
Geometry and Alignment Software for the CLAS12 Silicon Vertex

Tracker

P. Davies1, V. Ziegler2, M. Ungaro2, Y. Gotra2, A. Kim3, and G.P. Gilfoyle4

1 University of Surrey, Guilford, UK
2 Jefferson Lab, Newport News, VA

3 University of Connecticut, Storrs, CT
4 University of Richmond, Richmond, VA

August 9, 2017

Abstract

The CLAS12 detector is currently under construction in Hall B as part of the CEBAF 12 GeV

Upgrade. The Silicon Vertex Tracker (SVT) is a position sensitive detector subsystem in CLAS12, and

is the closest one to the target. This document is a guide to the geometry of the SVT, and the software

used to model it for simulation and reconstruction. The sensors of the SVT consist of long, narrow strips

of p-type silicon with aluminum electrodes on an n-type, bulk silicon substrate. There are 256 strips

in a sensor, with a readout pitch at the upstream end of 156 µm, and a stereo angle of 0 − 3 ◦. The

location of the sensor strips must be known to a precision of a few tens of microns in order to accurately

reconstruct particle tracks with the required position resolution of 60 µm specified in the CLAS12 design.

The geometry of the SVT has been well defined according to the design specification after consultation

with the design team, and software was been developed to align the sectors using real cosmic data. The

simulation and reconstruction software now receive the same geometry from one source.

1

CLAS12 Note 2017-008

Abbreviations

API Application Programming Interface
BMT Barrel Micromegas Tracker
BST Barrel Silicon Tracker
CAD Computer Aided Design
CCDB CLAS Constants DataBase
CEBAF Continuous Electron Beam Accelerator Facility
CLARA CEBAF Large Acceptance Spectrometer
CND Central Neutron Detector
CTOF Central Time Of Flight
CVT Central Vertex Tracker
DC Drift Chamber
DOCA Distance Of Closest Approach
EC Electromagnetic Calorimeter
FMT Forward Micromegas Tracker
FTOF Forward Time Of Flight
GDML Geometry Description Markup Language
GEANT Geometry and Tracking
GEMC Geant4 Monte-Carlo
HFCB Hybrid Flex Circuit Board
HTCC High Threshold Cherenkov Counter
LTCC Low Threshold Cherenkov Counter
PCAL Pre-shower Calorimeter
SVT Silicon Vertex Tracker
XML Extensible Markup Language

2

CLAS12 Note 2017-008

Contents

1 Software Background 4

1.1 Overview of Reconstruction Software . 4

1.2 Simulation of the CLAS12 Detector: GEMC . 5

2 User Manual 6

2.1 Ideal Geometry of the Silicon Vertex Tracker . 6

2.1.1 Sensor Strips . 8

2.1.2 Backing Structure . 11

2.2 CCDB :: Core Parameters . 15

2.3 SVT Geometry API . 18

2.3.1 SVTConstants :: Loading Parameters and Alignment Shifts 20

2.3.2 SVTVolumeFactory :: Generating Volumes . 22

2.3.3 SVTStripFactory :: Generating Strips . 23

2.3.4 SVTAlignmentFactory :: Analyzing Fiducial Data . 26

2.3.5 AlignmentFactory :: Generating Shift Data . 26

2.3.6 Visualization Tool . 26

2.3.7 Generating gemc Geometry Text Files . 27

3 Validation 29

3.1 Original Variation . 29

3.2 Java Variation . 32

3.3 Fiducial Alignment . 33

3.4 Fiducial Shifts . 35

4 Alignment Test Results 37

5 Conclusion 41

A CCDB 43

B Groovy Example 46

C ROOT 48

D Strip Endpoints 51

3

CLAS12 Note 2017-008

1 Software Background

1.1 Overview of Reconstruction Software

Figure 1 shows an overview the Java library written specifically for the CLAS12 detector, called the CLAS

Offline Analysis Tools (COATJAVA) [1]. The library consists of various packages for simple applications

such as file I/O, plotting and geometry, as well as event simulation, viewing, reconstruction, and analysis.

The source code is developed in a Github repository at https://github.com/JeffersonLab/clas12rec.

Figure 1: Overview of the packages in COATJAVA.

The CLAS12 Reconstruction and Analysis (CLARA) framework manages services that perform specific

functions during event reconstruction, such as providing geometry for the sensors and calculating the

properties of particle tracks. CLARA is able to take advantage of hyper-threading to improve performance.

A special file format called EVIO (Event Input Output) is used to store the raw signals captured by

the detectors [2]. A different format Hipo (High Performance Output) is used for the reconstructed data in

banks of information, such as voltage peaks in sensor strips and possible tracks of particles. [3]

Figure 2 shows a flowchart of the Reconstruction process. The first service is the Event Reader, which

reads an EVIO file from disc. Each forward detector has standalone Hit Based Tracking (HBT) and Time

Based Tracking (TBT) services. HBT identifies spatial information about where particles have triggered hits

in the sensors. TBT uses an iterative process to refine the initial hits from the HBT and calculate accurate

4

CLAS12 Note 2017-008

https://github.com/JeffersonLab/clas12rec

values for the event times and path lengths of tracks by “swimming” particles through the magnetic field.

If a good fit is found, then that reconstructed particle is added to the event, and the process begins again,

this time using the knowledge that some hits now belong to a possible particle track. The CVT and CTOF

provide additional HBT information for large angle tracks.

Figure 2: Flowchart of the reconstruction process. Each solid box represents a service in CLARA. The
Forward and Central service blocks can run in parallel.

1.2 Simulation of the CLAS12 Detector: GEMC

The simulation software for the CLAS12 detector is called GEMC (GEANT4 Monte Carlo). [4] It is able

to model the geometry of the target and detectors, the response of the detector to the passage of particles,

calculating how they interact with the environment at each time step, including multiple scattering, and

produce raw data in the same format as the DAQ in CLAS12 in order to calibrate the Reconstruction.

GEMC uses Perl scripts to build the structure and properties of the detector geometry. [5] For the SVT,

this process starts with the Perl script bst.pl (The SVT was previously called the Barrel Silicon Tracker).

5

CLAS12 Note 2017-008

2 User Manual

This document is designed to be a guide to the geometry of the Silicon Vertex Tracker (SVT), one of

the detector subsystems in the CLAS12 detector, and the software used to model it for simulation and

reconstruction.

2.1 Ideal Geometry of the Silicon Vertex Tracker

The SVT consists of 132 identical silicon layers grouped in pairs and assembled in sectors to form regions.

Figure 3 shows the final form of the detector. Additional details are available in the documents at https:

//userweb.jlab.org/~pdavies/doc/. Figure 4 shows a photograph of the SVT during assembly.

Figure 5 shows the right-handed Cartesian coordinate system of the lab frame and the numbering

convention of the SVT sectors. The z-axis points downstream along the beamline into the page, the y-axis

points upwards, and the x-axis points to the left when looking downstream. Spherical polar coordinates are

used for rotations, with r the radius from the beamline, θ the angle of elevation from the z-axis, and φ the

angle of azimuth from the x-axis. The centre of the target is ideally located at the origin.

Figure 3: Visualization of the SVT in ROOT. (not
showing wirebond between sensor cards)

Figure 4: Photograph of the SVT during
assembly.

6

CLAS12 Note 2017-008

https://userweb.jlab.org/~pdavies/doc/
https://userweb.jlab.org/~pdavies/doc/

Figure 5: Diagram showing sector numbering convention. The sectors are arranged around the target in 4
concentric circles, called regions. Sector 1 for all regions is located at the bottom of the cylindrical structure
(x = 0, y < 0). Up is towards the top of the page here (Sector 13 in Region 4).

7

CLAS12 Note 2017-008

2.1.1 Sensor Strips

There are 256 sensor strips in each sensor layer, arranged on a stereo angle up to 3 ◦, and extending over 3

rectangular sensor cards each of size 111.62 mm x 42 mm and thickness 320 µm down the beamline, named

Hybrid, Intermediate, and Far, respectively. See Figure 6. The cards were cut from 6 in. wafers, two sensors

per wafer. [6]

Figure 6: Plan view from outside the top of the SVT of a sensor module (region 1, sector 6, for example),
showing the strips of module U in red, and V in blue. Units are mm.

The stereo angle increases linearly from 0 ◦ on the first strip to 3 ◦ on the final one. Figure 6 shows this

structure for two sensor layers superimposed on top of one another.

Figure 7 illustrates how the strips are not completely continuous. Each sensor card contains a rectangular

active zone where the strips are engraved, surrounded by dead zones, and there is a small air gap between

the cards, called a micro-gap. A triplet of cards is called a sensor module, or just a module.

Pairs of sensor modules are grouped together, one flipped around the z-axis so that the strips overlap

when viewed from above or below, to form a sector module, or just a sector. See Figure 6. The strips and

modules are arranged this way so that a particle will pass through both layers and generate two signals. The

end points of the strips that fired are used to generate two lines using the geometry. The crossing point of

these lines defines the z-position.

The two modules in each sector are labeled U and V, for inner and outer respectively (in alphabetical

order when looking from the inside out).

Figure 7: Diagram showing module structure along z axis.

8

CLAS12 Note 2017-008

Figure 8 shows a schematic needed to describe the method used to generate the strips. The start point is

always along the x axis, but the end point may be on the far side (downstream) or on the side of the module

along the z axis of the strip coordinate system. The strip is converted to the ‘local’ coordinate system by

a translation along the x axis to put the z axis in the centre of the module. The U layer is generated by

default. For the V layer, a strip from the U layer is simply rotated about the z axis by 180 ◦ in the local

frame.

There are actually 512 strips etched into the silicon, but only half of them are used for reading data.

As a result, they alternate between sensitive (readout) and intermediate (unused) when looking along the x

axis.

The horizontal position w of the start of a strip from the upstream edge along the x axis is given in

Equation (1), where d is the distance to the first sensitive strip (parameter STRIPOFFSETWID), p is the

spacing between the sensitive strips (parameter READOUTPITCH with value 0.156 µm), and s is an index for

the strip counter with values [0:255]. The width of the layer W is equal to 2d + Np (not the same as the

width of the module because of dead zones).

w = d+ s× p (1)

The angle α each strip makes with the horizontal is given by Equation (2), where αmax is the maximum

stereo angle in radians (3◦), and N is the number of sensitive strips in a layer.

α = αmax/N × s (2)

The x component of the distance from the projected end of the strip to the start point is call q and is given

by Equation (3), where L is the length of the layer (parameter STRIPLENMAX). This is not the same as the

length of the module (parameter MODULELEN) because of the dead zones at either end of the sensor cards).

q = L tanα (3)

9

CLAS12 Note 2017-008

upstream
downstream

d

d

Figure 8: Layer U in the strip coordinate system. Beam comes from the left (upstream).

Top: The strip ends on the far, downstream edge, showing 7 strips for clarity. The horizontal position w of
the start of a strip from the upstream edge along the x axis is given in Equation (1), where d is the distance
to the first sensitive strip, p is the pitch or spacing between the sensitive strips), and s is an index for the
strip counter. The quantity q is the change in x from the strip start point to the downstream end point.

Bottom: Second case where the strip ends on the side of the module (not the downstream side). The length
q′ is the portion of q that resides on the actual layer for the bottom case, and q for the top case. The value
of q′ − q is used to identify each case, with q′ − q = 0 for the first, and q′ − q < 0 for the second.

10

CLAS12 Note 2017-008

For the case where the strip ends on the far side downstream, the start point A(x, z) is given by Equation

(4) where W is the width of the layer and w is the distance from the edge as shown in Figure 8.

xA = W − w (4a)

zA = 0 (4b)

The end point is given by B1(x, z) by Equation (5).

xB = xA − q (5a)

zB = L (5b)

For the case where the strip ends on the long side and not on the downstream edge, the start point A(x, z)

is the same as the first case, given by Equation (4), but the end point B2(x, z) is given by Equation (6).

xB = 0 (6a)

zB = xA/ tanα (6b)

2.1.2 Backing Structure

Figure 9 shows a cross section of a sector. Each pair of sensor modules is supported by a backing structure,

consisting of a carbon fiber base, a layer of bus cable to ground the carbon fiber, and a copper rail with 9

pads to supply the high voltage bias. The rail is embedded in the layer of epoxy glue that binds the silicon

sensors to the pads and bus cable. Figure 11 shows the locations of the pads.

Figure 10 shows a photograph of a test module. At the upstream end, a pitch adapter sits between the

module and a Hybrid Flex Circuit Board (HFCB) (labeled pcBoard in the figure), with wirebond connecting

the 256 readout strips on the silicon to the pitch adapter, and then from the pitch adapter to the 2 electronic

chips on the board, which each take input from 128 strips. A copper heatsink is mounted between the carbon

fiber layers under the HFCBs up to the start of the modules, with the separation maintained by rohacell

foam along the rest of the length. At the downstream end, a plastic mount with dowel holes is placed as an

insert into the foam. Each region is mounted on a copper support ring by bolts on the copper heatsink, and

a light plastic ring, made of peek material, is used to maintain the circular shape at the downstream end,

which is free-standing. A convenient convention is to call the upstream end of the SVT the copper end, and

the downstream end the peek end. [6] Dimensions for the volumes of these materials are located in Appendix

11

CLAS12 Note 2017-008

A.

Figure 9: Diagram showing the cross section of a sector module in the tracking volume. The silicon sensor
modules would be fixed to the top and bottom with the epoxy glue.

Additional figures describing the ideal geometry of the SVT can be found in the previous Geometry

Document. [7] Technical drawings for the components are available here. [8] Figure 11 features one of the

drawings for the bus cable assembly located in the filesystem with cd /group/hallb inst svt/ 1\ SVT\

Latest\ Documents/ 17\ Bus\ Cable/Bus\ Cable\ Panel\ V3.3/Mechanical.

Figure 10: A close-up photograph of the side of a module. GEMC uses the material names for some
components, such as copper for the heatsink and pcBoard for the HFCB. The kapton tape that wraps
around the side to protect the rohacell is not shown.

There are 3 fiducial points on each sector, highlighted in Figure 12. Two are on the upstream copper

support on either side of the x-axis (Cu1 and Cu2), and one on the downstream peek support (Pk3), offset

12

CLAS12 Note 2017-008

Figure 11: Drawing of the high voltage rail and pads.

to the right. They are used to accurately locate the position and orientation of the sector modules. Figure

13 shows a cross section of the SVT in the XY plane, with an overlay of one sector.

Figure 12: Technical drawings of a sector module with highlights for the fiducial points and values used to
locate them. Note that Pk3 is off-center. [8]

13

CLAS12 Note 2017-008

Figure 13: Cross section of the SVT in the XY plane (Z axis into page), with an overlay of one sector.
Modules shown in red, and fiducial points in yellow.

14

CLAS12 Note 2017-008

2.2 CCDB :: Core Parameters

A minimal set of core parameters (also known as constants) are used to generate the entire geometry. They

are recorded in the CLAS Constants Database (CCDB) in the directory /geometry/cvt/svt/. The following

list gives the name of each table, and includes a brief description of the constants contained within. See

Appendix A for a detailed example of how to use the interactive interface and values for a set of alignment

shifts calculated from the fiducial survey and volume dimensions in tables alignment, box, and tube.

• svt Fundamental parameters shown in Table 1, such as the number of regions (NREGIONS), and

constants used to orient the structure in space (PHI0, SECTOR0).

• region Arrays of region specific parameters shown in Tables 2 and 3, such as the number of sectors

(NSECTORS), the z-position of the start of the layers (Z0ACTIVE), and two radial constants

(REFRADIUS and SUPPORTRADIUS).

• fiducial Parameters for the location of the fiducial points on a sector.

• alignment A set of alignment shifts calculated from analysis of the fiducial survey results.

• material/box Volume dimensions of passive materials in the backing structure.

• material/tube Volume dimensions of passive materials in the backing structure.

In Table 3, REFRADIUS was inherited from an outdated version of the SVT tables, and pointed to a reference

point on the inner side of the U layer’s silicon volume (inner as in towards the target). SUPPORTRADIUS

points to the inner side of the heatsink, where it connects to the copper support ring. The former was derived

from previous calculations that were lost, so the latter was read from current technical drawings instead.

The values of REFRADIUS have been updated using the new values of SUPPORTRADIUS, to maintain

backwards compatibility.

15

CLAS12 Note 2017-008

Table 1: Fundamental Constants. Length unit: mm. Angle unit: degrees.

Parameter V alue Description

NREGIONS 4 Number of regions in the SVT
NMODULES 2 Number of modules in a sector
NLAYERS 8 Number of layers along the radius of the SVT
NSENSORS 3 Number of sensors in a module
NSTRIPS 256 Number of strips in a module
NFIDUCIALS 3 Number of fiducial points in a sector
NPADS 8 Number of pads along the HV rails in a sector
NTOTALSECTORS 66 Total number of sectors in the SVT
NTOTALFIDUCIALS 198 Total number of fiducial points in the SVT
PHI0 270.000 Starting rotation around the z-axis of sector modules
SECTOR0 90.000 Starting orientation around the z-axis of sector modules
STEREOANGLE 3.000 Angular spread of the sensor strips in a layer
READOUTPITCH 0.156 Distance between start of strips along front of layer
STRIPOFFSETWID 0.048 Offset of first intermediate sensor strip from edge of active zone
STRIPLENMAX 333.429 Maximum length of a strip
LAYERPOSFAC 0.500 Fractional location of sensor layer along height within a module
PHYSSENLEN 111.625 Length of physical sensor
SILICONTHK 0.320 Thickness of module (made of silicon)
PHYSSENWID 42.000 Width of physical sensor
ACTIVESENLEN 109.955 Length of active zone in sensor
ACTIVESENWID 40.032 Width of active zone in sensor
DEADZNLEN 0.835 Length of dead zone in sensor
DEADZNWID 0.984 Width of dead zone in sensor
MICROGAPLEN 0.112 Width between sensors
MODULEWID 42.000 Width of sensor module
MODULELEN 335.099 Length of sensor module
LAYERGAPTHK 3.162 Internal thickness between modules
PASSIVETHK 0.331 Total thickness of passive materials between a module and rohacell
SECTORLEN 418.255 Length of a sector
FIDCUX 17.350 X position of copper fiducials (symmetric about z-axis)
FIDPKX 3.500 X position of peek fiducial
FIDORIGINZ 62.130 Z position of reference point for the fiducials
FIDCUZ 3.750 Z position of copper fiducials
FIDPKZ0 402.624 Z position of peek fiducials
FIDPKZ1 2.500 Z position of peek fiducials

16

CLAS12 Note 2017-008

Table 2: Region dependent parameters. NSECTORS: Number of sectors in a region. STATUS: Whether the
region is to be used depending on the current configuration [0:1] (ignored by geometry service). Z0ACTIVE:
Z-position for edge of first active zone in a module. Length unit: mm

REGION NSECTORS STATUS Z0ACTIVE

1 10 1 -219.826
2 14 1 -180.380
3 18 1 -141.206
4 24 0 -83.405

Table 3: Region dependent parameters. REFRADIUS: Radial distance from origin to outer side of U (inner)
module. SUPPORTRADIUS: Radial distance from origin to inner side of copper heatsink at it’s thickest
part. LAYERRADIUS: Radial distance from origin to middle of each sensor module. Length unit: mm.

REGION REFRADIUS SUPPORTRADIUS LAYERRADIUS U LAYERRADIUS V

1 65.447 65.403 65.287 68.769
2 93.047 93.005 92.887 96.369
3 120.482 120.435 120.322 123.804
4 161.362 161.315 161.202 164.684

Table 4: Fiducial Constants. Length unit: mm.

Parameter V alue Description

CuX 17.350 Distance to copper fiducial point from centre line of sector.
PkX 3.500 Distance to peek fiducial point from centre line of sector.
OriginZ 62.130 Distance to reference point on sector from edge of module.
PkZ0 402.624 Distance to secondary reference point on sector for peek fiducial point from OriginZ.
PkZ1 2.500 Distance to peek fiducial point from secondary reference point.

17

CLAS12 Note 2017-008

2.3 SVT Geometry API

The SVT package consists of the following classes for use by the end user. Here we give a summary of the

package, followed by more details and examples below. The flowchart in Figure 14 shows how they relate to

each other through function calls.

• SVTConstants: Reads core parameters and volume dimensions from CCDB and calculates derived

parameters and dimensions. Also reads alignment shifts from selected source (CCDB or file), if enabled.

• SVTAlignmentFactory: Generates ideal fiducial points and handles file I/O for fiducial data sets.

Processes fiducial data into plane vectors to pass to AlignmentFactory.

• SVTVolumeFactory: Generates nested volume structure in GEANT4 format for simulation, and outputs

it to file, along with some parameters for the PERL scripts used to generate the database entries called

by GEANT4 functions in GEMC.

• SVTStripFactory: Generates start and end points of sensor strips for the Reconstruction, and layer

corners for calibration and validation purposes.

The following general classes are used behind the scenes.

• AlignmentFactory: Calculates and applies alignment shifts to points and volumes.

• Util: Provides utility methods for visualizing vectors as volumes, manipulating volume properties,

converting between the standard vector and GEANT4 rotation conventions, and file I/O.

• Matrix: Supports basic matrix algebra and general 3D rotation conversions.

The source code for the package is in a github repository at https://github.com/drewkenjo/JCSG with full

package name org.jlab.detector.geant4.v2.SVT. A compiled version (December 16, 2016) of the binaries

and documentation by the author are available to download from https://userweb.jlab.org/~pdavies/

dev/java/JCSG/.

18

CLAS12 Note 2017-008

https://github.com/drewkenjo/JCSG
https://userweb.jlab.org/~pdavies/dev/java/JCSG/
https://userweb.jlab.org/~pdavies/dev/java/JCSG/

Figure 14: Flowchart of software packages.

19

CLAS12 Note 2017-008

2.3.1 SVTConstants :: Loading Parameters and Alignment Shifts

SVTConstants is a static class that handles parameters, conversions and transformations. The first step

for any program using the service is to call SVTConstants.connect to setup the tables for the geometry

parameters of the SVT in CCDB ready to be read. The VERBOSE switch prints out all the parameters. The

other classes default to this setting and will print out their own debugging information accordingly.

Four indexing conventions are used by the software package.

1. (Region, Sector, Module)[0:131] These three indices are used for iterating the nested structure.

2. (Region, Sector)[0:65] Convert with SVTConstants.convertRegionSector2Index and

SVTConstants.convertIndex2RegionSector.

3. (Layer, Sector)[0:131] Same as Convention 1, but combines regions and modules into layers for

the alternative notation used by the Reconstruction. Convert with

SVTConstants.convertLayer2RegionModule and SVTConstants.convertRegionModule2Layer.

4. (Region, Sector, Fiducial)[0:197] Similar to Convention 1, but iterates over the fiducial points

instead of the modules for use by SVTAlignmentFactory. Convert with

SVTConstants.convertRegionSectorFiducial2Index and

SVTConstants.convertIndex2RegionSectorFiducial.

20

CLAS12 Note 2017-008

Listings 1-3 show examples of the different ways to load the core parameters for the ideal geometry and

apply alignment shifts from the database or a custom file.

Listing 1 : Source code for initialising SVTConstants with ideal geometry.

SVTConstants.VERBOSE = true; // optional for debugging

DatabaseConstantProvider cp = new DatabaseConstantProvider(10, "default");

cp = SVTConstants.connect(cp);

cp.disconnect ();

Listing 2 : Source code for initialising SVTConstants using alignment shifts from CCDB.

SVTConstants.VERBOSE = true; // optional for debugging

DatabaseConstantProvider cp = new DatabaseConstantProvider(10, "default");

cp = SVTConstants.connect(cp);

SVTConstants.loadAlignmentShifts(cp);

cp.disconnect ();

Listing 3 : Source code for initialising SVTConstants using alignment shifts from file.

SVTConstants.VERBOSE = true; // optional for debugging

DatabaseConstantProvider cp = new DatabaseConstantProvider(10, "default");

cp = SVTConstants.connect(cp);

cp.disconnect ();

SVTConstants.loadAlignmentSectorShifts("shifts.dat");

The data files for alignment shifts use the format shown in Listing 4. The first column is a tag that uniquely

identifies each of the 66 sector modules in the SVT using the RS index. The next three columns are the

three components of the translation shift (x,y,z) in millimetres (mm). The last four columns define the

components of the axis vector (x,y,z) and angle (in degrees) of the rotation shift, centred on the midpoint of

the three ideal fiducial points for that sector. The axis does not need to be normalized.

Listing 4 : Format of alignment shifts in txt file.

R1S01 0.177 0.184 0.183 0.312 0.000 0.950 0.164

21

CLAS12 Note 2017-008

2.3.2 SVTVolumeFactory :: Generating Volumes

Listing 5 shows the use of SVTVolumeFactory, which is an object class that builds a tree of nested GEANT4

volumes used by the GEMC simulation. The first argument of the constructor takes the ConstantProvider

used by SVTConstants. The second argument takes a boolean switch for whether the alignment shifts loaded

in SVTConstants should be applied.

Listing 5 : Source code for using SVTVolumeFactory to generate the ideal geometry.

// for ideal geometry

SVTVolumeFactory svtIdealVolumeFactory = new SVTVolumeFactory(cp , false);

svtIdealVolumeFactory.VERBOSE = true; // optional for debugging

svtIdealVolumeFactory.makeVolumes ();

System.out.println(svtIdealVolumeFactory.toString ()); // optional for debugging

Listing 6 shows the setRange method, which is used for debugging. It sets which regions, sectors and modules

to generate in makeVolumes. The indices from start from 1, but 0 can be entered to use the previous or

default value. There are methods to return the current minimum and maximum values for the indices:

getLayerMax, getLayerMin, getModuleMax, getModuleMin, getRegionMax, getRegionMin, getSectorMax,

getSectorMin.

Listing 6 : Source code for using setRange.

// example of default ranges: all regions , sectors , and modules

setRange(1, SVTConstants.NREGIONS ,

new int []{ 1, 1, 1, 1 }, SVTConstants.NSECTORS ,

1, SVTConstants.NMODULES);

// selecting only region 1 using overload (region , sectorMin , sectorMax)

svtIdealVolumeFactory.setRange(1, 0, 0);

22

CLAS12 Note 2017-008

2.3.3 SVTStripFactory :: Generating Strips

Listing 7 shows how to use SVTStripFactory, which is an object class that returns the start and end

points of the sensor strips used by the Reconstruction. The first argument of the constructor takes the

ConstantProvider used by SVTConstants. The second argument takes a boolean switch for whether the

alignment shifts loaded in SVTConstants should be applied.

The following code snippet loops through each module, sector and region and uses Util.createArrow

to display the strips as cylinders.

Listing 7 : Source code to visualise strips and layer corners from SVTStripFactory.

double stripArrowCapRadius = 0.5, // mm

stripArrowPointerRadius = 0.25, // mm

cornerDiscRadius = 0.075; // cm

SVTStripFactory svtIdealStripFactory = new SVTStripFactory(cp, false);

for(int region = svtIdealVolumeFactory.getRegionMin () -1;

region < svtIdealVolumeFactory.getRegionMax (); region ++){

for(int sector = svtIdealVolumeFactory.getSectorMin ()[region]-1;

sector < svtIdealVolumeFactory.getSectorMax ()[region]; sector ++){

for(int module = svtIdealVolumeFactory.getModuleMin () -1;

module < svtIdealVolumeFactory.getModuleMax (); module ++){

for(int strip = 0; strip < SVTConstants.NSTRIPS; strip +=16){

Line3d stripLine = svtIdealStripFactory.getStrip(

region , sector , module , strip);

Geant4Basic stripVol = Util.createArrow(

"strip"+strip+"_m"+module+"_s"+sector+"_r"+region , stripLine ,

stripArrowCapRadius , stripArrowPointerRadius ,

false , true , false); // mm

stripVol.setMother(svtIdealVolumeFactory.getMotherVolume ()); }

Vector3d [] layerCorners = svtIdealStripFactory.getLayerCorners(

region , sector , module);

for(int i = 0; i < layerCorners.length; i++){

Geant4Basic cornerDisc = new G4Tubs(

"cornerDisc"+i+"_m"+module+"_s"+sector+"_r"+region ,

0, cornerDiscRadius , cornerDiscRadius , 0, 360); // cm

cornerDisc.setPosition(layerCorners[i]. times (0.1)); // mm -> cm

cornerDisc.setMother(svtIdealVolumeFactory.getMotherVolume ());

}

}

}

}

23

CLAS12 Note 2017-008

Listing 8 shows how to calculate the endpoints of a strip using different methods and for different

circumstances. As noted in the comments, the endpoints are calculated in the CLAS coordinate system and

in the local coordinate system (associated with each module). There is also an example showing how to get

the strip endpoints in the local coordinates and then transform to the CLAS coordinates for a particular

layer and sector.

Listing 8 : Source code to calculate strip endpoints for different situations from SVTStripFactory.

import org.jlab.detector.calib.utils.DatabaseConstantProvider;

import org.jlab.detector.geant4.v2.SVT.*;

import org.jlab.geometry.prim .*;

// Connect to the database.

DatabaseConstantProvider cp = new DatabaseConstantProvider (11,"default");

SVTConstants.connect(cp);

// create the factory

SVTStripFactory svtIdealStripFactory = new SVTStripFactory(cp, false);

// set parameters .

int myStrip = 3; // pick a strip , layer , sector

int myLayer = 5;

int mySector = 6;

int myModule = 1; // corresponding module and region.

int myRegion = 2;

System.out.format("\nmyStrip = %1d, mySector = %1d, myModule = %1d, myRegion = %1d, myLayer

= %1d\n\n",myStrip ,mySector ,myModule ,myRegion ,myLayer);

// print the ideal endpoints in CLAS coordinates .

Line3d myCLASstripline = svtIdealStripFactory.getIdealStrip(myLayer , mySector , myStrip);

System.out.println("myLab = "+myCLASstripline.toString ());

// local coordinates for both layers in a layer+sector combination

Line3d myLocalstripline = svtIdealStripFactory.createIdealStrip(myStrip , 0);

System.out.println("myLocal0= "+myLocalstripline.toString ());

// start from a strip in local coordinates and transform to CLAS coords.

Line3d myLocalstripline2 = svtIdealStripFactory.createIdealStrip(myStrip , myModule);

double myradius = SVTConstants.LAYERRADIUS[myRegion][myModule];

double myz0 = SVTConstants.Z0ACTIVE[myRegion];

24

CLAS12 Note 2017-008

Line3d myLocalstriplineTransformed = myLocalstripline2.transformed(SVTConstants.getLabFrame(

myRegion , mySector , myradius , myz0));

System.out.println("myTrans = "+myLocalstriplineTransformed.toString ());

System.out.println("myLab = "+myCLASstripline.toString ());

// get the endpoints using the endpoints4CLAS -NOTE.groovy methods.

Line3d mystripline2 = svtIdealStripFactory.getStrip(myRegion , mySector , myModule , myStrip);

System.out.println("myLab2 = "+mystripline2.toString ());

Listing 9 shows code analogous to Listing 8 except now the alignment shifts are added to the positions

of the endpoints.

Listing 9 : Source code to calculate strip endpoints for different situations from SVTStripFactory with

the alignment shifts included.

import org.jlab.detector.calib.utils.DatabaseConstantProvider;

import org.jlab.detector.geant4.v2.SVT.*;

import org.jlab.geometry.prim .*;

// connect to the CCDB

SVTConstants.VERBOSE = true;

DatabaseConstantProvider cp = new DatabaseConstantProvider ();

cp = SVTConstants.connect(cp);

// load alignment shifts;

SVTConstants.loadAlignmentShifts(cp);

// create the factory

SVTStripFactory svtShiftedStripFactory = new SVTStripFactory(cp , false);

// set parameters .

int myStrip = 3; // pick a strip , layer , sector

int myLayer = 5;

int mySector = 6;

int myModule = 1; // corresponding module and region.

int myRegion = 2;

// shifted strip in lab coordinates

Line3d myCLASstriplineShifted = svtShiftedStripFactory.getShiftedStrip(myLayer , mySector ,

myStrip);

System.out.println("myLab = "+myCLASstriplineShifted.toString ());

25

CLAS12 Note 2017-008

2.3.4 SVTAlignmentFactory :: Analyzing Fiducial Data

SVTAlignmentFactory is a static class that processes data of the fiducial points into alignment shifts, and

applies alignment shifts to the ideal geometry. The data files of the fiducial survey points use the format

shown in Listing 10. The first column is a tag to uniquely identify each of the 198 the fiducial points in

the SVT. The next three columns are the Cartesian coordinates (x,y,z) of that point in the lab frame in

millimetres.

Listing 10 : Format of fiducial data in txt file.

R1S01F1 -17.350 -68.283 -286.541

R1S01F2 17.350 -68.283 -286.541

R1S01F3 3.500 -68.283 122.333

2.3.5 AlignmentFactory :: Generating Shift Data

AlignmentFactory is a general static class that uses matrix algebra to compute the translation and rotation

shifts between two given sets of normal vectors, and apply a given shift to a set of points or volumes.

An alignment shift consists of a translation and a rotation about the geometric mean point of the three

ideal fiducials. Applying these to a point is trivial. For a volume however, the rotation requires a sequence

of transformations and conversions between various representations, implemented in the Util static class.

Standard vector notation uses XY Z Extrinsic Tait-Bryan Euler angles (equivalent to ZY ′X ′′ Intrinsic)

[9, 10]. For a given pair elevation and azimuth angles, θ and φ respectively, first rotate about the X-axis by

zero angle (for all vectors), then rotate about the Y-axis by θ, and finally rotate about the Z-axis by φ.

A Geant4Basic volume object stores a position in space and a rotation about its center of geometry.

GEANT4 uses XY ′Z ′′ Intrinsic (equivalent to ZY X Extrinsic). First rotate about the X axis, then the new

Y axis, then the new Z axis. Euler angles do not lend themselves to manipulation, so they are converted to

rotation matrices using the Matrix object class when applying a shift.

A rotation shift is defined by an axis and an angle centred on a point, and can be generated by comparing

two sets of fiducial points using normal vectors. The axis/angle component is converted to a matrix, and

applied to the initial rotation of a volume with a simple matrix multiplication.

2.3.6 Visualization Tool

A visualization tool was developed to check the geometry code using GDML and ROOT. The Geometry

Description Markup Language (GDML) is a portable way to describe a volume structure for visualization

and debugging purposes. It is an XML schema that defines a set of legal elements that are compatible with

26

CLAS12 Note 2017-008

GEANT4. A Java package was written to produce a tree of Geant4Basic objects to GDML file. Only a

few volume types were included, such as boxes and cylinders. The source code for the package is available

at https://github.com/psq95/VolumeExporter. ROOT is a modular scientific software framework based

primarily on C++. It is used for big data processing, statistical analysis, visualization and storage. Part of

its visualization capabilities includes a GDML interpreter. See Appendices B and C for examples of source

code for using the GDML exporter class and ROOT, respectively.

2.3.7 Generating gemc Geometry Text Files

The flowchart in Figure 14 shows a leg that connects to the CLAS12 simulation package gemc. We have used

the java code here to produce text files that contain the necessary parameters to describe the SVT geometry

and are readily ported to other sites. Here we describe the procedure for generating those text files.

1. Download the gemc gitHub repositories api and detectors from https://github.com/gemc.

2. Define an environment variable named myCOATJAVALIBS that points to the location of the COATJAVA

directory containing necessary libraries (e.g., ~/coatjava/lib/clas). At this writing that directory

contains the files listed in Table 5.

Table 5: COATJAVA libraries

coat-libs-3.0-SNAPSHOT.jar jcsg-0.3.2.jar

JEventViewer-1.1.jar vecmath-1.3.1-2.jar

3. Define a second environment variable gemcPERLMODS that points to the location of the perl modules

(e.g. $GEMC/api-master/perl) in the gemc distribution. This environment variable is used to actually

tell perl where to find the appropriate libraries at runtime.

4. The main scripts for generating the SVT/BST geometry are in a directory such as

$GEMC/detectors-master/clas12/bst/. In the file config.dat within this directory set the

variation to java to obtain the version of the SVT geometry described here.

5. In the same directory ($GEMC/detectors-master/clas12/bst/), the main Perl script for generating

the SVT/BST geometry is named bst.pl. It uses two other scripts internally factory.groovy and

geometry java.pl. The first one factory.groovy reads the SVT constants from the database,

generates the volumes needed for Geant4, and writes them out in the file bst volumes.txt. The

second one, geometry java.pl, is used in bst.pl to create the final, formatted output. Depending

on how your directory structure is set up you may have to change one line (line 77 as of this writing)

27

CLAS12 Note 2017-008

https://github.com/psq95/VolumeExporter
https://github.com/gemc

from “system(’groovy -cp "../*" factory.groovy’);”

to the following.

“system(’<your path here>coatjava/bin/run-groovy factory.groovy’); ”

To run the main script bst.pl which generates the geometry text files use the command

perl -I $gemcPERLMODS bst.pl config.dat

where the files bst.pl and config.dat are in the local bst directory. A listing of the files produced

by a successful run of the bst.pl script is shown in Table 6.

Table 6: SVT geometry output files.

bst geometry java.txt bst parameters java.txt bst volumes java.txt

bst bank.txt bst hit java.txt bst materials java.txt

6. The scripts can be found at https://github.com/gemc/detectors/tree/master/clas12/bst

Sample output files can be found at https://userweb.jlab.org/~gilfoyle/svtGeometry/.

Additional documentation can be found at https://userweb.jlab.org/~pdavies/dev/java/JCSG/.

28

CLAS12 Note 2017-008

https://github.com/gemc/detectors/tree/master/clas12/bst
https://userweb.jlab.org/~gilfoyle/svtGeometry/
https://userweb.jlab.org/~pdavies/dev/java/JCSG/

3 Validation

The previous SVT Geometry Document [7] was used as a preliminary basis for validating the parameters

and conventions used by the GEMC and the Reconstruction for the SVT. However, it was discovered that

many of the parameters in the document had become outdated since its publication as the SVT was built,

so the finalized technical drawings from the Mechanical Engineering Department were used instead. [8]

Initially, the locations of the sensor layers in the SVT were not quite the same in both GEMC and the

Reconstruction, and this resulted in poor resolution of the residuals. In addition, the residuals were also too

large when reconstructing real cosmic data because there were differences between the simulated model and

the physical detector.

3.1 Original Variation

Figures 15 and 16 show an early version of the geometry, called the original variation in GEMC. It was

exported to a GDML file and visualized using ROOT to use custom transparencies to highlight volumes of

interest. Figure 17 shows a comparison between the early version and the technical design drawings. It can

be seen that the copper volume was misplaced, and the other passive volumes around the heatsink were not

actually touching.

The original variation was built entirely in a Perl script called geometry.pl. It contained hard coded

parameters that were discovered to be different to those used by the Reconstruction.

29

CLAS12 Note 2017-008

Figure 15: Early version of the SVT in GEMC with sensor modules removed.
Top: End view of the copper end, looking downstream.
Bottom: End view of the peek end, looking upstream.

30

CLAS12 Note 2017-008

Figure 16: Early version of the SVT in GEMC with sensor modules removed.
Top: Side view of the copper end.
Bottom: Side view of the peek end.

31

CLAS12 Note 2017-008

Figure 17: Comparison of early version of simulation to design drawings.
Top: Technical drawing showing side view of the copper support and HFCB (pcBoard) components of a
sector module.
Bottom: Early version of the simulated geometry showing inconsistencies.

3.2 Java Variation

In order for both GEMC and the Reconstruction to use the same parameters from CCDB, a common

geometry package was required. A Groovy script called factory_groovy first runs the Java code to output

the nested volume structure and a few parameters to text files. A new Perl script called geometry java_pl

then reads these files when building the detector volumes, and adds additional properties such as sensitivity

and colour. Source code is available at https://github.com/gemc/detectors/tree/master/clas12/bst.

32

CLAS12 Note 2017-008

https://github.com/gemc/detectors/tree/master/clas12/bst

3.3 Fiducial Alignment

The Survey Group at Jefferson Lab recorded the actual positions of the fiducial points of each sector module

as the SVT was being assembled. Two sets of data were received from the Group, called Survey Ideal and

Survey Measured. The first was generated from an official Computer Aided Design (CAD) model of the

SVT. Figure 18 shows how the second was derived from a fit of the experimental data to three circles for

each region to minimize the overall shift of each module.

Figure 18: CAD preview of the fit used on the experimental fiducial survey data.

Another set of ideal fiducial points based on the core parameters, called Factory Ideals, was computed

to determine more accurate values through consultation with the mechanical engineering team. Figure 19

shows the original state of the computed fiducial data, and figure 20 shows how the ideal geometry is now

well defined within 2 µm resolution of the design specification. Notice the change in the vertical scale

between Figures 19 and 20. Before the corrections deviations from the ideal values exceeded 300 µm in some

places and were routinely off by 150 µm. After the corrections, the maximum deviation is about 2µm and

is essentially zero is most places. We do not expect to be sensitive to variations below about 20 µm. Table

7 contains a translation of the Module# axis.

Table 7: The index used by the fiducial survey data is effectively the same as the (Region, Sector) index.

Module# Region Sector

1-10 1 1-10
11-24 2 1-14
25-42 3 1-18
43-66 4 1-24

33

CLAS12 Note 2017-008

Figure 19: Comparison of fiducial data. Factory Ideal from Survey Ideal before corrections.

Figure 20: Comparison of fiducial data. Factory Ideal from Survey Ideal after corrections.

34

CLAS12 Note 2017-008

3.4 Fiducial Shifts

Figure 21 shows that, when compared to the ideal geometry, individual differences up to several hundred

microns were observed between the measured data (Survey Measured and Factory Ideal). These

differences were not due to flaws in the manufacturing process, but simply the difficulty of aligning

macroscopic objects with great enough precision. Figure 22 shows the notation used for the distances

between the fiducial points in one sector. Figure 23 shows the difference in those distances between the

survey points (D1, D2, and D3) of the two data sets. The size of the disagreement between the two sets is

smaller here (up to a hundred microns), but still significant. A set of alignment shifts was generated from

these two fiducial data sets, and stored in CCDB in the alignment table. When these shifts are applied,

the fiducial points do not line up exactly with the Survey Measured data resulting in the data seen in

Figure 24. There is little improvement in the agreement when the shifts are applied. Compare Figures 21

and 24. In fact, the biggest difference between the two plots is a sign change in the difference since the

difference is effectively reversed in the two plots. An explanation for the lack of improvement may lie with

the fact that the Survey Measured data rely on a fit to the measured positions of the fiducial points (see

previous section) so the distances D1, D2, and D3 in Figure 22 are no longer at their ideal values. The

current algorithm to shift the Factory Ideal data maintains the original, ideal values for D1, D2, and D3

and calculates the the shifts with the center of rotation of the Factory Ideal triangle at the geometric

mean of the three points defining that triangle (Cu+, Cu-, and Pk in Figure 22). It would be worthwhile to

study the effect of applying the shifts to the geometric center of the Survey Measured data instead.

Figure 21: Comparison of fiducial data. Survey Measured from Factory Ideal.

35

CLAS12 Note 2017-008

Figure 22: Diagram showing labeling of distances between fiducial points.

Figure 23: Comparison of distances between fiducial data. Survey Measured from Factory Ideal.

36

CLAS12 Note 2017-008

Figure 24: Comparison of fiducial data. Factory Shifted from Survey Measured.

4 Alignment Test Results

In addition to the validation procedures described above, the geometry package can also be tested using

the CLAS12 alignment codes. Reaching the design goals for the hit position resolution σr of the SVT

requires precise knowledge of the location and orientation of each sensor. That hit resolution is expected

to be σr ≈ 55 µm at the upstream end of each sensor and it reaches a maximum of σr ≈ 63 µm at

the downstream end. The upstream ends of the strips are all 156 µm apart while the downstream strip

separation and resolution depends on the stereo angle of adjacent strips. Larger stereo angles means greater

separation at the downstream end. The placement of the strips is expected to be within 20 µm of the design

specifications. In this section we summarize the procedures to align the SVT and present our results to

validate those procedures using the improved geometry packages described here. We test the alignment code

first with simulated events from gemc and then use it to align the SVT using measured cosmic ray data.

More detail on this topic will be in a future CLAS-NOTE.

To align the SVT we have used both simulated and measured cosmic ray tracks with no magnetic

field (straight tracks) that are fitted with a linear, least-squares minimization procedure in a program called

millepede [11]. The program has been applied to simulated and real cosmic ray tracks with a comparatively

simple structure. Such a cosmic ray event is shown in Fig. 25 that we classify as a Type-1 track. Cosmic-

ray events with isolated clusters of strips from all sixteen horizontal sensors are selected to simplify the

interpretation of the results. Only the x position of an sensor was allowed to vary in the fit (see coordinates

37

CLAS12 Note 2017-008

in Fig. 25). Additional constraints on the angle of track to select nearly vertical ones were also used.

Figure 25: A Type 1, cosmic ray track in the SVT passing though all eight horizontal SVT layers.

The SVT millepede alignment was studied first with simulated events from gemc. The first case studied

was cosmic ray events in the SVT using the ideal geometry - the SVT sensor positions calculated from the set

of core parameters. These simulated, ideal-geometry events were reconstructed with the standard CLAS12

reconstruction package. The results are shown in Fig 26. The left-hand panel shows the residuals for Type-1

tracks from the reconstruction. The blue, open circles represent the centroid of the residual distribution for

a single sensor (x position) plotted at the vertical position of the sensor (y value). Compare the vertical

positions with Fig. 25. The uncertainties on each point represent the width of the residual distribution (not

the uncertainty in the centroid) which is more closely related to the resolution. The residuals are close to, but

not quite, aligned at zero. The observed shifts are all less than 0.5 µm (recall the expected position resolution

resolution is 20 µm), but there is a systematic bias in the reconstruction which ‘clocks’ the residuals. The

right-hand panel shows the misalignments extracted with millepede. To obtain reasonable results from

millepede one must fix two of the misalignments otherwise there is an infinite number of possible solutions

- the geometry parameters could all be shifted together by an arbitrary amount in x without changing the

quality of the fit. In the results shown here, the alignments in the fourth layers from the center are set to

zero. We expect the misalignments here to be similar in size and distribution to the residuals. In both cases,

38

CLAS12 Note 2017-008

ΔR1= 0 μm

L4S1=L4S8=0

-1.5 -1.0 -0.5 0.0 0.5 1.0

-150

-100

-50

0

50

100

150

Residuals (μm)

y
(m

m
)

Type 1, nominal geometry

ΔR1= 0 μm N=50K

L4S1=L4S8=0

-2 -1 0 1 2

-150

-100

-50

0

50

100

150

Misalignment (μm)

y
(m

m
)

Type 1, Nominal Geometry

Figure 26: Simulated cosmic ray results using the ideal perfect geometry for the track fit residuals (left-hand
panel) and millepede misalignments (right-hand panel).

the size of residuals/misalignments is similar (< 2 µm), but the ‘clocked’ pattern in the residuals is not seen

in the misalignments.

Known shifts in the x positions of the innermost region of sensors (layers 1-2) were inserted in the gemc

simulation and then the misalignments extracted to see if the alignment code would reproduce the shifts.

The results for a shift ∆x = 500 µm are shown in Fig. 27 for 500,000 simulated events. The layout of

the figure is the same as Fig. 26. The y axis is the vertical position of the sensors for Type-1 events and

the horizontal position is the centroid of the residual/misalignment. The uncertainty is the width of the

distribution for that sensor. The left-hand panel clearly shows the inserted shift in x for the innermost

sensors. Note the fitted track averages the positive and negative residuals so the unshifted regions now

have a large positive residual. The separation between the shifted and unshifted sensors is about 500µm as

expected. The misalignment from millepede shows the unshifted sensors at zero and the shifted sensors

misaligned by 500 µm as expected.

The alignment code and the underlying geometry package have also been tested on real, measured

cosmic rays collected with the SVT. The alignment code was used to extract the misalignments from the

reconstructed cosmic rays. Rather than just comparing the residuals and misalignments from millepede,

the extracted misalignments were used to correct the geometry and the reconstruction performed again.

The results are shown in Fig. 28. It shows the residuals before (blue) and after (red) the correction. Before

correction there are large residuals (in blue) which represent misalignmnents of order several hundred

microns - much larger than the SVT specifications for position resolution. After correction, the residuals

39

CLAS12 Note 2017-008

ΔR1= 500 μm

L4S1=L4S8=0

-500-400-300-200-100 0 100

-150

-100

-50

0

50

100

150

Residuals (μm)

y
(m

m
)

Type 1, Shifted geometry

ΔR1= 500 μm

L4S1=L4S8=0

N=500K

-500 -400 -300 -200 -100 0

-150

-100

-50

0

50

100

150

Misalignment (μm)

y
(m

m
)

Type 1, Shifted Geometry

Figure 27: Simulated cosmic ray results using the ideal perfect geometry with a region 1 shift of 2 µm
of all region 1 to positive x. The track fit residuals are shown in the left-hand panel and the millepede

misalignments (are shown in the right-hand panel.

Blue - No Corrections

Red - Corrected

-0.5 0.0 0.5

-150

-100

-50

0

50

100

150

Residual (mm)

y
(m

m
)

Type 1 Cosmic Events

Figure 28: Residuals and misalignment correction results for measured SVT cosmic rays. Blue points
show the initial residuals. Red points show the same residuals after correcting the reconstruction with the
millepede results.

40

CLAS12 Note 2017-008

(in red) are now all close to zero. The standard deviation for all the residuals is about 25 µm.

The geometry package has been tested with the SVT alignment procedures using simulated, cosmic-

ray events and real, measured cosmic rays in the SVT. The geometry package ensures that simulation and

reconstruction obtain their geometry from the same source. The geometry and alignment packages show the

expected improvements on both simulated and measured cosmic ray events.

5 Conclusion

The geometry of the SVT has been well defined according to the design specification, aligned using real cosmic

data, and the simulation and reconstruction software now receive the same geometry from one source. Future

work includes adding more volumes to the backing structure, such as the downstream support, the wirebond

between sensor cards, and the kapton tape wrapped around the side of the sector modules, further alignment

studies using non-Type-1 tracks, and testing of the common geometry using geantinos.

41

CLAS12 Note 2017-008

References

[1] Ziegler V. Status of Event Reconstruction in CLAS12. Presented at the CLAS Collaboration Meeting,

Nov, 2016.

[2] CLAS Collaboration. EVIO file format. http://clasweb.jlab.org/clas12offline/docs/software/

html/io/readingRawEvioFiles.html.

[3] CLAS Collaboration. HIPO file format. http://clasweb.jlab.org/clas12offline/docs/software/

3.0/html/rec/inputfiles.html.

[4] Ungaro M. GEMC. https://gemc.jlab.org.

[5] Ungaro M. and Davies P. Source code for the SVT/BST in GEMC. https://github.com/psq95/

detectors/tree/master/clas12/bst.

[6] Antonioli M.A. et al. Performance of the CLAS12 Silicon Vertex Tracker modules. Nucl. Instrum. Meth.

A, 732:99–102, 2013.

[7] CLAS Collaboration. SVT Geometry Document. https://clasweb.jlab.org/wiki/index.php/

CLAS12_Geometry,_Calibration,_Reconstruction_and_Monitoring_Documents.

[8] Mandal S. Technical Drawings of the SVT. https://userweb.jlab.org/~mandal/SVT/Drawings/

Module_Drawings_July13/.

[9] Eric W. Weisstein. Euler Angles. http://mathworld.wolfram.com/EulerAngles.html.

[10] Euler Angles. https://en.wikipedia.org/wiki/Euler_angles.

[11] Volker Blobel, Claus Kleinwort, and Frank Meier. Fast alignment of a complex tracking detector using

advanced track models. Comput.Phys.Commun., 182:1760–1763, 2011.

42

CLAS12 Note 2017-008

http://clasweb.jlab.org/clas12offline/docs/software/html/io/readingRawEvioFiles.html
http://clasweb.jlab.org/clas12offline/docs/software/html/io/readingRawEvioFiles.html
http://clasweb.jlab.org/clas12offline/docs/software/3.0/html/rec/inputfiles.html
http://clasweb.jlab.org/clas12offline/docs/software/3.0/html/rec/inputfiles.html
https://gemc.jlab.org
https://github.com/psq95/detectors/tree/master/clas12/bst
https://github.com/psq95/detectors/tree/master/clas12/bst
https://clasweb.jlab.org/wiki/index.php/CLAS12_Geometry,_Calibration,_Reconstruction_and_Monitoring_Documents
https://clasweb.jlab.org/wiki/index.php/CLAS12_Geometry,_Calibration,_Reconstruction_and_Monitoring_Documents
https://userweb.jlab.org/~mandal/SVT/Drawings/Module_Drawings_July13/
https://userweb.jlab.org/~mandal/SVT/Drawings/Module_Drawings_July13/
http://mathworld.wolfram.com/EulerAngles.html
https://en.wikipedia.org/wiki/Euler_angles

A CCDB

Listing 11 : Example of CCDB interactive interface.

/> cd geometry/cvt/svt

/geometry/cvt/svt > ls

material

region

alignment

fiducial

svt

/geometry/cvt/svt > cat svt

+----------------------------------+

| nRegions (int)| 4 |

| nModules (int)| 2 |

| nSensors (int)| 3 |

| nStrips (int)| 256 |

| nFiducials (int)| 3 |

| nPads (int)| 8 |

| layerGapThk (double)| 3.166 |

| readoutPitch (double)| 0.156 |

| stereoAngle (double)| 3.0 |

| phiStart (double)| 270.0 |

| zRotationStart (double)| 90.0 |

| microGapLen (double)| 0.112 |

| physSenWid (double)| 42.000 |

| siliconThk (double)| 0.320 |

| physSenLen (double)| 111.625 |

| activeSenWid (double)| 40.032 |

| activeSenLen (double)| 109.955 |

| deadZnWid (double)| 0.984 |

| deadZnLen (double)| 0.835 |

| modulePosFac (double)| 0.5 |

| stripStart (double)| 0.048 |

+----------------------------------+

/geometry/cvt/svt > cat region

+--+

| region | status | nSectors | zStart | UlayerOuterRadius | CuSupportInnerRadius |

| int | int | int | double | double | double |

+--+

43

CLAS12 Note 2017-008

| 1 | 1 | 10 | -219.826 | 65.447 | 65.403 |

| 2 | 1 | 14 | -180.380 | 93.047 | 93.005 |

| 3 | 1 | 18 | -141.206 | 120.482 | 120.435 |

| 4 | 0 | 24 | -83.405 | 161.362 | 161.315 |

+--+

/geometry/cvt/svt > cat fiducial

+---------------------------+

| CuX (double)| 17.35 |

| PkX (double)| 3.50 |

| OriginZ (double)| 62.13 |

| CuZ (double)| 3.75 |

| PkZ0 (double)| 402.624 |

| PkZ1 (double)| 2.50 |

+---------------------------+

/geometry/cvt/svt > cat alignment

+---+

| tag | tx | ty | tz | rx | ry | rz | ra |

| string | double | double | double | double | double | double | double |

+---+

| R1S01 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |

| R1S02 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |

| R1S03 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |

| R1S04 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |

| R1S05 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |

| R1S06 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |

| R1S07 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |

| R1S08 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |

| R1S09 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |

| R1S10 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |

.

/geometry/cvt/svt > cd material

/geometry/cvt/svt/material > cat box

+--+

| name | wid | thk | len |

| string | double | double | double |

+--+

| heatSink | 40.700 | 2.880 | 65.330 |

| heatSinkCu | 40.700 | 2.500 | 65.330 |

| heatSinkRidge | 40.700 | 0.380 | 15.600 |

| rohacell | 41.000 | 2.500 | 352.925 |

44

CLAS12 Note 2017-008

| rohacellCu | 41.000 | 2.500 | 338.425 |

| plastic | 20.000 | 2.500 | 14.500 |

| plasticPk | 12.000 | 0.380 | 12.500 |

| carbonFiber | 42.000 | 0.190 | 401.640 |

| carbonFiberCu | 36.750 | 0.190 | 46.580 |

| carbonFiberPk | 41.000 | 0.190 | 355.060 |

| busCable | 42.000 | 0.078 | 401.640 |

| busCableCu | 36.750 | 0.078 | 46.580 |

| busCablePk | 41.000 | 0.078 | 355.060 |

| pitchAdaptor | 41.500 | 0.320 | 4.000 |

| pcBoardAndChips | 36.730 | 1.000 | 41.440 |

| pcBoard | 36.730 | 0.500 | 41.440 |

| chip | 7.500 | 0.500 | 5.000 |

| epoxyAndRailAndPads | 41.000 | 0.063 | 401.640 |

| epoxyMajorCu | 22.875 | 0.063 | 46.580 |

| epoxyMinorCu | 10.875 | 0.063 | 46.580 |

| epoxyMajorPk | 25.000 | 0.063 | 355.060 |

| epoxyMinorPk | 13.000 | 0.063 | 355.060 |

| rail | 0.127 | 0.003 | 370.985 |

| wirebond | 0.0 | 0.0 | 0.0 |

| kaptonWrapTapeSide | 0.013 | 3.061 | 352.930 |

| kaptonWrapTapeCap | 4.832 | 0.013 | 352.930 |

| kaptonWrapGlueSide | 0.013 | 3.036 | 352.930 |

| kaptonWrapGlueCap | 4.819 | 0.013 | 352.930 |

+--+

/geometry/cvt/svt/material > cat tube

+----------------------+

| name (string)| pad |

| rmin (double)| 0.000 |

| rmax (double)| 1.500 |

| zlen (double)| 0.060 |

| phi0 (double)| 0.0 |

| dphi (double)| 360.0 |

+----------------------+

45

CLAS12 Note 2017-008

B Groovy Example

Listing 12 : Groovy script showing how to perform basic functions with each class.

import org.jlab.detector.calib.utils.DatabaseConstantProvider;

import org.jlab.detector.geant4.v2.SVT.*;

import org.jlab.geometry.exporter.GdmlExporter;

import org.jlab.geometry.exporter.VolumeExporterFactory;

// for ideal geometry

SVTConstants.VERBOSE = true; // optional for debugging

DatabaseConstantProvider cp = SVTConstants.connect ();

SVTVolumeFactory svtIdealVolumeFactory = new SVTVolumeFactory(cp , false);

svtIdealVolumeFactory.makeVolumes ();

// System.out.println(svtIdealVolumeFactory .toString ()); // optional for debugging

GdmlExporter gdmlFile = VolumeExporterFactory.createGdmlFactory ();

gdmlFile.addTopVolume(svtIdealVolumeFactory.getMotherVolume ());

gdmlFile.addMaterialPreset("mat_hide", "mat_vacuum");

gdmlFile.addMaterialPreset("mat_half", "mat_vacuum");

gdmlFile.replaceVolumeMaterial("vol_heatSink", "mat_hide");

// gdmlFile. replaceVolumeMaterial (" vol_heatSink ", "mat_half ");

gdmlFile.replaceVolumeMaterial("vol_heatSinkCu", "mat_vacuum");

gdmlFile.replaceVolumeMaterial("vol_heatSinkRidge", "mat_vacuum");

gdmlFile.replaceVolumeMaterial("vol_carbonFiber", "mat_hide");

gdmlFile.replaceVolumeMaterial("vol_carbonFiberCu", "mat_vacuum");

gdmlFile.replaceVolumeMaterial("vol_carbonFiberPk", "mat_vacuum");

gdmlFile.replaceVolumeMaterial("vol_busCable", "mat_hide");

gdmlFile.replaceVolumeMaterial("vol_busCableCu", "mat_vacuum");

gdmlFile.replaceVolumeMaterial("vol_busCablePk", "mat_vacuum");

gdmlFile.replaceVolumeMaterial("vol_pcBoardAndChips", "mat_hide");

gdmlFile.replaceVolumeMaterial("vol_epoxyAndRailAndPads", "mat_hide");

gdmlFile.replaceVolumeMaterial("vol_module", "mat_hide");

46

CLAS12 Note 2017-008

gdmlFile.replaceVolumeMaterial("vol_sensorPhysical", "mat_hide");

gdmlFile.replaceVolumeMaterial("vol_sector", "mat_half");

// gdmlFile. replaceVolumeMaterial (" vol_region ", "mat_half ");

// gdmlFile. replaceVolumeMaterial ("vol_svt", "mat_half ");

// gdmlFile. replaceVolumeMaterial (" vol_sector ", "mat_hide ");

gdmlFile.replaceVolumeMaterial("vol_region", "mat_hide");

gdmlFile.replaceVolumeMaterial("vol_svt", "mat_hide");

gdmlFile.replaceVolumeMaterial("arrow0", "mat_hide");

// gdmlFile. replaceVolumeMaterial ("arrow0", "mat_half ");

gdmlFile.writeFile("svt");

47

CLAS12 Note 2017-008

C ROOT

Listing 13 : ROOT script showing how to import a GDML file and display the volumes with custom

transparency and colour.

#include <TColor.h>

void draw() {

gSystem ->Load("libGeom"); // library for geometry

gSystem ->Load("libGdml"); // library for GDML

TGeoManager *geom = TGeoManager :: Import("svt.gdml"); // filename here

cout << "setting material transparencies\n";

int transparencyHide = 100;

int transparencyHalf = 50;

int transparencyShow = 0;

TList *matList = geom ->GetListOfMaterials ();

TIter matNext(matList);

while(mat = (TGeoMaterial *) matNext ())

{

TString *matName = new TString(mat ->GetName ());

if(matName ->Contains("hide"))

{

cout << "hide " << transparencyHide;

mat ->SetTransparency(transparencyHide);

}

else if(matName ->Contains("half"))

{

cout << "half " << transparencyHalf;

mat ->SetTransparency(transparencyHalf);

}

else

{

cout << "show " << transparencyShow;

mat ->SetTransparency(transparencyShow);

}

cout << " " << matName ->Data() << "\n";

}

TGeoVolume *top = geom ->GetTopVolume ();

//top -> SetLineColor (kWhite);

//geom -> SetTopVisible ();

48

CLAS12 Note 2017-008

cout << "setting volume colours\n";

TObjArray *volList = geom ->GetListOfVolumes ();

TIter volNext(volList);

while(vol = (TGeoVolume *) volNext ())

{

vol ->SetVisContainers(kTRUE); // for half - transparent volumes

TString *volName = new TString(vol ->GetName ());

if(volName ->Contains("module"))

{

vol ->SetLineColor(kCyan -10);

}

else if(volName ->Contains("sensorActive"))

{

vol ->SetLineColor(kBlue -1);

}

else if(volName ->Contains("sensorPhysical"))

{

vol ->SetLineColor(kBlue);

}

else if(volName ->Contains("fiducial"))

{

vol ->SetLineColor(kCyan);

}

else if(volName ->Contains("rohacell"))

{

vol ->SetLineColor(kWhite);

}

else if(volName ->Contains("heatSink"))

{

vol ->SetLineColor(kOrange);

}

else if(volName ->Contains("heatSinkCu"))

{

vol ->SetLineColor(kOrange +1);

}

else if(volName ->Contains("carbonFiberCu"))

{

vol ->SetLineColor(kGray +3);

49

CLAS12 Note 2017-008

}

else if(volName ->Contains("carbonFiberPk"))

{

vol ->SetLineColor(kGray +3);

}

else if(volName ->Contains("busCable"))

{

vol ->SetLineColor(kGray +2);

}

else if(volName ->Contains("pcBoard"))

{

vol ->SetLineColor(kYellow -9);

}

else if(volName ->Contains("chip"))

{

vol ->SetLineColor(kYellow +1);

}

else if(volName ->Contains("epoxy"))

{

vol ->SetLineColor(kWhite);

}

else if(volName ->Contains("arrow"))

{

vol ->SetLineColor(kBlack);

}

else

{

vol ->SetLineColor(kGray);

}

// cout << " " << volName ->Data () << "\n";

}

cout << "VisLevel " << geom ->GetVisLevel () << "\n";

cout << "VisOption " << geom ->GetVisOption () << "\n";

//geom -> SetVisLevel (3);

//geom -> SetVisOption (1);

// cout << "new VisLevel " << geom -> GetVisLevel () << "\n";

// cout << "new VisOption " << geom -> GetVisOption () << "\n";

top ->Draw("ogl");

}

50

CLAS12 Note 2017-008

D Strip Endpoints

The table below holds the three-dimensional, ideal endpoints of the first and last strips on the SVT modules

in mm’s constructed using the groovy script entitled endpoints4CLAS-NOTE.groovy.

Region Sector Module Strip xu yu zu xd yd zd
1 1 1 1 -19.89000 -65.28700 -219.82600 -19.89000 -65.28700 113.60300
1 1 1 256 19.89000 -65.28700 -219.82600 20.01600 -65.28700 -217.42178
1 2 1 1 -54.46608 -41.12724 -219.82600 -54.46608 -41.12724 113.60300
1 2 1 256 -22.28339 -64.50934 -219.82600 -22.18145 -64.58340 -217.42178
1 3 1 1 -68.23797 -1.25828 -219.82600 -68.23797 -1.25828 113.60300
1 3 1 256 -55.94528 -39.09131 -219.82600 -55.90634 -39.21114 -217.42178
1 4 1 1 -55.94528 39.09131 -219.82600 -55.94528 39.09131 113.60300
1 4 1 256 -68.23797 1.25828 -219.82600 -68.27691 1.13845 -217.42178
1 5 1 1 -22.28339 64.50934 -219.82600 -22.28339 64.50934 113.60300
1 5 1 256 -54.46608 41.12724 -219.82600 -54.56802 41.05318 -217.42178
1 6 1 1 19.89000 65.28700 -219.82600 19.89000 65.28700 113.60300
1 6 1 256 -19.89000 65.28700 -219.82600 -20.01600 65.28700 -217.42178
1 7 1 1 54.46608 41.12724 -219.82600 54.46608 41.12724 113.60300
1 7 1 256 22.28339 64.50934 -219.82600 22.18145 64.58340 -217.42178
1 8 1 1 68.23797 1.25828 -219.82600 68.23797 1.25828 113.60300
1 8 1 256 55.94528 39.09131 -219.82600 55.90634 39.21114 -217.42178
1 9 1 1 55.94528 -39.09131 -219.82600 55.94528 -39.09131 113.60300
1 9 1 256 68.23797 -1.25828 -219.82600 68.27691 -1.13845 -217.42178
1 10 1 1 22.28339 -64.50934 -219.82600 22.28339 -64.50934 113.60300
1 10 1 256 54.46608 -41.12724 -219.82600 54.56802 -41.05318 -217.42178
1 1 2 1 19.89000 -68.76900 -219.82600 19.89000 -68.76900 113.60300
1 1 2 256 -19.89000 -68.76900 -219.82600 -20.01600 -68.76900 -217.42178
1 2 2 1 -24.33006 -67.32634 -219.82600 -24.33006 -67.32634 113.60300
1 2 2 256 -56.51275 -43.94424 -219.82600 -56.61469 -43.87018 -217.42178
1 3 2 1 -59.25686 -40.16730 -219.82600 -59.25686 -40.16730 113.60300
1 3 2 256 -71.54955 -2.33428 -219.82600 -71.58849 -2.21444 -217.42178
1 4 2 1 -71.54955 2.33428 -219.82600 -71.54955 2.33428 113.60300
1 4 2 256 -59.25686 40.16730 -219.82600 -59.21792 40.28714 -217.42178
1 5 2 1 -56.51275 43.94424 -219.82600 -56.51275 43.94424 113.60300
1 5 2 256 -24.33006 67.32634 -219.82600 -24.22812 67.40040 -217.42178
1 6 2 1 -19.89000 68.76900 -219.82600 -19.89000 68.76900 113.60300
1 6 2 256 19.89000 68.76900 -219.82600 20.01600 68.76900 -217.42178
1 7 2 1 24.33006 67.32634 -219.82600 24.33006 67.32634 113.60300
1 7 2 256 56.51275 43.94424 -219.82600 56.61469 43.87018 -217.42178
1 8 2 1 59.25686 40.16730 -219.82600 59.25686 40.16730 113.60300
1 8 2 256 71.54955 2.33428 -219.82600 71.58849 2.21444 -217.42178
1 9 2 1 71.54955 -2.33428 -219.82600 71.54955 -2.33428 113.60300
1 9 2 256 59.25686 -40.16730 -219.82600 59.21792 -40.28714 -217.42178
1 10 2 1 56.51275 -43.94424 -219.82600 56.51275 -43.94424 113.60300
1 10 2 256 24.33006 -67.32634 -219.82600 24.22812 -67.40040 -217.42178
2 1 1 1 -19.89000 -92.88700 -180.38000 -19.89000 -92.88700 153.04900
2 1 1 256 19.89000 -92.88700 -180.38000 20.01600 -92.88700 -177.97578
2 2 1 1 -58.22243 -75.05835 -180.38000 -58.22243 -75.05835 153.04900
2 2 1 256 -22.38189 -92.31824 -180.38000 -22.26837 -92.37291 -177.97578
2 3 1 1 -85.02319 -42.36347 -180.38000 -85.02319 -42.36347 153.04900
2 3 1 256 -60.22077 -73.46473 -180.38000 -60.14221 -73.56324 -177.97578

51

CLAS12 Note 2017-008

Region Sector Module Strip xu yu zu xd yd zd
2 4 1 1 -94.98407 -1.27799 -180.38000 -94.98407 -1.27799 153.04900
2 4 1 256 -86.13219 -40.06062 -180.38000 -86.10415 -40.18346 -177.97578
2 5 1 1 -86.13219 40.06062 -180.38000 -86.13219 40.06062 153.04900
2 5 1 256 -94.98407 1.27799 -180.38000 -95.01211 1.15514 -177.97578
2 6 1 1 -60.22077 73.46473 -180.38000 -60.22077 73.46473 153.04900
2 6 1 256 -85.02319 42.36347 -180.38000 -85.10175 42.26496 -177.97578
2 7 1 1 -22.38189 92.31824 -180.38000 -22.38189 92.31824 153.04900
2 7 1 256 -58.22243 75.05835 -180.38000 -58.33595 75.00368 -177.97578
2 8 1 1 19.89000 92.88700 -180.38000 19.89000 92.88700 153.04900
2 8 1 256 -19.89000 92.88700 -180.38000 -20.01600 92.88700 -177.97578
2 9 1 1 58.22243 75.05835 -180.38000 58.22243 75.05835 153.04900
2 9 1 256 22.38189 92.31824 -180.38000 22.26837 92.37291 -177.97578
2 10 1 1 85.02319 42.36347 -180.38000 85.02319 42.36347 153.04900
2 10 1 256 60.22077 73.46473 -180.38000 60.14221 73.56324 -177.97578
2 11 1 1 94.98407 1.27799 -180.38000 94.98407 1.27799 153.04900
2 11 1 256 86.13219 40.06062 -180.38000 86.10415 40.18346 -177.97578
2 12 1 1 86.13219 -40.06062 -180.38000 86.13219 -40.06062 153.04900
2 12 1 256 94.98407 -1.27799 -180.38000 95.01211 -1.15514 -177.97578
2 13 1 1 60.22077 -73.46473 -180.38000 60.22077 -73.46473 153.04900
2 13 1 256 85.02319 -42.36347 -180.38000 85.10175 -42.26496 -177.97578
2 14 1 1 22.38189 -92.31824 -180.38000 22.38189 -92.31824 153.04900
2 14 1 256 58.22243 -75.05835 -180.38000 58.33595 -75.00368 -177.97578
2 1 2 1 19.89000 -96.36900 -180.38000 19.89000 -96.36900 153.04900
2 1 2 256 -19.89000 -96.36900 -180.38000 -20.01600 -96.36900 -177.97578
2 2 2 1 -23.89267 -95.45542 -180.38000 -23.89267 -95.45542 153.04900
2 2 2 256 -59.73321 -78.19552 -180.38000 -59.84673 -78.14085 -177.97578
2 3 2 1 -62.94311 -75.63572 -180.38000 -62.94311 -75.63572 153.04900
2 3 2 256 -87.74553 -44.53446 -180.38000 -87.82409 -44.43595 -177.97578
2 4 2 1 -89.52689 -40.83544 -180.38000 -89.52689 -40.83544 153.04900
2 4 2 256 -98.37877 -2.05280 -180.38000 -98.40681 -1.92996 -177.97578
2 5 2 1 -98.37877 2.05280 -180.38000 -98.37877 2.05280 153.04900
2 5 2 256 -89.52689 40.83544 -180.38000 -89.49885 40.95828 -177.97578
2 6 2 1 -87.74553 44.53446 -180.38000 -87.74553 44.53446 153.04900
2 6 2 256 -62.94311 75.63572 -180.38000 -62.86455 75.73423 -177.97578
2 7 2 1 -59.73321 78.19552 -180.38000 -59.73321 78.19552 153.04900
2 7 2 256 -23.89267 95.45542 -180.38000 -23.77915 95.51009 -177.97578
2 8 2 1 -19.89000 96.36900 -180.38000 -19.89000 96.36900 153.04900
2 8 2 256 19.89000 96.36900 -180.38000 20.01600 96.36900 -177.97578
2 9 2 1 23.89267 95.45542 -180.38000 23.89267 95.45542 153.04900
2 9 2 256 59.73321 78.19552 -180.38000 59.84673 78.14085 -177.97578
2 10 2 1 62.94311 75.63572 -180.38000 62.94311 75.63572 153.04900
2 10 2 256 87.74553 44.53446 -180.38000 87.82409 44.43595 -177.97578
2 11 2 1 89.52689 40.83544 -180.38000 89.52689 40.83544 153.04900
2 11 2 256 98.37877 2.05280 -180.38000 98.40681 1.92996 -177.97578
2 12 2 1 98.37877 -2.05280 -180.38000 98.37877 -2.05280 153.04900
2 12 2 256 89.52689 -40.83544 -180.38000 89.49885 -40.95828 -177.97578
2 13 2 1 87.74553 -44.53446 -180.38000 87.74553 -44.53446 153.04900
2 13 2 256 62.94311 -75.63572 -180.38000 62.86455 -75.73423 -177.97578
2 14 2 1 59.73321 -78.19552 -180.38000 59.73321 -78.19552 153.04900
2 14 2 256 23.89267 -95.45542 -180.38000 23.77915 -95.51009 -177.97578
3 1 1 1 -19.89000 -120.32200 -141.20600 -19.89000 -120.32200 192.22300
3 1 1 256 19.89000 -120.32200 -141.20600 20.01600 -120.32200 -138.80178
3 2 1 1 -59.84303 -106.26291 -141.20600 -59.84303 -106.26291 192.22300

52

CLAS12 Note 2017-008

Region Sector Module Strip xu yu zu xd yd zd
3 2 1 256 -22.46206 -119.86848 -141.20600 -22.34366 -119.91157 -138.80178
3 3 1 1 -92.57811 -79.38695 -141.20600 -92.57811 -79.38695 192.22300
3 3 1 256 -62.10487 -104.95705 -141.20600 -62.00835 -105.03804 -138.80178
3 4 1 1 -114.14691 -42.93575 -141.20600 -114.14691 -42.93575 192.22300
3 4 1 256 -94.25691 -77.38625 -141.20600 -94.19391 -77.49536 -138.80178
3 5 1 1 -121.94790 -1.30587 -141.20600 -121.94790 -1.30587 192.22300
3 5 1 256 -115.04018 -40.48152 -141.20600 -115.01830 -40.60561 -138.80178
3 6 1 1 -115.04018 40.48152 -141.20600 -115.04018 40.48152 192.22300
3 6 1 256 -121.94790 1.30587 -141.20600 -121.96978 1.18178 -138.80178
3 7 1 1 -94.25691 77.38625 -141.20600 -94.25691 77.38625 192.22300
3 7 1 256 -114.14691 42.93575 -141.20600 -114.20991 42.82664 -138.80178
3 8 1 1 -62.10487 104.95705 -141.20600 -62.10487 104.95705 192.22300
3 8 1 256 -92.57811 79.38695 -141.20600 -92.67464 79.30596 -138.80178
3 9 1 1 -22.46206 119.86848 -141.20600 -22.46206 119.86848 192.22300
3 9 1 256 -59.84303 106.26291 -141.20600 -59.96144 106.21982 -138.80178
3 10 1 1 19.89000 120.32200 -141.20600 19.89000 120.32200 192.22300
3 10 1 256 -19.89000 120.32200 -141.20600 -20.01600 120.32200 -138.80178
3 11 1 1 59.84303 106.26291 -141.20600 59.84303 106.26291 192.22300
3 11 1 256 22.46206 119.86848 -141.20600 22.34366 119.91157 -138.80178
3 12 1 1 92.57811 79.38695 -141.20600 92.57811 79.38695 192.22300
3 12 1 256 62.10487 104.95705 -141.20600 62.00835 105.03804 -138.80178
3 13 1 1 114.14691 42.93575 -141.20600 114.14691 42.93575 192.22300
3 13 1 256 94.25691 77.38625 -141.20600 94.19391 77.49536 -138.80178
3 14 1 1 121.94790 1.30587 -141.20600 121.94790 1.30587 192.22300
3 14 1 256 115.04018 40.48152 -141.20600 115.01830 40.60561 -138.80178
3 15 1 1 115.04018 -40.48152 -141.20600 115.04018 -40.48152 192.22300
3 15 1 256 121.94790 -1.30587 -141.20600 121.96978 -1.18178 -138.80178
3 16 1 1 94.25691 -77.38625 -141.20600 94.25691 -77.38625 192.22300
3 16 1 256 114.14691 -42.93575 -141.20600 114.20991 -42.82664 -138.80178
3 17 1 1 62.10487 -104.95705 -141.20600 62.10487 -104.95705 192.22300
3 17 1 256 92.57811 -79.38695 -141.20600 92.67464 -79.30596 -138.80178
3 18 1 1 22.46206 -119.86848 -141.20600 22.46206 -119.86848 192.22300
3 18 1 256 59.84303 -106.26291 -141.20600 59.96144 -106.21982 -138.80178
3 1 2 1 19.89000 -123.80400 -141.20600 19.89000 -123.80400 192.22300
3 1 2 256 -19.89000 -123.80400 -141.20600 -20.01600 -123.80400 -138.80178
3 2 2 1 -23.65298 -123.14049 -141.20600 -23.65298 -123.14049 192.22300
3 2 2 256 -61.03395 -109.53492 -141.20600 -61.15235 -109.49183 -138.80178
3 3 2 1 -64.34305 -107.62441 -141.20600 -64.34305 -107.62441 192.22300
3 3 2 256 -94.81630 -82.05432 -141.20600 -94.91282 -81.97333 -138.80178
3 4 2 1 -97.27241 -79.12725 -141.20600 -97.27241 -79.12725 192.22300
3 4 2 256 -117.16241 -44.67675 -141.20600 -117.22541 -44.56764 -138.80178
3 5 2 1 -118.46928 -41.08617 -141.20600 -118.46928 -41.08617 192.22300
3 5 2 256 -125.37700 -1.91051 -141.20600 -125.39888 -1.78643 -138.80178
3 6 2 1 -125.37700 1.91051 -141.20600 -125.37700 1.91051 192.22300
3 6 2 256 -118.46928 41.08617 -141.20600 -118.44740 41.21025 -138.80178
3 7 2 1 -117.16241 44.67675 -141.20600 -117.16241 44.67675 192.22300
3 7 2 256 -97.27241 79.12725 -141.20600 -97.20941 79.23636 -138.80178
3 8 2 1 -94.81630 82.05432 -141.20600 -94.81630 82.05432 192.22300
3 8 2 256 -64.34305 107.62441 -141.20600 -64.24653 107.70540 -138.80178
3 9 2 1 -61.03395 109.53492 -141.20600 -61.03395 109.53492 192.22300
3 9 2 256 -23.65298 123.14049 -141.20600 -23.53457 123.18358 -138.80178
3 10 2 1 -19.89000 123.80400 -141.20600 -19.89000 123.80400 192.22300
3 10 2 256 19.89000 123.80400 -141.20600 20.01600 123.80400 -138.80178

53

CLAS12 Note 2017-008

Region Sector Module Strip xu yu zu xd yd zd
3 11 2 1 23.65298 123.14049 -141.20600 23.65298 123.14049 192.22300
3 11 2 256 61.03395 109.53492 -141.20600 61.15235 109.49183 -138.80178
3 12 2 1 64.34305 107.62441 -141.20600 64.34305 107.62441 192.22300
3 12 2 256 94.81630 82.05432 -141.20600 94.91282 81.97333 -138.80178
3 13 2 1 97.27241 79.12725 -141.20600 97.27241 79.12725 192.22300
3 13 2 256 117.16241 44.67675 -141.20600 117.22541 44.56764 -138.80178
3 14 2 1 118.46928 41.08617 -141.20600 118.46928 41.08617 192.22300
3 14 2 256 125.37700 1.91051 -141.20600 125.39888 1.78643 -138.80178
3 15 2 1 125.37700 -1.91051 -141.20600 125.37700 -1.91051 192.22300
3 15 2 256 118.46928 -41.08617 -141.20600 118.44740 -41.21025 -138.80178
3 16 2 1 117.16241 -44.67675 -141.20600 117.16241 -44.67675 192.22300
3 16 2 256 97.27241 -79.12725 -141.20600 97.20941 -79.23636 -138.80178
3 17 2 1 94.81630 -82.05432 -141.20600 94.81630 -82.05432 192.22300
3 17 2 256 64.34305 -107.62441 -141.20600 64.24653 -107.70540 -138.80178
3 18 2 1 61.03395 -109.53492 -141.20600 61.03395 -109.53492 192.22300
3 18 2 256 23.65298 -123.14049 -141.20600 23.53457 -123.18358 -138.80178
4 1 1 1 -19.89000 -161.20200 -83.40500 -19.89000 -161.20200 250.02400
4 1 1 256 19.89000 -161.20200 -83.40500 20.01600 -161.20200 -81.00078
4 2 1 1 -60.93441 -150.56126 -83.40500 -60.93441 -150.56126 250.02400
4 2 1 256 -22.50988 -160.85709 -83.40500 -22.38818 -160.88970 -81.00078
4 3 1 1 -97.82625 -129.66003 -83.40500 -97.82625 -129.66003 250.02400
4 3 1 256 -63.37575 -149.55003 -83.40500 -63.26664 -149.61303 -81.00078
4 4 1 1 -128.05138 -99.92267 -83.40500 -128.05138 -99.92267 250.02400
4 4 1 256 -99.92267 -128.05138 -83.40500 -99.83358 -128.14048 -81.00078
4 5 1 1 -149.55003 -63.37575 -83.40500 -149.55003 -63.37575 250.02400
4 5 1 256 -129.66003 -97.82625 -83.40500 -129.59703 -97.93536 -81.00078
4 6 1 1 -160.85709 -22.50988 -83.40500 -160.85709 -22.50988 250.02400
4 6 1 256 -150.56126 -60.93441 -83.40500 -150.52865 -61.05612 -81.00078
4 7 1 1 -161.20200 19.89000 -83.40500 -161.20200 19.89000 250.02400
4 7 1 256 -161.20200 -19.89000 -83.40500 -161.20200 -20.01600 -81.00078
4 8 1 1 -150.56126 60.93441 -83.40500 -150.56126 60.93441 250.02400
4 8 1 256 -160.85709 22.50988 -83.40500 -160.88970 22.38818 -81.00078
4 9 1 1 -129.66003 97.82625 -83.40500 -129.66003 97.82625 250.02400
4 9 1 256 -149.55003 63.37575 -83.40500 -149.61303 63.26664 -81.00078
4 10 1 1 -99.92267 128.05138 -83.40500 -99.92267 128.05138 250.02400
4 10 1 256 -128.05138 99.92267 -83.40500 -128.14048 99.83358 -81.00078
4 11 1 1 -63.37575 149.55003 -83.40500 -63.37575 149.55003 250.02400
4 11 1 256 -97.82625 129.66003 -83.40500 -97.93536 129.59703 -81.00078
4 12 1 1 -22.50988 160.85709 -83.40500 -22.50988 160.85709 250.02400
4 12 1 256 -60.93441 150.56126 -83.40500 -61.05612 150.52865 -81.00078
4 13 1 1 19.89000 161.20200 -83.40500 19.89000 161.20200 250.02400
4 13 1 256 -19.89000 161.20200 -83.40500 -20.01600 161.20200 -81.00078
4 14 1 1 60.93441 150.56126 -83.40500 60.93441 150.56126 250.02400
4 14 1 256 22.50988 160.85709 -83.40500 22.38818 160.88970 -81.00078
4 15 1 1 97.82625 129.66003 -83.40500 97.82625 129.66003 250.02400
4 15 1 256 63.37575 149.55003 -83.40500 63.26664 149.61303 -81.00078
4 16 1 1 128.05138 99.92267 -83.40500 128.05138 99.92267 250.02400
4 16 1 256 99.92267 128.05138 -83.40500 99.83358 128.14048 -81.00078
4 17 1 1 149.55003 63.37575 -83.40500 149.55003 63.37575 250.02400
4 17 1 256 129.66003 97.82625 -83.40500 129.59703 97.93536 -81.00078
4 18 1 1 160.85709 22.50988 -83.40500 160.85709 22.50988 250.02400
4 18 1 256 150.56126 60.93441 -83.40500 150.52865 61.05612 -81.00078
4 19 1 1 161.20200 -19.89000 -83.40500 161.20200 -19.89000 250.02400

54

CLAS12 Note 2017-008

Region Sector Module Strip xu yu zu xd yd zd
4 19 1 256 161.20200 19.89000 -83.40500 161.20200 20.01600 -81.00078
4 20 1 1 150.56126 -60.93441 -83.40500 150.56126 -60.93441 250.02400
4 20 1 256 160.85709 -22.50988 -83.40500 160.88970 -22.38818 -81.00078
4 21 1 1 129.66003 -97.82625 -83.40500 129.66003 -97.82625 250.02400
4 21 1 256 149.55003 -63.37575 -83.40500 149.61303 -63.26664 -81.00078
4 22 1 1 99.92267 -128.05138 -83.40500 99.92267 -128.05138 250.02400
4 22 1 256 128.05138 -99.92267 -83.40500 128.14048 -99.83358 -81.00078
4 23 1 1 63.37575 -149.55003 -83.40500 63.37575 -149.55003 250.02400
4 23 1 256 97.82625 -129.66003 -83.40500 97.93536 -129.59703 -81.00078
4 24 1 1 22.50988 -160.85709 -83.40500 22.50988 -160.85709 250.02400
4 24 1 256 60.93441 -150.56126 -83.40500 61.05612 -150.52865 -81.00078
4 1 2 1 19.89000 -164.68400 -83.40500 19.89000 -164.68400 250.02400
4 1 2 256 -19.89000 -164.68400 -83.40500 -20.01600 -164.68400 -81.00078
4 2 2 1 -23.41109 -164.22044 -83.40500 -23.41109 -164.22044 250.02400
4 2 2 256 -61.83562 -153.92462 -83.40500 -61.95733 -153.89201 -81.00078
4 3 2 1 -65.11675 -152.56553 -83.40500 -65.11675 -152.56553 250.02400
4 3 2 256 -99.56725 -132.67553 -83.40500 -99.67636 -132.61253 -81.00078
4 4 2 1 -102.38482 -130.51353 -83.40500 -102.38482 -130.51353 250.02400
4 4 2 256 -130.51353 -102.38482 -83.40500 -130.60262 -102.29572 -81.00078
4 5 2 1 -132.67553 -99.56725 -83.40500 -132.67553 -99.56725 250.02400
4 5 2 256 -152.56553 -65.11675 -83.40500 -152.62853 -65.00764 -81.00078
4 6 2 1 -153.92462 -61.83562 -83.40500 -153.92462 -61.83562 250.02400
4 6 2 256 -164.22044 -23.41109 -83.40500 -164.25305 -23.28938 -81.00078
4 7 2 1 -164.68400 -19.89000 -83.40500 -164.68400 -19.89000 250.02400
4 7 2 256 -164.68400 19.89000 -83.40500 -164.68400 20.01600 -81.00078
4 8 2 1 -164.22044 23.41109 -83.40500 -164.22044 23.41109 250.02400
4 8 2 256 -153.92462 61.83562 -83.40500 -153.89201 61.95733 -81.00078
4 9 2 1 -152.56553 65.11675 -83.40500 -152.56553 65.11675 250.02400
4 9 2 256 -132.67553 99.56725 -83.40500 -132.61253 99.67636 -81.00078
4 10 2 1 -130.51353 102.38482 -83.40500 -130.51353 102.38482 250.02400
4 10 2 256 -102.38482 130.51353 -83.40500 -102.29572 130.60262 -81.00078
4 11 2 1 -99.56725 132.67553 -83.40500 -99.56725 132.67553 250.02400
4 11 2 256 -65.11675 152.56553 -83.40500 -65.00764 152.62853 -81.00078
4 12 2 1 -61.83562 153.92462 -83.40500 -61.83562 153.92462 250.02400
4 12 2 256 -23.41109 164.22044 -83.40500 -23.28938 164.25305 -81.00078
4 13 2 1 -19.89000 164.68400 -83.40500 -19.89000 164.68400 250.02400
4 13 2 256 19.89000 164.68400 -83.40500 20.01600 164.68400 -81.00078
4 14 2 1 23.41109 164.22044 -83.40500 23.41109 164.22044 250.02400
4 14 2 256 61.83562 153.92462 -83.40500 61.95733 153.89201 -81.00078
4 15 2 1 65.11675 152.56553 -83.40500 65.11675 152.56553 250.02400
4 15 2 256 99.56725 132.67553 -83.40500 99.67636 132.61253 -81.00078
4 16 2 1 102.38482 130.51353 -83.40500 102.38482 130.51353 250.02400
4 16 2 256 130.51353 102.38482 -83.40500 130.60262 102.29572 -81.00078
4 17 2 1 132.67553 99.56725 -83.40500 132.67553 99.56725 250.02400
4 17 2 256 152.56553 65.11675 -83.40500 152.62853 65.00764 -81.00078
4 18 2 1 153.92462 61.83562 -83.40500 153.92462 61.83562 250.02400
4 18 2 256 164.22044 23.41109 -83.40500 164.25305 23.28938 -81.00078
4 19 2 1 164.68400 19.89000 -83.40500 164.68400 19.89000 250.02400
4 19 2 256 164.68400 -19.89000 -83.40500 164.68400 -20.01600 -81.00078
4 20 2 1 164.22044 -23.41109 -83.40500 164.22044 -23.41109 250.02400
4 20 2 256 153.92462 -61.83562 -83.40500 153.89201 -61.95733 -81.00078
4 21 2 1 152.56553 -65.11675 -83.40500 152.56553 -65.11675 250.02400
4 21 2 256 132.67553 -99.56725 -83.40500 132.61253 -99.67636 -81.00078

55

CLAS12 Note 2017-008

Region Sector Module Strip xu yu zu xd yd zd
4 22 2 1 130.51353 -102.38482 -83.40500 130.51353 -102.38482 250.02400
4 22 2 256 102.38482 -130.51353 -83.40500 102.29572 -130.60262 -81.00078
4 23 2 1 99.56725 -132.67553 -83.40500 99.56725 -132.67553 250.02400
4 23 2 256 65.11675 -152.56553 -83.40500 65.00764 -152.62853 -81.00078
4 24 2 1 61.83562 -153.92462 -83.40500 61.83562 -153.92462 250.02400
4 24 2 256 23.41109 -164.22044 -83.40500 23.28938 -164.25305 -81.00078

56

CLAS12 Note 2017-008

	Software Background
	Overview of Reconstruction Software
	Simulation of the CLAS12 Detector: GEMC

	User Manual
	Ideal Geometry of the Silicon Vertex Tracker
	Sensor Strips
	Backing Structure

	CCDB :: Core Parameters
	SVT Geometry API
	SVTConstants :: Loading Parameters and Alignment Shifts
	SVTVolumeFactory :: Generating Volumes
	SVTStripFactory :: Generating Strips
	SVTAlignmentFactory :: Analyzing Fiducial Data
	AlignmentFactory :: Generating Shift Data
	Visualization Tool
	Generating gemc Geometry Text Files

	Validation
	Original Variation
	Java Variation
	Fiducial Alignment
	Fiducial Shifts

	Alignment Test Results
	Conclusion
	CCDB
	Groovy Example
	ROOT
	Strip Endpoints

