
Physics 309 Final

I pledge that I have given nor received unauthorized assistance during the completion of this
work.

Name Signature

Questions (4 pts. apiece) Answer questions in complete, well-written sentences WITHIN the
spaces provided.

1. What is an absorption spectrum?

2. In our study of the CO molecule what is the classical energy?

3. Why do we use energy eigenstates?

4. What is Rutherford scattering?

5. Consider the spectral distribution shown below. What is the mathematical definition of
the width of the distribution? Sketch on the plot what this width represents. Explain.
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6. Cite at least two experimental measurements that violated classical physics and re-
quired quantum mechanics to explain. Discuss how they violated classical physics.

7. Why does the Sun shine? What are the important features of the process? Your answer
should be descriptive and qualitative - not quantitative.

8. Recall that for a bound, one-dimensional system at t = 0 that |ψ⟩ =
∑∞

n=0 bn|ϕn⟩.
What is bn and how is it related to a measurement of the momentum?

9. The figure below shows the de Broglie waves of three equal-mass particles as a function
of position x. Rank them according to their speed. Explain your reasoning. The range
of x and y are the same in each plot.

10. The components of the angular momentum vector L⃗ are orthogonal to each other.
Can a measurement of the x component of the angular momentum, Lx, of a state with
mz = ℓ produce a nonzero result? Explain.

Do not write below this line.
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Problems. Clearly show all work for full credit on a separate piece of paper.

1. (10 pts.) A mass m0 = 0.910 kg is oscillating freely on a vertical spring. The period for
m0 is To = 1.10 s. An unknown mass m1 replaces m0 on the same spring and has
a period of T1 = 1.32 s. What is the spring constant k and the unknown mass
m1?

2. (10 pts.) Show that the frequencies of photons due to energy decays between successive
levels of a rotator with momentum of inertia I are given by the following.

h̄ω =
h̄2

I
(ℓ+ 1) or

h̄2

I
ℓ

3. (12 pts.) Find ψ(x) and P (En) at t = 0 relevant to a one-dimensional box with walls at
(0, a) for the following initial state.

ψ(x, 0) = A3

(
eiπ(x−a)/a − 1

)
Make sure you get an expression for ψ(x) valid for all eigenstates. The eigen-
functions and eigenvalues of the one-dimensional particle in a box of width a
are

|ϕ(x)⟩ =
√

2

a
sin
(nπx

a

)
En = n2E1 = n2 h̄

2π2

2ma2
.

4. (13 pts.) A molecule behaves like a one-dimensional harmonic oscillator with a spring con-
stant k = 2.42 eV/Å2. It emits a photon of energy Eγ = hν = h̄ω0 = 0.1 eV
going from the third excited state to the second excited state. The oscillating
part is a proton (mp = 938 MeV/c2).

a) What is the value of the classical turning point xt if the molecule is in the
n = 2 state?

b) What is the numerical value of β =
√
mω0/h̄?

c) What is the probability that a proton in this state is at a distance from the
origin forbidden to it by classical mechanics? Get your answer in terms of
xt and β where β is defined below with the wave function for the n = 2
state.

|ϕ2⟩ =
1√
8
√
π

(
4ξ2 − 2

)
e−ξ2/2 ξ = βx β =

√
mω0

h̄

Do not write below this line.
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5. (15 pts.) Suppose a rigid rotator is in the eigenstate of L̂2 with ℓ = 1 and mz = −1
(Y −1

1 (θ, ϕ)). We want to find the probability of obtaining the values ofmx = 0,±1
from a measurement of L̂x. We always measure eigenvalues so to get the results
of a measurement of Lx we need to construct the appropriate operator L̂x which
satisfies L̂xX = αh̄X where X is an eigenfunction of the L̂x operator and α is
the eigenvalue. To do that we can assume

X = aY 1
1 + bY 0

1 + cY −1
1

since the spherical harmonics form a complete set and we know what they are. We
restrict our attention to only ℓ = 1 states as a consequence of angular momentum
conservation. Generate the set of simultaneous equations that the coefficients (a,
b, c) and α must satisfy.

Physics 309 Equations

RT (ν) =
Energy

time× area
E = hν = h̄ω vwave = λν I ∝ |E⃗|2 λ =

h

p
p = h̄k K =

p2

2m
Kmax = hν−Φ

− h̄2

2m

∂2

∂x2
Ψ(x, t)+V (x)Ψ(x, t) = ih̄

∂

∂t
Ψ(x, t) p̂ x = −ih̄ ∂

∂x
Â |ϕ⟩ = a|ϕ⟩ ⟨Â ⟩ =

∫ ∞

−∞
ψ∗Â ψdx

⟨ϕn′ |ϕn⟩ =
∫ ∞

−∞
ϕ∗n′ϕndx = δn′,n ⟨ϕ(k′)|ϕ(k)⟩ =

∫ ∞

−∞
ϕ∗k′ϕk dx = δ(k − k′) eiϕ = cosϕ+ i sinϕ

|ψ⟩ =
∑

bn|ϕn⟩ → bn = ⟨ϕn|ψ⟩ |ϕ⟩ = e±ikx |ψ⟩ =
∫
b(k)|ϕ(k)⟩dk → b(k) = ⟨ϕ(k)|ψ⟩

|ψ(x, t)⟩ =
∑

bn|ϕn⟩e−iωnt |ψ(x, t)⟩ =
∫
b(k)|ϕ(k)⟩e−iω(k)tdk ∆p∆x ≥ h̄

2
(∆x)2 = ⟨x2⟩−⟨x⟩2

The wave function, Ψ(r⃗, t), contains all we know of a system and its square is the probability of

finding the system in the region r⃗ to r⃗+ dr⃗. The wave function and its derivative are (1) finite, (2)
continuous, and (3) single-valued (ψ1(a) = ψ2(a) and ψ

′
1(a) = ψ′

2(a)) .

VHO =
κx2

2
ω = 2πν =

√
κ

m
En = (n+

1

2
)h̄ω0 = h̄ω |ϕn⟩ = e−ξ2/2Hn(ξ) ξ = βx β2 =

mω0

h̄

ψ1 = tψ3 = d12p2d21p
−1
1 ψ3 T =

1

|t11|2
R+ T = 1

dij =
1

2

(
1 +

kj
ki

1− kj
ki

1− kj
ki

1 +
kj
ki

)
pi =

(
e−iki2a 0

0 eiki2a

)
p−1
i =

(
eiki2a 0
0 e−iki2a

)

E =
h̄2k2

2m
k =

√
2m(E − V )

h̄2
T =

transmitted flux

incident flux
R =

reflected flux

incident flux
flux = |ψ|2v

V (r) =
Z1Z2e

2

r
E =

1

2
µv2 + V (r) R⃗cm =

∑
imir⃗i∑
imi

µ =
m1m2

m1 +m2
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ψ(x) =
∞∑
n=1

anx
n ⟨K⟩ = 3

2
kT n(v) = 4πN

(
m

2πkBT

)3/2

v2e−mv2/2kBT L⃗ = r⃗ × p⃗ = Iω⃗

I =
∑
i

mir
2
1 =

∫
r2dm KErot =

L2

2I
Eℓ =

ℓ(ℓ+ 1)h̄2

2I
Vcoul =

Z1Z2e
2

r
ME =

p2r
2µ

+
L2

2µr2
+V (r)

Lz|nlm⟩ = mh̄|nlm⟩ L2|nlm⟩ = ℓ(ℓ+ 1)h̄2|nlm⟩

sinA sinB =
1

2
[cos(A−B)− cos(A+B)] cosA cosB =

1

2
[cos(A−B) + cos(A+B)]

sinA cosB =
1

2
[sin(A−B) + sin(A+B)] sinA+ sinB = 2 sin

(
A+B

2

)
cos

(
A−B

2

)

Constants

Speed of light (c) 2.9979× 108 m/s fermi (fm) 10−15 m

Boltzmann constant (kB) 1.381× 10−23 J/K angstrom (Å) 10−10 m

8.62× 10−5 eV/k electron-volt (eV ) 1.6× 10−19 J

Planck constant (h) 6.621× 10−34 J − s MeV 106 eV

4.1357× 10−15 eV − s GeV 109 eV

Planck constant (h̄) 1.0546× 10−34 J − s Electron charge (e) 1.6× 10−19 C

6.5821× 10−16 eV − s e2 h̄c/137

Planck constant (h̄c) 197 MeV − fm Electron mass (me) 9.11× 10−31 kg

1970 eV − Å 0.511 MeV/c2

Proton mass (mp) 1.67× 10−27kg atomic mass unit (u) 1.66× 10−27 kg

938 MeV/c2 931.5 MeV/c2

Neutron mass (mn) 1.68× 10−27 kg

939 MeV/c2

Integrals and Derivatives

df

du
=
df

dx

du

dx

d

dx
(xn) = nxn−1 d

dx
(sinx) = cosx

d

dx
(cosx) = − sinx

d

dx
(eax) = aeax

d

dx
(ln ax) =

1

x

∫
xndx =

xn+1

n+ 1

∫
eaxdx =

eax

a

∫
1

x
= lnx

∫
1√

x2 + a2
dx = ln

[
x+

√
x2 + a2

]
∫

x√
x2 + a2

dx =
√
x2 + a2

∫
x2√

x2 + a2
dx =

1

2
x
√
x2 + a2 − 1

2
a2 ln

[
x+

√
x2 + a2

]
∫

x3√
x2 + a2

dx =
1

3
(−2a2 + x2)

√
x2 + a2

∫
x2 sin(ax)dx =

2x sin(ax)

a2
−
(
a2x2 − 2

)
cos(ax)

a3
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Properties of the Spherical Harmonics

L̂2|ℓ,m⟩ = ℓ(ℓ+ 1)h̄2 |ℓ,m⟩

L̂z|ℓm⟩ = mh̄ |ℓm⟩

L̂x|ℓ,m⟩ = h̄

2

√
(ℓ−m)(ℓ+m+ 1) |ℓ,m+ 1⟩+ h̄

2

√
(ℓ+m)(ℓ−m+ 1) |ℓ,m− 1⟩

L̂y|ℓ,m⟩ = − h̄
2

√
(ℓ−m)(ℓ+m+ 1) |ℓ,m+ 1⟩+ h̄

2

√
(ℓ+m)(ℓ−m+ 1) |ℓ,m− 1⟩

L̂±|ℓ,m⟩ = h̄
√
ℓ(ℓ+ 1)−m(m± 1) |ℓ,m± 1⟩

⟨ℓ′m′|ℓm⟩ =
∫ π

0

∫ 2π

0

Y m′∗
ℓ′ Y m

ℓ dΩ = δℓℓ′δmm′
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