Physics 205 Test 3

I pledge that I have neither given nor received unauthorized assistance during the completion of this work.

Name \qquad Signature \qquad
Questions (5 for 8 pts. apiece) Answer in complete, well-written sentences WITHIN the spaces provided.

1. Waves from two slits S and Q will destructively interfere and cancel at a point P if the distance between P and S is larger than the distance between P and Q by
A. $\left(n+\frac{1}{2}\right) \lambda$ (integer n)
B. λ
C. $\frac{1}{2} n \lambda$ (n is an integer)
D. $n \lambda$ (n is an integer)
E. Other (specify).

Explain.
2. The Rutherford cross section formula $d \sigma / d \Omega$ is related to the intensity of scattering particles to different angles in a collision. Was this expression successful in describing the Davisson-Germer results for electrons scattering from ${ }^{58} \mathrm{Ni}$? Explain why it succeeded or failed.
3. The figure below shows current versus frequency of the incident light for a photoelectric effect measurement. How would the figure change if classical physics (the swimming pool model of light) provided the correct description of the photoelectric effect? Explain.

4. For experiments using the apparatus shown in the figure, which of the following possible results (if seen) about the value displayed on the ammeter would probably not be consistent with the wave model of light?
A. It is zero for some time after the light starts shining.
B. It increases as the light's intensity increases.
C. It varies as the light's wavelength changes.
D. It is zero if the wavelength is larger than a certain value.

Explain.

5. An electron beam shining on a nickel crystal is preferentially reflected in certain directions instead of being scattered uniformly in all directions. Classify this experimental result according to the choices shown below and explain your choice.
A. Results are consistent with a pure wave model.
B. Results are consistent with a pure particle model.
C. Results are consistent with either model and do not distinguish between them.
D. Cannot be explained by either model alone.

Problems (3). Clearly show all reasoning for full credit. Use a separate sheet for your work.

1. 15 pts. The value of the photoelectric work function W for zinc is about 4.24 eV . What is the maximum wavelength that light falling on a zinc cathode can have if it is to be able to eject electrons.
2. 20 pts. In a head-on collision, the distance of closest approach (DOCA) of a ${ }^{4}$ He nucleus with energy $E=6.47 \mathrm{MeV}=1.04 \times 10^{-12} J$ to the center of a nucleus is $D O C A=8.0 \mathrm{fm}=8.0 \times 10^{-15} \mathrm{~m}$. The nucleus is an atom of what element? Assume the nucleus remains at rest and the interaction is non-relativistic. The ${ }^{4} \mathrm{He}$ nucleus consists of two protons and two neutrons.
3. 25 pts. Consider the double-slit interference of helium atoms shown in the figure. The center-to-center separation between the slits is $d=8.0 \mu \mathrm{~m}$ and the detection screen is a distance $L=0.64 \mathrm{~m}$ from the slits. The helium atoms have a wavelength $\lambda=0.103 \mathrm{~nm}$. The helium nucleus consists of two protons and two neutrons (the electron mass is tiny). (a) What is their speed? (b) What is the expected theoretical distance $y_{t h}$ between the adjacent interference maxima on the detection screen?

DO NOT WRITE BELOW THIS LINE.

Physics 205 Equations

$$
\begin{aligned}
& \vec{F}_{n e t}=\sum \vec{F}_{i}=m \vec{a}=\frac{d \vec{p}}{d t} \quad v=\frac{d x}{d t} \quad v=\frac{\Delta x}{\Delta t} \quad x=\frac{1}{2} a t^{2}+v_{0} t+x_{0} \quad v=a t+v_{0} \quad a_{g}=-g \quad a_{c}=\frac{v^{2}}{r} \\
& \vec{F}_{\text {Earth }}=-m g \hat{j} \quad K E=\frac{1}{2} m v^{2} \quad K E_{0}+P E_{0}=K E_{1}+P E_{1} \quad P E_{E a r t h}=m g h \quad P E_{V}=q V \\
& \qquad \vec{p}_{i}=\vec{p}_{f} \quad \vec{p}=m \vec{v} \quad \vec{F}_{C}=k_{e} \frac{q_{1} q_{2}}{r^{2}} \hat{r} \quad \vec{E} \equiv \frac{\vec{F}}{q_{0}} \quad d \vec{E}=\frac{1}{4 \pi \epsilon_{0}} \frac{d q}{r^{2}} \hat{r} \\
& d \vec{B}=\frac{\mu_{0}}{4 \pi} \frac{I d \vec{s} \times \hat{r}}{r^{2}}=\frac{\mu_{0}}{4 \pi} \frac{q d \vec{v} \times \hat{r}}{r^{2}} \quad \vec{F}_{B}=q \vec{v} \times \vec{B} \quad\left|\vec{F}_{B}\right|=|q v B \sin \theta| \\
& \qquad \begin{array}{ll|l|l|}
\hline \text { Galilean } \\
\text { Transformation } & \begin{array}{l}
\text { Lorentz } \\
\text { Transformation } \\
\text { SI units } \\
\text { SI units }
\end{array} & \begin{array}{l}
\text { Lorentz } \\
\text { Transformation } \\
\text { SR units }
\end{array} \\
\hline x^{\prime}=x-v t & \begin{array}{l}
x^{\prime}=\gamma(x-v t) \\
y^{\prime}=y \\
y^{\prime}=y \\
z^{\prime}=z \\
z^{\prime}=z \\
t^{\prime}=t \\
v_{x}^{\prime}=v_{x}-v_{O}
\end{array} & \begin{array}{l}
x^{\prime}=\gamma(x-\beta t) \\
y^{\prime}=y \\
v_{x}^{\prime}=\frac{v_{x}-v x}{1-v_{x} v / c^{2}}
\end{array} & \begin{array}{l}
z^{\prime}=z \\
t^{\prime}=\gamma(t-\beta x) \\
v_{x}^{\prime}=\frac{v_{x}-\beta}{1-v_{x} \beta}
\end{array} \\
\hline
\end{array}
\end{aligned}
$$

Coordinate Time	Proper Time	Spacetime Interval
Time between two	Time between two	Time between two
events in an in-	events measured by	events measured by
ertial frame mea-		
sured with syn-		
chronized clocks	bame clock at	the same, inertial
both events.	clock at both events.	
$c \Delta t, \Delta t$	$\Delta \tau_{S I}, \Delta \tau_{S R}$	$\Delta s_{S I}, \Delta s_{S R}$
Frame dependent	Frame independent	Frame independent

$$
\begin{gathered}
\Delta s_{S I}^{2}=c^{2} \Delta t^{2}-\Delta d^{2}=\Delta s_{S I}^{\prime}{ }^{2} \quad \text { or } \quad \Delta s_{S R}^{2}=\Delta t^{2}-\Delta d^{2}=\Delta s_{S R}^{\prime}{ }^{2} \\
\Delta \tau_{S I}=\int_{t_{A}}^{t_{B}} \sqrt{1-\frac{v^{2}}{c^{2}}} d t \quad \text { or } \quad \Delta \tau_{S R}=\int_{t_{A}}^{t_{B}} \sqrt{1-\beta^{2}} d t \\
\Delta \tau_{S I}=\sqrt{1-v^{2} / c^{2}} \Delta t \quad \text { or } \quad \Delta \tau_{S R}=\sqrt{1-\beta^{2}} \Delta t \\
L_{S I}=L_{R} \sqrt{1-v^{2} / c^{2}} \quad \text { or } \quad L_{S R}=L_{R} \sqrt{1-\beta^{2}}
\end{gathered}
$$

$$
\begin{aligned}
& v_{x}^{\prime}=\frac{v_{x}-v}{1-v_{x} v / c^{2}} \quad v_{y}^{\prime}=\frac{v_{y} \sqrt{1-v_{x}^{2} / c^{2}}}{1-v_{x} v / c^{2}} \quad K E=E-m c^{2} \quad \text { SI units } \\
& v_{x}^{\prime}=\frac{v_{x}-\beta}{1-v_{x} \beta} \quad v_{y}^{\prime}=\frac{v_{y} \sqrt{1-\beta^{2}}}{1-v_{x} \beta} \quad K E=E-m \quad \text { SR units } \\
& \underset{\sim}{p_{i}}={\underset{\sim}{\sim}}_{f} \quad \underset{\sim}{p_{1}} \cdot{\underset{\sim}{p}}_{2}=\underset{\sim}{p} 3 \cdot{\underset{\sim}{p}}_{4} \\
& \underset{\sim}{p}=m d \underset{\sim}{s} / d \tau=\left[m \frac{d t}{d \tau}, m \frac{d x}{d \tau}, m \frac{d y}{d \tau}, m \frac{d z}{d \tau}\right]=\frac{m}{\sqrt{1-|\vec{v}|^{2}}}[1, \vec{v}] \quad \underset{\sim}{p} \cdot \underset{\sim}{p}=E_{r}^{2}-|\vec{p}|^{2}=m^{2} \\
& \underset{\sim}{p}=m d \underset{\sim}{s} / d \tau=\left[m c \frac{d t}{d \tau}, m \frac{d x}{d \tau}, m \frac{d y}{d \tau}, m \frac{d z}{d \tau}\right]=\frac{m}{\sqrt{1-v^{2} / c^{2}}}[c, \vec{v}] \quad \underset{\sim}{p} c \cdot \underset{\sim}{p} c=E_{r}^{2}-|\vec{p} c|^{2}=\left(m c^{2}\right)^{2} \quad \text { SI units } \\
& y=A \sin (k x-\omega t+\phi) \quad k \lambda=\omega T=2 \pi \quad E=E_{m} \sin (k x-\omega t+\phi) \quad B=B_{m} \sin (k x-\omega t+\phi) \quad \phi=k \delta \\
& \vec{S}=\frac{1}{\mu_{0}} \vec{E} \times \vec{B} \quad E=c B \quad\langle | \vec{S}| \rangle=I=\frac{E^{2}}{2 \mu_{0} c}=\frac{\text { energy }}{\text { area } \cdot \text { time }} \quad c=\frac{\lambda}{T}=\lambda f \\
& \delta=d \sin \theta=m \lambda(m=0, \pm 1, \ldots) \quad \text { (bright) } \quad \delta=a \sin \theta=m \lambda(m= \pm 1, \ldots) \quad \text { (dark) } \quad \sin \theta \approx \frac{y_{m}}{L} \\
& I_{\text {int }}=I_{m} \cos ^{2}\left(\frac{\pi d}{\lambda} \sin \theta\right) \quad I_{d i f f}=I_{m}\left[\frac{\sin \left(\frac{\pi a}{\lambda} \sin \theta\right)}{\frac{\pi a}{\lambda} \sin \theta}\right]^{2} \quad E=h f \quad K E_{\text {max }}=e V_{\text {stop }}=h f-W \quad c=\lambda f \\
& \frac{d \sigma}{d \Omega}=\left(\frac{Z_{1} Z_{2} e^{2}}{4 E}\right)^{2} \frac{1}{\sin ^{4}\left(\frac{\theta_{s}}{2}\right)}=\frac{\text { area }}{\text { steradian }} \quad d \Omega=r^{2} \sin \theta d \theta d \phi \quad M E=\frac{1}{2} m v^{2}+P E \quad M E_{i}=M E_{f} \\
& P E=q V \quad P E=\frac{Z_{1} Z_{2} e^{2}}{r}=\frac{k_{e} q_{1} q_{2}}{r} \quad p=\frac{h}{\lambda} \quad K E=\frac{p^{2}}{2 m} \quad K E_{i}=K E_{f} \text { (elastic) } \quad \vec{p}_{i}=\vec{p}_{f} \quad \vec{p}=m \vec{v} \\
& \frac{d}{d x}(f(u))=\frac{d f}{d u} \frac{d u}{d x} \quad \int x^{n} d x=\frac{x^{n+1}}{n+1} \quad \int \frac{1}{x} d x=\ln x \quad \vec{A} \cdot \vec{B}=A B \cos \theta \quad|\vec{A} \times \vec{B}|=|A B \sin \theta| \\
& \frac{d}{d x}\left(x^{n}\right)=n x^{n-1} \quad \frac{d e^{x}}{d x}=e^{x} \quad \frac{d}{d x}(\ln x)=\frac{1}{x} \quad \frac{d}{d x}(\cos a x)=-a \sin a x \quad \frac{d}{d x}(\sin a x)=a \cos a x
\end{aligned}
$$

$$
\begin{gathered}
\langle x\rangle=\frac{1}{N} \sum_{i} x_{i} \quad \sigma=\sqrt{\frac{\sum_{i}\left(x_{i}-\langle x\rangle\right)^{2}}{N-1}} \quad C=2 \pi r \quad A=4 \pi r^{2} \quad V=A h \quad V=\frac{4}{3} \pi r^{3} \\
\frac{d f(x)}{d x}=\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x} \quad \int_{a}^{b} f(x) d x=\lim _{\Delta x \rightarrow 0} \sum_{n=1}^{N} f(x) \Delta x
\end{gathered}
$$

Physics 205 Constants and Conversions

