### Spectroscopy

The pattern of states of a quantum system is a direct consequence of the force binding the system.



Copyright © 2004 Pearson Education, Inc., publishing as Addison Wesley

Energy levels of the sodium atom.

$$V = k_e \frac{q_1 q_2}{r}$$



Energy levels of the nucleon.

$$V = -\frac{4}{3}\frac{\alpha_s \hbar c}{r} + kr$$

## The Optical Spectrum of Hydrogen





### **Double-Slit Interference**





Copyright © 2004 Pearson Education, Inc., publishing as Addison Wesley

### **Double Slit Interference**



#### **Double Slit Interference**





### **The Hydrogen Lines**



#### **The Gaussian Distribution**



$$y = P(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\overline{x})^2}{2\sigma^2}}$$

## Which Point is Best?



## Which Point is Best?



# **Identifying Your Unknown**

1. Pattern recognition first.





# **Identifying Your Unknown**

1. Pattern recognition first.





2. Quantitative comparison in units of  $\sigma$ .

| Line     | My Results (Å)          | NIST Results (Å)        | Normalized Difference |
|----------|-------------------------|-------------------------|-----------------------|
| lpha     | $6.64\pm0.09\times10^3$ | $6.56272\times10^{3}$   | 0.95                  |
| eta      | $4.85\pm0.15\times10^3$ | $4.86133 \times 10^{3}$ | 0.11                  |
| $\gamma$ | $4.39\pm0.06\times10^3$ | $4.34047\times 10^3$    | 0.9                   |