What is the Energy of the Electron?

The Coulomb force binds an electron and a proton into a hydrogen atom with a force that is mathematically identical to the gravitational force that binds the planets in our Solar System, the Moon to the Earth, etc. What is the energy of an electron?

What We Already Know.

- The Organizing Principle.

$$
\begin{aligned}
M E_{0} & =M E_{1} \\
K E_{0}+P E_{0} & =M E_{1}+P E_{1} \\
\frac{1}{2} m v_{0}^{2}+P E_{0} & =\frac{1}{2} m v_{1}^{2}+P E_{1}
\end{aligned}
$$

- The Forces

$$
\vec{F}_{\text {grav }}=-\frac{G m_{1} m_{2}}{r_{12}^{2}} \hat{r}_{12} \quad \vec{F}_{\text {coul }}=\frac{k_{e} q_{1} q_{2}}{r_{12}^{2}} \hat{r}_{12}
$$

The simulation is here.

The Kinetic Energy in Polar Coordinates - 1

The Kinetic Energy in Polar Coordinates - 1

The Kinetic Energy in Polar Coordinates - 1

The Kinetic Energy in Polar Coordinates - 2

The Kinetic Energy in Polar Coordinates - 2

The Kinetic Energy in Polar Coordinates - 2

The Kinetic Energy in Polar Coordinates - 2

The Kinetic Energy in Polar Coordinates - 3

The Kinetic Energy in Polar Coordinates - 3

The Kinetic Energy in Polar Coordinates - 3

Orbits

A Russian Artica satellite that monitors polar weather follows an elliptical orbit around the Earth at an altitude of $h=300 \mathrm{~km}$ above the surface (radius $r_{s}=6.67 \times 10^{6} \mathrm{~m}$) at a velocity

$$
\vec{v}=4.1 \times 10^{3} \mathrm{~m} / \mathrm{s} \hat{r}+7.5 \times 10^{3} \mathrm{~m} / \mathrm{s} \hat{\theta}
$$

What is the angular momentum? What is the total energy? What is the distance of closest approach to the Earth? The satellite mass is $m_{s}=600 \mathrm{~kg}$.

$$
\begin{aligned}
& R_{\text {earth }}=6.37 \times 10^{6} \mathrm{~m} \\
& m_{\text {earth }}=5.97 \times 10^{24} \mathrm{~kg} \\
& G=6.673 \times 10^{-11} \mathrm{Nm}^{2} / \mathrm{kg}^{2}
\end{aligned}
$$

Changing Orbits

Classical Physics versus Quantum Mechanics

Classical Physics

1. Start with Newton's Laws.
2. Insert the force/potential.
3. Solve the differential equation with initial conditions

$$
\vec{F}=m \frac{d^{2} \vec{r}}{d t^{2}}
$$

where \vec{r} is the position.
4. Get the position $\vec{r}(t)$ as a function of time.

Quantum Physics

1. Start with Schroedinger's equation.
2. Insert the force/potential.
3. Solve the differential equation with initial conditions

$$
-\frac{\hbar^{2}}{2 m} \frac{d^{2} \psi}{d r^{2}}+\frac{L^{2}}{2 m r^{2}} \psi+V \psi=E \psi(\vec{r})
$$

where ψ is a wave function.
4. Get the probability $|\psi(\vec{r})|^{2}$ as a function of time.

The Postulates of Quantum Mechanics

(1) The quantum state of a particle is characterized by a wave function $\Psi(\vec{r}, t)$, which contains all the information about the system an observer can possibly obtain. The square of the magnitude of the wave function $|\Psi(\vec{r}, t)|^{2}$ is interpreted as a probability or probability density for the particle's presence.
(2) The things we measure (e.g. energy, momentum) are called observables. Each observable has a corresponding mathematical object called an operator that does 'something' to the wave function $\Psi(\vec{r}, t)$ and we obtain the value of the observable. The radial dependence of the wave function $\Psi(\vec{r}, t)$ is governed by the energy operator which generates a famous expression called the Schrödinger equation.

$$
-\frac{\hbar^{2}}{2 m}\left(\frac{d^{2}}{d r^{2}}\right) \Psi(r)+\frac{L^{2}}{2 m r^{2}} \Psi(r)+V \Psi(r)=E \Psi(r)
$$

A Theory for the Hydrogen Atom - Results

What did your ground-state wave function look like?

A Theory for the Hydrogen Atom - Results

What did your ground-state wave function look like?

Where is the Electron?

The Coulomb force binds an electron and a proton into a hydrogen atom with a force that is mathematically identical to the gravitational force that binds the planets in our Solar System, the Moon to the Earth, etc. For an electron with energy E_{e} where can it be found as a function of r where r is the distance from the proton?

A Theory for the Hydrogen Atom - Results

What did your $\mathrm{n}=3$ wave function look like?

A Theory for the Hydrogen Atom - Results

What did your $\mathrm{n}=3$ wave function look like?

A Weird Result

For $n=3, L=1$.

File Select Edit View
\square Coulomb $1 \quad v_{\mathrm{eff}, t}(\rho)=\frac{\rho(\ell+1)}{\rho^{2}}-\frac{2 Z}{\rho} \mathrm{~L}: 1.0$

The Hydrogen Electron Density Clouds

The electron probability density for the first few hydrogen atom electron orbitals shown as cross-sections. These orbitals form an orthonormal basis for the wave function of the electron. Different orbitals are depicted with different scale.

Orbits and the Effective Potential

The Hydrogen Lines

Hydrogen Quantum Numbers

Hydrogen Quantum Numbers

Hydrogen Quantum Numbers

n_{i}	n_{f}	Energy (eV)
5	2	2.82 ± 0.04
4	2	2.55 ± 0.08
3	2	1.86 ± 0.02

