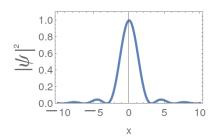
Physics 309 Final

I pledge that I have given nor received unauthorized assistance during the completion of this work.

Name _____

Signature _____

Questions (4 pts. apiece) Answer questions in complete, well-written sentences WITHIN the spaces provided.


1. What is an absorption spectrum?

2. In our study of the CO molecule what is the classical energy?

3. Why do we use energy eigenstates?

4. What is Rutherford scattering?

5. Consider the spectral distribution shown below. What is the mathematical definition of the width of the distribution? Sketch on the plot what this width represents. Explain.

6. Cite at least two experimental measurements that violated classical physics and required quantum mechanics to explain. Discuss how they violated classical physics.

7. Why does the Sun shine? What are the important features of the process? Your answer should be descriptive and qualitative - not quantitative.

8. Recall that for a bound, one-dimensional system at t = 0 that $|\psi\rangle = \sum_{n=0}^{\infty} b_n |\phi_n\rangle$. What is b_n and how is it related to a measurement of the momentum?

9. The figure below shows the de Broglie waves of three equal-mass particles as a function of position x. Rank them according to their speed. Explain your reasoning. The range of x and y are the same in each plot.

10. The components of the angular momentum vector \vec{L} are orthogonal to each other. Can a measurement of the *x* component of the angular momentum, L_x , of a state with $m_z = \ell$ produce a nonzero result? Explain.

Do not write below this line.

Problems. Clearly show all work for full credit on a separate piece of paper.

- 1. (10 pts.) A mass $m_0 = 0.910 \ kg$ is oscillating freely on a vertical spring. The period for m_0 is $T_o = 1.10 \ s$. An unknown mass m_1 replaces m_0 on the same spring and has a period of $T_1 = 1.32 \ s$. What is the spring constant k and the unknown mass m_1 ?
- 2. (10 pts.) Show that the frequencies of photons due to energy decays between successive levels of a rotator with momentum of inertia I are given by the following.

$$\hbar\omega = \frac{\hbar^2}{I}(\ell+1) \quad \text{or} \quad \frac{\hbar^2}{I}\ell$$

3. (12 pts.) Find $\psi(x)$ and $P(E_n)$ at t = 0 relevant to a one-dimensional box with walls at (0, a) for the following initial state.

$$\psi(x,0) = A_3 \left(e^{i\pi(x-a)/a} - 1 \right)$$

Make sure you get an expression for $\psi(x)$ valid for all eigenstates. The eigenfunctions and eigenvalues of the one-dimensional particle in a box of width a are

$$|\phi(x)\rangle = \sqrt{\frac{2}{a}}\sin\left(\frac{n\pi x}{a}\right)$$
 $E_n = n^2 E_1 = n^2 \frac{\hbar^2 \pi^2}{2ma^2}$

- 4. (13 pts.) A molecule behaves like a one-dimensional harmonic oscillator with a spring constant $k = 2.42 \ eV/\text{Å}^2$. It emits a photon of energy $E_{\gamma} = h\nu = \hbar\omega_0 = 0.1 \ eV$ going from the third excited state to the second excited state. The oscillating part is a proton $(m_p = 938 \ MeV/c^2)$.
 - a) What is the value of the classical turning point x_t if the molecule is in the n = 2 state?
 - b) What is the numerical value of $\beta = \sqrt{m\omega_0/\hbar}$?
 - c) What is the probability that a proton in this state is at a distance from the origin forbidden to it by classical mechanics? Get your answer in terms of x_t and β where β is defined below with the wave function for the n = 2 state.

$$|\phi_2\rangle = \frac{1}{\sqrt{8\sqrt{\pi}}} \left(4\xi^2 - 2\right) e^{-\xi^2/2} \quad \xi = \beta x \quad \beta = \sqrt{\frac{m\omega_0}{\hbar}}$$

Do not write below this line.

Suppose a rigid rotator is in the eigenstate of \hat{L}^2 with $\ell = 1$ and $m_z = -1$ 5. (15 pts.) $(Y_1^{-1}(\theta,\phi))$. We want to find the probability of obtaining the values of $m_x = 0, \pm 1$ from a measurement of \hat{L}_x . We always measure eigenvalues so to get the results of a measurement of L_x we need to construct the appropriate operator L_x which satisfies $\hat{L}_x X = \alpha \hbar X$ where X is an eigenfunction of the \hat{L}_x operator and α is the eigenvalue. To do that we can assume

$$X = aY_1^1 + bY_1^0 + cY_1^{-1}$$

since the spherical harmonics form a complete set and we know what they are. We restrict our attention to only $\ell = 1$ states as a consequence of angular momentum conservation. Generate the set of simultaneous equations that the coefficients (a, a)b, c) and α must satisfy.

Physics 309 Equations

$$\begin{split} R_{T}(\nu) &= \frac{Energy}{time \times area} \quad E = h\nu = \hbar\omega \quad v_{wave} = \lambda\nu \quad I \propto |\vec{E}|^{2} \quad \lambda = \frac{h}{p} \quad p = \hbar k \quad K = \frac{p^{2}}{2m} \quad K_{max} = h\nu - \Phi \\ &- \frac{\hbar^{2}}{2m} \frac{\partial^{2}}{\partial x^{2}} \Psi(x,t) + V(x)\Psi(x,t) = i\hbar \frac{\partial}{\partial t} \Psi(x,t) \quad \hat{p}_{x} = -i\hbar \frac{\partial}{\partial x} \quad \hat{A} \mid \phi \rangle = a \mid \phi \rangle \quad \langle \hat{A} \mid \rangle = \int_{-\infty}^{\infty} \psi^{*} \hat{A} \mid \psi dx \\ \langle \phi_{n'} \mid \phi_{n} \rangle &= \int_{-\infty}^{\infty} \phi_{n'}^{*} \phi_{n} dx = \delta_{n',n} \quad \langle \phi(k') \mid \phi(k) \rangle = \int_{-\infty}^{\infty} \phi_{k'}^{*} \phi_{k} \, dx = \delta(k-k') \quad e^{i\phi} = \cos \phi + i \sin \phi \\ &|\psi\rangle = \sum b_{n} \mid \phi_{n} \rangle \rightarrow b_{n} = \langle \phi_{n} \mid \psi \rangle \quad |\phi\rangle = e^{\pm ikx} \quad |\psi\rangle = \int b(k) \mid \phi(k) \rangle dk \rightarrow b(k) = \langle \phi(k) \mid \psi \rangle \\ &|\psi(x,t)\rangle = \sum b_{n} \mid \phi_{n} \rangle e^{-i\omega_{n}t} \quad |\psi(x,t)\rangle = \int b(k) \mid \phi(k) \rangle e^{-i\omega(k)t} dk \quad \Delta p \Delta x \ge \frac{\hbar}{2} \qquad (\Delta x)^{2} = \langle x^{2} \rangle - \langle x \rangle^{2} \\ &\text{The wave function, } \Psi(\vec{r},t), \text{ contains all we know of a system and its square is the probability of finding the system in the region \vec{r} to \vec{r} + d\vec{r}. \text{ The wave function and its derivative are (1) finite, (2) } \end{split}$$

continuous, and (3) single-valued $(\psi_1(a) = \psi_2(a) \text{ and } \psi'_1(a) = \psi'_2(a))$.

$$V_{HO} = \frac{\kappa x^2}{2} \quad \omega = 2\pi\nu = \sqrt{\frac{\kappa}{m}} \quad E_n = (n + \frac{1}{2})\hbar\omega_0 = \hbar\omega \quad |\phi_n\rangle = e^{-\xi^2/2}H_n(\xi) \quad \xi = \beta x \quad \beta^2 = \frac{m\omega_0}{\hbar}$$

$$\psi_{1} = \mathbf{t}\psi_{3} = \mathbf{d}_{12}\mathbf{p}_{2}\mathbf{d}_{21}\mathbf{p}_{1}^{-1}\psi_{3} \qquad T = \frac{1}{|t_{11}|^{2}} \qquad R + T = 1$$
$$\mathbf{d}_{\mathbf{ij}} = \frac{1}{2} \begin{pmatrix} 1 + \frac{k_{j}}{k_{i}} & 1 - \frac{k_{j}}{k_{i}} \\ 1 - \frac{k_{j}}{k_{i}} & 1 + \frac{k_{j}}{k_{i}} \end{pmatrix} \quad \mathbf{p_{i}} = \begin{pmatrix} e^{-ik_{i}2a} & 0 \\ 0 & e^{ik_{i}2a} \end{pmatrix} \quad \mathbf{p_{i}^{-1}} = \begin{pmatrix} e^{ik_{i}2a} & 0 \\ 0 & e^{-ik_{i}2a} \end{pmatrix}$$
$$E = \frac{\hbar^{2}k^{2}}{2m} \quad k = \sqrt{\frac{2m(E - V)}{\hbar^{2}}} \quad T = \frac{\text{transmitted flux}}{\text{incident flux}} \quad R = \frac{\text{reflected flux}}{\text{incident flux}} \quad \text{flux} = |\psi|^{2}v$$

$$V(r) = \frac{Z_1 Z_2 e^2}{r} \quad E = \frac{1}{2} \mu v^2 + V(r) \quad \vec{R}_{cm} = \frac{\sum_i m_i \vec{r_i}}{\sum_i m_i} \quad \mu = \frac{m_1 m_2}{m_1 + m_2}$$

$$\begin{split} \psi(x) &= \sum_{n=1}^{\infty} a_n x^n \quad \langle K \rangle = \frac{3}{2} kT \qquad n(v) = 4\pi N \left(\frac{m}{2\pi k_B T}\right)^{3/2} v^2 e^{-mv^2/2k_B T} \quad \vec{L} = \vec{r} \times \vec{p} = \mathcal{I} \vec{\omega} \\ \mathcal{I} &= \sum_i m_i r_1^2 = \int r^2 dm \quad K E_{rot} = \frac{L^2}{2\mathcal{I}} \quad E_\ell = \frac{\ell(\ell+1)\hbar^2}{2\mathcal{I}} \quad V_{coul} = \frac{Z_1 Z_2 e^2}{r} \quad M E = \frac{p_r^2}{2\mu} + \frac{L^2}{2\mu r^2} + V(r) \\ L_z |nlm\rangle &= m\hbar |nlm\rangle \quad L^2 |nlm\rangle = \ell(\ell+1)\hbar^2 |nlm\rangle \\ \sin A \sin B &= \frac{1}{2} \left[\cos(A-B) - \cos(A+B) \right] \quad \cos A \cos B = \frac{1}{2} \left[\cos(A-B) + \cos(A+B) \right] \\ \sin A \cos B &= \frac{1}{2} \left[\sin(A-B) + \sin(A+B) \right] \quad \sin A + \sin B = 2 \sin\left(\frac{A+B}{2}\right) \cos\left(\frac{A-B}{2}\right) \end{split}$$

Constants

$2.9979\times 10^8\ m/s$	fermi (fm)	$10^{-15} m$
$1.381\times 10^{-23}~J/K$	angstrom (Å)	$10^{-10} \ m$
$8.62\times 10^{-5}~eV/k$	electron-volt (eV)	$1.6\times 10^{-19}~J$
$6.621 \times 10^{-34} J - s$	${ m MeV}$	$10^6 \ eV$
$4.1357 \times 10^{-15} \ eV - s$	${ m GeV}$	$10^9 \ eV$
$1.0546 \times 10^{-34} J - s$	Electron charge (e)	$1.6\times 10^{-19}~C$
$6.5821 \times 10^{-16} \ eV - s$	e^2	$\hbar c/137$
$197\ MeV-fm$	Electron mass (m_e)	$9.11 \times 10^{-31} \ kg$
1970 $eV-{\rm \AA}$		$0.511~MeV/c^2$
$1.67\times 10^{-27} kg$	atomic mass unit (u)	$1.66\times 10^{-27}~kg$
938 MeV/c^2		931.5 MeV/c^2
$1.68\times 10^{-27}~kg$		
939 MeV/c^2		
	$\begin{array}{l} 1.381\times 10^{-23}\ J/K\\ 8.62\times 10^{-5}\ eV/k\\ 6.621\times 10^{-34}\ J-s\\ 4.1357\times 10^{-15}\ eV-s\\ 1.0546\times 10^{-34}\ J-s\\ 6.5821\times 10^{-16}\ eV-s\\ 197\ MeV-fm\\ 1970\ eV-\text{\AA}\\ 1.67\times 10^{-27}kg\\ 938\ MeV/c^2\\ 1.68\times 10^{-27}\ kg\\ \end{array}$	$1.381 \times 10^{-23} J/K$ angstrom (Å) $8.62 \times 10^{-5} eV/k$ electron-volt (eV) $6.621 \times 10^{-34} J - s$ MeV $4.1357 \times 10^{-15} eV - s$ GeV $1.0546 \times 10^{-34} J - s$ Electron charge (e) $6.5821 \times 10^{-16} eV - s$ e^2 $197 MeV - fm$ Electron mass (m_e) $1970 eV - Å$ atomic mass unit (u) $938 MeV/c^2$ $1.68 \times 10^{-27} kg$

Integrals and Derivatives

$$\frac{df}{du} = \frac{df}{dx}\frac{du}{dx} \quad \frac{d}{dx}(x^n) = nx^{n-1} \quad \frac{d}{dx}(\sin x) = \cos x \quad \frac{d}{dx}(\cos x) = -\sin x \quad \frac{d}{dx}(e^{ax}) = ae^{ax}$$

$$\frac{d}{dx}(\ln ax) = \frac{1}{x} \quad \int x^n dx = \frac{x^{n+1}}{n+1} \quad \int e^{ax} dx = \frac{e^{ax}}{a} \quad \int \frac{1}{x} = \ln x \quad \int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln \left[x + \sqrt{x^2 + a^2}\right]$$

$$\int \frac{x}{\sqrt{x^2 + a^2}} dx = \sqrt{x^2 + a^2} \quad \int \frac{x^2}{\sqrt{x^2 + a^2}} dx = \frac{1}{2}x\sqrt{x^2 + a^2} - \frac{1}{2}a^2\ln\left[x + \sqrt{x^2 + a^2}\right]$$

$$\int \frac{x^3}{\sqrt{x^2 + a^2}} dx = \frac{1}{3}(-2a^2 + x^2)\sqrt{x^2 + a^2} \quad \int x^2\sin(ax)dx = \frac{2x\sin(ax)}{a^2} - \frac{(a^2x^2 - 2)\cos(ax)}{a^3}$$

hydrogen 4	1		1	1572	2273	0	1558		05)	20	1977),	17	100	105	1997-0	10	10	helium 2
L Ĥ L																		Н́е
1.0079																		4.0026
lithium 3	beryllium 4												boron 5	carbon 6	nitrogen 7	oxygen 8	fluorine 9	neon 10
	n.												-	Ô	Ń			
	Be												В		N	0	F	Ne
6.941 sodium	9.0122 magnesium												10.811 aluminium	12.011 silicon	14.007 phosphorus	15.999 sulfur	18.998 chlorine	20.180 argon
11	12												13	14	15	16	17	18
Na	Mg												AI	Si	Р	S	CI	Ar
22,990	24,305												26.982	28.086	30,974	32.065	35,453	39.948
potassium	calcium		scandium	titanium	vanadium	chromium	manganese	iron	cobalt	nickel	copper	zinc	gallium	germanium	arsenic	selenium	bromine	krypton
19	20		21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca		Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.098	40.078		44.956	47.867	50.942	51.996	54.938	55.845	58.933	58.693	63.546	65.39	69.723	72.61	74.922	78.96	79.904	83.80
rubidium 37	strontium 38		yttrium 39	zirconium 40	niobium 41	molybdenum 42	technetium 43	ruthenium 44	rhodium 45	palladium 46	silver 47	cadmium 48	indium 49	tin 50	antimony 51	tellurium 52	iodine 53	xenon 54
	1000		v			000063055			100 2000A					_	1000000000			
Rb	Sr		T I	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те		Xe
85.468	87.62		88.906 lutetium	91.224 hafnium	92.906	95.94	[98]	101.07	102.91 iridium	106.42	107.87	112.41	114.82 thallium	118.71	121.76 bismuth	127.60	126.90 astatine	131.29
caesium 55	barium 56	57-70	71	72	tantalum 73	tungsten 74	rhenium 75	osmium 76	77	platinum 78	gold 79	mercury 80	81	lead 82	83	polonium 84	85	radon 86
100000	Ba	*		Hf		W	1 1 1 1 2 2 2 2 3 V 1 1		Le.	Pt	Δ	Цa	TI	Pb	Bi	Po		
Cs		~	Lu		Та		Re	Os	Ir		Au	Hg		2001 B B B B B B B B B B B B B B B B B B			At	Rn
132.91 francium	137.33 radium		174.97 lawrencium	178.49 rutherfordium	180.95 dubnium	183.84 seaborgium	186.21 bohrium	190.23 hassium	192.22 meitnerium	195.08 ununnilium	196.97 unununium	200.59 ununbium	204.38	207.2 ununquadium	208.98	[209]	[210]	[222]
87	88	89-102	103	104	105	106	107	108	109	110	111	112		114				
Fr	Ra	* *	Lr	Rf	Db	Sg	Bh	Hs	Mt	Uun	Uuu	Uub		Uuq				
[223]	[226]		[262]	[261]	[262]	12661	[264]	12691	[268]	[271]	[272]	1277		Tand				
1223	[220]		[202]	[20]	[202]	200	[204]	209	[208]	[271]	[272]	[211]		[289				

*Lanthanide series	lanthanum 57	cerium 58	praseodymium 59	neodymium 60	promethium 61	samarium 62	europium 63	gadolinium 64	terbium 65	dysprosium 66	holmium 67	erbium 68	thulium 69	ytterbium 70
	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb
	138.91	140.12	140.91	144.24	[145]	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04
**Actinide series	actinium	thorium	protactinium		neptunium	plutonium	americium	curium	berkelium	californium	einsteinium		mendelevium	nobelium
	89	90	91	92	93	94	95	96	97	98	99	100	101	102
	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No
	[227]	232.04	231.04	238.03	[237]	[244]	[243]	[247]	[247]	[251]	[252]	[257]	[258]	[259]

Properties of the Spherical Harmonics

$$\begin{split} \hat{L}^2 |\ell, m\rangle &= \ell(\ell+1)\hbar^2 |\ell, m\rangle \\ \hat{L}_z |\ell m\rangle &= m\hbar \,|\ell m\rangle \\ \hat{L}_x |\ell, m\rangle &= \frac{\hbar}{2}\sqrt{(\ell-m)(\ell+m+1)} \,|\ell, m+1\rangle + \frac{\hbar}{2}\sqrt{(\ell+m)(\ell-m+1)} \,|\ell, m-1\rangle \\ \hat{L}_y |\ell, m\rangle &= -\frac{\hbar}{2}\sqrt{(\ell-m)(\ell+m+1)} \,|\ell, m+1\rangle + \frac{\hbar}{2}\sqrt{(\ell+m)(\ell-m+1)} \,|\ell, m-1\rangle \\ \hat{L}_\pm |\ell, m\rangle &= \hbar\sqrt{\ell(\ell+1) - m(m\pm1)} \,|\ell, m\pm1\rangle \\ \hat{L}_\pm |\ell, m\rangle &= \int_0^{\pi} \int_0^{2\pi} Y_{\ell'}^{m'*} Y_\ell^m d\Omega = \delta_{\ell\ell'} \delta_{mm'} \end{split}$$