Physics 132-2 Test 1

I pledge that I have neither given nor received unauthorized assistance during the completion of this work.

Signature
Name
Questions (6 for 7 pts. apiece) Answer in complete, well-written sentences WITHIN the spaces provided. Show your reasoning.

1. Suppose you were to add heat at a constant rate to a container of ice water at $0^{\circ} \mathrm{C}$ until the water begins to boil. Sketch the predicted shape of the heating curve on the graph below using a dashed line. Mark the point at which the water begins to boil. Explain your reasoning.

2. In the lab entitled The Heat of Vaporization of Nitrogen you measured the power P (J / s) going into the liquid nitrogen and the mass loss rate $R_{\text {loss }}(\mathrm{kg} / \mathrm{s})$. Are these quantities related to the latent heat of vaporization of nitrogen? If so, how? If not, why not? Explain your reasoning.
3. A known mass m_{w} of warm water is placed in a calorimeter cup and its temperature T_{0} recorded. The specific heat of water is given. A known mass m_{i} of ice at $T_{1}=0^{\circ} \mathrm{C}$ (with no water) is added to the water and allowed to melt and come to equilibrium. The final temperature of the mixture after the ice has melted T_{2} is recorded. Is there any additional information needed to determine the latent heat of fusion of the ice? Explain.
4. An Einstein solid has 3 atoms (so $N_{A}=3$) with 4 quanta. What is its multiplicity? Explain your reasoning.
5. In the lab on kinetic theory the collisions of the particles with the wall perpendicular to the x direction are elastic. Show that the average force exerted on the wall for each collision is $\left\langle F_{x}\right\rangle=2 m \frac{v_{x}}{\Delta t_{x}}$ where m is the mass of the particles. What is Δt_{x} ? (Hint: Think of the form of Newton's second law in which force is defined in terms of the change in momentum per unit time so that $\vec{F}=\frac{\overrightarrow{\Delta p}}{\Delta t}$.)
6. The two containers of monatomic gas in the figure (helium (He) on the left and Argon (Ar) on the right) are separated by a fixed barrier, are in good thermal contact with each other, and well insulated from the surrounding environment. They are in thermal equilibrium. Is $v_{r m s}$ of the helium great than, less than, or equal to $v_{r m s}$ of the argon? Explain.

Problems (3). Clearly show all reasoning for full credit. Use a separate sheet to show your work.

1. 14 pts. One mole $\left(N=6.022 \times 10^{23}\right)$ of oxygen gas is at a pressure $P=$ $6 \mathrm{~atm}=6.01 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}$ and a temperature $T=30^{\circ} \mathrm{C}$. If the gas is heated so that both the pressure and volume are doubled, what is the final temperature T_{g} ?
2. 20 pts . A certain macropartition of two Einstein solids has an entropy of $250 k_{b}$. The next macropartition closer to the most probable one has an entropy of $305 k_{b}$. If the system is initially in the first macropartition and we check it again later, how many times more likely is it to have moved to the other than to have stayed in the first?
3. 24 pts. A possible way to measure time very accurately is to use atoms and molecules falling under gravity in very deep, evacuated, vertical boreholes. The boreholes have to be kept very cold to reduce the effect of collisions with any remaining gas particles. Consider a diatomic oxygen molecule O_{2} and a hydrogen atom H in such a very long, vertical vacuum tube.
4. From what height must the diatomic oxygen molecule fall from rest in vacuum so that that its kinetic energy at the bottom is equal to the average energy of an oxygen molecule at 100 K ?
5. How far would a single hydrogen atom have to fall from rest in the same vaccum so that that its kinetic energy at the bottom equals the average energy of a hydrogen atom at $100 K$?
6. Which one (O_{2} or H) would be better/easier to build and use? Why?

DO NOT WRITE BELOW THIS LINE.

Physics 132 Equations

$$
\begin{aligned}
& \vec{F}=m \vec{a}=\frac{d \vec{p}}{d t} \quad K E=\frac{1}{2} m v^{2} \quad M E_{0}=M E_{1} \quad P E_{g}=m g h \quad \vec{p}=m \vec{v} \quad \vec{p}_{0}=\vec{p}_{1} \quad W=\int \vec{F} \cdot d \vec{s} \rightarrow P \Delta V \\
& Q=C \Delta T=c m \Delta T=n C_{v} \Delta T \quad Q_{f, v}=m L_{f, v} \quad \Delta E_{\text {int }}=Q+W \quad \vec{J}=\int \vec{F} d t=\langle\vec{F}\rangle \Delta t=\Delta \vec{p} \\
& P=\frac{|\vec{F}|}{A} \quad P V=N k_{B} T=n R T \quad\langle K E\rangle=\left\langle E_{k i n}\right\rangle=\frac{1}{2} m\left\langle v^{2}\right\rangle \quad\left\langle E_{k i n}\right\rangle=\frac{3}{2} k_{B} T \\
& E_{\text {int }}=N\left\langle E_{k i n}\right\rangle=\frac{3}{2} N k_{B} T \quad v_{r m s}=\sqrt{\left\langle v^{2}\right\rangle} \quad f=\# \operatorname{dof} \quad C_{V}=\frac{f}{2} N_{A} k_{B} \quad E_{f}=\frac{k_{B} T}{2} \quad E_{\text {int }}=\frac{f}{2} N k_{B} T \\
& \epsilon=\hbar \omega \quad E_{a t o m}=\left(n_{x}+n_{y}+n_{z}\right) \epsilon \quad E=\sum_{i=1}^{3 N} n_{i} \epsilon=q \epsilon \quad \Omega(N, q)=\frac{(q+3 N-1)!}{q!(3 N-1)!} \quad q=\frac{E}{\epsilon} \\
& \frac{d S}{d E}=\frac{1}{T} \quad E=3 N k_{B} T \quad C^{n}=\frac{1}{n} \frac{d E}{d T} \quad S=k_{B} \ln \Omega \quad\langle x\rangle=\frac{1}{N} \sum_{i} x_{i} \quad \sigma=\sqrt{\frac{\sum_{i}\left(x_{i}-\langle x\rangle\right)^{2}}{N-1}} \\
& \quad \ln (a b)=\ln a+\ln b \quad \ln \left(\frac{a}{b}\right)=\ln a-\ln b \quad \ln x^{n}=n \ln x \quad x=e^{\ln x}=\ln \left(e^{x}\right) \\
& A=\pi r^{2} \quad A=4 \pi r^{2} \quad V=A h \quad V=\frac{4}{3} \pi r^{3} \quad \frac{d}{d x} x^{n}=n x^{n-1} \quad \frac{d}{d x}(u \cdot v)=u \frac{d v}{d x}+v \frac{d u}{d x} \quad \frac{d}{d x} \ln x=\frac{1}{x} \\
& \\
& \frac{d f(x)}{d x}=\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x} \quad \int_{a}^{b} f(x) d x=\lim _{\Delta x \rightarrow 0} \sum_{n=1}^{N} f(x) \Delta x \quad \frac{d}{d y} f(x)=\frac{d f}{d x} \frac{d x}{d y}
\end{aligned}
$$

Physics 132 Constants

$T_{\text {boiling }}\left(\mathrm{N}_{2}\right)$	77 K	$T_{\text {freezing }}\left(\mathrm{N}_{2}\right)$	63 K
$T_{\text {boiling }}$ (water)	373 K or $100^{\circ} \mathrm{C}$	$T_{\text {freezing }}$ (water)	$273 \mathrm{~K} \mathrm{or} 0^{\circ} \mathrm{C}$
$L_{v}($ water $)$	$2.26 \times 10^{6} \mathrm{~J} / \mathrm{kg}$	L_{f} (water)	$3.33 \times 10^{5} \mathrm{~J} / \mathrm{kg}$
$L_{v}\left(\mathrm{~N}_{2}\right)$	$2.01 \times 10^{5} \mathrm{~J} / \mathrm{kg}$	c (copper)	$3.87 \times 10^{2} \mathrm{~J} / \mathrm{kg}-{ }^{\circ} \mathrm{C}$
c (water)	$4.19 \times 10^{3} \mathrm{~J} / \mathrm{kg}-\mathrm{K}$	c (steam)	$0.69 \mathrm{~J} / \mathrm{kg}-\mathrm{K}$
c (iron)	$4.5 \times 10^{2} \mathrm{~J} / \mathrm{kg}-k$	c (aluminum)	$9.0 \times 10^{2} \mathrm{~J} / \mathrm{kg}-\mathrm{K}$
ρ (water)	$1.0 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$	$P_{\text {atm }}$	$1.01 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}$
k_{B}	$1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}$	proton $/$ neutron mass	$1.67 \times 10^{-27} \mathrm{~kg}$
R	$8.31 \mathrm{~J} / \mathrm{K}-m o l e$	g	$9.8 \mathrm{~m} / \mathrm{s}^{2}$
0 K	$-273^{\circ} \mathrm{C}$	1 u	$1.67 \times 10^{-27} \mathrm{~kg}$
Gravitation constant	$6.67 \times 10^{-11} \mathrm{~N}-\mathrm{m}^{2} / \mathrm{kg}^{2}$	Earth's radius	$6.37 \times 10^{6} \mathrm{~m}$

