Neutron Magnetic Form Factor G_M^n Measurement at High Q^2 with CLAS12

Lamya Baashen 16/6/2023

Overview

• Ratio Method to extract G_M^n

- ✓ Datasets Used
- ✓ D(e, e'p) & D(e, e'n) Selections
- ✓ Neutron Momentum Corrections
- ✓ Preliminary Ratio Results
- ✓ Next step

Measuring G_M^n :

 G_M^n : Fundamental quantity related to neutron magnetization.

Use the ratio $\frac{D(e,e'n)}{D(e,e'p)}$ in quasi-elastic kinematics to extract G_M^n .

$$R = \frac{\frac{d\sigma}{d\Omega} (D(e, e'n))}{\frac{d\sigma}{d\Omega} (D(e, e'p))} = \frac{\sigma_{mott}^{n} \left(G_{E}^{n\,2} + \frac{\tau_{n}}{\varepsilon_{n}}G_{M}^{n\,2}\right) \left(\frac{1}{1+\tau_{n}}\right)}{\sigma_{mott}^{p} \left(G_{E}^{p\,2} + \frac{\tau_{p}}{\varepsilon_{p}}G_{M}^{p\,2}\right) \left(\frac{1}{1+\tau_{p}}\right)}$$

 $\sigma_{Mott} = \frac{\alpha^2 E' \cos^2(\frac{\theta_e}{2})}{4E^3 \sin^4(\frac{\theta_e}{2})} , \quad \tau = \frac{Q^2}{4M_{p,n}^2} ,$ $Q^2 = 4EE' \sin^2\left(\frac{\theta_e}{2}\right) , \epsilon = \left[1 + 2(1+\tau) \tan^2(\frac{\theta_e}{2})\right]^{-1}$

Solving for G_M^n :

$$G_{M}^{n} = \sqrt{\left[R_{cor}\left(\frac{\sigma_{mott}^{p}}{\sigma_{mott}^{n}}\right)\left(\frac{1+\tau_{n}}{1+\tau_{p}}\right)\left(G_{E}^{p2}\right) + \frac{\tau_{p}}{\varepsilon_{p}}\left(G_{M}^{p2}\right)\right) - \left(G_{E}^{n2}\right]\frac{\epsilon_{n}}{\tau_{n}}}$$

Where:

Extracting G_M^n requires knowledge of other EEFFs

$$R_{cor} = f_{\text{NDE}} f_{\text{nuclear}} f_{\text{radiative}} f_{\text{fermi}} R$$

Data Set Used:

✓ Analyzed each dataset separately.

✓ Excluded the out-bending dataset due to limited statistics.

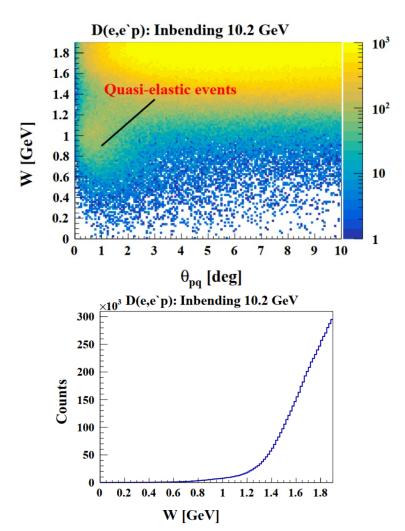
4

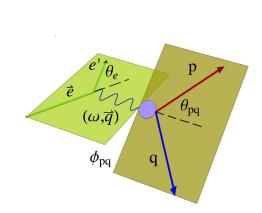
Exp. Detail	In-bending	Out-bending	In-bending
Run Period	Spring 2019	Fall 2019	Spring 2020
Run Range	6156 - 6603	11093 - 11300	11323 - 11571
Number of runs	$117~\mathrm{runs}~106~\mathrm{runs}$	$97 \mathrm{~runs}$	$171 \mathrm{~runs}$
Beam	$10.6~{\rm GeV}~10.2~{\rm GeV}$	$10.4 \mathrm{GeV}$	$10.4 \mathrm{GeV}$
Target	Unpolarized LD2	Unpolarized LD2	Unpolarized LD2
Current	35-50 nA	40 nA	35-50 nA
Torus Field	-1	+1/+1.008	-1
Solenoid Field	-1	-1	-1

Table 4.1: RG-B run period conditions

Quasi-elastic Selection D(e, e'p) Selection

> Select electron in FD and proton hit PCAL/ECAL

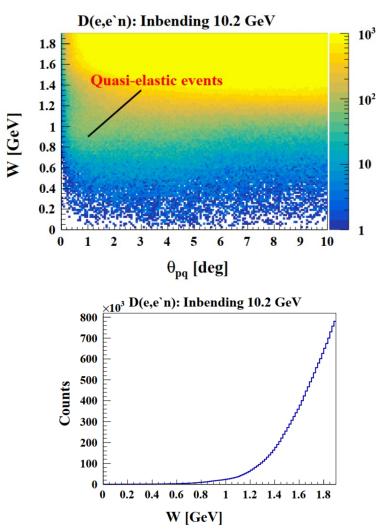




 θ_{pq} : The angle between the transferred 3-momentum \vec{q} and the momentum \vec{P}_N of the detected nucleon.

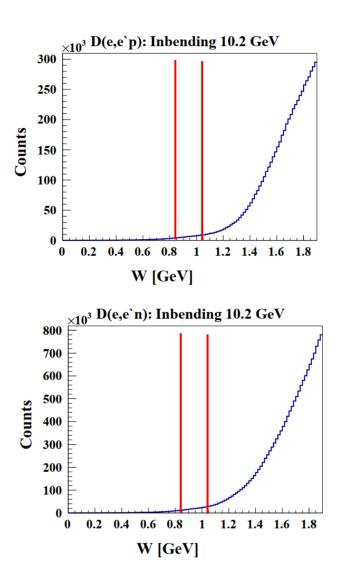
D(e, e'n) Selection

> Select electron in FD and neutral particle hit PCAL/ECAL



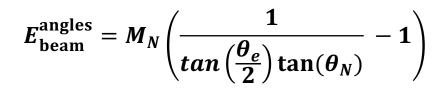
List of the cuts applied to select quasi-elastic events:

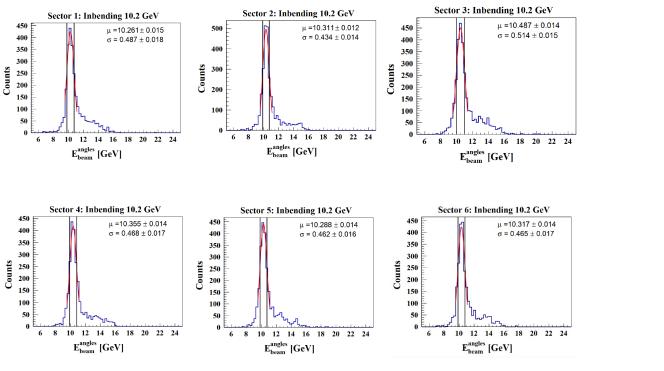
- > Incident electron beam energy $E_{\text{beam}}^{\text{angles}}$ Cut
- $\succ \Delta \phi = \phi_N \phi_e Cut$
- $\succ \theta_{pq} Cut$
- > Missing Energy Cut

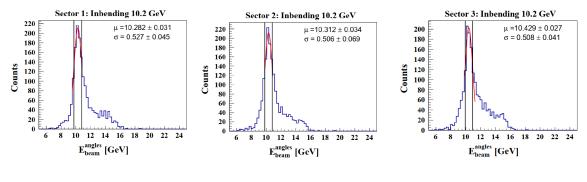


D(e, e'p) Selection

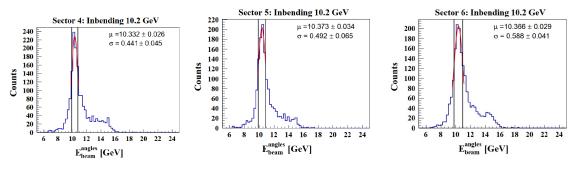
Calculated the incoming beam energy $E_{\text{beam}}^{\text{angles}}$ using θ_e , θ_N :







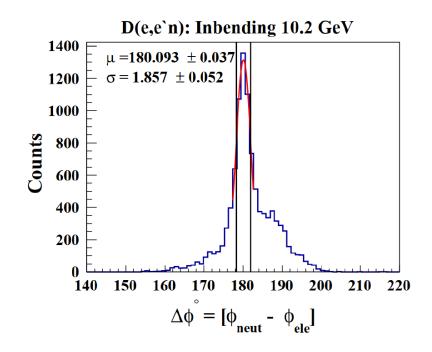
1- Incident electron beam energy cut

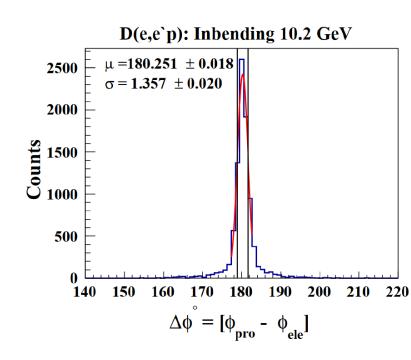


The difference in the lab azimuthal angle between the nucleon and the scattered electron

$$\Delta \boldsymbol{\phi} = \boldsymbol{\phi}_N - \boldsymbol{\phi}_e$$

D(e, e'n) Selection





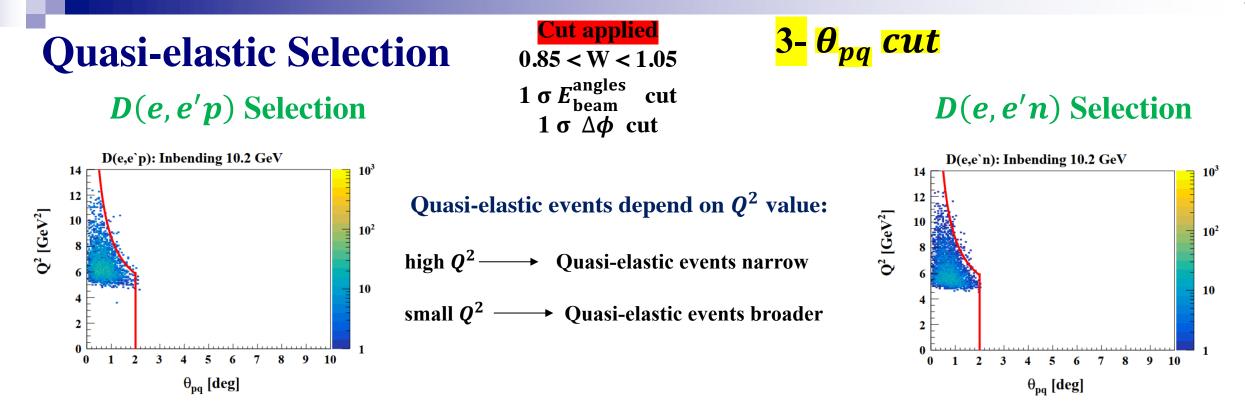
$$2-\Delta \phi = \phi_N - \phi_e \operatorname{cut}$$

Cut applied

0.85 < W < 1.05

 $1 \sigma E_{\text{beam}}^{\text{angles}}$

D(e, e'p) Selection



To select quasi-elastic events while minimizing background contamination in the absence of the W cut, the function is introduced as follows:

$$f(\theta_{pq}) = 2.5204 + \frac{6.2127}{\theta_{pq}^{0.9003}}$$

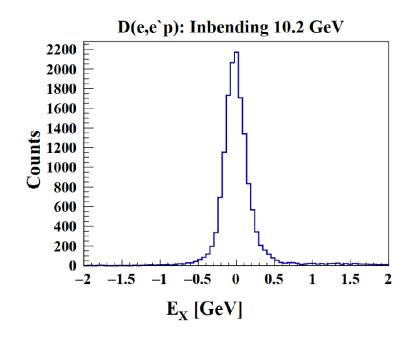
Cut Used $Q^2 < f(\theta_{pq})$ $\theta_{pq} < 2$

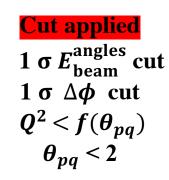
4-Missing Energy Cut

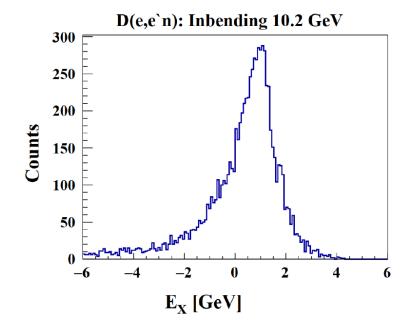
From the momentum conservation law the transverse momentum for quasi-elastic events are expected to be zero.

$$E_x = E_{beam} + E_N - E_{e'} - E_{N'}$$
, where $E = \sqrt{P^2 + m^2}$

D(e, e'p) Selection







Neutron Momentum Correction

In order to correct the measured neutron momentum (P_{meas}) a calculated neutron momentum (P_{calc}) is used as a reference (accurate value)

$$\Delta P_{neut} = p_{calc} - p_{meas}$$

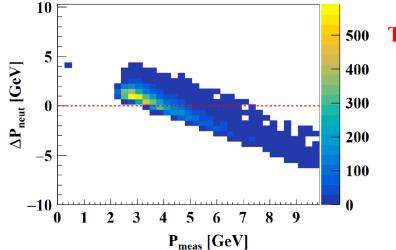
The calculated neutron momentum is determined based on the known E_{beam} and the measured electron polar angle, assuming elastic scattering

$$P_{calc} = \sqrt{E_0^2 - 2E_0 * p_{ecal} * cos\theta_e + p_{ecal}^2} , \qquad \text{where} \quad P_{ecal} = \frac{E_0}{1 + 2E_0 \sin^2(\frac{\theta_e}{2})/M_1}$$

The measured neutron momentum (P_{meas}) is determined using

$$P_{meas} = \frac{m_n \beta_{neutral}}{\sqrt{1 - \beta_{neutral}^2}} , \quad \text{where} \quad \beta_{neutral} = \frac{l_{n(REC)}}{c.(t_{n(REC)} - t_{st})}$$

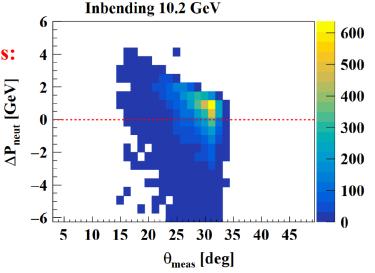
Inbending 10.2 GeV

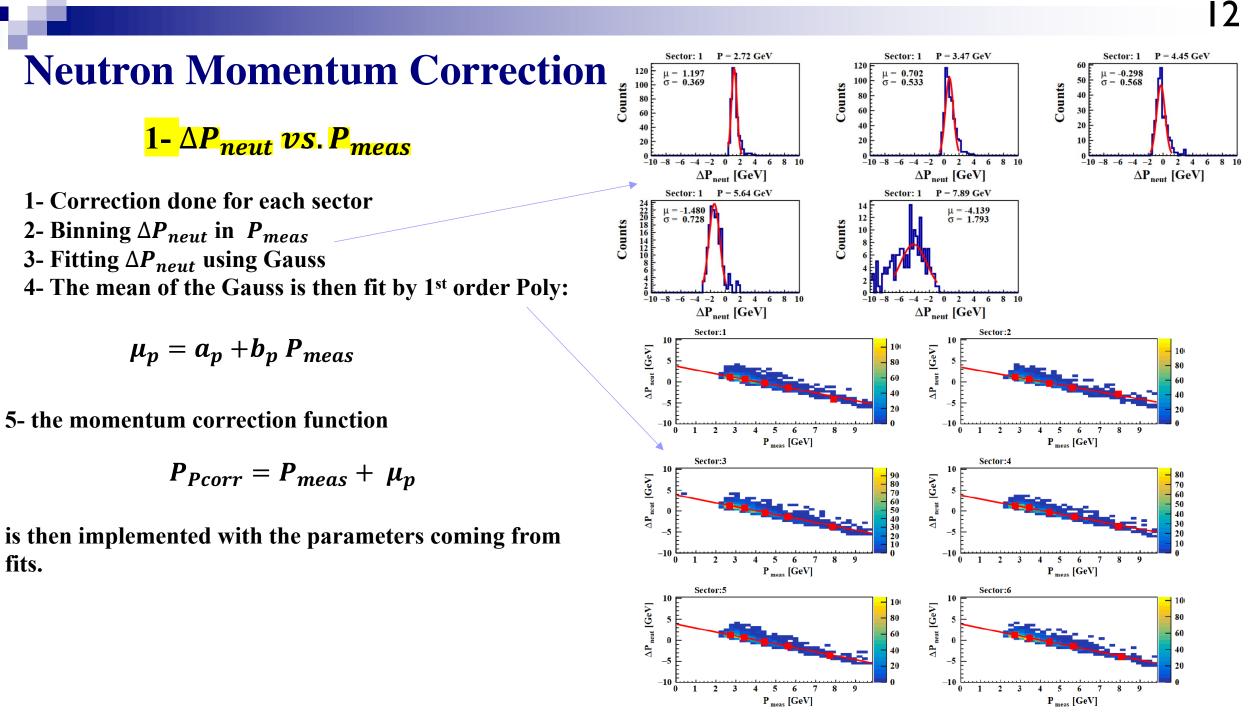


0 The neutron momentum correction is made in two steps:

1-
$$\Delta P_{neut} vs. P_{meas}$$

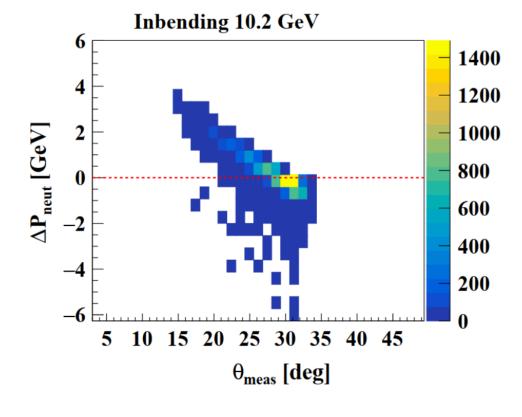
2-
$$\Delta P_{neut} vs. \theta_{meas}$$

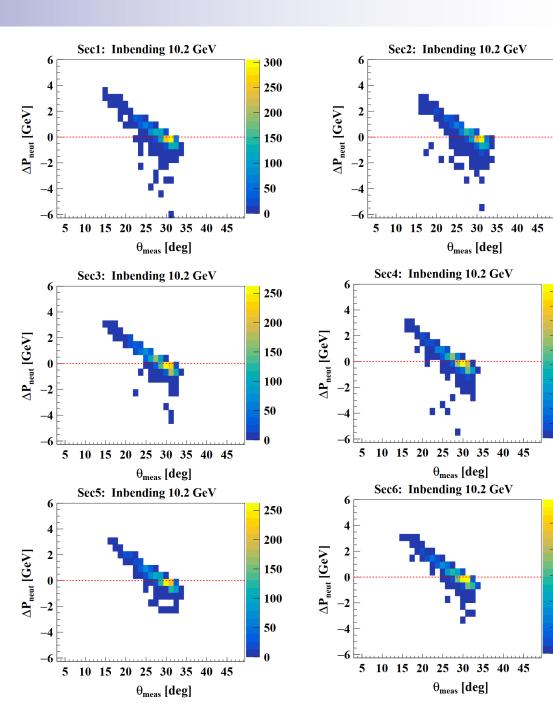


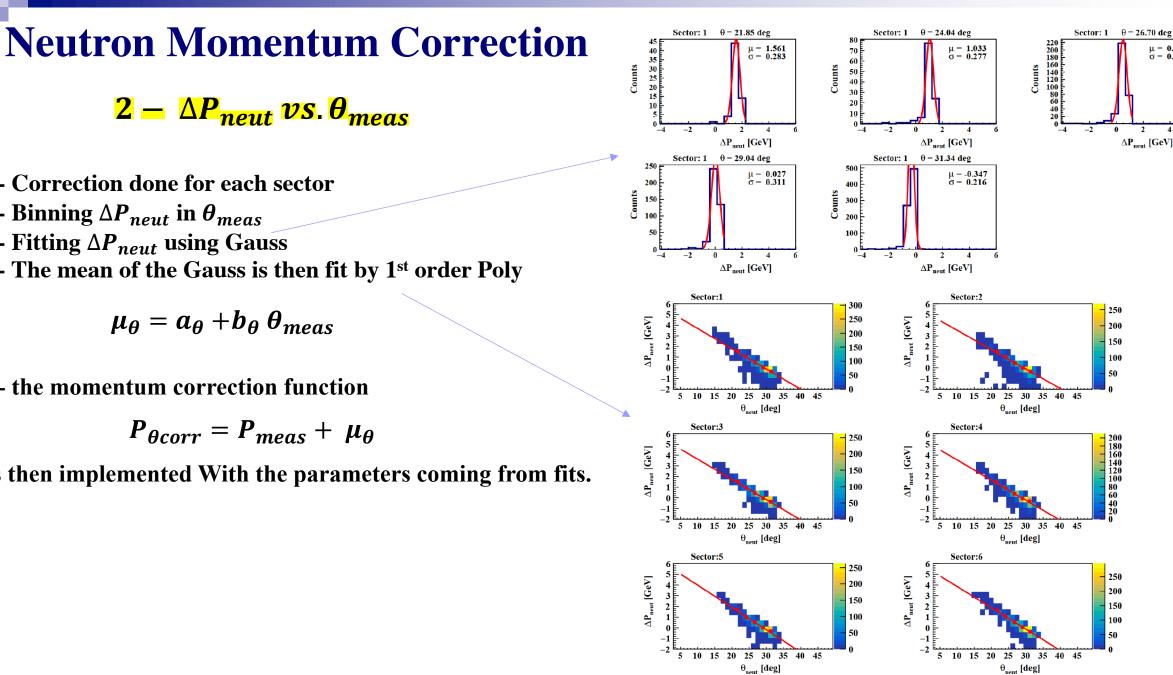


Neutron Momentum Correction

 $2 - \Delta P_{neut} vs. \theta_{meas}$







 $\mu = 0.489$ $\sigma = 0.301$

 $\Delta \mathbf{P}_{neut}$ [GeV]

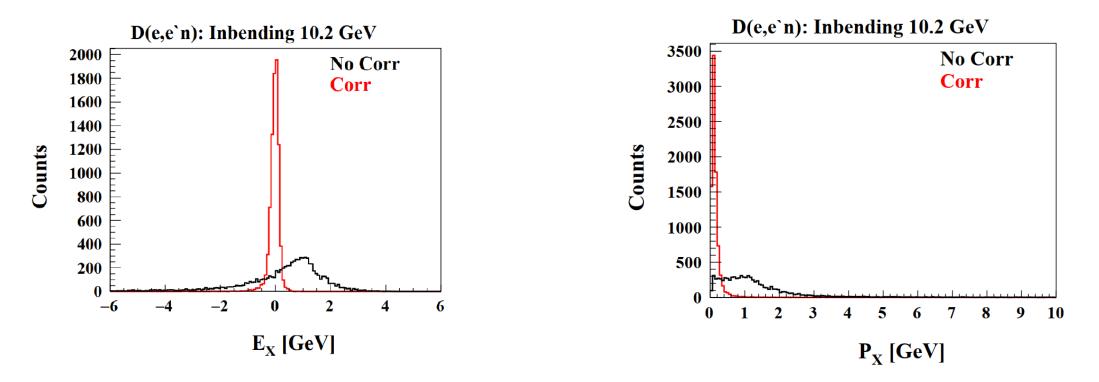
40 20

- 1- Correction done for each sector 2- Binning ΔP_{neut} in θ_{meas}
- **3-** Fitting ΔP_{neut} using Gauss
- 4- The mean of the Gauss is then fit by 1st order Poly
 - $\mu_{\theta} = a_{\theta} + b_{\theta} \theta_{meas}$
- 5- the momentum correction function

$$P_{\theta corr} = P_{meas} + \mu_{\theta}$$

is then implemented With the parameters coming from fits.

Results of Correction



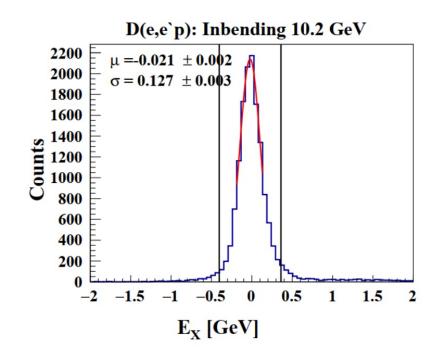
The corrections have led to clear improvements in both the resolutions and peak position of the missing energy distribution.

<mark>4-Missing Energy Cut</mark>

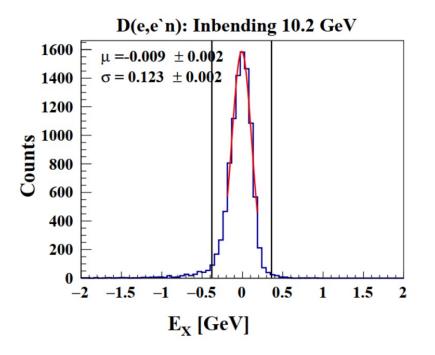
From the momentum conservation law the transverse momentum for quasi-elastic events are expected to be zero.

 $E_x = E_{beam} + E_N - E_{e'} - E_{N'}$, where $E = \sqrt{P^2 + m^2}$

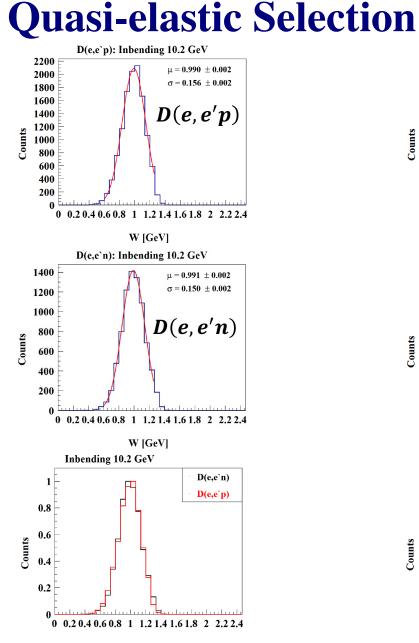
D(e, e'p) Selection

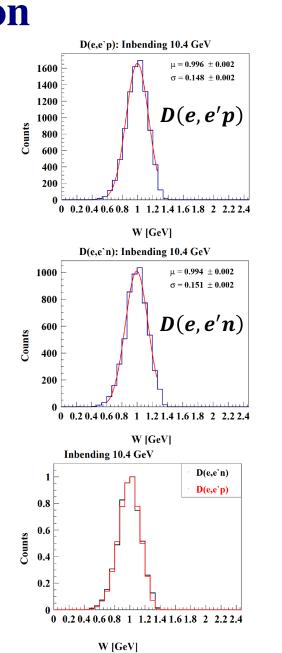


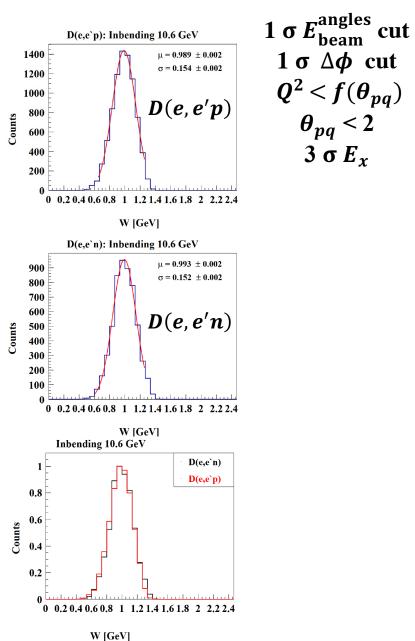
Cut applied
$$1 \sigma E_{beam}^{angles}$$
 cut $1 \sigma \Delta \phi$ cut $Q^2 < f(\theta_{pq})$ $\theta_{pq} < 2$



The W distribution of D(e, e'p) and D(e, e'n) that satisfied







Acceptance Matching

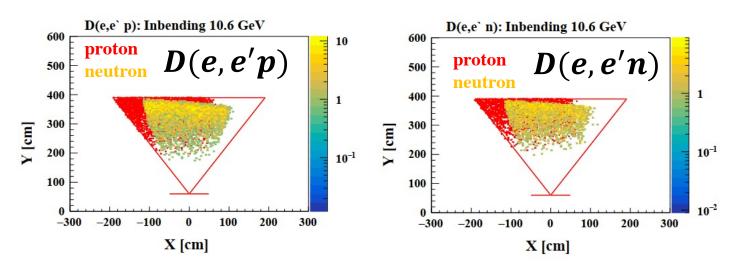
Using only the electron information, assume elastic scattering, predict the proton momentum, and swim it through CLAS12.

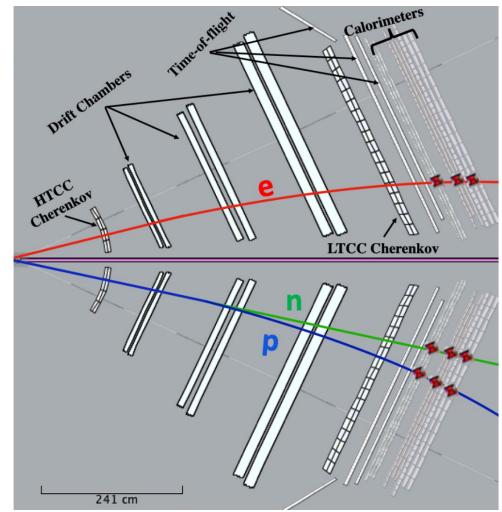
If the 'swum' proton track strikes the CLAS12 fiducial volume, continue. If it does not, then drop the event.

Using only the electron information, assume elastic scattering, predict the neutron momentum, and swim the neutron track through CLAS12.

If the 'swum' neutron track strikes the CLAS12 fiducial volume, continue. If it does not, then drop the event.

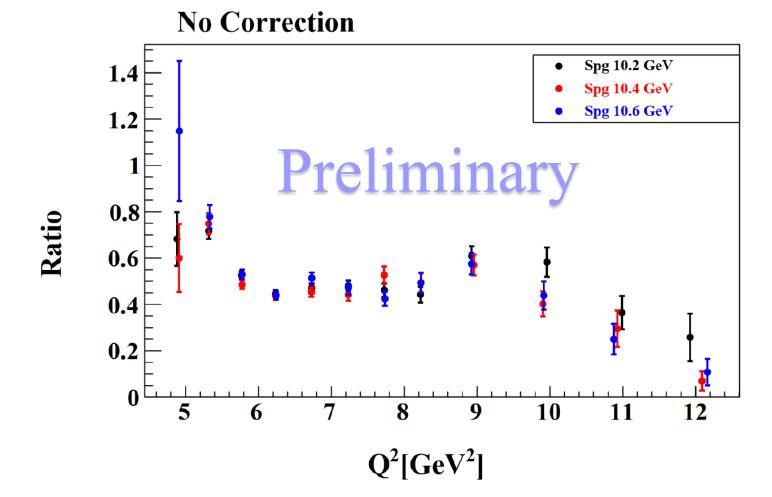
If both 'swum' tracks hit CLAS12, begin the nucleon analysis





Ratio Result

$$R = \frac{D(e, e'n)}{D(e, e'p)}$$



Applied the correction to the Ratio: 1- NDE Correction 2- Fermi Correction 3- Radiative Correction 4- Nuclear Correction

Calculate G_M^n : Looking for the recent G_E^p , G_M^p and G_E^n parameterization

Thank you !!