the same method to measure G7; in the
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Q? range of 1.75 - 4 GeV?, which is represented by the filled black triangles in the
figure. The uncertainty in the G}, results from both the Rock and Lung experiments
includes both statistical and systematic effects. The uncertainties associated with
these measurements are large as shown in Fig. 1.7. This is mainly due to the proton

subtraction and the deuteron model dependence.
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Figure 1.7: The world data on G, from polarized and unpolarized electron-deuteron
experiments at high Q? values. The red band shows the systematic uncertainty for
the CLAS6 data. The theory curves are the Miller model (blue) [41], the Gutsche
model (yellow) [42] , and the Cloet model (green) [43].

The latest unpolarized measurements of G%, were done by Lachniet et al. [40]
at JLab in Hall B using the CLAS detector. The CLAS result of G%, at Q* =1 -
4.8 GeV? is shown as red points. The uncertainty in the G, measurements repre-
sents the statistical error, while the red band illustrates the systematic uncertainty
associated with the experiment. A unique feature of this experiment was a dual-
cell target containing deuterium and hydrogen targets. This allowed measurement
of the neutron detection efficiency by the H (e, e'r™)n reaction simultaneously with

the cross-section measurements. The G}, results of CLAS data show a flat behavior
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up to @ around 4.8 GeV?, while the SLAC data shows that G%, falls off at high
Q? with large uncertainties. Measuring G7%, at high Q? will extend our knowledge
into the region where limited measurements currently exist. The next subsection

will explain the ratio method that we used to extract G}, in this analysis.

Ratio Method

To extract G, we use a method of measuring the ratio of quasi-elastic H(e, €'n) to
2H(e, €'p) cross sections in the deuteron target in the range Q* = 5-12 GeV?2. This
ratio is proportional to the ratio of the free nucleon e — n to e — p cross section in

Eq. 1.11 and is given by

o G™)247(G7,)? n
po B o eyt (G ()
%[QH(B, e'p)oEl W +27(GE,)2 tanQ(%)
(1.32)

where a(Q?) is a nuclear correction to deviations from the free ratio and can be
calculated by using standard models for the deuteron [40]. On the right side, the
denominator contains electric, G%, and magnetic, G/, form factors for the proton;
these quantities are well known from other measurements. The numerator contains
the desired G, value and the neutron electric G5 form factor, which is small over
the range of this Q% measurement. Several parameterizations of G7% will be used
to estimate the associated uncertainty. Therefore, the only unknown in Eq 1.32 is

", and can be extracted. The advantage of using the ratio method is it reduces
several systematic uncertainties that come from Fermi motion corrections, radiative
corrections [5], and running conditions, which will be discussed in more detail in

Chapter 4.
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1.5 Theoretical predictions of G},

Along with experimental attempts to measure the nucleon form factors, theorists
have been developing nucleon models over the years to predict the elastic electromag-
netic form factors. A good nucleon model should be able to describe and predict the
electromagnetic form factors for both protons and neutrons. The following section

describes some theoretical techniques.

1.5.1 Vector Meson Dominance Models

[ mz +Q2 N

Figure 1.8: Photon-nucleou coupling in the VMD models.

The vector meson dominance model attempts to describe the interaction between
hadrons and the virtual photon. In a series of papers investigating Vector Meson
Dominance, Sakurai explored the nucleon form factors in the early 1960s [44]. In this
model, the virtual photon is coupled to the nucleon through the exchange of vector
mesons p, w, and ¢ as shown in Fig 1.8. Hence, the Pauli and Dirac form factors in

both isoscalar and isovector electromagnetic currents, Ffféw, can be written as
2
is,i 9 m;Cly, 9
F(@Q) =) 5 (@), (1.33)
i

where C,y is a photon-meson coupling strength that can be determined experi-

mentally or left as free parameters in a fit to the nucleon form factors, Fjy are
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meson-nucleon vertex form factors and the sum is taken over the different vector
mesons ¢ of mass m;. The meson-nucleon vertex form factor, Fjy, requires a func-
tional form. For instance, the early literature frequently employs the monopole and
dipole forms, or Fjy = (1 + %j) - where n =1 or 2, respectively. The relations
between the isoscalar and isovector electromagnetic currents and the electric and

magnetic form factors are
1, . ) 1, . .
Gg = §(F1’8 + ) — T§(F2” + F37) (1.34)
1 5] w 1 15 v
where the + (—) sign is for the proton (neutron) form factor. The formulation in
Eq. 1.33 neglects the widths of the vector mesons. Since earlier work ignored the

width of the p-meson, lachello, Jackson, and Lande (IJL) [45] in 1973 introduced a

finite width for the p-meson by making the replacement in Eq. (1.33)

m? R m? 4 6L ymy /T (1.36)
m2+Q*  (m2+Q?)+ (4m2 + Q)T ,a(Q?)/my’ '
where I'), =112 MeV and «(Q?) is
1/2 / /
a(Q?) = % {%] In {(Cy * 4m72f2>;: (@7 (1.37)

The width of the w and ¢ mesons were not included because they were much narrower
compared to p. In 1985, Gari and Krimpelmann (GK) [46] extended this model
for high Q? predictions to include perturbative QCD (pQCD). More recent work by
Lomon in 2001 and 2002 [47, 48] where he extended the GK model by using 11 free
fit parameters and included the p'(1450), and the w'(1419). He obtained reasonable
fits to all four nucleon form factors. Lomon’s fit was updated [49] when the G'%/G%,
at @Q* = 3.4 GeV? data set [50] from Hall A at Jefferson Lab became available.
Figure 1.9 shows the recent fit from Lomon’s extended GK for G%,/u,Gp. Note,
Lomon’s fit didn’t include the CLAS6 data (Lachniet).
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Figure 1.9: The fit of the extended GK model by Lomon’s work for the neutron
magnetic form factor G, scaled by u,Gp [49]. Graph from [51]

1.5.2 Constituent Quark Models

The constituent quark model (CQM) is a theoretical framework that describes the
nucleon (proton and neutron) as composed of three valence constituent quarks. The
early, nonrelativistic version of the CQM had significant success in defining the
spectrum of baryons. In 2002, Gerald Miller [52] used the framework of describing
the behavior of particles in relativistic quantum mechanics. He used the light-front
dynamics to calculate the matrix elements of the electromagnetic current operator
for nucleons, which describe the way in which nucleons interact with electromagnetic
fields. Light-front dynamics is a particular approach to solving relativistic quantum
field theories, where one chooses a specific reference frame known as the light-front
frame. In this frame, the time variable is replaced by the light-front time, which is
the time coordinate along the direction of the total momentum of the system. This

choice of frame simplifies the equations of motion and allows for a more systematic
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treatment of relativistic effects. By using light-front dynamics, Miller modeled the
nucleon as the three bound constituent quarks surrounded by a cloud of pions. The
pionic cloud is important to understand the behavior at low Q?, especially for the
neutron electric form factor G%. In a later study by Zhang, Hobbs and Miller [41]
in 2020, they used a light-front quark model with a pion cloud to calculate the
nucleon’s electromagnetic form factors. In this model, the nucleon is described as
a composite particle made up of quarks and a diquark. The model includes the
“pion cloud”, which represents the influence of pions in the nucleon’s structure.
Pions are associated with the strong force and play a significant role in nuclear
interactions. The result obtained from Zhang, Hobbs and Miller’s light front model
for the neutron magnetic form factor, G%,, is shown in Fig. 1.7 (blue curve).

In addition, Gross et al. [53, 54] modeled the nucleon as a system of three valence
constituent quarks using the covariant spectator formalism. The covariant spectator
formalism is a theoretical framework for describing the structure of hadrons using
quantum field theory. In this formalism, the hadron is represented as a composite
system of constituent quarks, which interact via the exchange of virtual particles
(gluons). The spectator formalism takes into account the fact that the quarks inside
the hadron are not isolated, but are surrounded by a cloud of virtual particles, which
affect their properties. By including the effects of this cloud of virtual particles in
their model, Gross was able to obtain a better description of the structure of the
nucleon. The results of their calculations were found to be in good agreement with
the experimental measurements of the neutron magnetic form factor as shown in
Fig. 1.10 (green curve).

Lastly, De Sanctis et al. [55] calculated the elastic electromagnetic form factors
of the nucleon using a relativistic version of the hypercentral Constituent Quark

Model (hCQM). Hypercentral refers to the specific form of the interaction potential
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used to describe the interactions between constituent quarks within hadrons. The
hCQM is an extension of the CQM, which incorporates a hypercentral potential,
describing the interactions between the constituent quarks. The nucleon FFs were
well fit by linear combinations of component quark FFs with monopole and dipole
properties. Furthermore, Santopinto et al. [56] extended the calculations to higher
values of Q2. The predictions of Santopinto for the neutron magnetic form factor is

shown in Fig. 1.10 (black curve).
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Figure 1.10: Comparison of theoretical predictions to G, data. Theory curves
are (Diehl05) [22], (Lomon06) [49], (Gross08) [54], and (Santopinto) [56]. Graph
from [57] and G7, data are from Refs. [8, 26, 40]

1.5.3 Dyson-Schwinger Equations

One of the challenges in understanding hadrons is that quarks and gluons are con-
fined within them, meaning they cannot be directly observed as free particles. Addi-

tionally, the effects of confinement and another phenomenon called dynamical chiral
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symmetry breaking (DCSB) have a profound impact on the behavior of quarks and
gluons within hadrons. Confinement refers to the fact that quarks and gluons are
never found in isolation but are always bound together in hadrons. DCSB involves
the generation of mass from interactions, leading to the majority of a nucleon’s
mass being generated through these strong forces rather than from the masses
of the individual quarks themselves [58]. To study these complex phenomena,
Dyson—Schwinger equations (DSEs) are used. DSEs are the quantum-mechanical
equations of motion that describe the interactions between particles within a quan-
tum field theory, and they have been used successfully to study confinement, DCSB,
and their effects on hadron properties.

Dyson-Schwinger equations have been applied to calculate the nucleon electro-
magnetic form factors. Cloét et al. [59] used the Dyson-Schwinger equations to
calculate the electromagnetic form factors of the nucleon. The calculation was per-
formed in the framework of a covariant and confining Nambu-Jona-Lasinio (NJL)
model [43]. The NJL model describes the interactions among quarks using an effec-
tive four-fermion interaction term, and it has been used to study various properties
of hadrons, including nucleons. The model takes into account both relativistic ef-
fects and the confinement of quarks and gluons. The result obtained from Cloét et
al. [59, 43] for the neutron magnetic form factor G7,, is shown in Fig. 1.7 (green

curve).

1.5.4 Generalized Parton Distributions (GPD)

Generalized Parton Distributions (GPD) describe the distribution of partons, such
as quarks and gluons, within a hadron [60, 61]. GPDs provide us a 3D image of the

quark and gluon structure of the nucleon. The Ji Sum Rule provides an important

25



key to understanding the origin of the spin of the nucleon, which relates the total
angular momentum of the quarks to sums over some of the GPDs [60]. Knowledge
of the nucleon elastic form factors is essential for the experimental determination
of GPDs because their first moments are related to the elastic form factors through

model-independent sum rules:

+1 +1
/ oY (,6.QY) = FQ) / W6 Q) = B, (139
where
HY(r,6,Q%) = H(2,0,Q%) + H(—2,0,Q%) (1.39)
Ei(z,¢,Q%) = E%z,0,Q%) + E9(—x,0,Q%) (1.40)

where ¢ is the quark flavor, x is the momentum fraction, ¢ is the skewedness or
asymmetry between the quark momenta and HY and E? are the flavor-dependent
generalized parton distributions. Equations 1.39 and 1.40 are defined with £ = 0
and include contributions from quarks as well as antiquarks. In the limit of Q? — 0,
H%(x,Q* = 0) = u,(x) and HY(z,Q* = 0) = d,(x), which are the valence quark
densities of the proton. The v subscript refers to the “valence GPDs”. The nucleon
form factors can be constructed if the quark form factors are known using the
calculations of Ref. [22]. Their results for both proton and neutron form factors are
in good agreement with the available experimental data. The result of the GPD

model of Ref [22] is compared to the G, data shown in Fig 1.10 (blue curve).

1.5.5 Chiral Perturbation Theory

Chiral Perturbation Theory (ChPT) is a theoretical framework that provides a sys-
tematic way to describe the low-energy interactions of hadrons in terms of their

underlying symmetries [62]. Faessler et al. [63] used a manifestly Lorentz covariant
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chiral quark model to study baryons as composed of constituent quarks surrounded
by a cloud of pseudoscalar mesons. This approach is based on a nonlinear chirally
symmetric Lagrangian that involves two key components: constituent quarks and
chiral fields representing pseudoscalar mesons. This Lagrangian plays a pivotal role
in calculating dressed transition operators with proper chiral expansion, which de-
scribe how quarks interact with external fields in the presence of a virtual meson
cloud. These dressed operators are then used to compute the momentum depen-
dence of the nucleon’s electromagnetic form factors. This approach allows insight
into the structure and behavior of baryons by considering the interplay between con-
stituent quarks and the surrounding pseudoscalar meson cloud within a consistent
and covariant framework. Figure 1.11 shows a good agreement of the calculated
neutron magnetic form factor G%, with the experimental data at high Q? before

including CLAS6 data.
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Figure 1.11: The result of predictions of the Faessler’s model for the neutron mag-
netic form factor G%, scaled by uGp [63]
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1.5.6 AdS/QCD Correspondence

An interesting way to calculate form factors is to use a holographic QCD or Ad-
S/QCD correspondence, which describes the strong nuclear force QCD in terms
of the anti-de Sitter/conformal field theory correspondence (AdS/CFT). AdS/CFT
is a mapping between two physical theories: gravity in a negatively curved space
called anti-de Sitter space (AdS) and a quantum field theory without gravity defined
on the boundary of that space [64]. Gutsche et al. [65] have conducted a thorough
analysis of the electromagnetic form factors of nucleons using a holographic soft-wall
model. This method is based on an action that describes hadrons by accounting for
broken conformal invariance and confinement through a background dilaton field.
For cases where the number of colors (N.) is equal to 3, they represent the nucleon’s
structure as a combination of a three-valence quark state and high Fock states that
contain an adjustable number of partons (quarks, antiquarks, and gluons). This is
accomplished by studying the behavior of 5D fermion fields with different scaling
dimensions in anti-de Sitter space. The principle of gauge/gravity duality guides,
indicating that these 5D fermion fields with distinct scaling dimensions correspond
to specific Fock state components possessing a particular number of partons. In this
study, they focus on the contribution of Fock state components containing 3 (which
contains three valence quarks), 4 (which contains three valence quarks plus a gluon
field), and 5 (which contains three valence quarks plus a ¢g pair of sea quarks or
three valence quarks plus 2 gluons) partons within the nucleon’s structure. Using a
minimal set of independent parameters (including the dilaton scale parameter, mix-
ing parameters for partial contributions from Fock states, and coupling constants
in the effective Lagrangian), they achieved a level of agreement with experimental
data that is not very reasonable as shown in the left of Fig. 1.12 for the neutron

magnetic form factor.
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In a later study by Gutsche et al. in 2018 [42], the soft-wall AdS/QCD action
was expanded with new non-minimal terms. These terms play a critical role in
influencing the momentum behavior of form factors and helicity amplitudes, which
are important characteristics of the nucleon. This extended version of the soft-wall
AdS/QCD model significantly improves its ability to describe the nucleon’s form
factors, as shown in the right-hand panel of Fig. 1.12. Also the Gutsche model is

shown in Fig. 1.7 for G7,.
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Figure 1.12: The prediction of soft-wall AdS/QCD model for the neutron magnetic
form factor G%,. Left: With minimal number of parameters [65]. Right: Extended
Gutsche’s works [42]
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CHAPTER 2
EXPERIMENTAL SETUP

The G, experiment described in this dissertation was performed at the Thomas
Jefferson National Accelerator Facility in Newport News, VA. In this chapter, the
experimental setup is described. An overview of the laboratory, a detailed descrip-

tion of the CLAS12 detector and associated software is provided.

CEBAF AT JEFFERSON LAB s

l INJECTOR LINEAR ACCELERATOR CENTRAL HELIUM LIQUEFIER  RECIRCULATION MAGNETS EXPERIMENTAL HALL A EXPERIMENTAL HALL B

Figure 2.1: The Jefferson Lab CEBAF accelerator site and four experimental
halls [66]. The electrons are emitted from the injector that is marked by the number
(1) and accelerated through the two LINACs that are marked by the number (2),
connected at each end with recirculating magnets represented by number (4). The
electron beam is sent to four different experimental halls A, B, C and D that are
marked by the numbers 5, 6, 7, and 8, respectively.
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2.1 The Continuous Electron Beam Accelerator Facility (CE-

BAF)

The Thomas Jefferson National Accelerator Facility relies on the Continuous Elec-
tron Beam Accelerator Facility (CEBAF). It is designed in the form of a race track,
which consists of two parallel linear accelerators (linacs), known as north and south
linacs and dipole magnets at the ends to bend the beam around the arcs. The north
and south linacs are represented by number 2 and the magnets are represented by
number 4 in the Fig 2.1, respectively. Jefferson Lab houses four experimental halls,
namely Halls A, B, C, and D, each of which receives a high-quality, high-luminosity,
and polarized electron beam with an energy of up to 12-GeV in Hall D. These halls
are represented by numbers 5, 6, 7, and 8 in the Fig 2.1, respectively. The electron
beam is generated and accelerated and injected in the north linac (the injector of
the beam shows by number 1 in Fig 2.1), then bent in a 180° arc and injected into
the south linac. This acceleration process is done four and a half times more to
achieve the final energy for Hall D and up to four times to get the desired delivery
energies for Halls A, B, and C.

2.2 Hall B Beamline

The Hall B beamline allows the electron beam from CEBAF to be delivered safely
and effectively to the physics target in the experimental hall. Over all, the beamline
allows experimenters to monitor the beam quality in real time and allows operators
to change the beam’s characteristics as necessary. The Hall B beamline is divided
into two segments: the “2C” line following beam extraction from the CEBAF ac-

celerator to Hall B and the “2H” line inside the experimental hall. Accelerator
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operators have access to several quadrupoles and corrector dipoles upstream of the
CLASI12 detector that are used to keep the beam size within required tolerances and
centered on the target as shown in Fig. 2.2. Hall B personnel control several beam

position, polarization, current, and halo monitors [67].

2HOD Girder with Tungsten shield

Beam dump shieldin quadrupoles and g
and the collmator bow | | HAV correctors 2HO1 nA BPM Target cell

Figure 2.2: Hall B beamline upstream of the CLAS12 detector showing the tagger
magnet yoke (in the left) that is energized during beam tuning and during polar-
ization measurements, quadrupoles and corrector that are used to deliver beam to
the target, beam position monitors (BPM) that consist of Radio Frequencies (RF)
cavities to provide both the beam position in the z — y plane and the relative beam
intensity and wire harps that are used to measure the electron beam profile and
position [67].

2.3 CEBAF Large Acceptance Spectrometer (CLAS12)

CLAS12 is a large acceptance spectrometer consisting of three major parts, a For-
ward Detector (FD) that detects particles within a polar angle from 5° — 35° a
central detector (CD) that detects particles greater than 35°, see Fig. 2.3, and a
Forward Tagger (FT) that detects particles within a polar angle from 2.5° — 4.5°.

The FD is based on the torus magnet, which provides the magnetic field used to
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Figure 2.3: The CLAS12 spectrometer in Hall B at JLab. The electron beam is
incident from the right side of this figure. The CLAS12 Forward (FD) and Central
(CD) Detectors are identified [68].

determine the particle momentum and charge. Drift chambers (DC) are used to
measure the track of the charged particles. A precise flight time of the traveling
particles is measured in the forward time of flight (FTOF). The High and Low
Threshold Cherenkov Counters (HTCC, LTCC) are used to differentiate between
particle types. The HTCC is used to distinguish between electrons and pions at
high momentum while the LTCC is used to distinguish between pions and kaons in
the 3.5 — 9 range GeV/c. The last parts of the FD are the preshower calorimeter

(PCAL) and electromagnetic calorimeter (EC). They are used to stop the highest

energy electrons and to identify electrons, photons, and neutrons. The second part
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of the CLAS12 detector is the Central Detector (CD), which is comprised of Central
Vertex Tracking (CVT) system [69], Central Time-Of-Flight system (CTOF) [70],
Central Neutron Detector (CND) [71], and the solenoid magnet located inside the
central detector that surrounds the target area and consists of five NbTi coils, pro-
ducing a magnetic field of up to 5 T [72]. The last part of the CLAS12 detector,
is the Forward Tagger (FT) located between the High Threshold Cerenkov Counter
and the torus support that is located between the three regions of DCs. The FT
is comprised of an electromagnetic calorimeter (FT-Cal), a tracker (FT-Trck), to
measure the scattering angles 0. and ¢., and a hodoscope (FT-Hodo) to provide
e/~ separation. More details of FT can be found in [73].

In this analysis, the G, measurement only used the CLAS12 forward detector.
The following sections will describe each subsystem of the CLAS12 FD in more

details.

2.3.1 Target

The G, measurement used two types of cryogenic targets, liquid hydrogen (LH2)
and liquid deuterium (LD2). The LH2 target is used to measure the neutron and
proton detection efficiencies, while the LD2 target is used to measure the ratio of
quasi-elastic D(e, e'n) and D(e, e'p) to extract G,. The cryogenic target of CLAS12
is located within the Solenoid magnet. The target is a 50-mm long Kapton cone
with a 23.66 mm upstream diameter and 15.08 mm downstream diameter. Figure 2.4
illustrates the design of the target cell located within the scattering chamber. The
scattering chamber itself is constructed using Rohacell XT110 foam (density p =
0.110 g/cm?®). The electron beam passes through entrance and exits windows at

each end of the target that are made of 30-um-thick aluminum [67]. The run groups
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of the CLAS12 experimental program share many features, including the magnetic
field setting, beam current, and the target. The first group that used the liquid
hydrogen target was known as Run Group A (RG-A) while the second group used

the liquid deuterium target known as Run Group B (RG-B).
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Figure 2.4: The design rendering of the target cell located within the scattering
chamber [67].

2.3.2 Torus Magnets

The CLAS12 Torus magnet consists of six symmetrical trapezoidal super conducting
coils located between each drift chamber (see Fig. 2.5). The purpose of the torus
magnets is to provide a magnetic field to bend the charged particles toward or away
from the beamline depending on the sign of the charge. The curvature of the tracks
allows for a reconstruction of particle momenta. This magnetic field is oriented
around the beam axis in the azimuthal direction. The six coils provide close to the
same magnetic field in all the six sectors. The coils operate at a nominal current
of 3770 A, producing a peak field of 3.6 T. At this current, the resulting integrated
magnetic field [ Bdl is 2.78 Tm at 5° and 0.54 Tm at 40°. The torus magnet can be

operated with either field polarity, resulting in an “in-bending” configuration where
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electrons are bent towards the beamline, or an “out-bending” configuration where
electrons are bent away from the beamline. The acceptance for electrons differs

significantly between in-bending and out-bending configurations. More detail can

be found in Ref. [72].

Torus coil

R3 chamber

R2 chamber

R1 chamber

Figure 2.5: Left: The torus magnet in Hall B before the installation of drift cham-
bers between the coils [72]. Right: The torus magnet between the drift chamber
regions [74].

2.3.3 Drift Chambers

The drift chambers (DC) of CLAS12 are used to provide scattering angle and mo-
mentum reconstruction for charged particles by measuring their trajectory. The DC
system is designed with 18 drift chambers arranged in three regions: Region 1 is
located between the target and the torus; Region 2 is located within the magnetic
field field of the torus; Region 3 is located outside the torus magnet and before the
TOF. Each region is divided into six sectors, as shown in Fig. 2.5. For each region,
there are two superlayers with each containing six layer of sense wires. The wires

within the superlayers are strung in stereo angles of £6° relative to each other to
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provide the azimuthal angle information of a track. Each sense wire is surrounded
by two layers of field wires, forming a hexagonal cell as shown in Fig. 2.6.

The drift chambers are filled with mixture of a 90% of Argon and 10% of COs,.
When a charged particle passes through the drift chambers, it ionizes the atoms in
the surrounding gas. Electrons and ions produced during the ionization process drift
toward the cathode (field) and anode (sense) wires, respectively. As the electrons
move closer to the sense wires, they experience a higher electric field and gain energy;,
which can lead to further ionization and electron multiplication. This creates a
cascade of electrons that generates a detectable signal on the sense wires. The time
it takes for ions created by the particle to drift to the sense wire is known as the
drift time. The detected electric signals provide information about the particle’s
drift time which can be associated with the charged particles passing through the
drift chambers. Then the track of the charge particles can be reconstructed by using

information of the hit positions [74].

field —— [ ] [ J [ ] [ ]
field — @ [ ] [ ]
sense — % ° ° ° °
field o . R e o ¢
i ° e _ o
SENSEe [ ] [ ] [ J
[ ] [ ] [ ]
[ ] [} ° °
[ J [ ] [ ]
] [ ] L J °
L ] o °
[ J L ] L ]
. o e
) ° e e |
field ) Y °
field ) o : o
sense ———» e ° °
field ——m> L
field L] [ ] [ ]

Figure 2.6: The wire layout of one superlayer of the CLAS12 drift chambers. A
hexagonal cell is formed by surrounding the sense wire with two layers of field wires.
The path of a charged particle detected in the chamber is represented by the red
line. The drift distance (calculated from the drift time) between the track to the
nearest signal wire (shown by yellow circles) constrains the track fit to reach the
required momentum resolution of Ap/p = 1% [74].
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2.3.4 Cherenkov Counters

CLASI12 uses three different Cherenkov counters, a high threshold Cherenkov counter
(HTCC), alow threshold Cherenkov counter (LTCC), and a Ring Imaging Cherenkov
detector (RICH), to provide particle identification for different ranges of momenta
and particle species. The CLAS12 Cherenkov detectors are gas filled. When a
charged particle passes through the gas with a velocity faster than the speed of
light, it emits Cherenkov radiation in the form of a cone of light. The angle and
intensity of the cone of light depend on the velocity and charge of the particle,
allowing the Cherenkov counters to distinguish between different types of charged
particles. It is only possible to emit light if the momentum of the particle is greater
than a threshold momentum py;,, which is related to the speed of light in the medium
given by
mc

L e (2.1)

where n is the refraction index of the gas and m is the mass of the particle. The
Cherenkov light is collected by mirrors around the gas volume that focus the light
on photomultiplier tubes (PMTs) for signal multiplication and readout.

The HTCC is located in front of the first region of drift chambers and filled with
COs gas to separate electrons from hadrons (pions, kaons, and protons) up to a
momentum of 4 GeV/c. The HTCC also provides a fast trigger signal for electron
detection in the FD. The HTCC detector is shown in Fig. 2.7. More details can be
found in reference [75].

The LTCC is designed to provide pion/kaon discrimination in the 4-8 GeV mo-
mentum range. It covers two sectors of the CLAS12 detector and is constructed
from refurbished Cherenkov counters that were used in the previous CLAS6 detec-

tor. The LTCC uses a C4Fy radiator gas, with a lower refractive index than the
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CO4 gas used in the HTCC [76].

The RICH detector is located in sector four of the FD and is used for kaon
identification in the 3-8 GeV momentum range. At the time of this work, the recon-
struction algorithm for the RICH detector was still being developed, so the RICH
is not used in this analysis. More information about the design, construction, and

performance of the RICH detector can be found in Ref. [77].

Figure 2.7: Fully assembled High Threshold Cherenkov Counter [75].
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2.3.5 Time of Flight System

The Forward Time Of Flight (FTOF) is placed after the DCs outside the torus
magnetic field. The FTOF detector is divided into six sectors and each sector
contains three panels of plastic scintillators: panel-1b and panel-1a cover the low
polar angle, and panel-2 covers the larger polar angles as shown in Fig 2.8. When a
charged particle passes through the scintillator material, it generates a flash of light.
The light is collected by PMTs located at either end of the scintillator counters. The
PMTs convert the light into an electrical signal, which is then amplified and recorded
by data acquisition electronics. The FTOF is designed to measure the flight time of
particles and the position of the hit along the paddle. Further details can be found

at [70].

Figure 2.8: Forward Time Of Flight of CLAS12. It consists of three different coun-
ters: panel-1b counters (dark blue), panel-2 counters (orange), and panel-1a counters
are located immediately downstream of the panel-1b counters which are not shown
here [70].
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2.3.6 Forward Electromagnetic Calorimeter

The Pre-shower Calorimeter (PCAL) and the Electromagnetic Calorimeter (EC) are
the last subsystems of the forward CLAS12 detector, covering the polar angle range
from 5° — 35° as shown in Fig. 2.9. The PCAL was added for the 12 GeV beam
energy upgrade to extend the radiation length of the detector. This enhancement
was necessary because the EC alone couldn’t completely absorb the electromagnetic
showers caused by the higher energy beam (12 GeV). The PCAL and EC together
are referred to as the ECAL. The main purpose of the ECAL is to detect neutral
particles, photons and neutrons, and to stop and measure the energy and positions

of the electron.

Figure 2.9: Left: 6 sectors of PCAL [68]. Right: A single PCAL sector located in
front of the Sector 5 EC [78].

The ECAL is subdivided into six symmetrical triangles arranged around the
beam line. Both the EC and the PCAL are made up of layers of plastic scintillator
strips. In the EC, the layers are subdivided into EC inner consisting of 5 layers, and
EC outer consisting of 8 layers [79]. While the PCAL consists of 5 layers [78]. Each

layer, whether in the EC or PCAL, consists of a 10 mm thick scintillator followed by
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a 2.2 mm thick lead sheet. These scintillators are made of strips arranged into sets of
three, known as U, V, and W planes, each rotated by 120 degrees respective to each
other, as shown in Fig. 2.10. This configuration allows for triangulation to determine
the hit position, which is necessary for determining the direction of the particle that
created the shower in the PCAL. There is one 2.2 mm thick lead sheet between each
pair of scintillators. The lead sheets are used to initiate electromagnetic showers
in the scintillators produced by the interaction of the incoming particles with the

lead [78].
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Figure 2.10: Visual representation of the PCAL configuration, showing five layers in
each view (U, V, and W) and lead sheets placed between each scintillator layer [78].

The PCAL and EC are both sampling calorimeters. A sampling calorimeter
measures the energy of particles by stopping them in an absorber material (such as
lead) and measuring the resulting particle showers in an active medium (such as the
scintillator material). The lead sheets absorb the energy of incoming particles and

produce a shower of secondary particles that interact with the scintillator material,
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producing scintillation light. The scintillation light is then detected by PMTs and
the energy of the incoming particle is determined by measuring the amount of light
produced.

The calorimeters play an important role in the G, measurement since the reac-
tion channel requires the detection of a neutron in its final state. The next chapter
will discuss in more detail the method used for identifying neutrons and the efficiency

of the calorimeter system.

2.4 Data Processing of CLAS12

The data processing in CLAS12 can be divided into two main steps: data acquisition

(DAQ) and reconstruction software.

2.4.1 Data Acquisition of CLAS12

The CLAS12 data acquisition (DAQ) system plays a crucial role in collecting and or-
ganizing information from the various detectors, targets, and magnets of the CLAS12
experiment. The DAQ system consists of Analog-to-Digital Converters (ADCs) and
Time-to-Digital Converters (TDCs) [80]. These components convert the analog sig-
nals into digital format, allowing for efficient data processing and storage. The
digital signals are then transferred to the network-based DAQ system. The primary
purpose of the DAQ system is to organize and store the event-by-event informa-
tion generated by the CLAS12 detectors during the running of the experiment.
Throughout data collection, data quality is monitored by showcasing a fraction of
single events in the CLAS12 Event Display (CED), enabling prompt intervention
by shift personnel in case of detector or electronics issues. In addition, monitoring

histograms are consistently generated, encompassing information about the occu-

43



pancy of detector subsystem channels and basic analysis plots. These histograms
are routinely compared with results collected earlier during the data taking.

The system responsible for determining whether or not to record data is the trig-
ger system. Operating at Level 1 (L1), the CLAS12 fast trigger system is designed
to identify and trigger events that have the physical topology of the desired events.
It employs data from diverse detector systems (like HTCC, FTOF, EC, DC, etc.) to
generate a global trigger signal, which is then distributed to all crates for detector
readout and data collection.

In order to trigger on certain particle types using only an L1 trigger system,
CLAS12 simulates the desired physics channels of the Run Group to understand the
low-level detector architecture of such events. For example, a scattered electron’s
simulation in CLAS12 leaves hits in various detectors such as DCs, FTOF, EC,
HTCC, etc. Within an L1 system, these hits form clusters and track segments that
can be quickly identified with the desired physics channels, and clusters and track
segments can be quickly identified by understanding the mapping between readout
channels of different detectors. This simulation map is generated for electrons over
a wide phase space.

For the purpose of identifying, creating and distributing triggers, the trigger
system uses 69 VXS/VME crates with 111 readout controllers. Low-level detec-
tor information is transmitted to the VXS/VME crates, and established mappings
(from simulations) between channels are utilized to form preliminary clusters and
segments. If these clusters and segments align with each other, a trigger is produced
and distributed. The CLAS12 DAQ and trigger system is shown in Fig 2.11. See
Refs. [80] and [81] for more details.

The DAQ system of the CLAS12 detector is designed to handle trigger rates of

up to 20 kHz and data rates of up to 1 GB/s with a livetime (the fraction of the
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time during which data were recorded on tapes) up to 95%. The live-time drops

with increasing trigger rates [68].
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Figure 2.11: The DAQ and trigger system of CLAS12 [80].

2.4.2 Reconstruction Software of CLAS12

The CLAS12 reconstruction software proceeds in two stages: decoding and recon-
struction [82]. The data from CLAS12 experiments are stored on data tapes in the
EVIO (Event Input/Output) format. In the offline processing of CLAS12 data, the
first step is decoding, which takes the input in the EVIO (Event Input/Output)
format and produces the output in the HIPO (High Performance Output) format.
During decoding, several tasks are performed. First, the signal waveforms recorded

by the CLAS12 detectors are fitted to extract relevant information such as am-
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plitudes, timings, and other parameters. This fitting process helps in extracting
precise measurements from the recorded signals. The second step in the decoding
process translates the electronic notation used by the DAQ system (crate/slot/chan-
nel) into the detector notation (sector/layer/component). The output HIPO files
contain detector-related banks for each event, providing organized and structured
data that can be used for calibration and reconstruction.

The reconstruction process utilizes the decoded HIPO file as input. The purpose
of the reconstruction stage is to use the detector information to identify particles,
extract their 3-momenta, the reaction vertex and assess the track status. The recon-
struction of CLAS12 data is performed using the CLARA framework [82] , which
is a multi-threaded service-oriented software architecture designed for data process-
ing and analysis. CLARA allows users to define a custom architecture for running
various services that process input data and produce output data. The CLAS12 re-
construction architecture, shown in Fig. 2.12, follows the CLARA framework. Each
micro-service (micro-services are software components that are small self-contained
and designed to carry out specific tasks within a larger software application) takes
specified detector subsystem information from the decoded HIPO file to perform
reconstruction tasks with that information. For example, the ECAL reconstruc-
tion service requires the ADC and TDC information for the ECAL PMTs for each
event in order to reconstruct a particle with position, timing, and energy deposition
information.

The charged track reconstruction within the Forward Detector (FD) of CLAS12
occurs in two stages: a hit-based reconstruction followed by a time-based recon-
struction. For hit-based tracking in the DCs, a segment can be formed by requiring
four out of six connected DC cells within a super-layer, and a candidate track can

be formed by requiring five out of six super-layers in a given sector. These candi-
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Figure 2.12: The CLARA framework for FD reconstruction. The information ex-
tracted from the decoded HIPO files is fed into the micro-services (represented by
orange ovals) to produce transient information which is then used by the Event
Builder (EB) [82].

date tracks are then matched with other detector elements like FTOF timing and
position and ECAL shower clusters. For this preliminary step, the match is done
just using the hit position of DC wires without considering time information since
that information is not yet available for DC reconstruction. Unmatched hits asso-
ciated with a track are stored as neutral particles. This information is passed to
the Event Builder (EB), which can reconstruct the event start-time (the interaction
time when the beam strikes a target nucleus). The start time is determined by the
optimal charged particle candidate in the Forward Detector with associated time-
of-flight timing. Once the event start time is assigned, a second iteration of forward
tracking is performed, referred to as “time-based” tracking. The improved particle
tracks obtained from time-based tracking are used in a second pass of the Event
Builder process, which leads to the final event reconstruction. At this stage, the
Event Builder (EB) utilizes the curvature of the tracks and information obtained

from calorimetry and Cherenkov detectors to identify the charged particles.
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The next stage is a basic charged particle identification. The charged particle is
identified as a positron or an electron if the measured energy deposition is consistent
with the expected value of the ECAL, which is more than 60 MeV deposited in the
PCAL and the photoelectron response from the HTCC is consistent with more
than 2 photo-electrons produced. Then the charged particle is assigned as an e~
or eT based on the curvature of the track caused by the torus magnetic field. The
remaining charged particles are assumed to be hadrons and are identified solely
using timing information. A mass hypothesis is selected for each hadron, and a
time difference between the measured and expected times is assigned. The hadron
candidate with the smallest time residual is chosen. More details for identifying
hadrons can be found in Refs. [82] and [68].

Neutral particle identification involves differentiating between neutrons and pho-
tons based on timing and topological details. For the Forward Detectors, the ECAL
is used to calculate the particle travel path from the event vertex, assuming a
straight-line path. If the measured ( is close to 1, the particle is assigned as a
photon; otherwise, it is assigned as a neutron.

The Event Builder produces the final data output as data summary tapes (DSTs),
which are a standardized selection of HIPO banks for physics analysis. The out-
put data in the form of HIPO banks, and the names of these banks are pre-
fixed with “REC”. These banks include the REC::Cherenkov, REC::Scintillator,
REC::Calorimeter, REC::Particle banks, etc. The REC::Particle bank is orga-
nized by columns showing the reconstructed particles, and rows showing momen-
tum, vertex, timing and status. The detailed detector responses for each track in
REC::Particle are accessible via a mapping scheme that links the track index to each
of the individual detector banks.

Because the EB produces large HIPO output files and to make the post recon-
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struction analysis more efficient, “trains” are often used to manage the data. Trains
involve event selecting or skimming (such as filtering out specific event patterns)
and to accommodate various corrections and analysis plugins. The training process
divides the data into several output files, each tailored for specific event selections
optimized for different physics analyses. An example schematic for RGA is shown
in Fig 2.13. We used the second output file that was labeled as er*n to study the

neutron detection efficiency that is described in the next chapter.

Input File

Output Files

e-miX

edfgX
. Train plugin
. IO service
[ Data file

o

Figure 2.13: The schematic flow of analysis trains involves reading event data from
HIPO files, applying corrections for the ECAL sampling fraction (SF) and filters
through the analysis chain, labeling events based on filter criteria, and storing the
labeled events in output files [82].
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CHAPTER 3
NEUTRON DETECTION EFFICIENCY

This chapter will discuss the method used to calculate the neutron detection effi-
ciency (NDE) in the calorimeter detector. This discussion will include the datasets
used, the way of selecting a good neutron, and the cuts applied to these datasets.
Additionally, the chapter will cover the fitting techniques to extract the NDE results

and the parametrization of the NDE results.

3.1 Method of Measuring NDE

The method of measuring the efficiency involves using a hydrogen target to produce
tagged neutrons from the reaction p(e, e’71)n. We can determine the tagged neutron
missing momentum, P,,,, by identifying both the scattered electron and the 7"
detected in the CLAS12 Forward detector and assuming the missing particle is a
single neutron. Once we know the neutron missing momentum, we check to see
if it will strike the fiducial region of the CLAS12 calorimeters. That is done by
calculating the neutron’s path, which is a straight line starting from the electron
vertex position, and continuing to an intersection point with either the pre-shower
calorimeter (PCAL) or electromagnetic calorimeter (EC inner/ EC outer). If the
missing neutron’s calculated path intersects with the calorimeters, we call it an
expected neutron. Otherwise, we skip the event. If we do count an expected neutron,
we then loop over all neutral particle hits in the calorimeters to find a detected
neutron near the path of the expected neutron. With appropriate kinematic cuts
that are presented in Sec. 3.6.2, we can confirm that we have the detected neutron.
This method is illustrated in Fig. 3.1 where the paths of expected and detected

neutron are shown as a green and blue line, respectively. The intersection points of
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expected and detected neutrons with the front face of the calorimeters are shown as
green and gray points, respectively. The ratio of the number of detected to expected

neutrons gives us the neutron detection efficiency e:

Ndetected
€= ———. 3.1
Nea:pected ( )

Grey- Hit intersection
Blue - Detected hit
Green - Expected hit

Figure 3.1: The front face of the calorimeter with 6 sectors on the left, and on the
right is a close-up view of the single sector. The black point shows the electron
vertex, the blue point shows the detected neutron measured by the calorimeter, and
the gray and green points show the detected and expected neutron intersecting with
the front face of the calorimeter. The blue line is the detected neutron’s path, which
is calculated from the electron vertex in direction of the blue point while the green
line is the expected neutron’s path starting from the electron vertex and moving in
direction of the missing momentum of the neutron.

3.2 Dataset Used

We select the exclusive ep — €77 (n) events from RG-A datasets to extract the
NDE. The analyzed datasets of RG-A were taken during Fall 2018 and Spring 2019
with two different beam energies 10.6 GeV and 10.2 GeV, respectively. The target
used is unpolarized hydrogen (LH2). The beam current ranges from 40 nA to 75
nA. The torus magnet was set with two different polarities: outbending, where the

track of a negative particle bends away from the beamline, and inbending, where
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the track of a negative particle bends toward the beamline. The details of these

three different datasets are shown in Table 3.1, where we analyzed each dataset

separately.
Exp. Detail In-bending Out-bending  In-bending
Run Period Fall 2018 Fall 2018 Spring 2019
Run Range 5032 - 5419 5422 - 5666 6616 - 6783
Number of runs 168 runs 170 runs 115 runs
Beam 10.6041 GeV 10.6041 GeV  10.1998 GeV
Current 40 - 55 nA 40 - 55 nA 50 nA
Target Unpolarized LH2 Unpolarized LH2 LH2
Torus Field -1 +1/41.008 -1
Solenoid Field -1 -1 -1

Table 3.1: RG-A taken on Fall 2018 and Spring 2019.

3.3 Event Selection

We are interested in the exclusive ep — €77 (n) reaction. Events with two charged
particles, one electron and one pion, detected in Forward Detector were selected.

The identification of both electron and pion follows the procedure of the approved

RGA CLASI12 analysis note [83].

3.4 Electron Particle ID

Initially the electron was selected based on the standard CLAS12 Event Builder

(EB) PID =11. The Event Builder assigns electron ID to tracks with responses in
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the HTCC and ECAL satisfying the criteria in Table 3.2.

Cut Limits
Charge -1
Number of Photoelectrons Npp > 2

Minimum PCAL Energy Deposited|Eg., > 60 MeV

Sampling Fraction vs. Ege, +50

Table 3.2: EB electron (PID = 11) assignment requirements.

The following cuts were applied to improve electron selection criteria.

3.4.1 Electron Vertex Cut

The 5 cm long LH2 target was placed 3 cm upstream from the CLAS12 center for
an inbending torus field and 5 cm upstream for an outbending torus field. Electrons
that originated within the hydrogen target were selected by applying cuts on the
electron vertex position as shown in Fig 3.2. The cut used is based on the RGA
analysis note [83]; -13 cm < v, < 12 c¢m for the inbending torus and -18 cm < v, <
10 cm for outbending torus field. The cut used to reject electrons that were scattered
at the window of the target cell.

10* Inbending 10.6 GeV/ 10¢ Outbending 10.6 GeV 10° Inbending 10.2 GeV/

16 10000 —

14

Counts

-]

-
3

L L L L L L L 0 L L L
—40 -30 20 -10 O 10 20 30 40 =30 20 -10 0 0 20 30 40 —40 -30 20 -10 O 10 20 30 40

v, lem] v, [em] v, [em]

Figure 3.2: The electron z-vertex position for three different datasets. The events
pass the EB cut that listed in Table 3.2.
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3.4.2 HTCC Photoelectrons Cut

The High Threshold Cherenkov counter (HTCC) is used to reject negative pions up
to 4.9 GeV. The track of charged electrons passing through the Cherenkov counter
produces a number of photons via Cherenkov radiation. The electron produces more
than 2 photoelectrons, which is a minimum threshold for this cut. Figure 3.3 shows
the photoelectron distributions for the three different RGA datasets. The cut is

defined in the Event Builder PID to select electrons in the Forward Detector.

«10¢ Inbending 10.6 GeV «10° Outbending 10.6 GeV 10¢ Inbending 10.2 GeV

100 H 30
14 s0 [

60 H

Counts

Counts

Counts
a

40 [

20 H

L L L 0 L L L t L L L L L
0 10 2 30 40 50 60 70 0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70

Nphe Nphe Nphe

Figure 3.3: Number of photoelectrons produced in the HTCC. The events pass the
EB cut that listed in Table 3.2.

3.4.3 PCAL Fiducial Cut

The fiducial region is the area inside the calorimeter that is considered reliable for
making measurements. It is defined as the area away from the edges or boundaries
of the calorimeter. The purpose of the fiducial cuts is to remove the regions of
calorimeter where the shower from the event may not be fully contained within the
calorimeter volume. This cut is applied to the local PCAL V and W coordinates in
Fig. 2.10. There are three different cuts introduced at the RGA CLAS12 analysis
note [83]: a looser cut with a distance of 9 cm from the edge, a medium cut with
a distance of 14 cm, and a tighter cut with a distance of 19 cm. The medium cut
is used for electrons where the distance from the edge of the V' and W planes are

greater than 14 cm (V, W > 14.0 cm). This cut is determined based on RGA
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CLAS12 analysis note [83]. The effect of the PCAL fiducial cut can be shown in

local x and y PCAL coordinates in Fig. 3.4.

00 Inbending 10.6 GeV «10° 00 Outbending 10.6 GeV 00 Inbending 10.2 GeV «10°
12000
400 F 300 400 400 400
300 | 250 300 | « 10000 300 £ 350
200 - 200 |- 200 |- 300
- E 2 - E 8000 — E
g 100 200 g 100 g 100 250
& op 150 L op 6000 = 0F 200
P -100 = 100 P 100
200 F 100 20E ¥ 4000 200 150
_300 E 300 F 300 E 100
300 50 300 2000 300
—400 £ —400 400 50
-500 0 500 Erre bbb 500 N
~500-400-300-200-100 0 100 200 300 400 500 ~500-400-300-200-100 0 100 200 300 400 500 —500-400-300-200-100 0 100 200 300 400 500
X [em] X [em] X [em]

Figure 3.4: Effects of the PCAL fiducial cuts of electrons. Red shows all events.
Non-red colors show the hits after applying the fiducial cut. The events pass the
EB cut that listed in Table 3.2.

3.4.4 DC Fiducial Cuts

In a similar way, the DC regions where the electron trajectory is close to the edge
of the chambers’ volumes are removed. The DC fiducial cuts can be extracted in
either the local § — ¢ or x — y planes based on the distribution of the x?/NDF of
the track. For this analysis, the DC fiducial cuts derived from the x — y planes
are used, however both methods yield very similar results. The procedure involves
calculating the average tracking x?/NDF value separately for each particle type in
bins of local z and y coordinates in each sector and DC region. The tracking x? and
NDF values are obtained from the corresponding tracking banks (REC::Track::chi2
and REC::Track::NDF). The z distribution of the averaged y?/NDF is sliced in each
y bins. The center of the distributions in each y slice is fitted with a constant around
xr = 0°. Then the final data points are fitted with a function of the form. More
details can be found in the RG-A note [83]. Figure 3.5 shows the DC fiducial cuts

for three regions of the DCs based on x — y plane.
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Figure 3.5: Effects on the three regions of DC fiducial cuts for electrons for each
RGA dataset. The red points show the hits before the fiducial cuts and the color
points show the hits after the fiducial cuts. The events pass the EB cut that listed
in Table 3.2.

3.4.5 Calorimeter Cuts

The sampling calorimeters can be used to differentiate between pions and electrons.
Electrons and pions deposit their energy in the calorimeter differently. Electrons
interact in the EC producing electromagnetic showers and release all of their energy,
Ejep, which is proportional to their momentum, p. On the other hand, charged pions
are minimum ionizing particles, which means that regardless of their momentum,
they deposit a constant and small amount of energy. The sampling fraction (SF)
cut can be used to separate electrons and pions. The SF is defined as the ratio of a
total deposited electron energy in all three calorimeter layers (PCAL+EC) to their

momentum and given by:

Eiep X P. = Egep/ P. = constant = SF, (3.2)
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where SF is determined by the detector and is around =0.25 for electrons for CLAS12
at all momenta, see Fig. 3.6. The event builder has a default cut of the sampling
fraction as a function of the total deposited energy of the electron Eg.,. This cut with
450 limit from the sampling fraction, as shown in Fig. 3.6. In order to improve pion
rejection, the sampling fraction has been sliced and fitted with Gaussian function
in each electron momentum bin to determine the mean and sigma per bin. Then
the mean p and sigma o of the SF distribution for each P, bin are fitted using the

following forms:

sy = A+ B/1000 % (p — C)?,
(3.3)

o =a+0b/(10% (p —¢)),

where a, b, and ¢ are the fit parameters that depend on the momentum bin and
sector, shown in Table 3.3. A cut of u 4 3.50 was applied based on [83], as shown
in Fig. 3.6. It’s important to note that the curly tail observed in the inbending 10.6
GeV dataset was a consequence of issues with the parameterization of the SF cut
used by the event builder. The parameterization of SF vs. Ey., exhibited divergence
as Fg., approached zero because the fit that was done was not well constrained at
small energies, resulting in the observed curly tail when plotting SF as a function of
momentum. When this was noticed, the fit was improved to avoid the divergence
and for the other data sets there was no curl.

In addition, a cut on a minimum momentum of reconstructed electrons of 2 GeV
and 1.5 GeV are applied for 10.6 GeV and 10.2 GeV beam energies, respectively,
to reject pion contamination in this region. Furthermore, a cut on the chi2pid are
applied. The chi2pid value is a quality factor used by the event builder to assess

how closely the calculated and expected sampling fractions align. The chi2pid value
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SF

Figure 3.6: The sampling fraction for electron candidates in sector 1 as a function
of momentum with the +50 cut applied by the event-builder on SF as a function of
Ejep. The red lines are the cut on the SF as a function of P, with the £3.50 and
a vertical line inidcating the minimum electron momentum cut. The distributions
have the EB cut that listed in Table 3.2. The curly tail that appears in the inbending
10.6 GeV dataset was a result of an issue with the parameterization of SF vs. Ey,
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Table 3.3: Parameters for sampling fraction cut on electron identification.
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is determined using the following formula:

X2 _ SFmeas(E) _SFcalc(E>, (34)

Op

where o, is the resolution of the sampling fraction. The cut used was |x?| < 3 as
shown in Fig 3.7.
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Figure 3.7: The chi2pid distribution of reconstructed electron. The events pass the
EB cuts listed in Table 3.2, +3.5¢ SF cut and the minimum momentum of 2 GeV
and 1.5 GeV for 10.6 GeV and 10.2 GeV beam energies, respectively.

The last cut related to the sampling fraction we used is a diagonal cut. The
correlation between the inner calorimeter sampling fractions and the PCAL sampling
fractions cuts can be applied in order to avoid electrons/pions misidentification

above the HTCC threshold at 4.5 GeV. A diagonal cut is defined as

Einner <092_ Epcar
De DPe

, (3.5)

and is shown in Fig. 3.8. The cut is applied to particles with momentum above 4.5

GeV [83].

3.4.6 Energy Deposited Cuts

The selection of electrons can be improved by cutting out the pion based on energy
deposited in PCAL layer at 0.06 GeV, as shown on Fig. 3.9. The band below the 60

MeV red line corresponds to pions. This cut is automatically implemented by the
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Figure 3.8: The correlation of the sampling fraction using the Ej,,.., vs. the PCAL.
The events pass the EB cuts listed in Table 3.2 and P, > 4.5 GeV. The diagonal
cut removes the events below the red lines, which are pions.

Event Builder when selecting electrons with PID =11. Figure 3.10 shows the same

distribution after the PCAL energy cut.

PCAL vs ECAL, All Negative Tracks S1

ECAL Inner+Outer (GeV)

0.5

03 04
PCAL (GeV)

Figure 3.9: Energy is deposition in EC;, + EC,,; layers versus energy deposited in
the PCAL layer. The red line is at 60 MeV. Plot is for all negative tracks for Sector
1.

All cuts applied for identification electron are summarized in Table 3.4.
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Figure 3.10: Top: Energy deposition in EC}, + EC,,; layers versus energy deposited
in the PCAL layer. The PCAL > 0.06 GeV cut is defined in the Event Builder. The
events pass the EB cuts listed in Table 3.2. Bottom: Same distribution but with
+3.50 cut on SF as a function of P,,., diagonal cut, and the minimum momentum
of 2 GeV and 1.5 GeV for 10.6 GeV and 10.2 GeV beam energies, respectively.

3.5 1« Particle ID

3.5.1 Vertex Difference Cut

To reject pions produced outside of the target region a cut on the difference between
the reconstructed electron z-vertex position and the pion vertex is applied. A loose
cut of |v,(ele) — v, (7)| < 20 cm is placed for all three different datasets, as shown

in Fig. 3.11. The cut used is based on the RGA analysis note [83].
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Figure 3.11: Vertex difference between the electron and 7+. The events pass the
EB cuts listed in Table 3.2.
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Cut Limits

PID 11
vertex cut v, vertex position
Number of Photoelectrons Npp > 2
PCAL Fiducial Cut V, W > 14 cm

DC Fiducial Cut for 3 DC regions | x — y plane cuts
SF vs. P, +3.50
Diagonal cut

chi2pid cut Ix?|] < 3 cut

Minimum PCAL Energy Deposited| Eg, > 60 MeV

Table 3.4: Cuts used for electron identification.
3.5.2 x? PID Cut

The Event Builder determines the charged hadrons including 7 by minimizing the
difference between the electron vertex time t, and the 7™ start time tg+. The
electron vertex time is determined by the electron vertex position, which is the
position where the electron beam hits the nucleus target. The 7" start time is
calculated with the absolute timing from FTOF (tpror ) and the path length of the
7t to the FTOF(L):

At =ty —17"

I (3.6)
=tg — |trror — 5| ,

/87rJr
where [+ is
Pr+
V p72r+ + Tn27r+ ’

where m?,+ is the known mass of the 7+ and p,+ is the track momentum of the

Bt = (3.7)

7. The variable chi2pid in Event Builder is assigned as the number of ¢’s from the
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expected vertex time for the best hypothesis [83]:

-

Xpid = (38)

g

The distribution of chi2pid values for 7% as a function of pion momentum is shown
in Fig. 3.12. There is a significant kaon contamination on the positive side of the
chi2pid distribution above 2.44 GeV. To remove the kaon contribution the following
cut is used:

chi2pid < 3-0.88 for p+ < 2.44 GeV

chi2pid < 0.88 - (0.00869 + 14.98587 - exp(—p/1.18236) (3.9)

+ 1.81751 - exp(—p/4.86394)) for p,+ > 2.44 GeV.

; 3r
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More details on this cut can be found in [83].
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Figure 3.12: Top: The chi2pid vs momentum distribution after the Event Builder
applied At to assign a particle as the pions.

3.5.3 Fiducial Cuts for DC

The drift-chamber fiducial cuts for positive pions have been applied based on the
x — y plane, similar to the cut for electrons. The result of this cut in the three
drift chamber regions is shown in Fig. 3.13. More details of the DC fiducial cuts
including the exact parametrizations can be found in the RGA analysis note [83].

The summary of the cuts applied for identification of pion is shown in Table 3.5.
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Figure 3.13: The effect of fiducial cuts on the three regions of the drift chambers on
the 7. The red points show the hits before the cuts were applied and the overlaid
colored points show the hits that survive the fiducial cut. Top is region 1, middle is
region 2 and bottom is region 3.

3.6 Neutron Selection

Neutral hits are identified as a cluster in the PCAL/ EC with no associated charged-
particle track reconstructed in the DC. Photons and neutrons are identified in the
Event Builder based on a beta cut at 0.9: 5 > 0.9 for photons and # < 0.9 for
neutrons. In this analysis, both photons and neutrons are combined to select final
neutrons. The neutrons are selected in two ways: (1) Expected neutrons are in
events where the trajectory in the direction of the missing-momentum vector of the
p(e, e'm) X, reaction intersects the calorimeters. (2) Detected neutrons are found

as neutral hits in the calorimeters near an expected neutron.
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Cut Limits

PID 211
vertex cut lv,(ele) — v (71)] < 20 ecm
DC Fiducial Cut for 3 DC regions x — y plane cuts

chi2pid cut IX?| < 3 cut

Table 3.5: Cuts used for pion identification.
3.6.1 Identification of the Reaction p(e, 7" )n

Once a scattered electron and a 7+ have been identified, the missing mass and
missing momentum of the p(e, e’m™)n reaction can be calculated by considering 4-

momentum conservation:

P!+ Pl'= P, + P + P/,

mm?

(3.10)

where Pt=(P | E) for each particle and P~ =(Pym , Epm) is the missing neutron
4-momentum. The 3-momentum vector P. of the incoming electron is zero in the z
and y directions (beam moves along z-axis) and the 3-momentum vector P, of the

target proton is zero (initially at rest). The missing mass can be calculated as

P*un P

Hmm

= B2 — Pl = MM (3.11)

The magnitude of the missing neutron 3-momentum is

where: P, P, P,

9 Ymm Zmm

are the missing neutron momentum components in the x,

y and z direction, respectively, and calculated as:

Py =Py, — P, .| (3.13)
Pymm _Pyﬁl Py,ﬂLa (314)
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P

Zmm

= Epeam — P., — P, (3.15)

ot

The missing neutron energy can be calculated as:
Erim = Eveam + Ep — Eer — Erv, (3.16)

where E = V/ P2 + m2 for each particle and Fpeqp, is the energy of the incoming
electron beam. Figure 3.14 shows the missing mass distribution as a function of the
missing momentum of p(e, e'r)X,,, where X,, in this stage can be one or more par-
ticles with a charge of zero. The missing momentum of the neutron, P,,,,, can reach
up to 7 GeV. The missing mass distribution of p(e, e'7")X,, shows two prominent
peaks with a large high-mass background in Fig. 3.15. The first peak corresponds

to the neutron mass at 0.939 GeV and the second peak corresponds to the A" at

1.2 GeV.
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Figure 3.14: The missing mass distribution as function of missing momentum of
ep — entX,,.
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Figure 3.15: The missing mass distribution of ep — ¢'7tX,,.

To identify the expected neutron p(e, e'nm™)n, we swim the neutron through the

CLASI12 detector to the calorimeter. The neutron’s path is a straight line starting
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from the electron vertex position and pointing in the missing 3-momentum direction.
If the neutron’s path intersects with the calorimeters, it counts as an expected
neutron. If the intersection point lies outside the calorimeters, the event is dropped.
An additional fiducial cut is applied for the expected neutron to be more than 10
cm from the edge of the calorimeters. The fiducial cut is defined by rotating x — y
of the expected neutron by (s — 1)60° where s is the sector number as shown in the
upper plots of Fig. 3.16. Bottom plots in Fig. 3.16 show the result of the fiducial

cut in all sectors.
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Figure 3.16: PCAL/ECAL hit position Y vs. X of expected neutrons intersecting
with the calorimeters. The red points show the events before applying the fiducial
cut. Top row shows an overlay of all sectors rotated by (s — 1)60° and the bottom
row shows each sector individually.

3.6.2 Identification of the Reaction p(e,e'nn)

Once the expected missing neutron intersects the calorimeters and satisfies the fidu-
cial cut, a tight MM cut on the expected missing neutron is applied to select the

actual neutron measured in the calorimeter. The cut used on the expected neutron
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corresponds to a 20 cut on the Gaussian as shown in Fig. 3.17.

0.8565 GeV < MM < 1.0339 GeV  Inbending 10.6 GeV
0.8685 GeV < MM < 1.0407 GeV  Outbending 10.6 GeV (3.17)

0.8491 GeV < MM < 1.0237 GeV  Inbending 10.2 GeV
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Figure 3.17: The missing mass distribution of the expected neutron p(e, /7™ )n that
intersects with the calorimeters and passes the fiducial cut. The red vertical lines
show the cut applied within 20.

If the expected neutron passes the 20 cut above, we loop over all neutral hits in
the calorimeters to select the candidate neutrons. Candidate neutrons are identi-
fied by considering the direction in which the missing 3-momentum of the expected
neutron should coincide with the direction of the detected neutral particles. The
detected neutral hit position in the calorimeter is defined by drawing a line start-
ing from the electron vertex position in the direction of the measured hit in the
calorimeter coordinates z, y, and z to the intersection with calorimeter face plane.

Therefore the direction of detected neutral particles is defined as:

Cacneut = w/n
C(?Jneut = y/?", (318>

Czneut = Z/’I",

where r = /22 + y?2 + 22 and x, y and z are the position of the detected neutral hit

on the face plane of the calorimeters. The direction cosines of the expected neutrons
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in the z, y and z directions can be determined by dividing each component of the
missing 3-momentum of the expected neutron by the magnitude of the missing 3-

momentum of the expected neutron vector:

C:ztmm - mem/Pmm7
C’ym'rn - Pymm/Pmma (319)

Corm = P, | Prum-
The difference between the transverse direction cosines (AC; = Cipm — Cineut, Where
i = x or y) is shown in Fig. 3.18. A cut on the difference in direction cosines
between the missing momentum of the expected neutron and the detected neutral
hit is applied to select the detected neutron. This cut is defined based on fitting

AC;,,» with a Gaussian and applying a 20 cut as

V(AC.)? + (AC,)? <0.1174  Inbending 10.6 GeV,
<0.1308  Outbending 10.6 GeV, (3.20)

<0.1195 Inbending 10.2 GeV.

The cut is shown in Fig. 3.18 as a red circle. If there are multiple neutral hits, the

smallest value of \/(AC,)? + (AC,)? is selected. The missing mass of the detected

neutron that satisfy the 20 cut on the AC, and AC, is shown in Fig. 3.19.
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Figure 3.18: Differences in direction cosines AC, vs. AC,. The red circle shows the
cut used to eliminate the background.

Most of the background under the detected missing mass of neutron is due to the

photons contribution as shown in Fig. 3.20. The beta of the neutral particle, fheut,
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Figure 3.19: The missing mass distribution of detected p(e, €’m"n) neutron satisfied
AC,, AC, cut. From left to right inbending 10.6 GeV, outbending 10.6 GeV and
inbending 10.2 GeV.

detected in the calorimeter as a function of P,,,, shows two bands that correspond

to photons and detected neutrons, where the [0, is given by:

lneut
heut = ) 3.21
/B ’ CAtneut ( )

where c is the speed of light, l,,0y is the path length of the neutral particles measured
to the front face of the calorimeters. The At ey is defined as the difference of the

time measured by the calorimeters t,e,, and the event start time ¢
Atneut = tneut — g; (322)

where t, is the difference between a hit measured and the ToF for particle

[
th =1t — - 3.23
0 Cv ( )

where ¢t and [ are the time and path length, respectively of electron, measured by
the TOF. The clear separation between photons and neutrons is observed below 1.5
GeV. These photons have not been removed in order to treat the detected neutron

as the expected neutron to subtract the background in Sec 3.8.
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Figure 3.20: Beu of neutral particles measured in calorimeters vs. missing momen-
tum that satisfied AC,, AC, cut. The red line is the theoretical curve for neutrons.

3.7 Efficiency Measurement in the Calorimeter

The efficiency e is defined as the ratio of detected neutrons p(e, €7 n) to the number

of expected neutrons p(e, e'm™)n as:

_ #ple,emhn)
" ale.omn .

Below is the summary of the cuts applied to the expected and the detected neutrons:

1) Expected neutron events p(e, e'71)n:

e Intersect with the face plane of the calorimeters.

e Pass fiducial cut.
2) Detected neutron events p(e,e'm n):

o All cuts listed in 1.

e The difference in direction cosines,/(AC,)? + (ACy)? < 20.

Figure 3.21 shows that both the expected and detected missing mass have back-

ground events that must be taken into account when measuring efficiency.

3.8 Background Subtraction

Generally, the neutron efficiency is calculated as a function of the missing momen-

tum, P,,,,. The procedure used to extract the neutron yield involves fitting the
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Figure 3.21: The missing mass distribution of expected p(e,e’7")n (top) and de-
tected p(e, €'7n) (bottom) neutron satisfied above cuts. From left to right, inbend-
ing 10.6 GeV, outbending 10.6 GeV and inbending 10.2 GeV.

missing mass distribution of both expected and detected neutrons at different P,,,,

bins with two different functions:
e Gaussian plus a fourth-order polynomial.

l(zfu

f(x)=Ae 2% )+ Py + Piz + Pya® + Psa® + Py, (3.25)
e Crystal Ball plus a fourth-order polynomial.
f(x) = fop (x; A, 1, 0,a,n) + Py + Pz + Poa® + Pea® + Pia*,  (3.26)

where the Crystal Ball function is defined as [84]

»

w—p\2 _
fop(z; Ay, 0,a,n) — Ae~3(554) for T H~ _4

n ol2 _ -n _
() e (o la| — TTH for TH < —a.
|al |al o o
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The Crystal Ball (CB) function combines a Gaussian function with a power-law
times an exponential tail, which is described by the parameters a and n. The
parameter a controls the location of the transition point between the Gaussian and
power-law parts of the function and n determines the steepness of the power-law
tail. The parameters A, p and o are the amplitude, mean (centroid), and width
(standard deviation) of the Gaussian part of the CB or Gaussian, respectively. The
parameters Py, P, P, P3 and P, are the polynomial coefficients.

The main reason for using the CB function is that the Gaussian function alone is
not appropriate for describing the missing mass distributions. The distributions can
be distorted by resolution and radiative effects, where the radiative effects are due
to electron target interactions before or after the hard electron-proton scattering
leading to low energy photons that are not accounted for in the M M calculation.
The Crystal Ball function provides a better fit to the shape of the missing mass dis-
tributions, including the presence of a tail, and can effectively describe the effects of
resolution and radiative contributions. The tail of the CB function is investigated
using the semi-inclusive deep inelastic scattering (SIDIS) Monte Carlo (MC) simu-
lation. The SIDIS MC is generated using the clasdis generator, which is based on
the LEPTO generator [85]. More details on SIDIS MC can be found in [83]. The
tail of the missing mass distribution of (e, e’7*n) for inbending 10.6 GeV is shown
at high missing mass distribution in Fig. 3.22. It extends to higher missing mass.

The fitting procedure for the missing mass distributions of expected and detected
neutrons is described as follows. The first step is to fit the cleanest missing mass
distribution, which is the detected neutron by a Gaussian and polynomial function.
The Gaussian function is used to model the neutron signal, while a fourth-order
polynomial is used to describe the background. The fitting is performed for each

of P, bins, allowing all parameters (amplitude, mean, width, and polynomial
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Figure 3.22: The missing mass distribution of p(e, ¢'7n) for inbending 10.6 GeV,
generated from SIDIS MC.

coefficients) to vary. This step gives us the width and the mean of the neutron M M
peak. Next, the same mean and width obtained from the detected neutron Gaussian
fitting are applied to the expected neutron distribution. The Gaussian amplitude
and polynomial coefficients for the expected neutron distribution are allowed to vary.

The range of the Gaussian fitting is limited to M M < 1.1 GeV for both expected
and detected neutrons at P,,,, < 2 GeV. For higher values of P,,,,, the upper limit
of the fitting range is gradually extended to MM < 1.2 GeV.

After that, we fit both expected and detected neutrons for each P,,,, bin using the
CB function. The mean and width obtained from the Gaussian fitting of the detected
neutron are used as fixed values in the CB function for both the expected and
detected neutrons. The high M M tail parameters of the CB function for detected
neutron are used for the expected neutron distribution. However, if a large x? value
is observed for the fitting of the expected neutron distribution, the tail parameters
are varied for both expected and detected neutron and fixed at the same values that
give the lowest y2.

The range of the fitting in the CB function is extended to MM < 1.2 GeV for
all P, bins.
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The fitting of the expected and detected neutrons for different P,,,, bins using a
Gaussian and CB functions is shown in Fig 3.23 and 3.24, respectively. The fitting
is shown for three P,,, bins for inbending 10.6 GeV dataset, the fitting of the all
P,..» bins and other datasets can be found in the Appendix A for Gaussian function
and Appendix B for CB function. The CB function can fit a higher range of missing
mass (M M) and provides a similar fit quality to the Gaussian function for the
detected neutron. However, for the expected neutron, the Gaussian function shows
a better fit quality with a lower average x? value. The average x? of the expected
and detected neutron for the two functions is shown in Table. 3.6.

The values of the mean and width obtained from the Gaussian fitting of detected
neutron are shown in Fig. 3.25 for each P, bin for the three datasets. Ideally, the
mean values of the neutrons peak should be centered at 0.939 GeV. For inbending
10.6 GeV dataset the peaks are centered between ~0.939 and 0.94 GeV. However,
for inbending 10.2 GeV dataset the mean values of the neutrons peak are centered
at ~0.929 to 0.930 GeV except for the last two P, bins. For outbending 10.6
GeV dataset the peak position is shifted and centered at ~0.959 to 0.960 GeV
below 3 GeV then they start to decrease at high P,,,, bins. This shift of the peak
position is due to the imperfections in the magnetic field map and the drift chamber
misalignments. We have applied the momentum correction of both electrons and
pions particles developed by RGA group for the three datasets. At this stage, the
momentum corrections look good for only inbending 10.6 GeV.

In the right-hand panel of Fig. 3.25, the width of the neutron peak is almost
constant below 1 GeV, then it starts to increase smoothly from one bin to the next.
Also, we used the similar width for all three datasets under the assumption that the
width of the peak should remain the same in each bin. The fit parameters of the

three data sets using Gaussian and CB function is shown in the Appendix A and
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Figure 3.23: The missing mass distribution of expected (top) and detected (bottom)
neutron for three different P,,,, bins. The distribution is fitted with a Gaussian plus
polynomial background. The blue curve is the signal distribution after subtraction
of the background distribution, the green is the background, and the red is the sum
of the two. The fitting is shown for inbending 10.6 GeV dataset. See Appendix A
for other P,,,, bins and other datasets.

Pom = [ 0.675 - 0.749
7000 sig: 44381 + 305

EXEA /End$]

Poom = [ 0.675 - 0.749

Prm = [ 1.65 - 1.725]

P = [ 2.925 - 3.12

XZ I'ndf 113.4/32

2500 Sg‘ 15697 + 230 Prob 4.957e-11
d - Amp 1757 £ 25.8
mean 0.94 +0.01

widh 0.03999 + 0.00001

a -0.891+ 0.001

n 101+ 05

PO 139.9 £425.6

P1 938.3 + 1097.8

P2 -1806 + 205.8

P3 -2573 +1245.0

P4 4156 + 764.0

. ,
15 2 25
MM [GeV]

753944
0.002244

1050+ 136

0,939 £ 0,000

0.03999 + 0.00002
-0.891%0.015
100+10

2601+ 3.1

1.540+04 £ 7.63e+00
-3.207e+04 + 11740401
2.987€+04  1.773e+01
94112131

T G
Pros s oot
Amo 50194117
metn 05915+ 0.0001
i 20507 1 0,001
. 19203
. 1020
s w9272
I 071175
Te 10520k00 1 26500000
Pa Lziceross 35820000
Ps 762 259

|
2 25
MM [GeV]

X2 I'ndf 36.49/44

Prob 0.7819

Amp 4348 +11.3

mean 0.9314 £ 0.0054

widh 0.0507 +0.0001

a -1.9+04

n 101+0.8

PO ~-39.58 + 50.46

P1 253.1+135.4

P2 -174.6 £29.9

P3 -845.9 +292.8

P4 1095 + 176.7

2 25
MM [GeV]

2 25
MM [GeV]

Figure 3.24: The missing mass distribution of expected (top) and detected (bottom)
neutron for three different P,,,, bins. The distribution is fitted with a Crystal ball
polynomial background. The blue curve is the signal distribution after subtraction
of the background distribution, the green is the background, and the red is the sum
of the two. The fitting is shown for inbending 10.6 GeV dataset. See Appendix B
for other P,,,, bins and other datasets.
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Figure 3.25: Left: The mean values of the signal distribution for both expected
and detected neutrons for each P, bin. Right: The width values of the signal
distribution for both expected and detected neutrons for each P,,,, bin.

Gaussian Function Crystal Ball Function
Detected M M |Expected M M |Detected M M |Expected M M
Inbending 10.6 GeV 2.42 2.63 2.83 4.82
Outbending 10.6 GeV 4.22 7.49 5.43 12.68
Inbending 10.2 GeV 2.31 5.94 2.59 5.98

Table 3.6: The average x? of both expected and detected neutrons for Gaussian and
CB functions.

3.9 NDE Results

Once the missing mass of expected and detected neutrons are fitted in each missing
momentum bin P,,,,, the yields of the neutron signal can be calculated by integrating
either Gaussian or Crystal Ball function. The detection efficiency in each momentum

bin can be calculated as:

Ndeti
i = T, .2
&= (3.28)

exp;

where ¢; is the efficiency in the i** missing momentum bin, Ny, is the yield of the

detected neutron signal in the i"* missing momentum bin, and Negp, is the yield of
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the expected neutron signal in the i missing momentum bin. An uncertainty to

the efficiency in the i** bin is calculated based on the binomial distribution

€; (1 — Ei)
= . 3.29
7= N (3.29)

A comparison of the neutron efficiency calculated by the Gaussian function and
the Crystal ball function, binned in missing momentum of the neutron, is shown
in Fig. 3.26. The comparison is shown for each datset individually, inbending and
outbending 10.6 GeV, and inbending 10.2 GeV. The agreement between the two
functions is very good for missing momentum FP,,,, greater than about 1.5 GeV.
Below this value, the results extracted from the Gaussian is slightly above the Crys-
tal ball function. Overall, the discrepancy between the two functions is within 3%.
Figure 3.27 shows the results, of the present analysis, for the CLAS12 neutron de-
tection efficiency compared to the CLAS6 data. The CLAS12 results show that
all three datasets, inbending and outbending 10.6 GeV and inbending 10.2 GeV,
are consistent to each other in both functions. The CLAS12 results are a higher
compared to the CLAS6 result over all P,,,, bins because of the additional PCAL
detector. The efficiency result of the CLAS12 data increase with increasing the
missing momentum of the neutron, and plateaus at about 78%, while the plateaus

of the CLAS6 at about 60%.
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Figure 3.27: The neutron detection efficiency in the calorimeter detector was ex-
tracted from the Gaussian (Right) and the Crystal Ball function (Left), binned in
missing momentum of the neutron, for each dataset and compared with the CLAS6

result.
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3.10 NDE Parameterization

In order to use the NDE results for G7;, we need a functional form that can de-
scribe these results. The neutron detection efficiency as a function of the missing

momentum, P,,,,, is fitted using a least-squares method with the following function:

n(Pmm) =ag + alpmm + a2Pmm2 + a3Pmm3 for Pmm < Pt
. (3.30)
=Qy 11— Prum —as for Pmm > P,
l4+exp o<

where ag, ay, as, as, a4, as, ag and p; are the parameters of the fit. The boundary
between the two parts of the fitting, p;, is varied to find the best connection between
them. The uncertainty of the fit at a given missing momentum can be calculated

from the error matrix:

0772 — ;jeijg—zzi%, (3.31)
where 7 is the value of the fitted function, a; and a; are the i and j'" parameters
of the fit, respectively, and ¢;; is the value of the error matrix.

The fits and associated uncertainties are shown in Fig. 3.28 for a Crystal Ball
function in the top and for a Gaussian function in the bottom. The black line
shows the fit for the NDE result using the functions in Eq. 3.30. The right plots in
Fig. 3.28 show the band of the uncertainty on the fits for both Crystal Ball (top)
and Gaussian functions (bottom). Bottom plot in each panel shows the residuals,
which lies close to zero as expected. Table. 3.7 summarizes the parameters of the
fit results for the two functions.

Since two different functions are used to determine the NDE, the difference

between the results can be considered as systematic uncertainty.
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Figure 3.28: A fit of the neutron detection efficiency for the Crystal Ball function
(top) and the Gaussian (bottom) according to Eq. 3.30. The uncertainty on the fit
is shown as a band in the right hand side plots for the Crystal Ball function (top)
and the Gaussian (bottom).

Fit Parameters|Gaussian Function|Crystal Ball Function

X2 0.7976 0.4813

agp -0.1404 + 0.0172 -0.1817 +0.0136

ay 0.5282 + 0.0035 0.6187 + 0.0375
as 0.01837 £ 0.0179 | -0.0605 £ 0.0332
as -0.0392 £+ 0.0015 -0.0179 +0.0090
ay 0.7784 + 0.0044 0.7884 + 0.0087
as 0.7057 + 0.0698 0.0086 +0.0.3067
ag 0.7278 + 0.0507 1.0796 +0.1876

Dt 1.7628 £ 5.9¢708 2.146 £0.0001

Table 3.7: The fit parameters of the neutron detection efficiency.
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CHAPTER 4
QUASI-ELASTIC RATIO MEASUREMENT

In this chapter, we focus on the measurement of the ratio used to extract G';.
We will start by discussing the data sets that have been used for this measure-
ment. Next, we will describe the procedure used to select quasi-elastic D(e, €'p) and

D(e,e'n). Finally, we will present the results of the ratio measurement.

4.1 RGB Run Period

The CLAS12 Run Group B (RG-B) data were taken over three periods: Spring of
2019, Fall of 2019 and Spring of 2020. A 5-cm-long liquid deuterium target were used
with a polarized electron beam operating at three different beam energy (10.6, 10.2
and 10.4 GeV). Two different polarities of the torus magnet was used: outbending,
where the track of a negative particle bends away from the beamline, and inbending,
where the track of a negative particle bends toward the beamline. A summary of
the run conditions are shown in Table 4.1. We analyzed each dataset separately.

The outbending dataset was excluded from the analysis due to limited statistics.

Exp. Detail In-bending Out-bending In-bending
Run Period Spring 2019 Fall 2019 Spring 2020
Run Range 6156 - 6603 11093 - 11300 11323 - 11571
Number of runs| 117 runs 106 runs 97 runs 171 runs
Beam 10.6 GeV 10.2 GeV 10.4 GeV 10.4 GeV
Target Unpolarized LD2 |Unpolarized LD2|Unpolarized LD2
Current 35-50 nA 40 nA 35-50 nA
Torus Field -1 +1/41.008 -1
Solenoid Field -1 -1 -1

Table 4.1: RG-B run period conditions.

82




4.2 Events Selection

The data files analyzed are referred to as “gmn” files, which contain events of two
channels: D(e,e'n) and D(e,e'p). In the D(e, e'n) channel, the file included events
where an electron was detected and all neutral particles are in the forward detector,
while for D(e,€’p) channel, the file contained events with both an electron and a
positive charged particle detected in the forward detector. In both D(e,e'n) and
D(e, €'p) channels, the electron identification requires the cuts discussed in Sec. 3.4
and summarized in Table. 4.2. For nucleon identification, different selections were
made depending on the channel. In the D(e, ¢'p) channel, a positively charged parti-
cle that hit the calorimeter was selected as a proton candidate, while in the D(e, e'n)
channel, neutral particles that hit the calorimeter were considered as neutron can-

didates as shown in Table. 4.2.

electron proton neutron
pid = 11
v, vertex position
Npp, > 2
PCAL fiducial V, W > 14 cm cut|Positive charge particle|Neutral charge particle

DC fiducial cut for 3 DC regions hit calorimeter hit calorimeter
SF vs. P, £3.50
Diagonal cut
chi2pid |x?| < 3 cut
Minimum PCAL Eg4, > 60 MeV

Table 4.2: Cuts used for electron and nucleon identification.

Once a scattered electron has been identified in the D(e, e'n) and D(e, €'p) chan-

nels, the 4-momentum of a recoil nucleon (proton or neutron) can be calculated
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assuming QE scattering as

Pt + Py = P+ Py,
(4.1)

Py, = Pt + P, — P = h",
where P#=(P, E) is the 4-momentum for each particle, and N refers to either a
proton or neutron. The square of the invariant mass of the nucleon can be written

as

W? = h¥h,, (4.2)

where N, is the 4-momentum of the recoil nucleon.

4.3 Quasi-elastic Selection

Figure 4.1: The kinematic quantities for D(e, e'p)/D(e,e'n) shows the scattering
plane that is defined by the 3-momenta of the incoming and scattered electrons and
the reaction plane that is determined by the 3-momentum transfer, ¢ = p. — p., and
the final proton/neutron 3-momentum, pj. 6, is the angle between the direction of
the detected nucleon pj and the direction of the virtual photon ¢.

In order to measure the ratio o, /0, and extract Gj;, the Quasi-elastic peak of the
D(e,e'n) and D(e, €'p) channels is selected. For the D(e,e’p) channel, we required

at least one electron in the forward detector and a positive charged particle hit
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in the calorimeter. For the D(e,e'n) channel, we required at least one electron in
the forward detector and a neutron hit in the calorimeter. The distribution of the
invariant mass W as a function of 6,, (see Fig. 4.1), which is the angle between
the direction of the detected nucleon (proton or neutron) and the direction of the

virtual photon is shown in Fig. 4.2.

D(e,e’'p): Inbending 10.4 GeV

D(e,e’p): Inbending 10.2 GeV
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Figure 4.2: The invariant mass W distribution as a function of 8, for D(e, e'p) (top)
and D(e,e'n) (bottom) for each data set.

The quasi-elastic events tend to be emitted close to the direction of the mo-
mentum transfer ¢ (6,, ~ 0°), while inelastic events are not. It is hard to observe
the quasi-elastic peak of the D(e, e'n) events compared to the D(e,e'p) channel at
this stage due to a large neutral background. The invariant mass W distribution
of D(e,e'p) and D(e, e'n) channels, shown in Fig 4.3, show a significant amount of
inelastic background events, which obscures the quasi-elastic peak of the nucleon.
Therefore, several cuts need to be applied to reduce the inelastic background and
make the peak of the proton and neutron masses visible. There are three cuts

applied to select quasi-elastic events:

1. Incident electron beam energy cut.
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Figure 4.3: The invariant mass W distribution of D(e,e'p) (top) and D(e,e'n)
(bottom) for each dataset.

2.

3.

Ao cut

0,, cut.

Below we will discuss each cut in detail.

4.3.

The

1 Incident Electron Beam Energy Cut

incident electron beam energy can be calculated from the measured events in

two different ways:

1.

angles

benm - Using the scattering polar angles of the electron and the nucleon,

measured by the CLAS12 forward detector, the beam energy is [86]:

. 9@'
Eangles _ & (COS 96/ + cos QN’& — 1) , (43)

beam 1 —cosf. sin O

where my is the nucleon mass, 6./, 0 are polar angles of scattered electron

and nucleon, either proton or neutron, respectively.
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2. Efromele: Using the scattering momentum and polar angle of the electron,

measured by the CLAS12 forward detector, the beam energy is [87]:

from ele __ P 4

bem 1 _9p, sinz(e—g’)/mN’

(4.4)

where P, is the momentum of the scattered electron.
The correlation between EX8 and Efom ke for events satisfying 6,, < 10° is

shown in Fig. 4.4. Tt is observed that the quasi-elastic events in the D(e, ¢'n) channel

exhibit a wider spread compared to the D(e,e’p) channel, making it difficult to

angles
E beam

discern the peak in the distribution. To address this, a cut is applied on the
invariant mass around the known nucleon mass, 0.85 < W < 1.05 GeV, in order

to reduce the inelastic background under the E*"8 distribution. Subsequently,

Eangles

quasi-elastic events are selected by applying sector-dependent cuts on the Ep >~

distribution. Figures 4.5 and 4.6 show the E*"® distributions for D(e,e'p) and
D(e,e'n) for each sector, respectively. These distributions satisfied the criteria of
0.85 < W < 1.05 GeV, and 60, < 10° cuts, thereby capturing the peak corresponding

to the incident beam energy. It is clearly seen that the E"&

distribution is wider
for neutrons compared to protons because of the better angle resolution for charged
particles due to the drift-chamber angle measurement that is not available for neutral

particles. The cut used for quasi-elastic selection corresponds to 1 o on the Gaussian

function fit to the central peak.

4.3.2 A¢ Cut

It is expected for quasi-elastic scattering that the electron and nucleon will lie in
or nearly in the same plane. The difference in the lab azimuthal angle between the
nucleon and the scattered electron (A¢ = ¢y —der) is used to select the quasi-elastic

events. This particular cut becomes necessary for the D(e, e'n) channel, where some
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Figure 4.4: The E™& ys. Efromele distributions for D(e, e'p) (top) and D(e, e'n)

beam beam

(bottom) that satisfied 6,, < 10° cut for each dataset.

background remains even after applying the incident beam energy cut (E8

beam ) ; a8

shown in Fig. 4.7. This background is most likely due to photon contamination.
The cut applied corresponds to 1 ¢ on the Gaussian function fit to the central peak.
These cuts are tight in order to select as clean of a sample of quasi-elastic events as
possible for D(e,e'n) channel. For consistency, the same cut (1 o on the Gaussian)

is applied for the D(e, €’p) channel.

4.3.3 0,, Cut

The distribution of the @?* as a function of 6, for D(e,e'p) and D(e,e'n) events
that satisfied 0.85 < W < 1.05 GeV, 6,, < 10°, E™"* and A¢ cuts are shown in
Fig 4.8. The quasi-elastic events depend on the Q? value, where the distribution of
quasi-elastic events is narrow at higher Q2 values and becoming broader as the Q?

range decreases.

To select quasi-elastic events while minimizing background contamination in the
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Figure 4.6: The E*™8 distributions of D(e, e'n) events that satisfied 0.85 < W <
1.05 GeV and 6, < 10° cut for each sector. The black vertical lines show the cut
applied within 1o.
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Figure 4.7: The A¢ distributions for events passing cut on 0.85 < W < 1.05
GeV, B,y < 10° and EX8 cuts for D(e, ¢'p) (top) and D(e, e'n) (bottom) for each
datasets. The black vertical lines show the cut applied within 1o.

absence of the W cut, a function is introduced as follows:

6.2127
F(Bpg) = 2.5204 + ——— (4.5)

0.9003 *
gpq

This function, defined using the TCut feature of the ROOT data analysis framework,
is used as a cut in both D(e,e¢'p) and D(e,e'n) channels. The cuts applied are
Q? < f(0,,) and 0,, < 2° and is shown in Fig. 4.8 as a red curve. It’s important to
mention that the selection of the 8,, < 2° cut was done visually. However, it should
be noted that this cut will be varied during the systematic uncertainty analysis.
The W distribution of the quasi-elastic events for both D(e, e'p) and D(e, e'n)
that satisfied E*"8% A¢ and 6,, cuts are shown in Fig 4.9. These distributions

clearly show the clean quasi-elastic peaks for both the D(e, ¢'p) and D(e, e'n) chan-

nels.
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Figure 4.8: The Q? as a function of 6, distribution for D(e, ¢'p) (top) and D(e, e'n)
(bottom) for each datasets that satisfied 0.85 < W < 1.05 GeV, E™ and A¢
cuts. The red curve is the cut used to select the quasi-elastic events.

4.4 Acceptance Matching

To measure the ratio of neutron to proton cross sections, ¢,/0,, correctly, it is
important to account for the geometric acceptance for each D(e, ¢’p) and D(e, e'n)
channel. To ensure that both neutrons and protons have the same acceptances,

a common fiducial region is required. This can be done by using the acceptance

matching technique as shown in Fig. 4.10 and described as follows.

1. In each event, the expected 3-momentum of the nucleon (either neutron or
proton) is determined based on the measured electron kinematics and assuming

elastic scattering and nothing else.

2. For each event we start with a good electron and assume the nucleon is a neu-
tron first. Then, we swim it through the CLAS12 detector system by draw-
ing a straight line from the electron vertex in the direction of the expected
3-momentum of the neutron. This path is “swum” through the CLAS12 de-

tector system to see if the track strikes the fiducial volume of the calorimeter.

92



1200 F
1000 £

Counts

400 £
200 F

D(e,e’p): Inbending 10.2 GeV

800 [
600 -

n=0.991 £ 0.001
c=0.143 +0.001

W [GeV]

D(e,e'n): Inbending 10.2 GeV

900 F
800 |-
700 |
600
500
400 £
300 £
200
100 |

Counts

Counts

02 f

n=0.988 +0.002
c=0.156 +0.002

W [GeV]

Inbending 10.2 GeV

08|
0.6

04}

D(ee'p)
D(e,e'n)

0.5 1 15 2 25
W [GeV]

Counts

Counts

700
600
500
400
300 £
200 £
100 F

D(e,e’p): Inbending 10.4 GeV

n=0.987 £0.001
6=0.145 £0.001

0.5

D(e,e’n): Inbending 10.4 GeV

W [GeV]

1w=0.983 +0.002
c=0.154 +£0.002

0.5

W [GeV]

Inbending 10.4 GeV

08

02

0.6

04

D(e,e’p)
D(e,e'n)

1 15 2 25
W [GeV]

Counts

D(e,e’p): Inbending 10.6 GeV

1=10.991 +0.002

800 -
E 6=0.148 +0.001
700 £
600 £
& 500
g E
S 400 &
© 300
200 |-
100
0 . . .
0.5 1 15 2 25
W [GeV]
D(e,e’'n): Inbending 10.6 GeV
600 - 11=0.987 +0.002
s00 E 5=0.159 +0.002
400 -
2z
g 300
3
200 -
100 [~
0 C 1 1
0.5 1 15 2 25
W [GeV]
Inbending 10.6 GeV
10 D(e,e'p)
L De,e'n)
08
0.6
04
02
0 . . .
0 05 1 15 2 25
W [GeV]

Figure 4.9: The W distribution for D(e,e'p) (top) and D(e,e'n) (middle) for each

dataset that satisfied E

angles
beam

A¢ and 6, cuts. The bottom plots shows the compar-

ison between D(e, ¢’'p) and D(e, €'n) channels. The counts are scaled by normalizing
the peak of the D(e,e'p) and D(e,e'n) events.

If it hits the ECAL and is at least 10 cm away from the edge of the calorimeter

the analysis continues. If it misses, the entire event is dropped.

If the event passes step 2 above, we then assume the expected nucleon is a

proton. The charged particle track of the proton is “swum” from the electron

vertex through the magnetic field of CLAS12 towards the calorimeter. If this

charged track also strikes the ECAL fiducial volume and is at least 10 cm away

from the edge, the entire event is kept. Otherwise the event is dropped.

The acceptance matching technique described above is performed twice, once for the

D(e, e'p) channel and once for the D(e,e'n) channel. The hit position of the swum
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Figure 4.10: Acceptance matching using the “swimming” technique for negative
torus polarity “inbending” field, where the electron is bent toward the beam line.
By requiring both swum-neutron and swum-proton tracks to hit the calorimeters,
the geometric acceptance of D(e, e'p) and D(e, e'n) are equal.

particles within the fiducial region of the calorimeter is shown in Fig. 4.11 for these
channels. The different hit positions of protons and neutrons within the fiducial

region of the calorimeter are due to the protons being deflected by the magnetic

field in the detector, while neutrons are not affected by the magnetic field.

4.5 Uncorrected Ratio Results

Events that satisfy the quasi-elastic selection cuts and pass acceptance matching
are used to fill two histograms, one for neutron events and one for proton events.
They are binned in %, and each bin in the histogram contains the count of events

(either proton or neutron). The ratio measurement is calculated by dividing each
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Figure 4.11: The distribution of the swum neutron (yellow points) and swum proton
(red points) in the x—y plane of the ECAL for D(e, €'p) (top) and D(e, e'n) (bottom)
for each data set.

bin in the neutron histogram by the corresponding bin in the proton histogram:

7

i t
R:neas - bT;EU ) (46)
pro
where b!_,, and b;,,o are the number of neutron and proton events found in the i

Q? bin, respectively. The uncertainty on each bin in the ratio histogram is given by

the propagation of errors formula:

. 2 . 2
7 7
O_R aRmeaS 0_2 aRmeas 2 (4 7)
7 . i Y i .
meas ab’lneut b peut ablpro b’LP’l‘o ’
where R! .. represents the value of the ratio measurement in the i bin, cZ  and
pro

Ugineut are the uncertainties of the number of proton and neutron entries in that
bin, respectively. Fig. 4.12 shows the ratio measurements from different data sets,

showing the consistency of the ratio results at different beam energies.

95



r e E,. - 102GeV
1.2~ * E,..=104GeV
r o Ep. =106 GeV
1 —
0.8 } [
. I
A I R N O | }
= - Pt
04—
02
0 :. | | 1 | | | | I

Q’[GeV’]

Figure 4.12: The 0,,/0, ratio results from different data sets at three different beam
energies 10.2, 10.4, and 10.6 GeV binned in Q2.
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CHAPTER 5
CORRECTIONS TO QUASI-ELASTIC RATIO

This chapter will discuss the corrections to the ratio measurements. These correc-
tions include neutron efficiency (NDE), Fermi motion of the nucleons within the
deuteron, and radiative effects. At the present time, we do not have corrections for

the proton detection efficiency or for nuclear-interaction effects.

5.1 NDE Corrections to the Ratio

The neutron detection efficiency (NDE) was calculated and detailed in Chapter 3.
To implement NDE correction, we used the functional form in Eq 3.30, that is
discussed in Sec. 3.10. At this stage, we used the Crystal Ball parametrization in
Table 3.7 due to its ability to fit a higher range of missing mass values. However,
it’s important to note that the Gaussian parametrization will also be taken into
consideration as part of the systematic uncertainty analysis.

The D(e,e'n) events that satisfy both the quasi-elastic selection cuts in Sec 4.3
and pass acceptance matching are used to fill a histogram. This histogram is binned
in % and the entries are weighted by the reciprocal of the neutron detection effi-
ciency calculated from the Crystal Ball function. The R}, ratio histogram is calcu-
lated by dividing each bin in the neutron weighted histogram by the corresponding
bin in the proton D(e, ¢'p) histogram:

b
Lo = b 5.1
Cor bi ( )

pro

where R%,, is the ratio corrected for the NDE in the i Q2 bin, b/, is the efficiency-

) Yneuty

)

o 15 the number of proton

weighted number of neutron events found in that bin and b

events found in that bin. The uncertainty on each bin in this ratio histogram is given
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by the propagation of errors formula:

8R60r ? aRéor ?
UREOY - \/<abineut ) O-gineutw + (anm crgim, (5.2)

Fig. 5.1 shows the R, ratio in each @? bin including the NDE correction from

different data sets, showing the consistency of the ratio results at different beam
energies. The results show that the NDE correction increases the ratio values by

approximately 15% — 20%.
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Figure 5.1: The o, /0, ratio results including NDE correction from different data
sets at three different beam energies 10.2, 10.4, and 10.6 GeV binned in Q?

5.2 Correction due to Fermi motion of the Target

In experiments where scattering involves a target nucleon in motion, such as in the
case of the deuteron, the Fermi motion of nucleons within the deuteron can result
in losses or migrations of scattered particles outside the acceptance region of the
detector. For instance, if a scattered nucleon is expected to hit near the edge of
the detector’s acceptance region, the motion of the target nucleon due to Fermi

motion may cause the scattered particle to move out of the acceptance region. This
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can have an impact on the measured o,,/0, ratio. To address and correct for these
effects, Monte Carlo simulations are used. These simulations enable the estimation
of the fraction of scattered nucleons expected to be removed from the acceptance

by Fermi effects.

5.2.1 Simulating Quasielastic Scattering on Deuterium

The QUasi-Elastic Event Generator (QUEEG) is an event generator developed by
J. D. Lachniet and used for the CLAS measurement of the neutron magnetic form
factor and later extended by G. Gilfoyle in preparation of this experiment. It is
designed to simulate quasielastic scattering events in the D(e,e'p) and D(e,e'n)
reactions on a deuterium target. In QUEEG, the deuterium target is treated as a
system composed of two on-shell nucleons. One nucleon acts as a spectator, while the
other participates in the elastic scattering with the target nucleon. The generator
uses the Hulthen distribution, which is a theoretical model that describes the bound
state of the deuterium. QUEEG estimates the effects of Fermi motion, which is the
motion of nucleons inside the nucleus. The Fermi-motion distribution inside the
deuteron is calculated with the Hulthen distribution, as shown in Figure 5.2. More
detail on the QUEEG generator can be found in [88].

In both quasi-elastic D(e, ¢'p) and D(e, e'n) channels, a total of 3.5 million events
were generated using the QUEEG event generator, with incident beam energies of
10.2, 10.4, and 10.6 GeV. The simulated events are passed through the GEant4
Monte-Carlo (GEMC) and the CLAS12 reconstruction software [89]. The GEMC
framework uses the GEant4 simulation toolkit for simulating the passage of particles
through various materials and the CLAS12 detector components by considering the

physical geometry, materials, and response characteristics.
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Figure 5.2: Fermi momentum distribution of nucleons inside the deuteron given by
Hulthen model and generated by QUEEG.

5.2.2 Comparison to Data

The MC data has been analyzed in the same way as the experimental data. All cuts
and corrections were made for the MC data in the same way as the experimental
data. The comparison between the experimental data and the simulated events of

electron kinematics for the D(e, ¢'p) and D(e, €'n) is shown in Fig. 5.3 and Fig. 5.4.
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Figure 5.3: The polar angle of the reconstructed electron as a function of the mo-
mentum of electron for D(e, €'p) quasi-elastic events for each data set. Top row is
the data and bottom is the simulation.
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Figure 5.4: The polar angle of reconstructed electron as a function of the momentum
of electron for D(e, e'n) quasi-elastic events for each data set. Top row is the data
and bottom is the simulation.

The comparison between the experimental and the simulated data of the invariant
mass W that satisfy the quasi-elastic selection cuts and pass acceptance matching
is shown in Fig. 5.5. The counts are scaled by normalizing the maximum histogram
of both experimental and simulated data. Good agreement between the W distri-

butions of the Monte Carlo results and data is found for each dataset.

5.2.3 Fermi-Loss Correction to the Ratio

The correction for the effects of Fermi loss in the R’ . ratio histogram is deter-

mined by filling two histograms. The first histogram consists of events where the
nucleon is expected to be found inside the acceptance of the PCAL/ECAL detector.
The expected nucleon location is determined using only the kinematic information
of the scattered electron (this is the only available information in real data) and

assuming elastic scattering off a stationary target. The second histogram consists

of events where the scattered nucleon is actually found inside the acceptance of
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Figure 5.5: The W distribution for D(e,e'p) (top) and D(e,e'n) (bottom) for both
experimental (black) and simulated (red) data that satisfied the quasi-elastic selec-
tion cuts and pass acceptance matching. The counts are scaled by normalizing the
maximum histogram of both experimental and simulated data. The comparison is
shown for incident beam energies of 10.2, 10.4 and 10.6 GeV.

the PCAL/ECAL detector and satisfies the 6, cuts described in Sec. 4.3.3. This
determination uses the information about the scattered nucleon’s momentum from
the event generator, which is not available in real data. The ratio of these two
histograms provides the fraction of nucleons that are lost due to the effects of Fermi
motion, which moves the scattered nucleons outside the acceptance. The loss factor
is calculated separately for neutrons and protons as a function of Q% and shown in

Fig. 5.6.

To correct for the Fermi loss effects, each Q2 bin in the R

! eas Tatio histogram

is multiplied by the corresponding correction factor determined from the Fermi loss

histograms:

RCor<Q2) = %Rmeas(Q2) = ffermi(Q2)Rmeas<Q2)a (53)

where fioro, foeut are taken from the histograms in Fig. 5.6. The correction factor
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Figure 5.6: The fraction of nucleons at different (Q* bins that scattered into the
PCAL/ECAL acceptance and satisfied the 6,, cuts and acceptance matching, as
determined by simulation. The black points on the plot represent the neutron
fraction, while the red points represent the proton fraction. These points were
generated using an incident beam energy of 10.2, 10.4 and 10.6 GeV. The error bars
on the plot are quite small and may not be easily observed.

for the R: .. ratio, which is frermi(Q?) = anp;—((%?) is shown in Fig. 5.7 for the three
different beam energy 10.2, 10.4 and 10.6 GeV. It’s close to 1.0 above 6 GeV and
its the same for all data sets.

The impact of applying Fermi loss corrections on the R’ _ ratio histograms is

meas
shown in Figure 5.8 for each dataset. The results show that the Fermi correction has
a varying impact on the ratio. For Q% values above 6 GeV?, the Fermi correction

causes the ratio to decrease by approximately 1% to 5%, while for Q? values below

6 GeV?2, the effect varies significantly, ranging from 10% to 40%.
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Figure 5.8: The 0,,/0, ratio results including NDE and Fermi corrections from data
at three different beam energies 10.2, 10.4, and 10.6 GeV binned in Q?

5.3 Radiative Correction

The desired cross section measurement assumes a single-photon exchange, which
is known as Born scattering. However, there are other processes that effect the
total measured cross sections. The electron in particular can emit photons when

it is accelerated in the field of the target. Photons can be emitted before or after
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the collisions and alter the final, detected electron energy. This effect on R!

i .
meas 18

considered here. The Feynman diagrams of the radiative effects for the electron are
shown in Fig. 5.9. These diagrams illustrate the following radiative processes that

are present in the measured events:

e the Bremsstrahlung, in which a photon is emitted by the incoming or outgoing

electron, Fig. 5.9 b).

e the vertex correction, in which the photon is emitted by the incoming electron

and absorbed by the outgoing electron, Fig. 5.9 c).

e the vacuum polarization, in which the virtual photon produces temporarily an

ete” pair, Fig. 5.9 d).

e(k1) ¢(ky) ST
7" ()
Pu
N(p) b
a) Born process b) Bremsstrahlung
c) Vertex d) Vacuum

Figure 5.9: Feynman diagrams for Born term and lowest order radiative processes
for the electron. The p, and p, are the momentum of the detected and undetected
hadrons, respectively.

Including these other processes in the cross section can be done by multiplying
the Born cross section by a radiative correction factor:

do do
aq - (1+49) <E>Bom7 (5.4)
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do

where (E) Bor

., is the single-photon-exchange cross section in Eq. 1.11, and the ra-
diative correction factor (1+0) comes from the bremsstrahlung, vacuum polarization
and vertex corrections.

The radiative corrections (RC) for G}, were calculated by the program EXCLU-
RAD. The EXCLURAD program is written by A. Afanasev [90] for exclusive pion
electroproduction p(e, ¢'m)n, and it has been further modified by G. Gilfoyle [91] to
include the radiative effects in the D(e, ¢'p)n and D(e, ¢'n)p channels. The response
functions at the deuteron-virtual photon vertex, which describe the deuteron’s re-
sponse to the virtual photon, were calculated by W. Van Orden [92] and incorporated
into the code. The EXCLURAD code contains the radiative correction for the elec-
tron only which is shown in the left of Fig. 5.9 and does not take into account the
nucleon’s radiative correction or the two-photon exchange.

The EXCLURAD code is used to generate the ratio of the radiated cross section
to the cross section that would be measured if there were no radiative effects for
specific kinematic variables. These variables include Q? (the square of the four-
momentum transfer), W (the invariant mass of the hadronic final state), cosf,,
(the cosine of the polar angle between the virtual photon direction and the direction
of the detected hadron), and ¢,, (the azimuthal angle between these directions).

The EXCLURAD code calculates the radiative correction factor for different
values of @? in cos 6, and ¢,, surfaces. These surfaces represent the dependence of
the radiative correction factor on the angles cosf,, and ¢,,. To obtain the overall
radiative correction factor at a specific Q% value, the generated surface is integrated
over the experimental range of cos 6, for that particular Q* value. The calculation
is performed twice, once for the proton detection, channel D(e,e'p)n, and once
for the neutron detection, channel D(e,e'n)p. Figures 5.10, 5.11, and 5.12 show

the comparison of the radiative corrections factor for D(e,e'p)n (red curve) and
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D(e,e'n)p (green curve) channels at W = 2.60 GeV, cosf,, = 0.998° at different Q*
values for the 10.2 GeV, 10.4 GeV and 10.6 GeV data sets, respectively. There is a
significant factor of correction in each D(e, e’p)n and D(e,e'n)p channel. However,
the curves are close to each other and the difference between them is very small over
the full range of the ¢,, values.

In the G}, measurement we are interested in the ratio of D(e, €'p)n to D(e, e'n)p
corrections

_1+4,(Q*) RC,

fr‘ad(Qz) — . n §n(Q2 — RCn’ (55)

where the subscripts (n, p) indicate the neutron and proton, respectively. Figure 5.13
shows the ratio of radiative corrections (f.qq), RCp to RCn, at various Q? values
for the 10.2 GeV, 10.4 GeV, and 10.6 GeV data sets. This ratio varies from 1.0 by
approximately 0.20% on average at low ¢,, values to 0.35% on average at high ¢,,
values at each Q? bin. The differences between the smallest and the largest of the
ratio of radiative corrections at each value of Q% in Fig. 5.13 will be considered as a
systematic uncertainty.

To apply radiative corrections to the R ... measurement, we used the average

radiative correction over ¢,, values at each Q? point (Reor = frad X Rls)- The
average radiative correction factors for RCp and RCn and the ratio of the average
radiative correction f,.q over the ¢,, values at each @* point for the 10.2 GeV,
10.4 GeV, and 10.6 GeV data sets are shown in Table 5.1. The radiative correction
applied to the R! . ratio measurement is shown in Fig. 5.14 for the three different

beam energies (10.2, 10.4, and 10.6 GeV). These results show that the radiative

correction does not significantly impact the ratio measurements.
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Figure 5.10: A comparison of the radiative correction factor, RC, for D(e, ¢'p)n (red
curve) and D(e,e'n)p (green curve) as a function of ¢,,. The curves shown were
generated for a beam energy of 10.2 GeV and W = 2.60 GeV at different Q? values.
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Figure 5.11: A comparison of the radiative correction factor, RC, for D(e, e'p)n (red
curve) and D(e,e'n)p (green curve) as a function of ¢,,. The curves shown were
generated for a beam energy of 10.4 GeV and W = 2.60 GeV at different Q? values.
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Figure 5.12: A comparison of the radiative correction factor, RC, for D(e, e'p)n (red
curve) and D(e,e'n)p (green curve) as a function of ¢,,. The curves shown were
generated for a beam energy of 10.6 GeV and W = 2.60 GeV at different Q? values.
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Figure 5.13: The ratio of the radiative correction of D(e,e'p)n to D(e,e'n)p at
different Q? values for 10.2 GeV (top left), 10.4 GeV (top right) and 10.6 GeV
(bottom middle). The average over the ¢,, values of these radiative correction are
used to correct the ratio measurement in each Q? point.
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Inbending 10.2 GeV Inbending 10.4 GeV Inbending 10.6 GeV

Q? GeV?
RC, | RC, | fraa RC, | RC, | fraa RC, RC, | frad
5.34 0.7205 | 0.7230 | 0.9966 || 0.7193 | 0.7218 | 0.9966 || 0.7181 | 0.7206 | 0.9966
5.78 0.7236 | 0.7259 | 0.9969 || 0.7222 | 0.7246 | 0.9966 || 0.7210 | 0.7234 | 0.9966
6.24 0.727710.7299 | 0.9971 || 0.7263 | 0.7286 | 0.9969 || 0.7250 |0.7274 | 0.9967
6.73 0.73330.7354 | 0.9971 || 0.7320 | 0.7341 | 0.9971 || 0.7305 | 0.7328 | 0.9968
7.24 0.7402 | 0.7423 | 0.9971 || 0.7389 | 0.7411 | 0.9970 || 0.7376 | 0.7398 | 0.9970
7.75 0.7474 1 0.7497 { 0.9969 || 0.7462 | 0.7484 | 0.9970 || 0.7449 |0.7471 | 0.9971
8.23 0.7537 [ 0.7561 | 0.9969 || 0.7525 | 0.7548 | 0.9970 || 0.7512 | 0.7535 | 0.9970
8.92 0.7601 | 0.7625 | 0.9968 || 0.7587 | 0.7612 | 0.9967 || 0.7575 | 0.7599 | 0.9969
9.94 0.7638 | 0.7663 | 0.9968 || 0.7624 | 0.7649 | 0.9968 || 0.7610 |0.7635 | 0.9967
10.89 0.7638 | 0.7659 | 0.9974 || 0.7624 | 0.7645 | 0.9973 || 0.76105 | 0.7631 | 0.9973
12.20 0.7578 [ 0.7595 | 0.9977 || 0.7563 | 0.7581 [ 0.9977 || 0.7549 | 0.7567 | 0.9977

Table 5.1: The average radiative correction values for 10.2, 10.4 and 10.6 GeV data
set. These values are used to correct the ratio measurement in each Q2 bin.
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Figure 5.14: The o, /0, ratio results including NDE, Fermi and radiative corrections
from different data sets at three different beam energies 10.2, 10.4, and 10.6 GeV
binned in Q2.
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CHAPTER 6
G», RESULTS

In this chapter, we will extract G}, from the ratio of quasi-elastic D(e,€'p) to
D(e,e'n) scattering. Then we will discuss the sources of systematic uncertainties

that might impact the accuracy of the G'}; result.

6.1 G, Extraction from Ratio

To extract the neutron magnetic form factor (G7,) from the ratio of D(e,e'n) to

D(e, €'p) scattering, we begin with the cross-section expression in Eq. 1.11:

do o T 1
— = O - , 1
a0 = o (G + £Ghy) (1+T) (6-1)
where ¢ and 7 are defined as:
1 Q>?
STl ntan’(%) 0T e (62)
The measured ratio Rpe.s iS given by:
n n 2 Tn (YN 2 1
" _ g_g[D(e’ 6/n>] _ O Mott <GE + aGM > <1+Tn> (6.3)
wlPeen) on (6t 2an) (o)

147

where the sub-/super-scripts p and n refer to protons and neutrons, respectively.

Solving Eq. 6.3 for G7; leads to

ab 1+ 9 T 9 €
o= || R | —2ett ) (GRE 2GR ) -Gt 2, 6.4
" \/{ (Ugwtt) (1+Tp) ( o +5p M Pl (64)

where R, takes into account various corrections including neutron detection ef-

ficiency (NDE), proton detection efficiency (PDE), nuclear, Fermi, and radiative

corrections

RCOT‘(Q2> = fNDE(Q2> fPDE (Q2) fNuclear(Q2> fFermi(QQ) fRadiative(Q2> Rmeas(QQ)'
(6.5)
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At this stage, the proton detection efficiency correction and the nuclear correction
have not been included.

To simplify Eq. 6.4, we make approximations:

P 1
Imott 1, T o (6.6)
Omott 1 + TP

Thus, the neutron magnetic form factor G, becomes

n 2 T 2 n En n En
GM = \/|:(G% + —pG€W ) Rcor - GE2:| — = \/[O'p Rcor — GEZ} -, (67)
Ep Tn Tn
where o, = G%Q + ;—iGﬁf represents the reduced proton cross section. The standard
propagation of errors for the extracted value of G, is determined as

oG\ 2 oG\ 2 aGn \ 2
(6G7,)? = ( aaM> (60,) + (8RM) (6Rcor)” + (a(;f) (6G7)?. (6.8
P cor E

To extract Gy, the Arrington parametrization [93] is used to calculate the proton
form factors (G% and G%,) as well as the neutron electric form factor G'%. This
parametrization is shown in Fig 6.1 as black solid curves. The details of the fit
function and the procedure of the fitting that Arrington used can be found in [93].
The Arrington parametrization of G%,, G, and G% that we used to extract G, is

shown in Fig 6.2.

0.5F

1077 100 107 10% 1072 1071 107 107 10% 1072 1071 107 107
Q2 [GeV? Q2 [GeV?| @ [GeV?]

0.4
107

Figure 6.1: Arrington parameterizations of G, /u, Gp (left), G%/Gp (middle) and
G/, Gp (right) shown as black solid curves. The error band within the dashed

curves and highlighted in red represent the fit uncertainty from the parameterization.
The plot from Ref. [93].
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Figure 6.2: Arrington parameterizations of G4, (left), G% (middle) and G (right)
that correspond to the % values of our experiment.

The results of G%; as a function of Q? for three different beam energies 10.2, 10.4
and 10.6 GeV are shown in Fig 6.3. The results show that all three data sets are
consistent with each other.
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Figure 6.3: The G%, as a function of Q? for three different beam energies of 10.2,
10.4 and 10.6 GeV. The black line showing G%;, =unGp.

The weighted average of G7, in each Q? bin is obtained by merging the results
from these three different beam energies. The calculation of the weighted average

involves minimizing the x? value, following the formula [94]

V2= Z Mv (6.9)

;7
where x; represents the G, value and o; is the statistical error associated with the

4" measurement contributing in that Q2 bin (with j being an integer between 1 and
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3). By setting 9x?/07 to 0 in Eq. 6.9 and solving for Z, we find

= U_ (6.10)

|

The statistical error for each point within the weighted average is determined using

the following formula:

(6.11)

The result of the weighted average for G, is shown in Fig 6.4. The G, results
of CLAS12 show a flat behavior over the range of Q? = 5 — 12 GeV?2. The numerical
values of the three individual measurements and the weighted average of G}, as a

function of Q? can be found in Appendix C.
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Figure 6.4: G7, weighted average as a function of % obtained by combining data
from three different beam energy 10.2, 10.4 and 10.6 GeV. The black line shows G,

=unGp.
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6.2 Systematic Uncertainties

There are multiple sources of systematic uncertainties that can affect the accuracy of
the G, measurement. To determine the total systematic uncertainty, the following

sources have been considered:

5NDE)

e Systematic uncertainty due to neutron detection efficiency ( syst

e Systematic uncertainty due to electron identification cuts:

— vertex cut (dg;¢)

— fiducial cut (879l

syst

— Sampling Fraction cut (65,)

e Systematic uncertainty due to quasi-elastic selection cuts:

o angles beam
Ebeam cut (5syst )

— A¢ cut (652,

syst

6
— Upg cut (535Zt)

e Systematic uncertainty due to radiative effects (522%)

These uncertainties are determined by making small variations to a particular source
while keeping others constant, and observing how the G’} results change. The
formula used to calculate the relative systematic uncertainty associated with the

variation in the *" source is given by

G =Gyt

Otyst = 100
syst n )
G (6.12)
AGY
= x 100,
Gl
where AG%, = |G?, — G|, G, represents the reference measurement and G%,**

corresponds to the measurement with an alternate cut.
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6.2.1 Systematic Uncertainty due to Neutron Detection Ef-

ficiency

The neutron detection efficiency (NDE) was calculated using two different functions,
Gaussian and Crystal Ball functions, as described in Section 3.8. The difference

between the results obtained by these two functions is less than 3% as shown in

Fig 6.5.
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Figure 6.5: The difference of the neutron detection efficiency between fitting the
neutron peak with a Gaussian function and a Crystal Ball function, binned in miss-
ing momentum of neutron for inbending and outbending 10.6 GeV and inbending
10.2 GeV datasets.

The uncertainty associated with the NDE is determined by recalculating G%,
using the Gaussian parametrization listed in Table 3.7. The result of the G, using
both the Gaussian and Crystal Ball parametrizations is shown in the left panel of
Fig 6.6. The relative systematic uncertainty is shown in the right panel of Fig. 6.6,

which is determined by using Eq. 6.12.
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Figure 6.6: Left: Comparison of the G%, measurements with Crystal Ball (black)
and Gaussian (red) functions used to determine the NDE correction. Right: The
estimated relative systematic uncertainty on G%, due to the NDE fitting procedure.

6.2.2 Systematic Uncertainty due to Electron Identification

Cuts

Below is a detailed description of the relative systematic uncertainties related to
electron identification:

Electron Vertex Cut: To assess the uncertainty associated with the electron ver-
tex cut, we conducted an analysis without applying this particular cut. Figure 6.7
shows a comparison between G, measurements with and without the electron vertex
cut. The right panel of Fig. 6.7 shows the estimated relative systematic uncertainty
due to the electron vertex cut. It’s important to note that the difference is zero for
Q? > 7.6 GeV2. Consequently, the relative systematic uncertainty associated with
the vertex cut is determined to be less than 0.06%.

Fiducial Cuts: Similarly, we disabled the PCAL and DC fiducial cuts during
electron ID selection to investigate their impact. The comparison between G'}; mea-
surements with and without these fiducial cuts is shown in the left panel of Fig. 6.8.
The right panel of the same figure shows the estimated relative systematic uncer-
tainty due to the fiducial cuts. The relative systematic uncertainty due to fiducial

cut is determined to be less than 1.4%.
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Figure 6.7: Left: Comparison of the G}, measurements with (black) and without
(red) electron vertex cut applied during particle identification. Right: The estimated
relative systematic uncertainty on G, due to electron vertex cut.
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Figure 6.8: Left: Comparison of G}, measurements with (black) and without (red)
fiducial cuts applied during particle identification. Right: The estimated relative
systematic uncertainty on G7; due to fiducial cuts.

Sampling Fraction Cut: For the sampling fraction (SF), we initially selected
u£3.50 from the fitted distribution versus momentum, as detailed in Section 3.4.5.
We then modified this cut to pu=£3.00 and recalculated G%,. Figure 6.9 shows a com-
parison of G, results with the u+3.50 and p=£3.00 cuts on the sampling fraction.
The right panel of Fig. 6.9 shows the corresponding relative systematic uncertainty
associated with the sampling fraction cut. The relative systematic uncertainty as-
sociated with the SF cut is determined to be less than 0.6%.

Given that similar electron ID cuts were applied to both D(e,e¢’p) and D(e, e'n)

channels, the relative systematic effect on the G}, due to electron identification is
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Figure 6.9: Left: Comparison of G}, measurements with different SF cut applied
during electron identification. Right: The estimated relative systematic uncertainty
on G, due to SF cut.

expected to be small (less than 1.6%) in most Q2 values as shown in Fig 6.10.
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Figure 6.10: The estimated relative systematic uncertainty on G'j; due to electron
ID cuts in added quadrature.

6.2.3 Systematic Uncertainty due to Quasi-elastic Selection

Cuts

Below is a detailed description of the systematic uncertainties related to quasi-elastic
selection:

Incident Electron Beam Energy Cut: In the quasi-elastic event selection, we

120



Eangles

benm > &S described in

applied a p£1.00 cut on the incident electron beam energy
Section 4.3. To assess the systematic uncertainty, we altered this cut to pu£1.250
and recalculated G';. The reason for the small variation is to avoid regions where

the background becomes significant, especially for the D(e, e'n) channel. The com-

Eangles

parison between G7%; measurements with the p£1.00 and p£1.250 cuts on £

is shown in the left panel of Fig. 6.11. The right panel of the same figure shows the
estimated relative systematic uncertainty due to the incident electron beam energy

FA8les which is determined to be less than 2.5%.
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Figure 6.11: Left: Comparison of G%, measurements with different E*"8 cut ap-

plied during quasi-elastic events selection. Right: The estimated relative systematic

. n angles
uncertainty on G, due to £~ cut.

A¢ Cut: Another crucial cut for quasi-elastic event selection was a pu£1.00 cut on
the A¢ distribution. We modified this cut to u£1.250 and recalculated G%,. The
comparison between G, measurements with the y£1.00 and pu+1.250 cuts on A¢ is
depicted in the left panel of Fig. 6.12. The right panel of the same figure shows the
estimated relative systematic uncertainty due to the A¢ cuts, which is determined
to be less than 3.5% over Q? values, except at the Q? = 10.93 GeV?.

0y, Cuts: The final cut used for quasielastic event selection was the 6,, cut. We
considered 6, cuts that are 10% larger and 10% smaller than the cut we initially

used, as shown by the black curves in Fig. 6.13. These variations in the 6,, cut are
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Figure 6.12: Left: Comparison of G, measurements with different A¢ cut applied
during quasi-elastic events selection. Right: The estimated relative systematic un-
certainty on G, due to A¢ cut.
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Figure 6.13: The Q)* as a function of 6,,, distribution for D(e, ¢'p) (left) and D(e, e'n)
(right) for 10.2 GeV dataset. The red curve represents the initial 6,, cut applied to
select quasi-elastic events. The black curves represent 6, cuts that are 10% larger
and smaller than the original cut.

used to understand how different 0, cut values affect the G, measurements. The
comparison between G, measurements with the the original 6,, cut and the 10%
larger and smaller than the original cut are shown in the left panel of Fig. 6.14 and
Fig. 6.15, respectively. The right panel of the same figures show the estimated rela-
tive systematic uncertainty due to the variations in the 6,, cut, which is determined
to be less than 3% over Q? values, except at the Q? = 4.89 GeV?2.

The major source of systematic uncertainties in the G}, analysis is expected to be

related to the quasi-elastic event selection procedure. The total relative systematic

uncertainty in quadrature due to the quasi-elastic cut is less than 6 % in most Q?
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Figure 6.14: Left: Comparison of G, measurements with different 6, cut applied
during quasi-elastic events selection. Right: The estimated relative systematic un-
certainty on G'}; due to a 10% larger than the original 6, cut.
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Figure 6.15: Left: Comparison of G, measurements with different 6, cut applied
during quasi-elastic events selection. Right: The estimated relative systematic un-
certainty on G%, due to a 10% smaller than the original 6,, cut.

values, except at the Q? = 4.89 GeV? as shown in Fig 6.16.

6.2.4 Systematic Uncertainty due to Radiative Effects

As mentioned in section 5.3, the systematic uncertainty associated with the radiative
correction is determined by considering the differences between the smallest and
largest values of the ratio of radiative corrections at each Q% value (see Fig. 5.13).
In this procedure, G7; is calculated twice: once using the smallest value of the
ratio of radiative corrections at each Q% value and then using the largest value of

the ratio of radiative corrections at each Q? value. The comparison between the
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Figure 6.16: The estimated relative systematic uncertainty on G7; due to the quasi-
elastic cuts in added quadrature.
resulting G}, measurements, based on the smallest and largest values of the ratio
of radiative corrections, is shown in the left panel of Fig. 6.17. The right panel
of the same figure show the estimated relative systematic uncertainty due to the

radiative correction. The relative systematic uncertainty due to radiative correction

is at 0.08%.
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Figure 6.17: Left: Comparison of G}, measurements with smallest and largest value
of the ratio of radiative corrections. Right: The estimated relative systematic un-
certainty on G, due to the radiative correction.
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6.3 Total Systematic Uncertainty

The relative systematic uncertainty is computed individually for each Q? bin and for
each source. Figure 6.18 provides an overview of how the different sources contribute
to the relative systematic uncertainty across various Q? values. The figure shows
that the uncertainty associated with A¢ is the dominant factor in most Q2 bins.
The other sources generally remain at or below a level of 1-2.5% over Q? values,

except at the Q? = 4.89 GeV?, where there is a noticeable increase in the systematic

total

uncertainty. The total relative systematic uncertainty o

is determined by adding
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Figure 6.18: The estimated relative systematic uncertainty on the weighted average
of G%, for the individual contributing sources as a function of Q* values.

the individual contributions in quadrature:

62(;;? = A [Z 5;yst2' (613)

Figure 6.19 shows the total relative systematic uncertainty in the G, measurement
as a function of various Q? values. This figure shows that the total relative system-

atic uncertainty generally falls within the range of 2-6%. The calculated relative
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systematic uncertainties due to various sources at different ) bins are listed in

Table 6.1.
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Figure 6.19: The total estimated relative systematic uncertainty on the weighted
average value of G}, in added quadrature.
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fiducial | ¢SF | cbeam | sA¢ | Opg+10% | Opg—10% | crad | stotal
0 5syst 5syst 5syst 5syst 5syst 5syst 5syst (Sstat

Q2 5NDE 51)2

syst syst |V syst

4.89 | 1.03 |0.00{ 0.95 [0.00({10.62|3.17| 5.42 5.27 10.06{13.49|15.72
5.33 1 0.78 10.02] 0.44 [0.19|1.59 |3.19| 2.36 2.45 10.08]5.02 | 4.37
5.78 1 0.55 10.04| 0.35 [0.16|0.43 |2.53| 1.19 1.96 ]0.08|3.51 | 2.81
6.24 | 0.32 |0.03| 0.45 [0.17{0.84 |1.60| 0.52 0.41 (0.08]2.01|2.81
6.73|0.11 ]0.04| 0.50 [0.13|0.37|1.74| 0.85 0.84 10.07{2.21 | 3.26
7.23|0.06 |0.06/ 0.10 [0.19|1.43|2.33| 1.03 1.70 10.07|3.39 | 3.79
7.7210.19 10.00) 0.47 |0.23|2.31|2.39| 1.74 0.29 (0.07{ 3.80 | 4.46
8.2310.29 |0.00| 0.14 [0.34| 0.61 |1.44| 2.19 1.88 10.08|3.31 | 5.13
8.94 | 0.40 |0.00| 0.60 [0.21|1.76 |2.54| 0.87 1.32 ]0.08| 3.55 | 5.06
9.90 | 0.49 10.00| 0.59 [0.33|0.46 |3.32| 0.19 1.80 ]0.07|3.90 | 7.16
10.93] 0.56 [0.00{ 0.10 [0.45|0.03 |5.75| 1.35 1.55 (0.05|6.15 |10.80

12.06| 0.59 |0.00{ 1.42 ]0.61| 0.62 |2.23| 1.79 1.09 ]0.04|3.77 [14.88

Table 6.1: Relative systematic uncertainties due to various sources and relative
statistic uncertainties at different ()% bins.
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CHAPTER 7
PRELIMINARY G, RESULT AND DISCUSSION

This chapter provides an overview of the preliminary results for the neutron mag-
netic form factor, G7%;. These results have been compared with previous measure-
ments and various theoretical models. In addition, we will briefly discuss the goals

for the immediate future of this work toward publication.

7.1 Comparison to Previous Measurements and Models

A comparison of the weighted average determination of G'};, scaled to the dipole
parametrization, with previous measurements and some theoretical predictions dis-
cussed in Section 1.5 is shown in Fig.7.1. In this plot, the grey error band represents
the weighted average systematic uncertainty and a black line showing the standard
dipole form factor G}, = unGp. A similar plot is presented in Fig.7.2, where the
error bars show the statistical and systematic errors combined in quadrature. The
CLAS12 result shows a flat behavior of G%, = uyGp within the Q? range of 5 to
12 GeV?, with systematic uncertainty 2 — 6%. A significant disagreement is seen
when comparing CLASI2 result to the Rock et al. [29] measurement. The Rock
results shows that G%, falls off at high Q* with large uncertainties (4-15%) while
the CLAS12 data is consistent with the standard dipole form factor within 12-20%.
Moreover, there are significant differences between our results and various theo-
retical models, and these differences are expected to persist even after applying the
missing corrections (PDE and nuclear corrections).
The CLAS12 results are currently derived from RG-B passl data. However,
we expect that once we transition to using RG-B pass2 data, G, will align more

closely with the dipole form factor. The RG-B pass2 analysis in CLAS12 holds
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Figure 7.1: Final G7,results scaled to the dipole parametrization. A selection of
previous measurements is shown. The grey points indicate the results of this anal-
ysis. The weighted average systematic error is shown as a grey band. The black
line indicates G%; = unyGp. The theory curves are the Miller model (blue) [41], the
Gutsche model (yellow) [42] , and the Cloet model (green) [43].
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Figure 7.2: Same as Fig.7.1 but with error bars being the quadrature sum of sys-
tematic and statistical uncertainty for our results.

the promise of significant improvement. This improvement is achievable through

the collaborative efforts directed at refining various aspects, including tracking ef-
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ficiency, momentum correction, calibration, and alignment. These combined efforts
are expected to result in significantly improved experimental resolution of e — p and
e —n events in comparison to the current stage of our study. In addition, the re-
sults shown in this thesis included a significant statistical uncertainty that may be

reduced with the RG-B pass 2 data.

7.2 Conclusion

The elastic electromagnetic form factors are important observables for understand-
ing the structure of the nucleon. Measuring all four elastic form factors, G%,, G'%,
G, and G%;, at high Q? is one of the central goals of the physics programs at
Jefferson Lab. This thesis focused on the measurement of neutron magnetic form
factor, G%,, at Q? = 5-12 GeV? using the Forward Detector in CLAS12. G%, has
been extracted from the ratio of quasi-elastic e—n to e—p scattering from a deuteron
target. The results have shown that G7, is approximately 12-20% higher than the
predictions of the dipole form factor across the considered range of Q?, based on
RG-B passl data. However, it is expected that G, will closely align with the dipole
form factor when RG-B pass2 data is used.

Ongoing research efforts are focused on calculating the proton detection efficiency
in the forward calorimeter. Preliminary insights show that this efficiency ranges from
97% to 99% for Q? values above 6 GeV2. However, for Q? values below 6 GeV?, there
is considerable variability, with the proton efficiency fluctuating between 35% and
80%. It’s important to note that these results will undergo validation and further
analysis in upcoming work. Despite these variations, the current expectation is that
Gy will continue to show consistent behavior to the dipole form factor even after

applying the proton detection efficiency correction.
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The results presented in Fig.7.2 have the potential to pose a fundamental chal-
lenge to various theoretical models. The observed behavior may necessitate a recon-
sideration of existing theoretical frameworks by physicists. A notable example is the
flavor decomposition of proton form factors, as illustrated in Fig.1.4, which relies on
the fitting of experimental data for G%, G%,, G%, and G%,. It’s important to note
that the fitting for G%; at high Q? is currently based solely on Rock data, where the
data shows a decline at high Q2. Our results suggest the potential for a modifica-
tion in the fitting of G, at high Q?, thereby influencing the flavor decomposition
of proton form factors within the high Q? regime.

In physical terms, the neutron’s magnetic form factor, G%,, provides insights
into how magnetic properties are distributed within the neutron. If the neutron’s
magnetic form factor aligns with the dipole model, it implies a uniform or symmetric
distribution of magnetic properties within the neutron. If experimental data closely
matches this expected behavior, it signifies that the magnetic properties of the
neutron will decrease as the momentum transfer Q? increases. Our results have
the potential to pose a fundamental challenge to various theoretical models. The
theoretical physicists may need to reassess and reconsider their existing models based
on these results. The result of the flavor decomposition of proton form factors that
are shown in Fig. 1.4 is calculated based on the fitting of all four form factors, G,

", G, and G%,. The fitting that is used for G, to calculate the contributions of
the up and down quarks relies on the Rock data only at high @?. Our result can
modify the fitting of the G, at high @Q* and might influence the flavor decomposition
of proton form factors at high Q2.

Conversely, if the neutron’s magnetic form factor decreases as Q% increases (as
shown in the theoretical model), it could indicate the effect of asymptotic freedom.

Asymptotic freedom signifies that quarks and gluons essentially become free particles
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at high Q2. This observation offers insights into the transition between confinement,
where quarks are bound together within the nucleon, and asymptotic freedom, where
they behave as free particles. Additionally, a decrease in the magnetic form factor
with increasing @2 might suggest the presence of a resonance structure within the
neutron as shown in Miller’s calculations [41]. Miller’s model takes into account a
pion cloud and within this pion cloud he calculated the delta resonance to provide
valuable insights into the internal dynamics of the neutron.

Finally, there is an interest in expanding this research by studying G}, using
the Central detector. This would allow for overlapping results with CLAS6 data,
providing improved measurements of the neutron magnetic form factor at these

values of Q2.
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APPENDIX A
FIT MISSING MASS DISTRIBUTION USING GAUSSIAN
FUNCTION

The following plots show the fitting of the expected and detected neutrons using
Gaussian plus a 4th order Polynomial function. Also it shows the parameters of the

fit as a function of P,,,,.
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Figure A.1: The missing mass distribution of expected neutron p(e, e'7™)n for differ-
ent P,,,, bin. The distribution is fitted with a Gaussian plus polynomial background.
The blue curve is the signal distribution after subtraction of the background distri-
bution, the green is the background, and the red is the sum of the two. The fitting
is shown for inbending 10.6 GeV dataset.
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Figure A.2: The missing mass distribution of detected neutron p(e, ¢'mn) for differ-
ent P,,,, bin. The distribution is fitted with a Gaussian plus polynomial background.
The blue curve is the signal distribution after subtraction of the background distri-
bution, the green is the background, and the red is the sum of the two. The fitting
is shown for inbending 10.6 GeV dataset.
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Figure A.3: Missing mass distribution of expected neutron p(e,e’nm)n for different
P, bin. The distribution is fit with a gaussian + polynomial background. The
blue curve is the signal distribution after subtraction of the background distribution,
the green is the background, and the red is the sum of the two. The fitting is shown
for outbending 10.6 GeV dataset.
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Figure A.4: Missing mass distribution of detected neutron p(e, e'wn) for different
P, bin. The distribution is fit with a gaussian + polynomial background. The
blue curve is the signal distribution after subtraction of the background distribution,
the green is the background, and the red is the sum of the two. The fitting is shown
for outbending 10.6 GeV dataset.
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Figure A.5: Missing mass distribution
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of expected neutron p(e, e’7tn) for different

P,..» bin. The distribution is fit with a Gaussian + polynomial background. The
blue curve is the signal distribution after subtraction of the background distribution,
the green is the background, and the red is the sum of the two. The fitting is shown
for inbending 10.2 GeV dataset.
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Figure A.6: Missing mass distribution of detected neutron p(e,e'wn) for different
P,..» bin. The distribution is fit with a Gaussian + polynomial background. The
blue curve is the signal distribution after subtraction of the background distribution,
the green is the background, and the red is the sum of the two. The fitting is shown
for inbending 10.2 GeV dataset.
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Figure A.7: The x? of the expected (left) and detected (right) neutron as a function
of P, using Gaussian + polynomial background.
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Figure A.8: The amplitude of the expected (left) and detected (right) neutron as a
function of P, using Gaussian + polynomial background.
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Figure A.9: The mean of the expected (left) and detected (right) neutron as a
function of P,,,, using Gaussian + polynomial background.
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Figure A.10: The width of the expected (left) and detected (right) neutron as a
function of P,,,, using Gaussian + polynomial background.
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Figure A.11: The P, parameter of the expected (left) and detected (right) neutron
as a function of P, using Gaussian + polynomial background.
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Figure A.12: The P, parameter of the expected (left) and detected (right) neutron
as a function of P,,,, using Gaussian + polynomial background.
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Figure A.13: The P, parameter of the expected (left) and detected (right) neutron

as a function of P, using Gaussian + polynomial background.
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Figure A.14: The P; parameter of the expected (left) and detected (right) neutron

as a function of P, using Gaussian + polynomial background.
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Figure A.15: The P, parameter of the expected (left) and detected (right) neutron
as a function of P,,,, using Gaussian + polynomial background.
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APPENDIX B
FIT MISSING MASS DISTRIBUTION USING CRYSTAL BALL
FUNCTION

The following plots show the fitting of the expected and detected neutrons using
Crystal Ball plus a 4th order Polynomial function. Also it shows the parameters of

the fit as a function of P,,,,.
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Figure B.1: The missing mass distribution of expected neutron p(e, ¢'r™)n for differ-
ent P, bin. The distribution is fitted with a Crystal Ball 4+ polynomial background.
The blue curve is the signal distribution after subtraction of the background distri-
bution, the green is the background, and the red is the sum of the two. The fitting
is shown for inbending 10.6 GeV dataset.
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Figure B.2: The missing mass distribution of detected neutron p(e, ¢'7wn) for differ-
ent P, bin. The distribution is fitted with a Crystal Ball 4+ polynomial background.
The blue curve is the signal distribution after subtraction of the background distri-
bution, the green is the background, and the red is the sum of the two. The fitting
is shown for inbending 10.6 GeV dataset.
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Figure B.3: Missing mass distribution of expected neutron p(e, e'nm™)n for different
P,..» bin. The distribution is fit with a Crystal ball + polynomial background. The
blue curve is the signal distribution after subtraction of the background distribution,
the green is the background, and the red is the sum of the two. The fitting is shown
for outbending 10.6 GeV dataset.
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Figure B.4: Missing mass distribution of detected neutron p(e, e’7")n for different
P,..» bin. The distribution is fit with a Crystal ball + polynomial background. The
blue curve is the signal distribution after subtraction of the background distribution,
the green is the background, and the red is the sum of the two. The fitting is shown
for outbending 10.6 GeV dataset.
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Figure B.5: Missing mass distribution of expected neutron p(e, e'nm)n for different
P,..» bin. The distribution is fit with a Crystal ball + polynomial background. The
blue curve is the signal distribution after subtraction of the background distribution,
the green is the background, and the red is the sum of the two. The fitting is shown
for inbending 10.2 GeV dataset.
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Figure B.6: Missing mass distribution of detected neutron p(e, e’n")n for different
P,..» bin. The distribution is fit with a Crystal ball + polynomial background. The
blue curve is the signal distribution after subtraction of the background distribution,
the green is the background, and the red is the sum of the two. The fitting is shown
for inbending 10.2 GeV dataset.
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Figure B.7: The x? of the expected (left) and detected (right) neutron as a function
of P, using Crystal ball + polynomial background.
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Figure B.8: The amplitude of the expected (left)
function of P,,,, using Crystal ball + polynomial background.
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Figure B.9: The mean of the expected (left) and detected (right) neutron as a
function of P,,, using Crystal ball + polynomial background.
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Figure B.10: The width of the expected (left) and detected (right) neutron as a
function of P, using Crystal ball + polynomial background.
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Figure B.11: The Py parameter of the expected (left) and detected (right) neutron
as a function of P, using Crystal ball + polynomial background.
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Figure B.12: The P, parameter of the expected (left) and detected (right) neutron
as a function of P, using Crystal ball + polynomial background.
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Figure B.13: The P, parameter of the expected (left) and detected (right) neutron
as a function of P,,,, using Crystal ball + polynomial background.
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Figure B.14: The P; parameter of the expected (left) and detected (right) neutron
as a function of P, using Crystal ball + polynomial background.
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Figure B.15: The P, parameter of the expected (left) and detected (right) neutron
as a function of P, using Crystal ball + polynomial background.
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Figure B.16: The n parameter of the expected (left) and detected (right) neutron
as a function of P,,,, using Crystal ball + polynomial background.
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Figure B.17: The a parameter of the expected (left) and detected (right) neutron
as a function of P,,,, using Crystal ball + polynomial background.

164



APPENDIX C

MEASURED G7%;, VALUES AND ERRORS

A table will be added that shows the final result of G}, and the statistical uncertainty

for the three different beam energies individual as well as the weighted average of

G, and the statistical and systematic uncertainty

Q? 10.2 GeV 10.4 GeV 10.6 GeV
(GeV?]|G /G| Ostar |G/ tinGD| Tstar |Gy /1nGD| Tstar
4.89 1.2305 10.2051| 1.1034 0.2956| 1.3321 |0.4369
5.33 1.2311 |0.0624| 1.3308 0.0849| 1.3354 |0.0885
5.78 1.1366 ]0.0450| 1.1122 [0.0495| 1.1601 |0.0524
6.24 1.1101 |0.0457| 1.0835 0.0489| 1.1539 [0.0522
6.73 1.1436 |0.0519| 1.1568 |0.0569| 1.2295 [0.0617
7.23 1.1455 10.0603| 1.1254 0.0651| 1.2508 [0.0732
7.72 1.1746 |0.0723| 1.1846 0.0797| 1.1760 [0.0809
8.23 1.1260 |0.0815| 1.1329 0.0893| 1.2144 |0.0979
8.94 1.1751 |0.0803| 1.2166 |0.0887| 1.2861 [0.0957
9.90 1.0889 10.1080{ 1.1614 ]0.1270| 1.3313 [0.1449
10.93 | 1.1183 |0.1682| 1.1257 (0.1979| 1.2066 |0.2004
12.06 | 1.0890 ]0.2497| 1.1644 ]0.2486| 1.2450 [0.2780

Table C.1: Measured values of G%,/u,Gp and statistical errors for each dataset.
The Q? values given are the central value of each Q? bin.

165



Q2 [Gev2] GTM/ tnGp Ostat Osyst OTotal
4.89 1.2077 0.1572 | 0.1349 | 0.2071
5.33 1.2830 0.0437 | 0.0512 | 0.0673
5.78 1.1355 0.0281 | 0.0351 | 0.0450
6.24 1.1140 0.0281 | 0.0201 | 0.0345
6.73 1.1719 0.0326 | 0.0221 | 0.0394
7.23 1.1669 0.0379 | 0.0339 | 0.0508
7.72 1.1782 0.0446 | 0.0380 | 0.0586
8.23 1.1526 0.0513 | 0.0331 | 0.0611
8.94 1.2195 0.0506 | 0.0355 | 0.0618
9.90 1.1710 0.0716 | 0.0390 | 0.0815
10.93 1.1462 0.1080 | 0.0615 | 0.124
12.06 1.1607 0.1488 | 0.0377 | 0.1535

Table C.2: Measured values of G, /u,Gp, statistical and systematic uncertainties
from the waighted average. The ? values given are the central value of each Q?
bin.
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