Another Paradox

Consider the two twins again. One sets out at the age of 25 on a spaceship from Earth at a speed of $0.99 c$ where c is the speed of light. The Earthbound twin goes on about her/his business accumulating the normal accouterments of advancing age (gray hair, drooping body parts, etc.). After twenty years have passed for the Earthbound twin, the spacefaring one returns. In the frame of the Earthbound twin what distance did the traveling twin cover during his/her trip? What distance did the traveling twin measure in his/her frame?

The Pole and Barn Paradox

A ridiculously fast pole vaulter named Anna runs with her 10-meter long pole at $v_{A}=0.8 c$ in the positive x direction. She runs into an 8 -meter-long barn, which has doors on both sides. Here's what happens, according to farmer Bob, standing inside the barn:

- The pole is length-contracted so that it's shorter than the barn.
- When the pole is centered inside the barn, Bob pushes a button and both doors shut very quickly with the pole entirely inside the barn.
- Bob says, 'Ah-ha! I've closed Anna's pole inside the barn.'

But here's what happens according to Anna:

- Her pole is 10 meters long.
- The barn is length-contracted to less than 8 meters long.
- Anna says, 'My pole couldn't possibly have been closed inside the barn!'

Which one is right?

What is Length?

(1) Recall one of our definitions of time.

What is Length?

(1) Recall one of our definitions of time. What you measure with a clock.

What is Length?

6

(1) Recall one of our definitions of time. What you measure with a clock.
(2) What is Length?

What is Length?

(1) Recall one of our definitions of time. What you measure with a clock.
(2) What is Length? What you measure with a ruler.

What is Length?

(1) Recall one of our definitions of time. What you measure with a clock.
(2) What is Length? What you measure with a ruler.
(3) Length is the distance between two simultaneous events at the ends of the object.

What is Length?

9

(1) Recall one of our definitions of time. What you measure with a clock.
(2) What is Length? What you measure with a ruler.
(3) Length is the distance between two simultaneous events at the ends of the object.

Coordinates For Length Contraction

Coordinates For Length Contraction

Hyperbolic Graph Paper
 12

Drawing the Diagram x^{\prime} Axis - 1

Consider 3 events:
(1) A-pulse leaves origin at $t_{o}^{\prime}=-T$.
(2) B-reflects off a mirror at $\left(x_{1}^{\prime}, t_{1}^{\prime}\right)$.
(3) C - arrives at the origin at $t^{\prime}=+T$.

Drawing the Diagram x^{\prime} Axis - 1

Consider 3 events:
(1) A-pulse leaves origin at $t_{o}^{\prime}=-T$.
(2) B-reflects off a mirror at $\left(x_{1}^{\prime}, t_{1}^{\prime}\right)$.
(3) C - arrives at the origin at $t^{\prime}=+T$.

Drawing the Diagram x^{\prime} Axis - 1

Consider 3 events:

(1) A-pulse leaves origin at $t_{o}^{\prime}=-T$.
(2) B - reflects off a mirror at $\left(x_{1}^{\prime}, t_{1}^{\prime}\right)$.
(3) C - arrives at the origin at $t^{\prime}=+T$.

Drawing the Diagram x^{\prime} Axis - 2

Consider 3 events:
(1) A-pulse leaves origin at $t_{o}^{\prime}=-T$.
(2) B-reflects off a mirror at $\left(x_{1}^{\prime}, t_{1}^{\prime}\right)$.
(3) C - arrives at the origin at $t^{\prime}=+T$.

Drawing the Diagram x^{\prime} Axis - 2

Consider 3 events:
(1) A-pulse leaves origin at $t_{o}^{\prime}=-T$.
(2) B - reflects off a mirror at $\left(x_{1}^{\prime}, t_{1}^{\prime}\right)$.
(3) C - arrives at the origin at $t^{\prime}=+T$.

Drawing the Diagram x^{\prime} Axis - 2

Consider 3 events:

(1) A-pulse leaves origin at $t_{o}^{\prime}=-T$.
(2) B - reflects off a mirror at $\left(x_{1}^{\prime}, t_{1}^{\prime}\right)$.
(3) C - arrives at the origin at $t^{\prime}=+T$.

Drawing the Diagram x^{\prime} Axis - 3

Consider 3 events:
(1) A-pulse leaves origin at $t_{o}^{\prime}=-T$.
(2) B-reflects off a mirror at $\left(x_{1}^{\prime}, t_{1}^{\prime}\right)$.
(3) C - arrives at the origin at $t^{\prime}=+T$.

Drawing the Diagram x^{\prime} Axis - $3 \quad 20$

Consider 3 events:
(1) A-pulse leaves origin at $t_{o}^{\prime}=-T$.
(2) B - reflects off a mirror at $\left(x_{1}^{\prime}, t_{1}^{\prime}\right)$.
(3) C - arrives at the origin at $t^{\prime}=+T$.

Drawing the Diagram x^{\prime} Axis - 3

Consider 3 events:

(1) A-pulse leaves origin at $t_{o}^{\prime}=-T$.
(2) B - reflects off a mirror at $\left(x_{1}^{\prime}, t_{1}^{\prime}\right)$.
(3) C - arrives at the origin at $t^{\prime}=+T$.

Drawing the Diagram x^{\prime} Axis - 4

- Events A, O, and C are at the origin so they define the t^{\prime} axis.
- Events A and C must be symmetric to O so $\overline{A O}=\overline{O C}$.
- Events O and B occur at $t^{\prime}=0$ so they define the x^{\prime} axis.
- Let a light pulse be emitted from the origin going in the positive x^{\prime} direction.
- $\triangle A B C$ and $\triangle O E C$ have the same internal angles so they are similar.
- The hypotenus of $\triangle A B C$ is twice as long as $\triangle O E C$ because $\overline{A O}=\overline{O C}$.
$\therefore \overline{B C}=2 \times \overline{E C}$.
- $\therefore \triangle O E C$ similar to $\triangle O E B$
- $\triangle O E C$ and $\triangle O E B$ share $\overline{O E}$.
$\therefore \overline{C E}=\overline{B E}$.
- $\therefore \alpha_{1}=\alpha_{2}$

- $\overline{O E}$ has a slope of 1 so $\theta_{1}=\theta_{2}$

Drawing the Diagram x^{\prime} Axis - 5

Plotting A Point

24

Given the values $\left(x_{0}^{\prime}, t_{0}^{\prime}\right)$, where do you draw them?

Blue line - origin world line

Plotting A Point

Given the values $\left(x_{0}^{\prime}, t_{0}^{\prime}\right)$, where do you draw them?

Blue line - origin world line
Red Dashed line - parallel world lines

Plotting A Point

26

Given the values $\left(x_{0}^{\prime}, t_{0}^{\prime}\right)$, where do you draw them?

Blue line - origin world line
Red Dashed line - parallel world lines

Plotting A Point

Given the values $\left(x_{0}^{\prime}, t_{0}^{\prime}\right)$, where do you draw them?

Blue line - origin world line
Red Dashed line - parallel world lines

The Steps

(1) Mark x scale.
(2) Mark t scale.
(3) Draw t^{\prime} with slope $=1 / v$.
(9) Draw x^{\prime}, slope $=v$.
(5) Mark point in Home.
(0) Draw x_{0}^{\prime} line.
(0) Trace closest hyperbola to x scale and get x^{\prime}.
(8) Draw t_{0}^{\prime} line.
(9) Trace closest hyperbola to t scale and get t^{\prime}.

An Example

What are the coordinates in the Other frame moving with $\beta=2 / 5$ for a point $\left(x_{0}, t_{0}\right)=(2 s, 0)$ in the Home frame?

Blue line - origin world line
Red Dashed line - parallel world lines

An Example

What are the coordinates in the Other frame moving with $\beta=2 / 5$ for a point $\left(x_{0}, t_{0}\right)=(2 s, 0)$ in the Home frame?

Blue line - origin world line
Red Dashed line - parallel world lines

An Example

What are the coordinates in the Other frame moving with $\beta=2 / 5$ for a point $\left(x_{0}, t_{0}\right)=(2 s, 0)$ in the Home frame?

Blue line - origin world line
Red Dashed line - parallel world lines

An Example

32

What are the coordinates in the Other frame moving with $\beta=2 / 5$ for a point $\left(x_{0}, t_{0}\right)=(2 s, 0)$ in the Home frame?

Blue line - origin world line
Red Dashed line - parallel world lines

The Lorentz Transformations

Galilean	Lorentz
$x^{\prime}=x-v t$	
$y^{\prime}=y$	
$z^{\prime}=z$	
$t^{\prime}=t$	
$u_{x}^{\prime}=u_{x}-v$	
$u_{y}^{\prime}=u_{y}$	
$u_{z}^{\prime}=u_{z}$	

primes refer to the frame moving with velocity v.
v - velocity of moving frame.
$u_{i}-i^{\text {th }}$ component of the velocity of an object in the stationary frame.
$u_{i}^{\prime}-i^{t h}$ component of the velocity of an object in the moving frame.
$\gamma=\frac{1}{\sqrt{1-v^{2} / c^{2}}}$ where c is the speed of light.

The Lorentz Transformations

Galilean	Lorentz
$x^{\prime}=x-v t$	$x^{\prime}=\gamma(x-v t)$
$y^{\prime}=y$	$y^{\prime}=y$
$z^{\prime}=z$	$z^{\prime}=z$
$t^{\prime}=t$	$t^{\prime}=\gamma\left(t-v x / c^{2}\right)$
$u_{x}^{\prime}=u_{x}-v$	$u_{x}^{\prime}=\frac{u_{x}-v}{1-u_{x} v / c^{2}}$
$u_{y}^{\prime}=u_{y}$	$u_{y}^{\prime}=u_{y}$
$u_{z}^{\prime}=u_{z}$	$u_{z}^{\prime}=u_{z}$

primes refer to the frame moving with velocity v.
v - velocity of moving frame.
$u_{i}-i^{\text {th }}$ component of the velocity of an object in the stationary frame.
$u_{i}^{\prime}-i^{t h}$ component of the velocity of an object in the moving frame.
$\gamma=\frac{1}{\sqrt{1-v^{2} / c^{2}}}$ where c is the speed of light.

Worldlines for the Example

Another Example

What are the Other coordinates if $t=4.2 s$ and $x=7.0 s$ in the Home frame and $\beta=2 / 5$?

Another Example

37

What are the Other coordinates if $t=4.2 s$ and $x=7.0 s$ in the Home frame and $\beta=2 / 5$?

Yet Another Example

What are the Home coordinates if $t^{\prime}=1.5 \mathrm{~s}$ and $x^{\prime}=5.8 \mathrm{~s}$ in the Home frame and $\beta=2 / 5$?

Yet Another Example 39

Given other coordinateas $\left(\psi_{0}^{\prime}, t_{0}^{\prime}\right)=\left(1,5,5 . d^{\prime}\right)$, whark are

The Barn and Pole Paradox - 1

- You own a barn, 8.0 m long, with automatic doors at either end, that can be opened and closed simultaneously. You also have a pole, also 10.0 m long, which does not fit in the barn.

The Barn and Pole Paradox - 1

- You own a barn, 8.0 m long, with automatic doors at either end, that can be opened and closed simultaneously. You also have a pole, also 10.0 m long, which does not fit in the barn.
- A runner takes the pole and runs at nearly the speed of light 0.8c. A stationary observer sees a pole $(10 \mathrm{~m}) \sqrt{1-0.8^{2}}=6.0 \mathrm{~m}$ long due to Lorentz contraction.

The Barn and Pole Paradox - 1

- You own a barn, 8.0 m long, with automatic doors at either end, that can be opened and closed simultaneously. You also have a pole, also 10.0 m long, which does not fit in the barn.
- A runner takes the pole and runs at nearly the speed of light $0.8 c$. A stationary observer sees a pole $(10 \mathrm{~m}) \sqrt{1-0.8^{2}}=6.0 \mathrm{~m}$ long due to Lorentz contraction.
- As the pole passes through the barn, there is a time when it is completely within the barn. You close both doors simultaneously and, at least momentarily, you have the contracted pole shut up in your barn.

The Barn and Pole Paradox - 1

- You own a barn, 8.0 m long, with automatic doors at either end, that can be opened and closed simultaneously. You also have a pole, also 10.0 m long, which does not fit in the barn.
- A runner takes the pole and runs at nearly the speed of light $0.8 c$. A stationary observer sees a pole $(10 \mathrm{~m}) \sqrt{1-0.8^{2}}=6.0 \mathrm{~m}$ long due to Lorentz contraction.
- As the pole passes through the barn, there is a time when it is completely within the barn. You close both doors simultaneously and, at least momentarily, you have the contracted pole shut up in your barn.
- Now consider the point of view of the runner. She sees the pole as stationary and the barn approaching at high speed. The pole is still 10 m long, and the barn is now less than $(8 \mathrm{~m}) \sqrt{1-0.8^{2}}=4.8 \mathrm{~m}$ long. Surely the runner is in trouble if the doors close while she is inside. Is she?

The Barn and Pole Paradox - 2

$$
\begin{gathered}
v=\frac{3}{5} c \\
L_{\text {pole }}=10 \mathrm{~m} \\
L_{\text {barn }}=8 \mathrm{~m}
\end{gathered}
$$

The Barn and Pole Paradox - 2

$$
\begin{gathered}
v=\frac{3}{5} c \\
L_{\text {pole }}=10 \mathrm{~m} \\
L_{\text {barn }}=8 \mathrm{~m}
\end{gathered}
$$

The Barn and Pole Paradox - 2

46

$$
\begin{gathered}
v=\frac{3}{5} c \\
L_{\text {pole }}=10 \mathrm{~m} \\
L_{\text {barn }}=8 \mathrm{~m}
\end{gathered}
$$

The Barn and Pole Paradox - 2

$$
\begin{gathered}
v=\frac{3}{5} c \\
L_{\text {pole }}=10 \mathrm{~m} \\
L_{\text {barn }}=8 \mathrm{~m}
\end{gathered}
$$

The Barn and Pole Paradox - 2

The Barn and Pole Paradox - 2

$$
\begin{gathered}
v=\frac{4}{5} c \\
L_{\text {pole }}=10 \mathrm{~m} \\
L_{\text {barn }}=8 \mathrm{~m}
\end{gathered}
$$

The Barn and Pole Paradox - 2

$$
\begin{gathered}
v=\frac{4}{5} c \\
L_{\text {pole }}=10 \mathrm{~m} \\
L_{\text {barn }}=8 \mathrm{~m}
\end{gathered}
$$

The Barn and Pole Paradox - 2

$$
\begin{gathered}
v=\frac{4}{5} c \\
L_{\text {pole }}=10 \mathrm{~m} \\
L_{\text {barn }}=8 \mathrm{~m}
\end{gathered}
$$

The Barn and Pole Paradox - 2

$$
\begin{gathered}
v=\frac{4}{5} c \\
L_{\text {pole }}=10 \mathrm{~m} \\
L_{\text {barn }}=8 \mathrm{~m}
\end{gathered}
$$

The Barn and Pole Paradox - 2

The Space Wars Paradox

54

Two spacecraft of equal rest length $L_{R}=100$ ns pass very close to each other as they travel in opposite directions at a relative speed $|\beta|=\frac{3}{5}$. See figure. The captain of ship O intends to fire her laser cannon at the instant her bow is lined up with the tail of ship O^{\prime}. Since O^{\prime} is Lorentz-contracted to a length of 80 ns in the frame of ship O, she expects the laser burst to miss the other ship by 20 ns. However, to the captain on ship O^{\prime}, it is ship O that has contracted to $80 n s$ so the laser burst will strike ship O^{\prime} about 20 ns behind the bow

What really happens if O carries out her plan? Construct a two-observer spacetime diagram. Define event A to be coincidence of the bow of ship O and the tail of O^{\prime} and event B to be the firing of the laser. Let A define the origin event in both frames. When and where does this event occur as measured in the O^{\prime} frame? The travel time of the laser from one ship to another is negligible. Verify your results with the Lorentz transformations.

Adapted from Spacetime Physcs by Taylor and Wheeler, 1966.

frame

100 ns

80 ns

Hyperbolic Graph Paper
 55

80 ns

Hyperbolic Graph Paper 56

$80 n s$

Resolving the Paradox

What O^{\prime} sees at $t^{\prime}=-75 n s$.

What O^{\prime} sees at $t^{\prime}=0 n s$.

