Nuclear Physics Working Group Meeting October 31, 2008 A110

Agenda

- 13:30-13:40 Update on reviews Jerry Gilfoyle.
- 13:40-14:05 Update on Modifications to the GENEV event generator Hyupwoo Lee
- 14:05-14:30 Coherent pi+ production on 3He Rakhsha Nasseripour
- 14:30-14:55 The search for color transparency in rho electroproduction: final update Kawtar Hafidi
- 14:55-15:15 Break
- 15:15-15:40 Update on the K0 hadronization studies Aji Daniel
- 15:40-15:55 Statistical uncertainties on Monte-Carlo-based efficiency -Mikhail Osipenko
- 15:55-16:20 G10 gd->p-pp analysis Jean-Marc Laget
- 16:20-16:45 Incorporating systematic uncertainties into an upper limit Elton Smith

Current and Recent Reviews* - 1

Dan Protopopescu - Multipole Analysis of the Delta0(1232) in 3He Committee:Kyungseon Joo (Chair), Mike Vineyard, Mike Wood ongoing

Hovhannes Baghdasaryan - 3He(e,e'pp)n Analysis Committee:Mike Vineyard (Chair), Dan Protopopescu, Steffen Strauch ongoing

Rakhsha Nasseripour - Photodisintegration of 4He to p+t Committee:Dave Ireland (Chair), Yelena Prok, Stephen Bueltmann approved

- Alex Vlasov CAN: Source size measurements in the eHe -> e'pΛ X reaction. Committee: Larry Weinstein (chair), Pavel Degtyarenko, Yordanka Ilieva ongoing
- Mikhail Osipenko, G. Ricco, S.Simula, M.Battaglieri, R. DeVita, M. Ripani, M. Taiuti, M. Anghinolfi CAN: Moments of the nucleon structure function F2 with CLAS: Part III – nuclear target. Committee: Mike Dugger (chair), Tony Forest, Rakhsha Nasseripour ongoing

* If you want to modify this list send email to gilfoyle@jlab.org

Current and Recent Reviews* - 2

M.Wood, R. Nasseripour, D.Weygand, C.Djalali - CAN: Absorption of the Omega and Phi Mesons from the g7a data set. Committee: Maurik Holtrop (chair), Pawel Nadel-Turonski, Igor Strakovsky. ongoing

K. Hafidi et al. - CAN:Color Transparency in eg2 Committee: Hovanes Egiyan (chair), Mike Wood, Stepan Stepanyan just starting

* If you want to modify this list send email to gilfoyle@jlab.org

Other Business

Is there interest in holding the next CLAS Collaboration meeting in Europe (probably Genova)?

Summary: Analysis of pion production in eA (eg2 data) for 'neutrino engineering' Hyupwoo Lee and Steve Manly, Univ. of Rochester

Main goal of this study: Produce eA data that is useful for tuning MC models used in current and next-generation vA experiments in order to reduce systematic errors in the vA expts.

 Differential cross section of charged pion production on deuterium and carbon targets

- Starting from Holtrop's TPiEG2 analysis code analysis chain ~works
- Need MC to get first pass at acceptance and pion model (use for initial radiative corrections, background and yield estimates)
- Starting with GENEV generator (Genova group, Mustapha mods)

Final pion kinematic distributions from MC analysis chain differ markedly from the distributions coming from data.

- Differences seem to come during processing/analysis of MC.
- Working to make sure all aspects of the data and MC chains are consistent.

- Generate events $1.05 < W < 3.5, 0.7 < q^2 < 7.0$
- For carbon target
- All 29 channels are generated
 - $1 \sim 4 (1-\pi)$, $5 \sim 10 (\Delta)$, $11 \sim 14 (\rho)$, $15 \sim 18 (2-\pi)$, $19 \sim 20 (\omega)$, $21 \sim 24 (3-\pi)$, $25 \sim 26 (\phi)$, $27 \sim 29 (4,5-\pi)$

π^+ Coherent Photoproduction on ³He

Rakhsha Nasseripour and Barry Berman, GWU

Measure $A(\gamma, p^+)A'$ where A' has the same mass number as the target.

Motivation:

- 1. Medium modifications
- 2. Long-range part of NN interaction.
- g3a Experiment with CLAS

3. Pion cloud and mesonic degrees of freedom.

Results

Yields (Angular Dependence)

Yields (Energy Dependence)

Extraction of Cross Sections

Search for the onset of CT in p^o electroproduction off nuclei at CLAS

L. El Fassi, K. Hafidi, B. Mustapha

Detected particles are : scattered electron and the π^+ and π^- from ρ^0 decay

Exclusive diffractive ρ^0 electroproduction Is one of the cleanest processes to directly produce PLC since ρ^0 has the same quantum numbers as the photon

L. Frankfurt, G. A. Miller and M. Strikman, Phys. Rev. C78 (2008) 015208

Test of the FMS model consistency !!

 Q^2 slope for C: (0.034 ±0.025)

Q² slope for N (HERMES) (0.089 ±0.05)

Kopeliovich model N (0.048 GeV⁻²)

 Q^2 slope for Fe: 0.043 $\pm 0.008 GeV^{\text{--}2}$

Update on K0 Hadronization Studies Aji Daniel and Ken Hicks

Experimental Signature ->Transverse momentum broadening

- Component of momentum perpendicular to momentum transfer
- Sensitive to production time; propagation of quark
- No more broadening after pre-hadron forms; inelastics suppressed

Preliminary results: Transverse momentum broadening

(Yves Van Haarlem,9th Workshop on Non-Perturbative Quantum Chromodynamics, 2007)

Shaded region: range of EG2 pi+ results which is acceptance corrected;K0 results are not acceptance corrected

EG2 results very preliminary (only statistical uncertainities)

Though the statistics is limited for K0, data suggests broadening depends on atomic number (raises with atomic radius)

Statistical Uncertainties on Monte Carlo Based Efficiencies Mikhail Osipenko

Binomial vs. Poisson

 Binomial distribution underestimates the statistical uncertainty where bin Ratio of statistical error to RMS migrations are significant (over entire kinematics). $\Delta A^B \equiv \sqrt{\frac{A(1-A)}{N_{acm}}}$ 1.4Poisson 1.2 Poisson distribution gives almost correct uncertainties where bin migrations are 1 strong (at large-x). $\Delta A^P \equiv \sqrt{\frac{A(1+A)}{N}} \qquad \text{cc}$ 0.6 Correct uncertainty is approximately given by the average of Binomial and Binomial 0.4 Poisson errors. $\Delta A \equiv \sqrt{\frac{A}{N}} = \sqrt{\frac{\Delta A_B^2 + \Delta A_P^2}{2}}$ 0.2 Use analytic evaluation of the number of 0.3 0.4 0.5 0.6 0.7 1.2 generated events! х

M. Osipenko, JLab2008

 π^- - photoproduction off Deuterium beyond the Quasi-Free region - $\gamma D \rightarrow \pi^- p$ (p) or $\gamma D \rightarrow pp (\pi^-)$

N.Pivnyuk, J.-M. Laget, E.Pasyuk, T.Mibe

- Search for nuclear transparency using tagged hadrons from pion production vertex.
- Study deuteron wave function at short inter-nuclear distances using quasi-coherent kinematics.
- $p_{miss} < 0.2 \text{ GeV/c} \blacktriangleleft$ $M_{pp} \approx 2m_p \blacktriangle$

- Large P_R suppresses quasi-free mechanisms
- Unitary peaks determine $\sigma_{\pi N}$ (CT?) or σ_{PP} (calibration)

To Do List

- Elementary γN amplitudes
 - Add u-channel exchanges
 - Channel coupling
- Rescattering
 - Beyond diffractive scattering
 - Implement low energy PP phase shifts
 - Implement low energy πN phase shifts

Incorporating Systematic Uncertainties into an Upper Limit Elton Smith

Scaling from nominal FC limits

Gaussian 90.0% CL, $\sigma_{\rm e}$ = 0.30

$$U = U_{FC} \left(1 + \frac{1}{2} \alpha(x) U_{FC} s_e^2 \right)$$

 $\alpha(x) = A \exp(-Bx/2), x^{3}2$ $\alpha(x) = A \exp(-B), x < 2$ $A_{U} = 2.26$ $B_{U} = 0.092$ $A_{L} = -1.34$ $B_{L} = 0.134$

Simple procedure for scaling FC limits to include systematics

Summary and Conclusions

- We have investigated how uncertainties in the estimation of background and detection efficiency affect the 90% confidence intervals in the unified approach of Feldman and Cousins.
 - -Assumption: Gaussian statistics
 - Systematic uncertainties included using Bayesian approach
- Confidence intervals have reasonable limiting behavior
 - depend quadratically on $\sigma_{\!\epsilon}$
 - can be obtained by scaling the nominal FC intervals
 - have correct coverage