Physics 205 Test 3

I pledge that I have neither given nor received unauthorized assistance during the completion of this work.

Name ____

Signature _____

Questions (5 for 8 pts. apiece) Answer in complete, well-written sentences WITHIN the spaces provided.

1. Waves from two slits S and Q will destructively interfere and cancel at a point P if the distance between P and S is larger than the distance between P and Q by

A. $(n + \frac{1}{2})\lambda$ (integer n) B. λ C. $\frac{1}{2}n\lambda$ (n is an integer) D. $n\lambda$ (n is an integer) E. Other (specify). Explain.

2. The Rutherford cross section formula $d\sigma/d\Omega$ is related to the intensity of scattering particles to different angles in a collision. Was this expression successful in describing the Davisson-Germer results for electrons scattering from ⁵⁸Ni? Explain why it succeeded or failed.

3. The figure below shows current versus frequency of the incident light for a photoelectric effect measurement. How would the figure change if classical physics (the swimming pool model of light) provided the correct description of the photoelectric effect? Explain.

- 4. For experiments using the apparatus shown in the figure, which of the following possible results (if seen) about the value displayed on the ammeter would probably *not* be consistent with the wave model of light?
 - A. It is zero for some time after the light starts shining.
 - B. It increases as the light's intensity increases.
 - C. It varies as the light's wavelength changes.
 - D. It is zero if the wavelength is larger than a certain value.

Explain.

- 5. An electron beam shining on a nickel crystal is preferentially reflected in certain directions instead of being scattered uniformly in all directions. Classify this experimental result according to the choices shown below and explain your choice.
 - A. Results are consistent with a pure wave model.
 - B. Results are consistent with a pure particle model.
 - C. Results are consistent with either model and do not distinguish between them.
 - D. Cannot be explained by either model alone.

Problems (3). Clearly show all reasoning for full credit. Use a separate sheet for your work.

- 1. 15 pts. The value of the photoelectric work function W for zinc is about 4.24 eV. What is the maximum wavelength that light falling on a zinc cathode can have if it is to be able to eject electrons.
- 2. 20 pts. In a head-on collision, the distance of closest approach (DOCA) of a ⁴He nucleus with energy E = 6.47 MeV = 1.04×10^{-12} J to the center of a nucleus is DOCA = 8.0 $fm = 8.0 \times 10^{-15}$ m. The nucleus is an atom of what element? Assume the nucleus remains at rest and the interaction is non-relativistic. The ⁴He nucleus consists of two protons and two neutrons.

3. 25 pts. Consider the double-slit interference of helium atoms shown in the figure. The center-to-center separation between the slits is $d = 8.0 \ \mu m$ and the detection screen is a distance $L = 0.64 \ m$ from the slits. The helium atoms have a wavelength $\lambda = 0.103 \ nm$. The helium nucleus consists of two protons and two neutrons (the electron mass is tiny). (a) What is their speed? (b) What is the expected theoretical distance y_{th} between the adjacent interference maxima on the detection screen?

DO NOT WRITE BELOW THIS LINE.

Physics 205 Equations

$$\vec{F}_{net} = \sum \vec{F}_i = m\vec{a} = \frac{d\vec{p}}{dt} \quad v = \frac{dx}{dt} \quad v = \frac{\Delta x}{\Delta t} \quad x = \frac{1}{2}at^2 + v_0t + x_0 \quad v = at + v_0 \quad a_g = -g \quad a_c = \frac{v^2}{r}$$

$$\vec{F}_{Earth} = -mg\hat{j} \quad KE = \frac{1}{2}mv^2 \quad KE_0 + PE_0 = KE_1 + PE_1 \quad PE_{Earth} = mgh \quad PE_V = qV$$

$$\vec{p}_i = \vec{p}_f \quad \vec{p} = m\vec{v} \quad \vec{F}_C = k_e \frac{q_1 q_2}{r^2} \hat{r} \quad \vec{E} \equiv \frac{\vec{F}}{q_0} \quad d\vec{E} = \frac{1}{4\pi\epsilon_0} \frac{dq}{r^2} \hat{r}$$

$$d\vec{B} = \frac{\mu_0}{4\pi} \frac{Id\vec{s} \times \hat{r}}{r^2} = \frac{\mu_0}{4\pi} \frac{qd\vec{v} \times \hat{r}}{r^2} \qquad \vec{F}_B = q\vec{v} \times \vec{B} \qquad |\vec{F}_B| = |qvB\sin\theta|$$

Galilean	Lorentz	Lorentz
Transformation	Transformation	Transformation
SI units	SI units	SR units
x' = x - vt	$x' = \gamma(x - vt)$	$x' = \gamma(x - \beta t)$
y' = y	y' = y	y' = y
z'=z	z' = z	z' = z
t' = t	$t' = \gamma(t - vx/c^2)$	$t' = \gamma(t - \beta x)$
$v'_x = v_x - v_O$	$v'_x = rac{v_x - v_O}{1 - v_x v/c^2}$	$v'_x = \frac{v_x - \beta}{1 - v_x \beta}$

Coordinate Time	Proper Time	Spacetime Interval				
Time between two	Time between two	Time between two				
events in an in-	events measured by	events measured by				
ertial frame mea-	the same clock at	the same, inertial				
sured with syn-	both events.	clock at both events.				
chronized clocks						
$c\Delta t,\Delta t$	$\Delta \tau_{SI}, \Delta \tau_{SR}$	$\Delta s_{SI}, \Delta s_{SR}$				
Frame dependent	Frame independent	Frame independent				

 $\Delta s_{SI}^2 = c^2 \Delta t^2 - \Delta d^2 = \Delta s_{SI}'^2 \quad \text{or} \quad \Delta s_{SR}^2 = \Delta t^2 - \Delta d^2 = \Delta s_{SR}'^2$

$$\Delta \tau_{SI} = \int_{t_A}^{t_B} \sqrt{1 - \frac{v^2}{c^2}} dt \quad \text{or} \quad \Delta \tau_{SR} = \int_{t_A}^{t_B} \sqrt{1 - \beta^2} dt$$
$$\Delta \tau_{SI} = \sqrt{1 - v^2/c^2} \Delta t \quad \text{or} \quad \Delta \tau_{SR} = \sqrt{1 - \beta^2} \Delta t$$
$$L_{SI} = L_R \sqrt{1 - v^2/c^2} \quad \text{or} \quad L_{SR} = L_R \sqrt{1 - \beta^2}$$

$$v'_x = \frac{v_x - v}{1 - v_x v/c^2} \quad v'_y = \frac{v_y \sqrt{1 - v_x^2/c^2}}{1 - v_x v/c^2} \quad KE = E - mc^2 \quad \text{SI units}$$
$$v'_x = \frac{v_x - \beta}{1 - v_x \beta} \quad v'_y = \frac{v_y \sqrt{1 - \beta^2}}{1 - v_x \beta} \quad KE = E - m \quad \text{SR units}$$
$$p_i = p_f \quad p_1 \cdot p_2 = p_3 \cdot p_4$$

$$\underbrace{p}_{\tilde{\nu}} = m \, d\underline{s}/d\tau = [m \frac{dt}{d\tau}, m \frac{dx}{d\tau}, m \frac{dy}{d\tau}, m \frac{dz}{d\tau}] = \frac{m}{\sqrt{1 - |\vec{v}|^2}} [1, \vec{v}] \quad \underbrace{p}_{\tilde{\nu}} \cdot \underbrace{p}_{\tilde{\nu}} = E_r^2 - |\vec{p}|^2 = m^2 \qquad \text{SR units}$$

$$\underbrace{p}_{\tilde{\nu}} = m \, d\underline{s}/d\tau = [mc\frac{dt}{d\tau}, m\frac{dx}{d\tau}, m\frac{dy}{d\tau}, m\frac{dz}{d\tau}] = \frac{m}{\sqrt{1 - v^2/c^2}} [c, \vec{v}] \quad \underbrace{pc \cdot pc}_{\tilde{\nu}} = E_r^2 - |\vec{pc}|^2 = (mc^2)^2 \qquad \text{SI units}$$

 $y = A\sin(kx - \omega t + \phi) \quad k\lambda = \omega T = 2\pi \quad E = E_m \sin(kx - \omega t + \phi) \quad B = B_m \sin(kx - \omega t + \phi) \quad \phi = k\delta$

$$\vec{S} = \frac{1}{\mu_0} \vec{E} \times \vec{B}$$
 $E = cB$ $\langle |\vec{S}| \rangle = I = \frac{E^2}{2\mu_0 c} = \frac{\text{energy}}{\text{area} \cdot \text{time}}$ $c = \frac{\lambda}{T} = \lambda f$

 $\delta = d\sin\theta = m\lambda \ (m = 0, \pm 1, ...) \quad (\text{bright}) \quad \delta = a\sin\theta = m\lambda \ (m = \pm 1, ...) \quad (\text{dark}) \quad \sin\theta \approx \frac{y_m}{L}$

$$I_{int} = I_m \cos^2\left(\frac{\pi d}{\lambda}\sin\theta\right) \quad I_{diff} = I_m \left[\frac{\sin\left(\frac{\pi a}{\lambda}\sin\theta\right)}{\frac{\pi a}{\lambda}\sin\theta}\right]^2 \quad E = hf \quad KE_{max} = eV_{stop} = hf - W \quad c = \lambda f$$

$$\frac{d\sigma}{d\Omega} = \left(\frac{Z_1 Z_2 e^2}{4E}\right)^2 \frac{1}{\sin^4\left(\frac{\theta_s}{2}\right)} = \frac{\operatorname{area}}{\operatorname{steradian}} \quad d\Omega = r^2 \sin\theta d\theta d\phi \quad ME = \frac{1}{2}mv^2 + PE \quad ME_i = ME_f$$

$$PE = qV \quad PE = \frac{Z_1 Z_2 e^2}{r} = \frac{k_e q_1 q_2}{r} \quad p = \frac{h}{\lambda} \quad KE = \frac{p^2}{2m} \quad KE_i = KE_f \text{ (elastic)} \quad \vec{p_i} = \vec{p_f} \quad \vec{p} = m\vec{v}$$

$$\frac{d}{dx}(f(u)) = \frac{df}{du}\frac{du}{dx} \quad \int x^n dx = \frac{x^{n+1}}{n+1} \quad \int \frac{1}{x}dx = \ln x \quad \vec{A} \cdot \vec{B} = AB\cos\theta \quad |\vec{A} \times \vec{B}| = |AB\sin\theta|$$

$$\frac{d}{dx}(x^n) = nx^{n-1} \quad \frac{de^x}{dx} = e^x \quad \frac{d}{dx}(\ln x) = \frac{1}{x} \quad \frac{d}{dx}(\cos ax) = -a\sin ax \quad \frac{d}{dx}(\sin ax) = a\cos ax$$

$$\langle x \rangle = \frac{1}{N} \sum_{i} x_{i} \quad \sigma = \sqrt{\frac{\sum_{i} \left(x_{i} - \langle x \rangle\right)^{2}}{N - 1}} \quad C = 2\pi r \quad A = 4\pi r^{2} \quad V = Ah \quad V = \frac{4}{3}\pi r^{3}$$
$$\frac{df(x)}{dx} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x} \quad \int_{a}^{b} f(x) dx = \lim_{\Delta x \to 0} \sum_{n=1}^{N} f(x) \Delta x$$

Physics 205 Constants and Conversions

Avogadro's number (N_A)	6.022×10^{23}	Speed of light (c)	$3 \times 10^8 \ m/s$
k_B	$1.38 \times 10^{-23} J/K$	Proton/Neutron mass	932 MeV/c^2
1 u	$1.67\times 10^{-27}~kg$	MeV/c^2	$1.78\times 10^{-30}~kg$
g	$9.8 m/s^2$	Earth's radius	$6.37 \times 10^6 m$
1 <i>nm</i>	$10^{-9} m$	$1 \ \mu m$	$10^{-6} m$
Gravitation constant	$6.67 \times 10^{-11} N - m^2/kg^2$	Electron mass	$0.511~MeV/c^2$
Coulomb constant (k_e)	$8.99 \times 10^9 \frac{N-m^2}{C^2}$	Electron mass	$9.11\times 10^{-31}~kg$
Elementary charge (e)	$1.60 \times 10^{-19} C$	$e^2 = \hbar c \alpha$	$197 \ MeV - fm/137$
Permittivity constant (ϵ_0)	$8.85 \times 10^{-12} \frac{kg^2}{N-m^2}$	$1.0 \ \mathrm{eV}$	$1.6\times 10^{-19}~J$
$1 { m MeV}$	$10^6 \ eV$	atomic mass unit (u)	$1.66 \times 10^{-27} \ kg$
Planck's constant (h)	$6.63\times 10^{-34}~Js$	Planck's constant (h)	$4.14\times 10^{-15}~eVs$
Planck's constant $(\hbar c)$	$197 \ MeV - fm$	Planck's constant $(\hbar c)$	1970 $eV-{\rm \AA}$
Permeability constant (μ_0)	$1.26\times 10^{-6}~Tm/A$	Rydberg constant (R_H)	$1.097 \times 10^7 \ m^{-1}$
Becquerel (Bq)	$1 \ decay/s$	Curie (Ci)	$3.7 \times 10^{10} Bq$

hydrogen																		helium
1																		2
H																		Не
1.0079																		4.0026
ithium 3	beryllium 4												boron 5	carbon 6	nitrogen 7	oxygen 8	q	neon 10
ľ.	De												Ď	Ĉ	Ň	Ô	Ē	No
	Бе												D		IN	U		ne
6.941	9.0122												10.811	12.011	14.007	15.999	18.998 ablating	20.180
11	12												13	14	15	16	17	18
Ma	Ma												Δ1	C:	D	C	CL	۸r
INd	ivig												AI	31	Г	3	G	AI
22.990 potassium	24.305 calcium		scandium	titanium	vanadium	chromium	mandanese	iron	cobalt	nickel	conner	zine	26.982 gallium	28.086 dermanium	30.974 arsenic	32.065 selenium	35.453 bromine	39.948 krypton
19	20		21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca		Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.098	40.078		44.956	47.867	50.942	51.996	54.938	55.845	58.933	58.693	63.546	65.39	69.723	72.61	74.922	78.96	79.904	83.80
rubidium 37	38		39	zirconium 40	niobium 41	molybdenum 42	technetium 43		rhodium 45	palladium 46	A7	cadmium 48	101um	tin 50	antimony 51	tellurium 52	iodine 53	xenon 54
Dh	C		V	7.	NIL	N/a	Te	D	Dh	Dal	A	Cd	L.o.	Cm	Ch	Te	Ĩ	V.
RD	SL		T	Zr	D		IC	ĸu	Rn	Pa	Ag	Ca	In	SU	3 D	re		xe
85.468	87.62		88.906	91.224	92.906	95.94	[98]	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.76	127.60	126.90	131.29
55	56	57-70	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Co	Do	×	The	LIF	To	14/	Do	Oc	le.	Dt	Δ	La	TL	Dh	Di	Do	Δ+	Dn
US	Da	^	LU	п	Id	VV	Re	05	11	гι	Au	пу		FD	DI	FU	Αι	R H
132.91 francium	137.33 radium		174.97 lawren.cium	178.49 rutherfordium	180.95 dubnium	183.84 seaborgium	186.21 bohrium	190.23 hassium	192.22 meitnerium	195.08 ununnilium	196.97 unununium	200.59 ununbium	204.38	207.2 Upunguadium	208.98	[209]	[210]	[222]
87	88	89-102	103	104	105	106	107	108	109	110	111	112		114				
Fr	Ra	* *	Lr	Rf	Db	Sq	Bh	Hs	Mt	Uun	Uuu	Uub		Uuq				
[223]	[226]		[262]	[261]	[262]	[266]	[264]	[269]	[268]	[271]	[272]	[277]		[289]				
A 64 646	s a a a		5 AS 17 - 1	a on 2000 a		a (n. 1966).				r - 55 1735	s as a -	a		4	54			

*Lanthanide series	lanthanum 57	cerium 58	praseodymium 59	neodymium 60	promethium 61	samarium 62	europium 63	gadolinium 64	terbium 65	dysprosium 66	holmium 67	erbium 68	thulium 69	ytterbium 70
	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb
	138.91	140.12	140.91	144.24	[145]	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04
	actinium	thorium	protactinium	uranium	neptunium	plutonium	americium	curium	berkelium	californium	einsteinium	fermium	mendelevium	nobelium
* * Actinide series	89	90	91	92	93	94	95	96	97	98	99	100	101	102
OPPORTUGATION TO THE ALMOST AND A DESCRIPTION OF A DESCRI	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No
	[227]	232.04	231.04	238.03	[237]	[244]	[243]	[247]	[247]	[251]	[252]	[257]	[258]	[259]