Spectroscopy

The pattern of states of a quantum system is a direct consequence of the force binding the system.

Energy levels of the helium atom.

$$V = k_e \frac{q_1 q_2}{r}$$

Energy levels of the nucleon.

$$V = -\frac{4}{3}\frac{\alpha_s \hbar c}{r} + kr$$

Spectroscopy

The pattern of states of a quantum system is a direct consequence of the force binding the system.

Energy levels of the helium atom.

$$V = k_e \frac{q_1 q_2}{r}$$

Energy levels of the nucleon.

$$V = -\frac{4}{3}\frac{\alpha_s\hbar c}{r} + kr$$

The Optical Spectrum of Hydrogen

The Optical Spectrum of Hudrogen -p. 2/12

Double-Slit Interference

Interfering waves

Copyright © 2004 Pearson Education, Inc., publishing as Addison Wesley

Double Slit Interference

Double Slit Interference

Double Slit Interference

The Optical Spectrum of Hudrogen – p. 6/12

The Hydrogen Lines

$$\frac{1}{\lambda} = R_H \left(\frac{1}{n_f^2} - \frac{1}{n_i^2} \right)$$

 R_H - Rydberg constant

The Gaussian Distribution

The Differential

The Differential

The Optical Spectrum of Hydrogen -p. 9/12

Which Point is Best?

Which Point is Best?

Identifying Your Unknown - 1

1. Pattern recognition - http://astro.u-strasbg.fr/~koppen/discharge/.

2. Listing of hydrogen data from website (wavelength (Å) and relative intensity).

3970.07	8
4101.74	15
4340.47	30
4861.33	80
6562.72	120
6562.85	180

Identifying Your Unknown - 2

3. Quantitative comparison for hydrogen in units of σ .

Line	My Results (Å)	NIST Results (Å)	Normalized Difference
α	$6.64\pm0.09\times10^3$	6.56280×10^3	0.95
eta	$4.85\pm0.15\times10^3$	4.86133×10^3	0.11
γ	$4.39 \pm 0.06 \times 10^{3}$	4.34047×10^3	0.9