
Why Does Uranium Alpha Decay? 1

Consider the alpha decay shown below where a uranium nucleus
spontaneously breaks apart into a 4He or alpha particle and 234

90Th.

238
92U → 4He + 234

90Th E(4He) = 4.2 MeV

To study this reaction we first map out the 4He− 234
90Th potential energy.

We reverse the decay above and use a beam of 4He nuclei striking a 234
90Th

target. The 4He beam comes from the radioactive decay of another
nucleus 210

84Po and E(4He) = 5.407 MeV.

1 What is the distance of closest approach of the 4He to the 234
90Th

target if the Coulomb force is the only one that matters?

2 Is the Coulomb force the only one that matters?

3 What is the lifetime of the 238
92U?
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What Do We Know? 2

The 234
90Th− α Potential
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Mapping the Potential Energy 3

Rutherford Scattering

What is the distance of closest approach of the 4He to the 234
90Th target if

only the Coulomb force is active? Is the Coulomb force the only one
active? The energy of the 4He emitted by the 210

84Po to make the beam is
E(4He) = 5.407 MeV.
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Rutherford Trajectories 6

Rutherford trajectories for different
impact parameters
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Mapping the Potential Energy 7

The Differential Cross Section
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The Differential Cross Section 8

particle rate
scattered into
dA of detector

=
dNs

dt
∝

incident
beam
rate

×
areal
target
density

×
angular
detector
size
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dt
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What is an Angle? 9
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Solid Angle 11
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Solid Angle 12
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Solid Angle 13
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Solid Angle 14
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Solid Angle 15
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Solid Angle 16

dA = rdθ × r sin θdϕ = r2 sin θdθdϕ

dΩ = dA
r2

= sin θdθdϕ
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Solid Angle 18

dA = rdθ × r sin θdϕ = r2 sin θdθdϕ
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Actual Rutherford Scattering Results 19
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Interpretation of Rutherford Scattering Results 20
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DOCA = 48 fm

Eα(Po) = 5.407 MeV

238
92U → 4He+ 234

90Th

Eα(U) = 4.2 MeV

Original decay

What does this say about the 4
2He−234

90 Th potential energy?
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Measuring the Size of the Nucleus 21

θcm(deg)
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Ecm = 23.1 MeV

PRL 109, 262701 (2012)
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Measuring the Size of the Nucleus 22
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The 4He− 234
90Th Potential 23

α-Th Potential
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The Paradox of Alpha Decay 24

1 We have probed the 4He−234
90Th potential into an internuclear

distance of rDOCA = 48 fm with a 4He beam of E(4He) = 5.407 MeV.

2 The data are consistent with the Coulomb force and no others.

3 The radioactive decay 238
92U → 234

90Th+ 4He emits an α (or 4He) with
energy Eα = 4.2 MeV.

4 For a classical ‘decay’ the emitted α should have an energy of at least
Emin = 5.407 MeV.

5 It appears the ‘decay’ α starts out at a distance remit = 62 fm.

6 How do we explain this?

Quantum Tunneling!
7 What do we measure?

Lifetimes t1/2(
238U) = 4.5× 109 yr
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The Plan For Calculating Nuclear Lifetimes 28

1 The α particle (4He) is confined by the nuclear potential and
‘bounces’ back and forth between the walls of the nucleus. Assume

its energy is the same as the emitted nucleon so v =
√

2Eα
m .

2 Each time it ‘bounces’ off the nuclear wall it has a finite probability of
tunneling through the barrier equal to the transmission coefficient T .

3 The decay rate will the product of the rate of collisions with a wall
and the probability of transmission equal to v

2R × T .

4 The lifetime is the inverse of the decay rate 2R
vT = 2R

√
m
2E

1
T .

5 The radius of a nucleus has been found to be described by
rnuke = 1.2A1/3 where A is the mass number of the nucleus.

6 We are liberally copying the work of Gamow, Condon, and Gurney.
Like them we will assume V = 0 inside the nucleus and V = 0 from
the classical turning point to infinity.
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The 4He− 234
90Th Potential 29
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Recall For a Single Barrier 30

ψ1 = tψ3 = d12p2d21p
−1
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The Transfer-Matrix Solution 31
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The Transfer-Matrix Solution 32

4.2 MeV
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The Transfer-Matrix Solution 33

4.2 MeV
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∼

=

(
e−ikms 0
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k1 =

√
2mE

ℏ2
= k7 kn =

√
2m(E − Vn)

ℏ2

T =
1

|t11|2n - left side of barrier
m - right side of barrier
Vn - potential of nth step.
s - step size. ψ1

∼
= d12p2 · d23p3 · d34p4 · d45p5︸ ︷︷ ︸

unit cell

·d56p6 · d67p7ψ′
7

∼

The last propagation matrix p7 leaves you one stepsize to the right
of the last discontinuity. Adding another propagation matrix to
reset the origin to its original position has no effect on t11.
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The Transfer-Matrix Solution 35
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Sample Nuclear Results 36
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Nuclear Input Data 37

Energies are in MeV.
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Difference Between Lecture and Readings 38

There are some differences between the formula for Rutherford scattering in the reading (go
here) that are discussed below. The lecture formula is

dσ

dΩ
=

(
Z1Z2e2

4Ecm

)2
1

sin4
(

θ
2

) (1)

while the expression in the reading is the following.

dσ

dcos θ
=

π

2
z2Z2α2

[
ℏc
KE

]2 1

(1− cos θ)2
(2)

To go from Eq 1 to Eq 2 you need to make the following changes.
1 Change some variable names so Z1 = z, Z2 = Z , Ecm = KE .
2 Use dΩ = sin θdθdϕ = dcos θdϕ and integrate over all ϕ or ϕ = 0 → 2π. This gives you

a factor of 2π in front of Eq 1.

dσ

d cos θ
=

∫ 2π

0

dσ

dΩ
dϕ = 2π

dσ

dΩ
(3)

3 Make the following substitutions

e2 = αℏc and sin2
θ

2
=

1

2
(1− cos θ) (4)

and you get Eq 2.
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Coding Guidelines 39

1 Define ALL variables with descriptive names.

2 Add comments for each ’section’ of code.

3 Put inputs for individual calculation at the top of your code with
comments describing each item.

4 Put constants used for all calculations in one section.

5 Indent ’new’ sections.

6 Suppress printing until the end.
7 Print output at the end.
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Results 40

Blue Points: Data

Red Lines: Theory
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41

Additional slides.
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The Differential Cross Section 42

particle rate
scattered into
dA of detector

=
dNs

dt
∝

incident
beam
rate

×
areal
target
density

×
angular
detector
size

dNs

dt
∝ dNinc

dt
× ntgt × dΩ

dNs

dt
=

dσ

dΩ
× dNinc

dt
× ntgt × dΩ

dNinc

dt
=

∆Ninc

∆t
=

Ibeam
Ze

ntgt =
ρtgt
Atgt

NAVhit
1

abeam
=
ρtgt
Atgt

NALtgt

Ibeam - beam current
Z - beam charge

ρtgt - target density
Atgt - molar mass
Vhit - beam-target overlap
abeam - beam area
Ltgt - target thickness
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Areal or Surface Density of Nuclear Targets 43
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The Differential Cross Section 44

particle rate
scattered into
dA of detector
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dΩ =
dAdet

r 2det
=

∆Adet

r 2det
= sin θdθdϕ

Ibeam - beam current
Z - beam charge

ρtgt - target density
Atgt - molar mass
Vhit - beam-target overlap
abeam - beam area
Ltgt - target thickness

dAdet - detector area
rdet - target-detector distance
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