

Neutron Detection Efficiency in the Forward Calorimeter

$$e p \rightarrow e' \pi^+(n)$$

Lamya Baashen – FIU Brian Raue – FIU Jerry Gilfoyle – University of Richmond Cole Smith – University of Virginia 5/31/2023

Overview

Method to extract neutron detection efficiency (NDE).

Background Subtraction.

Calculate neutron efficiency for PCAL/ECAL.

NDE Results.

NDE Parameterization.

Data Set used: Run Group A, inbending and outbending with beam energies 10.6 GeV and 10.2 GeV

Neutron Detection Efficiency (NDE)

Determine the neutron detection efficiency (NDE) by using:

- > Select $e' \pi^+$ final state with no other charged particles in CLAS12.
- Assume the missing particle is a single neutron and calculate the missing momentum of the neutron P_{mm} and it's trajectory through CLAS12 from the e' vertex.
- Check if the neutron's path intersects the front face of ECAL and is 10 cm away from the edge.

Yes _____ define as expected neutron

- **NO -----** skipped the event
- Loop over neutral ECAL hits (neutron candidates):
 - ✓ Get intersection of ray with the ECAL face by drawing a line from the e' vertex to the actual neutral ECAL hit.
 - ✓ To identify neutrons :
 - ✓ Calculate the direction cosine from the electron vertex to the ECAL face for the expected neutron and the neutron candidates.
 - ✓ Cut on the difference between the expected neutron direction cosine and the neutron candidate (Δ Cx Δ Cy)
 - ✓ Select the smallest $\Delta Cx \Delta Cy$ neutron candidate for multiple hits.

$$e p \rightarrow e' \pi^+(n)$$

Red panels: ECAL front face

Missing Mass Distribution of $p(e, e'\pi^+)n$

Neutral Particles Measured in PCAL/ECAL

Missing Mass Distribution

Background Subtraction

 \checkmark Fit both expected and detected neutrons at different P_{mm} Using two functions:

1- Gaussian Function

2- Crystal Ball Function with Polynomial background

✓ Crystal Ball Function defined as:

 $f_{CB}(x;\mu,\sigma,a,n) = e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2} \qquad \text{for} \quad \frac{x-\mu}{\sigma} > -a$ $= \left(\frac{n}{|a|}\right)^n e^{-\frac{|a|^2}{2}} \left(\frac{n}{|a|} - |a| - \frac{x-\mu}{\sigma}\right)^{-n} \qquad \text{for} \quad \frac{x-\mu}{\sigma} \le -a.$

Where:

a: controls the location of the transition between the Gaussian and power-law parts of the function. n: the steepness of the power-law tail.

Gaussian+Poly:

- ✓ Fit limited range < 1.1GeV.
- ✓ Couldn't fit the dip region.

CB+Poly:

- ✓ CB has high-MM tail to fit the dip region.
- ✓ MC shows high-MM tail.

The high MM tail may be caused by:

✓ The radiative effects.

MM [GeV]

1- Fit Neutrons peaks using Gaussian Function

Gaussian Function:

1- First fit each detected neutron MM distribution using Gauss+Poly, allowing all parameters to vary. Range of the fit is limited to MM < 1.1 GeV where the neutron contribution is significant at $P_{mm} < 2$ GeV and then extend this range to MM < 1.2 GeV. 2- Use the same mean and width for each MM bin from step 1 and fit the expected neutron MM distribution with the Gaus+Poly function over the same range as step 1. 3- The Gaussian amplitude and the polynomial coefficients are allowed to vary for the

expected neutron. The mean and width are fixed.

2- Fit Neutrons peaks using Crystal Ball Function

1- For each $P_{\rm mm}$ bin, use the same mean and width that were extracted from the detected neutron Gaussian fitting described in the left hand side.

2- The parameters of the CB, high-MM tail for both expected and detected neutrons are fixed at the same values that give the lowest chi2. Range of the fit is extended to MM < 1.2 GeV for all P_{mm} bins.

3- CB amplitude and the polynomial coefficients are allowed to vary for the expected neutron. The CB mean, width, and tail parameters are fixed.

MM [GeV]

1.5

2

MM [GeV]

0.5

1

1- Fit Neutrons peaks using Gaussian Function

Parameters Fit Results

NDE Results

Inbending 10.6 GeV Data

Outbending 10.6 GeV Data Inbending 10.2 GeV Data

3

5

6

7

P_{mm}[GeV]

0.2

0.15

0.1

0.05

-0.05

-0.1

-0.15

-0.2

Gauss - Cryatal

NDE Residual

- NDE results show that below 2 GeV, the Gauss function is slightly \checkmark higher compared to the CB function. However, above 2 GeV, the two functions provide consistent results within the uncertainty.
 - Residual plot show the difference between Gauss and CB < 3% \checkmark

NDE Results

CLAS12 results shows all three data sets consistent to each other. NDE ~ 0.77 at the plateau (pmm > 3.5 GeV) for outbending and inbending electrons.

Parameterized NDE

To use NDE results for Gnm, we need a function that can describe it.

Fit the neutron detection efficiency (NDE) with:

$$\eta(P_{mm}) = a_0 + a_1 P_{mm} + a_2 P_{mm}^2 + a_3 P_{mm}^3$$
 for $P_{mm} < p_t$

$$=a_4\left(1-\frac{1}{\frac{P_{mm}-a_5}{1+e^{\frac{P_{mm}-a_5}{a_6}}}}\right) \qquad \text{for} \quad P_{mm}>p_t$$

The uncertainty on the fit can be calculate from the error matrix:

$$\sigma_{\eta}^{2} = \sum_{i,j} \epsilon_{ij} \frac{\partial \eta}{\partial a_{i}} \frac{\partial \eta}{\partial a_{j}},$$

Summary

- NDE is necessary for G_M^n measurements in Run Group B and to other analyses/run groups.
- CLAS12 results show all three data sets are consistent to each other.
- NDE ~ 0.77 at the plateau (P_{mm} > 3.5 GeV) for outbending and inbending electrons.
- NDE results using Gauss function is slightly higher than Crystal Ball function below 2 GeV while above this value they are agreement within the uncertainty.

Thank you !!