Riding the Train

You're on a long train back to Richmond from fall break. You're in the last car in the train and you get up to get a drink from the club car. The speed of the train is \vec{v}_{t}. Your speed walking up the middle of the train is \vec{v}_{p}. What is your velocity?

Riding the Train

You're on a long train back to Richmond from fall break. You're in the last car in the train and you get up to get a drink from the club car. The speed of the train is \vec{v}_{t}. Your speed walking up the middle of the train is \vec{v}_{p}. What is your velocity?

Galilean
Transformations
$x^{\prime}=x-v t$
$y^{\prime}=y$
$z^{\prime}=z$
$t^{\prime}=t$
$v_{x}^{\prime}=v_{x}-v_{O}$
$v_{y}^{\prime}=v_{y}$
$v_{z}^{\prime}=v_{z}$

Star Trek!!

A large armada of Federation spaceships moves with a speed $0.95 c$ away from the nearby Kronos system. A scout ship launched from the trailing ship in the armada moves at a speed 0.7 c relative to its mother ship towards the front of the fleet. The scout ship's speed is measured relative to the fleet. What is the speed of the scout ship as measured on Kronos?

c - The Ultimate Speed Limit

SPEED LIMIT
 670,616,629 MPH

Stop! In the name of Einstein!

Stop! In the name of Einstein!

Stop! In the name of Einstein!

Stop! In the name of Einstein!

Stop! In the name of Einstein!

The Universal Speed Limit (Part 1)

A spaceship (Observer 1 in the figure) is moving away from an Earth-bound observer (0) at a high speed v_{0} as measured by Observer 0 . It emits a periodic light pulse the observer on the Earth (0) detects. The time between pulses measured by Observer 1 is Δt_{1}. The time between pulses measured by Observer 0 is Δt_{0}. How is Δt_{0} related to Δt_{1} ?

The Universal Speed Limit (Part 2)

Two spaceships (1 and 2 in the figure) are moving away from an Earth-bound observer (0) at different speeds. The fast, lead ship (2) emits a periodic light pulse the observer on the second, slow ship (1) receives and immediately relays to Earth (0). The speeds and time intervals are defined below.

$v_{0}:$ speed of 1 from 0	$\Delta t_{0}:$ time interval on 0
$v_{1}:$ speed of 2 from 1	$\Delta t_{1}:$ time interval on 1
	$\Delta t_{2}:$ time interval on 2
$v_{2}:$ speed of 2 from 0	

(1) How is Δt_{0} related to Δt_{1} ?
(2) How is Δt_{1} related to Δt_{2} ?
(3) How is Δt_{0} related to Δt_{2} ?
(4) What is v_{2} in terms of v_{0} and v_{1} ?

Observer 0

Observer 1

Spaceships with pulsing light

Observer 2

Star Trek!!

A large armada of Federation spaceships moves with a speed $0.95 c$ relative to the nearby Kronos system. A scout ship launched from the trailing ship in the armada moves at a speed $0.7 c$ towards the front of the fleet. The scout ship's speed is measured relative to the fleet. What is the speed of the scout ship as measured on Kronos?

