

CLAS Collaboration Meeting July 22, 2020

Neutron Detection Efficiency in the Forward Calorimeter

$$e \ p \rightarrow e' \pi^+(n)$$

Lamya Baashen – FIU Brian Raue – FIU Jerry Gilfoyle – University of Richmond Cole Smith – University of Virginia

Outline and Physics Motivation

Motivation :

Necessary for G_M^n measurements in Run Group B and to other analyses/run groups.

These studies are important in refining neutral particle identification.

Outline :

Method to extract neutron detection efficiency (NDE).

Calculate neutron efficiency for both PCAL and ECAL combined.

Calculate neutron efficiency separately and for each sector.

Extracting Neutron Detection Efficiency

Determine the neutron detection efficiency (NDE) by using: $e p \rightarrow e' \pi^+(n)$

- Select $e' \pi^+$ final state with no other charged particles $p(e, e' \pi^+)X_n$.
- Assume the missing particle is a neutron, calculate the missing momentum of the neutron and it's trajectory through CLAS12 from the $e' \pi^+$ vertex.
- Check if the neutron's path intersects with the front face of PCAL/ECAL

Extracting Neutron Detection Efficiency

- Loop over neutral PCAL/ECAL hits:
 - ✓ Get intersection of ray with the PCAL/ECAL face by drawing a line from the e' π^+ vertex to the actual neutral PCAL/ECAL hit.
 - ✓ Calculate △R for each actual neutral PCAL/ECAL hits, which is the distance between the intersection of the PCAL/ECAL hit and the intersection of the expected neutron trajectory.
 - ✓ Select hit with the smallest ΔR .
 - \checkmark To identify neutrons we applied cut on:
 - ✓ Direction cosine of the expected neutron intersection to coincide with the direction of the detected neutral intersection.
 - ✓ Mass squared calculated from the measured $\beta_{neutral}$ in PCAL/ECAL and missing momentum.

NDE =
$$\frac{N_{detected(n)}}{N_{expected(n)}}$$

Particle IdentificationUsing RG-A data from fall 2018 (pass 1 cooking)Cuts are applied to clean up the electron and π^+ sample:

Electromagnetic Calorimeter fiducial cut

3 Sigma Sampling fraction cut && P_e > 2.1 GeV

Drift chamber region 1,2,3 fiducial cut

Medium cuts based on Stefan's DPWG presentation on Sep 12th.

 $\Box -2 < Chi2_pip < 2$

Missing Mass of Expected Neutron PCAL/ECAL

Neutral Particles Measured in PCAL/ECAL

ΔR is the distance between the Intersection point of expected neutron and the intersection of detected neutral particles with the front face of PCAL/ ECAL

mass² distribution of the neutral particles calculated from the measured β *neutral* and missing momentum

Identifying Neutron in PCAL/ECAL

Here Using Cole Smith Cuts

Results of NDE

Results of NDE

Sector1

Need to make quantitative comparison

Results of NDE of inbending and outbending data

What is Next

- Improve the accuracy of both the numerator and denominator of the efficiency ratio by determine the right shape background.
- Subdivide the Calorimeter into smaller units (based on a readout) and calculate NDE for each unit

Backup Slides

Beta of neutral particles in each missing momentum bin

Beta of neutral particles in each missing momentum bin

Cuts Applied:

-0.1 < ΔCx <0.1 -0.1 < ΔCy <0.1 mass² > 0.45 If p_mm <1.2

