
Physics 309 Final

I pledge that I have given nor received unauthorized assistance during the completion of this
work.

Name Signature

Questions (5 pts. apiece) Answer questions in complete, well-written sentences WITHIN the
spaces provided.

1. Describe the model we used to explain α decay.

2. What is Rutherford scattering?

3. Recall how the we explained the vibration-rotation spectrum of the carbon monoxide
molecule (see figure). Suppose that when the molecule absorbed a photon it was
constrained to change the value of the angular momentum quantum number by ∆l =
±1 units AND ∆l = 0. How would the spectrum change? Explain.

Carbon−Monoxide Spectrum
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0.26500.26000.2550 0.2700 0.2750

4. What is the quantum program?

DO NOT WRITE BELOW THIS LINE.
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5. Cite at least three experimental measurements that required quantum mechanics to
explain.

6. The figure shows the lowest energy levels in eV for five different potential wells trapping
a single electron in each. In wells B, C, D, and E the electron is in the ground state.
The electron in well A is excited to the fourth state at 25 eV and then de-excites by
emitting one of more photons corresponding to a single long jump or several smaller
jumps. What photon emission energies of the de-excitation of the electron in well A
match a photon absorption transition from the ground state for the other four wells
(B-E)? Give the corresponding quantum numbers for the transitions in each well.
Clearly label which atom you reference.

7. When we solved the rectangular barrier problem we required the wave function to
continuous across the boundary between different potential energy regions. Why?

8. What is the CLASSICAL expectation for the transmission coefficient of a particle of
energy E striking a one-dimensional rectangular barrier of height V0? Explain.

DO NOT WRITE BELOW THIS LINE.
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Problems. Clearly show all work for full credit on a separate piece of paper.

1. (8 pts.) A car with bad shock absorbers bounces up and down with a period of 1.5 s after
hitting a bump. The car has a mass of 1500 kg and is supported by four springs
of equal force constant k. What is k?

2. (8 pts.) A particle detector has an active volume in the shape of a right circular cylinder.
The endcaps of the cylinder each have a diameter d = 6 mm. If the cylinder is
oriented so one endcap faces a target that is a distance R = 1.0 m away, what is
the solid angle Ω of the detector?

3. (10 pts.) In solving the Schroedinger equation for the harmonic oscillator potential we
rewrote the Schroedinger equation in the form

d2φ

dξ2
+

(
α

β2
− ξ2

)
φ = 0

where ξ = βx, α = 2mE/h̄2 and β =
√
mω0/h̄. What is the asymptotic form

of this differential equation? In other words, what does it look like for large ξ?
Show the asymptotic solution is

|φasymp〉 = Aasympe
−ξ2/2 +Basympe

ξ2/2 .

4. (10 pts.) A beam of light P has twice the wavelength, but the same intensity as beam
Q. How is the number of photons that hit a given area in a given time when
it is illuminated by beam P related to the number that hit when the area is
illuminated by beam Q?

5. (12 pts.) A pulse of protons is L = 1 m long and contains N = 10000 particles. At t = 0
each proton is in the state

ψ(x, 0) =
1

100
eik0x |x| < 0.5 m

= 0 elsewhere

The free particle eigenfunctions are the following.

|φ〉 =
eikx√

2π

1. What are the b(k)’s?

2. Would any momenta in this initial wave packet be forbidden, i.e. values of
p = h̄k with a probability of zero?
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6. (12 pts.) Suppose a rigid rotator is in the following initial state of L̂2 with ` = 1.

|ψ〉 =
Y 1
1 + Y −11√

3

We want to find the probability of obtaining the values of mx = 0,±1 from a
measurement of L̂x. The eigenfunctions of L̂x for ` = 1 can be expressed in terms
of spherical harmonics (Y m

` ’s) and are shown below along with their eigenvalues
α.

X1
1 =

Y 1
1 +
√

2Y 0
1 + Y −11

2
α = h̄

X0
1 =

Y 1
1 − Y −11√

2
α = 0

X−11 =
Y 1
1 −
√

2Y 0
1 + Y −11

2
α = −h̄

What are the probabilities for obtaining mx = 0,±1?

Physics 309 Equations

RT (ν) =
Energy

time× area
E = hν = h̄ω vwave = λν I ∝ | ~E|2 λ =

h

p
p = h̄k K =

p2

2m
Kmax = hν−Φ

− h̄2

2m

∂2

∂x2
Ψ(x, t)+V (x)Ψ(x, t) = ih̄

∂

∂t
Ψ(x, t) p̂ x = −ih̄ ∂

∂x
Â |φ〉 = a|φ〉 〈Â 〉 =

∫ ∞
−∞

ψ∗Â ψdx

〈φn′ |φn〉 =

∫ ∞
−∞

φ∗n′φndx = δn′,n 〈φ(k′)|φ(k)〉 =

∫ ∞
−∞

φ∗k′φk dx = δ(k − k′) eiφ = cosφ+ i sinφ

|ψ〉 =
∑

bn|φn〉 → bn = 〈φn|ψ〉 |φ〉 =
e±ikx√

2π
|ψ〉 =

∫
b(k)|φ(k)〉dk → b(k) = 〈φ(k)|ψ〉

|ψ(x, t)〉 =
∑

bn|φn〉e−iωnt |ψ(x, t)〉 =

∫
b(k)|φ(k)〉e−iω(k)tdk ∆p∆x ≥ h̄

2
(∆x)2 = 〈x2〉−〈x〉2

The wave function, Ψ(~r, t), contains all we know of a system and its square is the probability of

finding the system in the region ~r to ~r+ d~r. The wave function and its derivative are (1) finite, (2)
continuous, and (3) single-valued (ψ1(a) = ψ2(a) and ψ′1(a) = ψ′2(a)) .

VHO =
κx2

2
ω = 2πν =

2π

T
=

√
κ

m
En = (n+

1

2
)h̄ω0 = h̄ω |φn〉 = e−ξ

2/2Hn(ξ) ξ = βx β2 =
mω0

h̄

ψ1 = tψ3 = d12p2d21p
−1
1 ψ3 T =

1

|t11|2
R+T = 1 TWKB = exp

[
−2

∫ x1

x0

√
2m(V (x)− E)

h̄2
dx

]
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dij =
1

2

(
1 +

kj
ki

1− kj
ki

1− kj
ki

1 +
kj
ki

)
pi =

(
e−iki2a 0

0 eiki2a

)
p−1i =

(
eiki2a 0

0 e−iki2a

)

E =
h̄2k2

2m
k =

√
2m(E − V )

h̄2
T =

transmitted flux

incident flux
R =

reflected flux

incident flux
flux = |ψ|2v

V (r) =
Z1Z2e

2

r
E =

1

2
µv2 + V (r) ~Rcm =

∑
imi~ri∑
imi

µ =
m1m2

m1 +m2

dNs

dt
=
dσ

dΩ

dNinc

dt
ntgtdΩ

ntgt =
ρtgt
Atgt

NA
Vhit
abeam

=
ρtgt
Atgt

NALtgt dΩ =
dA

r2
dNinc

dt
=
Ibeam
Ze

dσ

dΩ
=

(
Z1Z2e

2

4E

)2
1

sin4
(
θ
2

)
ψ(x) =

∞∑
n=1

anx
n 〈K〉 =

3

2
kT n(v) = 4πN

(
m

2πkBT

)3/2

v2e−mv
2/2kBT ~L = ~r × ~p = I~ω

I =
∑
i

mir
2
1 =

∫
r2dm KErot =

L2

2I
E` =

`(`+ 1)h̄2

2I
Vcoul =

Z1Z2e
2

r
ME =

p2r
2µ

+
L2

2µr2
+V (r)

Lz|nlm〉 = mh̄|nlm〉 L2|nlm〉 = `(`+ 1)h̄2|nlm〉

Constants

Speed of light (c) 2.9979× 108 m/s fermi (fm) 10−15 m

Boltzmann constant (kB) 1.381× 10−23 J/K angstrom (Å) 10−10 m

8.62× 10−5 eV/k electron-volt (eV ) 1.6× 10−19 J

Planck constant (h) 6.621× 10−34 J − s MeV 106 eV

4.1357× 10−15 eV − s GeV 109 eV

Planck constant (h̄) 1.0546× 10−34 J − s Electron charge (e) 1.6× 10−19 C

6.5821× 10−16 eV − s e2 h̄c/137

Planck constant (h̄c) 197 MeV − fm Electron mass (me) 9.11× 10−31 kg

1970 eV − Å 0.511 MeV/c2

Proton mass (mp) 1.67× 10−27kg atomic mass unit (u) 1.66× 10−27 kg

938 MeV/c2 931.5 MeV/c2

Neutron mass (mn) 1.68× 10−27 kg

939 MeV/c2

Integrals and Derivatives and other Formulae

|A| =
∣∣∣∣a b
c d

∣∣∣∣ = ad− bc |B| =

∣∣∣∣∣∣
a b c
d e f
g h i

∣∣∣∣∣∣ = a(ei− fh)− b(di− fg) + c(dh− eg)

sinA sinB =
1

2
[cos(A−B)− cos(A+B)] cosA cosB =

1

2
[cos(A−B) + cos(A+B)]

sinA cosB =
1

2
[sin(A−B) + sin(A+B)] sinA+ sinB = 2 sin

(
A+B

2

)
cos

(
A−B

2

)
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df

du
=
df

dx

du

dx

d

dx
(xn) = nxn−1

d

dx
(sinx) = cosx

d

dx
(cosx) = − sinx

d

dx
(eax) = aeax

d

dx
(ln ax) =

1

x

∫
xndx =

xn+1

n+ 1

∫
eaxdx =

eax

a

∫
1

x
= lnx

∫
1√

x2 + a2
dx = ln

[
x+

√
x2 + a2

]
∫

x√
x2 + a2

dx =
√
x2 + a2

∫
x2√

x2 + a2
dx =

1

2
x
√
x2 + a2 − 1

2
a2 ln

[
x+

√
x2 + a2

]
∫

x3√
x2 + a2

dx =
1

3
(−2a2 + x2)

√
x2 + a2

∫
x2 sin(ax)dx =

2x sin(ax)

a2
−
(
a2x2 − 2

)
cos(ax)

a3∫
x sin(ax)dx =

sin(ax)

a2
− x cos(ax)

a

∫
x3 sin axdx =

3
(
a2x2 − 2

)
sin(ax)

a4
−
x
(
a2x2 − 6

)
cos(ax)

a3

Hermite polynomials (Hn(ξ))

H0(ξ) =
1√√
π

H5(ξ) =
1√

3840
√
π

(32ξ5 − 160ξ3 + 120ξ)

H1(ξ) =
1√
2
√
π

2ξ H6(ξ) =
1√

46080
√
π

(64ξ6 − 480ξ4 + 720ξ2 − 120)

H2(ξ) =
1√
8
√
π

(4ξ2 − 2) H7(ξ) =
1√

645120
√
π

(128ξ7 − 1344ξ5 + 3360ξ3 − 1680ξ)

H3(ξ) =
1√

48
√
π

(8ξ3 − 12ξ) H8(ξ) =
1√

10321920
√
π

(256ξ8 − 3584ξ6 + 13440ξ4 − 13440ξ2 + 1680)

H4(ξ) =
1√

384
√
π

(16ξ4 − 48ξ2 + 12) H9(ξ) =
1√

185794560
√
π

(512ξ9 − 9216ξ7 + 48384ξ5 − 80640ξ3 + 30240ξ)
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