An Introduction to Cross Sections

1. Definition of cross section for scattering or reactions

Let N, ... =number of incident (beam) particles Target
N, .is = Number of events (beam —target interactions) /7
n = target atoms per unit volume = M Beam particleE Sl
A = mass number of target (assuming a single pure isotope) _—>
p = mass density of target (g/cm?) 5
x = thickness of target (cm)
px = areal density of target (g/cm?) —
. oxN > xl<-
nx = areal number density (atoms/cm?) = —— Avogadro .
A Figure 1

If we assume that (a) the probability of interaction depends on the properties of the beam and
target particles, and (b) the target is “thin”, so that only a small fraction of beam particles actually
interact, then the following scaling rules must apply:

(1) The number of interactions is proportional to the number of incident particles.

(2) The number of interactions is proportional to the thickness x of the target.

(3) The number of interactions is proportional to the density p of the target.

If rules (2) and (3) are not obvious, note that the number of atoms which fall within a given
distance of a traversing beam particle is proportional to the product nx = constant x px .

Thus we can write
N = Constantx N,

events incident Xnxxo (1 : 1)
where o is a “strength” parameter which depends only on the properties of the beam and target
particle and the particular type of event which is being observed. Setting the constant to 1, we
obtain

N = N,

events incident

atoms p(g/cm>) x(cm) N tvogadro (atoms/mole)
= Nincident (1 2)

cm’ A(g/mole)

The strength parameter o thus has dimensions of area (or area per atom), so we give it the name
“cross section”. Note that we have not identified any physical area represented by the quantity o.
In quantum physics, no such identification is possible. The cross section for a particular process
is defined by Equation (1.2):

N A
o ( cm 2) = events — events . ( 1 . 3)

2
]vincidgm nx (atomS/ cm ) ]vincident prAvogadro
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An equivalent definition, used mainly by theorists, is

N
o(em?) = . et —. (1.4)
(beam particles per unit area)  (target particles)

This definition would be useful if the flux of beam particles were uniform over the full width of
the beam, which is seldom the case, while Eq. (1.3) presupposes that the target density and
thickness are uniform over the target area hit by the beam, a much easier condition to achieve.

Another way of defining the cross section is in terms of a quantity called the luminosity <,
where
Events per unit time = & o . (1.5)

Since the cross section has dimensions of area, the luminosity has dimensions (area' time™").
Luminosity is mainly used for describing colliding-beam experiments (see Povh Eq. (4.11)), but
also applies to fixed-target experiments like those described above. Povh Eq. (4.10) says
o - incident p.articles - target particles = inciden.t particles _ target particles ‘
area-time time area
Taken together, Egs. (1.5) and (1.6) can be seen to be equivalent to (1.3) and (1.4).

(1.6)

2. Types of cross section
If N, in Eq. (1.3) refers to any kind of interaction of the beam with the target, then o is called
the total cross section. It is also possible to restrict N, . to events of a particular type, in which

events
case we define partial cross sections such as o 0]

elastic® ™ inelastic?® oﬁssion’ 0-‘11: production®**®*

It is also possible to restrict N, ,,,, to the case in which an outgoing particle goes into a particular

range of angles in space, e.g. into a particular detector of finite size. In this case, we define the
differential cross section %, such that

nxﬂAQ : (2.1)

events into solid angle AQ =N incident dQ

The quantitydQ = sin 0 d0 dis called an infinitesimal element of solid angle, measured in
steradians (sr). The differential cross section is typically a function of angles 0 and ¢. Eq. (2.1)
assumes that j—g does not vary appreciably over the angles subtended by of the detector; if it

does, then the right-hand side must contain an integral over the angular acceptance.
The term “total cross section” can be ambiguous in meaning. Sometimes it refers to a sum over
all processes, as defined in the first paragraph of this section, but one can also speak of the total

cross section for a particular process, which means the integral over all angles of the
differential cross section for that process. Be alert!
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3. Approximate classical calculation of Coulomb (Rutherford) scattering

Sometimes (e.g. the Bohr model of H atom) an invalid classical calculation accidentally gives a
correct result. This turns out to be true for the Coulomb scattering of spinless charged particles
at low energies, as in Rutherford’s early experiments on the scattering of a particles from heavy
nuclei.

Consider the elastic scattering of two point particles, where the beam particle has charge ze, mass
m, and incident velocity v, and the target particle has charge Ze and mass M>m (and thus can be
considered to remain at rest after the scattering.) If we treat this as a central-force problem in
classical mechanics, we know that the actual trajectory is a hyperbola. This calculation of the
exact differential scattering cross section is worked out in many classical mechanics texts (see
also Williams Sec. 1.2). It gives a result which is identical to the result derived using the Born
approximation in non-relativistic quantum mechanics (see Povh Section 5.2), which it turns out
is also an invalid derivation for entirely different reasons.

In this note I want to work out a simple approximate classical derivation using only very
elementary physics ideas. To simplify, I will consider only the case of scattering through small
angles (0 < 1 rad), but will generalize the usual calculation to allow relativistic velocities.

Figure 2 defines the variables in the problem. A particle p’
of charge ze, mass m and momentum p= mv is incident ze, m p ~ /W
on a target particle of charge Ze and mass M. AR R - b_ ______
The impact parameter b is defined as the minimum FoTTe

distance between the incident particle and the target
particle if there were no deflection. Ze, M
Figure 2: Definitions of variables
Assuming the target particle remains at rest, the
Coulomb force on the beam particle is given by

F = ahczZ oczZZ (natural units) (3.1)

r2 r

This force imparts an impulse (momentum transfer) to the beam particle which, for small
deflection angles, is nearly perpendicular to the incident momentum p. This impulse is
dominated by the region of closest approach, where r=b , and this region is of length Ax =2b,
corresponding to a time interval Az = 2b/v :

Ap :ﬁAtzzZoc2_b . 2zZa
T p2 v bv

(non-relativistic). (3.2)

Eq. (3.2) has been calculated assuming non-relativistic velocities. It can be made relativistically
correct by including two effects of the Lorentz transformation:
1) In the frame of the moving particle, the electric field of the target particle in the transverse

direction is increased by a factor y = /1 - (v/c)?.
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2) The electric field is compressed by the same factor y into a smaller region along the direction
of particle motion, so that the effective interaction time is A¢ = 2b/vy instead of At = 2b/v. Thus
Eq. (3.2) can be rewritten
Ap = F Af = azZ[y] 2b . 2zZ0,
T b> vyl  bv
The two factors of y cancel out, so that the result is identical to (3.2).

(approximate, relativistic). (3.3)

The scattering angle can now be calculated as
_Ap, 272701 _ 2:zZa

0 (approximate, relativistic), (3.4
p bv p pvb
which agrees with the exact non-relativistic classical calculation (using 2E, = mv? = pv)
an(g) _ 2l _zZa (exact, non-relativistic). (3.5
2] 2bE, pvb

(Note that, for small angles, tan 8)=8 )
2

2

We now want to calculate the differential probability of scattering by an angle 0, which (at least

in the classical picture) is related to the impact parameter b by Eq. (3.4). Since the impact

parameter is far too small to observe directly, we assume that the incident particles are

distributed randomly across a thin target which contains nx nuclei per cm®. For each nucleus, the

probability of scattering by an angle between 0 and 6+d0 is equal to the probability of the

incident particle having an impact parameter between b and b+db, and is given by the expression
dP dP

Z2.d0 =="_db =2nbdb-nx = (area per nucleus)(nuclei/cm?). (3.6)
do db
Using (3.4) we can write
2
ar _dpb db =2‘thnxﬁ =2nnx222a 2zZ¢ 21 nx 2220 i (3.7)
do db db do pvO pv6? pv 03
It is traditional to express scattering results in terms of a differential cross section
do _ events into solid angle dQ at (0,¢) (3.8)

dQ dQ-(incident particles)- (target nuclei/cm 2)’
where dQ =sin0® d0 d¢ is an element of solid angle, measured in units of steradians (sr).

When there is no dependence on the azimuthal angle ¢ (as in the present case), we can integrate
over azimuth and write dQ =2nsin® d0. Then

nxﬂdQ = nx£2n sin0 dO = Qdﬁ. (3.9)
dQ dQ do
In small-angle approximation (sin 0 = 0), Egs. (3.7) and (3.9) combine to give
2
do _ 1 ar do = 2zZe|” 1 (approximate, relativistic) . (3.10)
dQ nx2m0d06 4o pv 04
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For comparison, the exact classical non-relativistic calculation (see Povh (5.16)) gives
do _ 2
dQ

zZo
4E,

sin*(®
2

( ) (exact, non-relativistic)

3.11)

2
_ | 22« 1 (exact, relativistic or non-relativistic)
2pv) sin* ‘gi

which agrees with (10) in the small-angle limit.

Since the derivation was carried out in natural (energy) units, Eq. (3.10) has dimensions of
MeV 2sr'!. To convert to units of area, we must multiply by (h¢)? = (197.33 MeV -fm)? to

express the differential cross section in units of fm?*/sr = 10"%° cm?/sr = 10 mb/sr, the latter using
the annoying but traditional unit of 1 barn (1 b) =10 m*=10"* cm® = 100 fm* .

The above calculations are independent of the relative signs of the two charges. (In the exact
calculation, the trajectories corresponding to attractive and repulsive scattering forces are both
hyperbolas with one focus in common.) Thus the result which Rutherford derived for a-particle
scattering from nuclei can be used (with some caution and some important modifications — see
Povh Sec. 5.3) as the basis for calculating the scattering of electrons from nuclei.

The classical calculation should be valid when the two charged particles are very far apart, but
when the separation becomes comparable with the DeBroglie wavelength, then the uncertainty
principle tells us that the uncertainty in momentum is larger than the momentum itself, and
concepts of “impact parameter” and “particle orbit” are no longer meaningful. The fact that the
classical calculation described here works for Rutherford’s large scattering angles (hence small
impact parameters) is a happy accident. An even happier accident is that the same result can be
derived using non-relativistic quantum scattering theory (see Povh Sec. 5.2), and this result can
be generalized to relativistic velocities and to finite nuclear size. The only legitimate way to do
the calculation is in relativistic quantum mechanics based on the Dirac equation. In such a
calculation of electron scattering, the electron spin is an essential ingredient, leading to a result
(Mott cross section, Povh Sec. 5.3) which differs substantially from the Rutherford formula but
in a well-behaved way which preserves many results derived in the non-relativistic formalism.
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