Physics 310
Solving the Radial Part of the Hydrogen Atom Wave Function
- The three-dimensional Schroedinger equation can be written in
spherical coordinates as
 |
(1) |
where
is the reduced mass.
Assuming the solution is separable so
and using the eigenvalues of the hydrogen atom
show that Equation 1 can rewritten as
![\begin{displaymath}
\frac{\partial}{\partial r} \left ( r^2 \frac{\partial R}{\p...
...
\left[ E - V - \frac{\hbar^2}{2\mu r^2}l (l+1) \right ] R = 0
\end{displaymath}](img4.png) |
(2) |
- Let
 |
(3) |
and show Equation 2 can be rewritten as
![\begin{displaymath}
-\frac{\partial^2 U}{\partial r^2} +
\left [ \frac{l(l+1)}...
...{\hbar^2}\frac{e^2}{r} + \frac{2\mu W}{\hbar^2} \right ] U = 0
\end{displaymath}](img6.png) |
(4) |
- Now let
 |
(5) |
and rewrite Equation 4 as
![\begin{displaymath}
\frac{\partial^2 v}{\partial \rho^2} - 2\frac{\partial v}{\p...
...frac{\lambda e^2}{\rho} - \frac{l(l+1)}{\rho^2} \right ] v = 0
\end{displaymath}](img8.png) |
(6) |
- Here we apply the method of Frobenius to generate a solution to Equation 6.
Assume the following form for
.
 |
(7) |
and generate the recurrence relationship
} a_k
\end{displaymath}](img11.png) |
(8) |