Physics 310

Solving the Radial Part of the Hydrogen Atom Wave Function

  1. The three-dimensional Schroedinger equation can be written in spherical coordinates as
    \begin{displaymath}
{-\hbar^2 \over 2\mu}
\left \{ {1\over r^2} {\partial \ \o...
...al^2 \ \over \partial \phi^2} \right \}\psi +
V(r)\psi = E\psi
\end{displaymath} (1)

    where $\mu$ is the reduced mass. Assuming the solution is separable so $\psi_E = R(r) \Theta(\theta) \Phi(\phi)$ and using the eigenvalues of the hydrogen atom show that Equation 1 can rewritten as
    \begin{displaymath}
\frac{\partial}{\partial r} \left ( r^2 \frac{\partial R}{\p...
...
\left[ E - V - \frac{\hbar^2}{2\mu r^2}l (l+1) \right ] R = 0
\end{displaymath} (2)

  2. Let
    \begin{displaymath}
R(r) = \frac{U(r)}{r} \qquad W = -E \quad {\rm and} \quad V = -\frac{e^2}{r}
\end{displaymath} (3)

    and show Equation 2 can be rewritten as
    \begin{displaymath}
-\frac{\partial^2 U}{\partial r^2} +
\left [ \frac{l(l+1)}...
...{\hbar^2}\frac{e^2}{r} + \frac{2\mu W}{\hbar^2} \right ] U = 0
\end{displaymath} (4)

  3. Now let
    \begin{displaymath}
\rho = \sqrt{\frac{2\mu W}{\hbar^2}}~r \quad \lambda = \sqrt...
...u}{W \hbar^2}} \quad
{\rm and} \quad U(r) = e^{-\rho} v(\rho)
\end{displaymath} (5)

    and rewrite Equation 4 as
    \begin{displaymath}
\frac{\partial^2 v}{\partial \rho^2} - 2\frac{\partial v}{\p...
...frac{\lambda e^2}{\rho} - \frac{l(l+1)}{\rho^2} \right ] v = 0
\end{displaymath} (6)

  4. Here we apply the method of Frobenius to generate a solution to Equation 6. Assume the following form for $v(\rho)$.
    \begin{displaymath}
v(\rho) = \rho^{l+1} \sum_{k=0}^\infty a_k \rho^k
\end{displaymath} (7)

    and generate the recurrence relationship
    \begin{displaymath}
a_{k+1} = \frac{2(l+k+1) - \lambda e^2}{[2(l+1) + k](k+1)} a_k
\end{displaymath} (8)