What Do We Know about the Fundamental Forces?

• The Universe is made of quarks, leptons and force carriers.

name	field or force carried by boson	spin	electric charge	mass (MeV/c ²)	
photon	electromagnetism (<i>light</i>)	1	0	0	
W Z	weak force (radioactivity) 1 +1,-1 0		+1,-1 0	80400 91200	
gluon	strong force (nuclear force 1 0 or color force)		0		
graviton [predicted]	gravity	2	0	0	

- The atomic nucleus is made of protons and neutrons bound by the strong force.
- The quarks are confined inside the protons and neutrons.
- Protons and neutrons are NOT confined.

FERMIONS			matter constituents spin = 1/2, 3/2, 5/2,			
Leptons spin = 1/2			Quarks spin = 1/2			
Flavor	Mass GeV/c ²	Electric charge	Flavor	Approx. Mass GeV/c ²	Electric charge	
ve electron neutrino	<1×10 ⁻⁸	0	U up	0.003	2/3	
e electron	0.000511	-1	d down	0.006	-1/3	
ν_{μ} muon neutrino	<0.0002	0	C charm	1.3	2/3	
μ muon	0.106	-1	S strange	0.1	-1/3	
$ u_{ au}^{ ext{ tau}}_{ ext{neutrino}}$	<0.02	0	t top	175	2/3	
au tau	1.7771	-1	b bottom	4.3	-1/3	

The Electric and Magnetic Fields

$$d\vec{E} = k_e \frac{dq\hat{r}}{r^2}$$

The Electric and Magnetic Fields

$$d\vec{E} = k_e \frac{dq\hat{r}}{r^2}$$

$$d\vec{B} = k_m \frac{Id\vec{s} \times \hat{r}}{r^2}$$

The Magnetic Field of a Current Loop

Consider a circular loop of radius R located in the y - z plane and carrying a steady current I. What is the magnetic field at an axial point P a distance x from the center of the loop in terms of I, R, x, and any other constants?

The Magnetic Field of a Current Loop

How the Sensor Works - The Hall Effect

In the plot above the value of the y-intercept is kept at its best fit value and the slope is varied. The estimated variance is the following.

$$\sigma^2 = \frac{\sum_{i=1}^{N} (y_i - (mx_i + b))^2}{N - d.o.f}$$
(1)

where N is the number of data points and d.o.f is the number of degrees of freedom (*i.e.* free parameters) in the fit.

Using the Reduced χ^2 :ounts/[6.7MeV/c² βγ<1.25 βγ<1.25 Cu counts/[6.7MeV/c² The χ^2 and reduced χ^2 are defined as $\chi^{2} = \sum_{i=1}^{N} \frac{\left((y_{i} - f(x_{i}))^{2} \right)}{\sigma_{i}^{2}}$ 1.25<βγ<1.75 χ^2 /ndf=36/50 ²/ndf=83/50 counts/[6.7MeV/c²] 1.25<βγ<1.75 and $reduced \ \chi^2 = \frac{\chi^2}{N - d \ o \ f}$ 50 ²/ndf=63/50 χ²/ndf=43/50 counts/[6.7MeV/c²] ounts/[6.7MeV/c² 1.75<βγ $1.75 < \beta \gamma$ Cu where N is the number of data points. 100 /ndf=55/50 ndf=46/5 ٥ 0.9 0.9 [GeV/c²] [GeV/c²]

R. Muto, et al., Phys. Rev. Lett., 98, 042501 (2007).