What Do We Know about the Fundamental Forces?

• The Universe is made of quarks, leptons and force carriers.

name	field or force carried by boson	spin	electric charge	mass (MeV/c ²)
photon	electromagnetism (light)	1	0	0
W Z	weak force (radioactivity)	1	+1,-1 0	80400 91200
gluon	strong force (nuclear force or color force)	1	0	0
graviton [predicted]	gravity	2	0	0

- The atomic nucleus is made of protons and neutrons bound by the strong force.
- The quarks are confined inside the protons and neutrons.
- Protons and neutrons are NOT confined.

FERMIONS matter constituents spin = 1/2, 3/2, 5/2,								
Leptons spin =1/2			Quarks spin =1/2					
Flavor	Mass GeV/c ²	Electric charge	Flavor	Approx. Mass GeV/c ²	Electric charge			
VL lightest neutrino*	(0-2)×10 ⁻⁹	0	u _{up}	0.002	2/3			
e electron	0.000511	-1	d down	0.005	-1/3			
$\mathcal{V}_{\mathbf{M}} \ \underset{neutrino^*}{\text{middle}}$	(0.009-2)×10 ⁻⁹	0	C charm	1.3	2/3			
μ muon	0.106	-1	S strange	0.1	-1/3			
$v_{\rm H}$ heaviest neutrino* τ tau	(0.05-2)×10 ⁻⁹	0	t top	173	2/3			
© 2016 Conte	mporary Physics Educati	on Project	D bollom	4.2	-1/5			

The Electric and Magnetic Fields

200 BOOMDON - Thurson

The Electric and Magnetic Fields

Consider a circular loop of radius R located in the y - z plane and carrying a steady current I. What is the magnetic field at an axial point P a distance x from the center of the loop in terms of I, R, x, and any other constants?

The Magnetic Field of a Current Loop

How the Sensor Works - The Hall Effect

Copyright © 2004 Pearson Education, Inc., publishing as Addison Wesley

Copyright © 2004 Pearson Education, Inc., publishing as Addison Wesley

Copyright © 2004 Pearson Education, Inc., publishing as Addison Wesley

How the Sensor Works - Electric Current

© 2006 Brooks/Cole - Thomson

Fitting the Data

In the plot above the value of the *y*-intercept is kept at its best fit value and the slope is varied. The estimated variance is the following.

$$\sigma^{2} = \frac{\sum_{i=1}^{N} (y_{i} - (mx_{i} + b))^{2}}{N - d.o.f}$$

where N is the number of data points and d.o.f is the number of degrees of freedom (*i.e.* free parameters) in the fit.

Jerry Gilfoyle

Using the Reduced χ^2

The χ^2 and reduced χ^2 are

$$\chi^{2} = \sum_{i=1}^{N} \frac{((y_{i} - f(x_{i}))^{2}}{\sigma_{i}^{2}}$$

and

reduced
$$\chi^2 = \frac{\chi^2}{N - d.o.f}$$

where *N* is the number of data points. In *Mathematica* the estimated variance is equal to the reduced χ^2 if the proper weighting is used.

R. Muto et al., Evidence for In-Medium Modification of the ϕ Meson at Normal Nuclear Density, Phys. Rev. Lett., **98**, 042501 (2007).

Using the Pasco Hall Probe

Biot-Savart Results

Averaging a Data Range in Capstone

- Zoom in on the data range of interest.
- Click on **Highlight Region** in the *Capstone* menu bar and use the box to select the data range. See the figure.
- Click on Selected Statistics. Check Mean, and Standard Deviation. The results will be displayed at the left in the plot.
- To change the output format in the statistics box, see the next slide.

- Go to **Workbook** in the *Capstone* menu bar and select **Show Tools Palette**.
- Click Data Summary on the left.
- Click on the Show Sensor Data tab if it's not visible.
- Click on the measurement you are working on and want to change.
- Click on the gear wheel icon to the right to select **Properties**. The **Properties** window will appear.
- Click Numerical Format and set the desired properties.