Physics 132-03 Test 3

I pledge that I have neither given nor received unauthorized assistance during the completion of this work.

Name _____

Signature _____

Questions (5 for 8 pts. apiece) Answer in complete, well-written sentences WITHIN the spaces provided.

1. In the figure below a uniform magnetic field \vec{B} causes an electron to follow the trajectory shown. What is the direction of \vec{B} . Explain.

2. The decay of atomic nuclei is often characterized by a quantity known as the half-life τ . The half-life is the period of time for one-half of the original sample to disappear via radioactive decay. This statement can be expressed mathematically as $N_{nuc}(t = \tau) = \frac{N_0}{2}$. Starting with this expression show the decay constant λ and the half-life are related by the following equation.

$$\tau = \frac{\ln 2}{\lambda}$$

3. An electromagnetic plane wave is described by

$$\vec{E} = E_{MAX} \sin\left(kz - \omega t\right) \hat{x} \tag{1}$$

$$\vec{B} = B_{MAX} \sin\left(kz - \omega t\right) \hat{y},\tag{2}$$

and has a wavelength of $\lambda = 8$ meters. All (x, y, z) points in this activity are in meters. Draw a sketch of the wave on the axes below, at time t = 0. Explain your reasoning.

4. Consider a laser beam shining on a circular hole. If a beam of light consisted of small, unseen particles that behaved as tiny billiard balls called corpuscles what would you see on a screen that is downstream from the circular hole? Now consider the same laser beam shining on a pair of narrow slits. What would you see on a screen downstream from the slits if light were made of corpuscles? Explain.

5. Does the spacing between bright spots in a double-slit interference pattern increase, decrease, or stay the same if the color of the light is switched from red ($\lambda \approx 650 \ nm$) to blue ($\lambda \approx 450 \ nm$)? Explain.

Problems (3). Clearly show all reasoning for full credit. Use a separate sheet to show your work.

- 1. 15 pts. In a region of free space, the electric and magnetic fields from an electromagnetic wave at an instant of time are $\vec{E} = (80\,\hat{i} + 32\,\hat{j} 64\,\hat{k})\,N/C$ and $\vec{B} = (0.20\,\hat{i}, + 0.08\,\hat{j} + 0.29\,\hat{k}) \times 10^{-6}\,T$. What is the magnitude of the Poynting vector for these fields?
- 2. 20 pts. The waves from a radio station can reach a home receiver by two paths. One is a straight-line path from transmitter to home, a distance of $L = 40 \ km$. The second path is by reflection from the ionosphere (a layer of ionized air molecules high in the atmosphere). Assume this reflection takes place at a point midway between receiver and transmitter and that the wavelength broadcast by the radio station is $\lambda = 1000 \ m$. The radio waves also undergo a change in phase equivalent to a shift of $\lambda/2$ upon reflection. What is the minimum, nonzero height of the ionospheric layer that produces destructive interference between the direct and reflected beams. Ignore the curvature of the Earth.

3. 25 pts. A metal strip $\ell = 6.50 \ cm \log n$, $w = 0.850 \ cm$ wide, and $t = 0.076 \ cm$ thick moves with constant velocity \vec{v} through a uniform magnetic field $B = 1.20 \times 10^{-3} \ T$ directed perpendicular to the strip, as shown in below. This motion creates a uniform field \vec{E} in the metal which exerts a force on the electrons in the metal. A potential difference $V = 3.90 \times 10^{-6} V$ is measured between points x and y across the strip. What is the speed v? Where would the electrons in the metal tend to end up?

DO NOT WRITE BELOW THIS LINE.

Physics 132-3 Equations

$$\vec{F} = m\vec{a} = \frac{d\vec{p}}{dt} \quad a_c = \frac{v^2}{r} \quad W = \int \vec{F} \cdot d\vec{s} \quad KE = \frac{1}{2}mv^2 \quad KE_0 + PE_0 = KE_1 + PE_1 \quad \vec{F}_C = k_c \frac{q_1q_2}{r^2}\hat{r}$$

$$\vec{E} = \frac{\vec{F}}{q_0} \quad \vec{E} = k_c \sum_i \frac{q_i}{r_i^2}\hat{r}_i \quad \vec{E} = \int \frac{k_c dq}{r^2}\hat{r} \quad V = k_c \sum_n \frac{q_n}{r_n} \quad V = k_c \int \frac{dq}{r} \quad V = \frac{PE}{q} \quad V = Ed$$

$$\vec{F}_B = q\vec{v} \times \vec{B} \quad |\vec{F}_B| = |qvB\sin\alpha| \quad |\vec{F}_c| = m\frac{v^2}{r}$$

$$R = \frac{dN}{dt} = -\lambda N \quad N = N_0 e^{-\lambda t} \quad t_{1/2} = \frac{\ln 2}{\lambda} \quad y = A\sin(kx - \omega t + \phi) \quad k\lambda = \omega T = 2\pi$$

$$E = E_m \sin(kx - \omega t + \phi) \quad B = B_m \sin(kx - \omega t + \phi) \quad \sin\theta = \frac{y}{\sqrt{L^2 + y^2}} \approx \frac{y}{L} \quad \sin\theta \approx \theta$$

$$\vec{S} = \frac{1}{\mu_0} \vec{E} \times \vec{B} \quad E = cB \quad |\vec{S}| = I = \frac{E^2}{2\mu_0 c} \quad c = \frac{\lambda}{T}$$

$$\delta = d\sin\theta = m\lambda \approx \frac{dy_m}{L} (m = 0, \pm 1, \pm 2, ...) \quad \delta = a\sin\theta = m\lambda \approx \frac{ay_m}{L} (m = \pm 1, \pm 2, ...) \quad \phi = k\delta$$

$$I = I_m \cos^2\left(\frac{\pi d}{\lambda}\sin\theta\right) \quad I = I_m \left[\frac{\sin\left(\frac{\pi a}{\lambda}\sin\theta\right)}{\frac{\pi a}{\lambda}\sin\theta}\right]^2 \quad I = I_m \cos^2\left(\frac{\pi d}{\lambda}\sin\theta\right) \left[\frac{\sin\left(\frac{\pi a}{\lambda}\sin\theta\right)}{\frac{\pi a}{\lambda}\sin\theta}\right]^2$$

$$x = \frac{a}{2}t^{2} + v_{0}t + x_{0} \quad v = at + v_{0} \quad \sin A + \sin B = 2\sin\left(\frac{A+B}{2}\right)\cos\left(\frac{A-B}{2}\right)$$

 $\vec{A} \times \vec{B} = (A_y B_z - A_z B_y)\hat{i} - (A_x B_z - A_z B_x)\hat{j} + (A_x B_y - A_y B_x)\hat{k} = |\vec{A}||\vec{B}|\sin\alpha \text{ (right-hand-rule direction)}$

 $\vec{A} \cdot \vec{B} = A_x B_x + A_y B_y + A_z B_z = |\vec{A}| |\vec{B}| \cos \alpha \quad \ln(ab) = \ln a + \ln b \quad \ln(a^b) = b \ln a \quad e^{ab} = e^a e^b$

$$\frac{df(x)}{dx} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x} \quad \frac{d}{dx}(f(u)) = \frac{df}{du}\frac{du}{dx}$$

$$\frac{d}{dx}(x^n) = nx^{n-1} \quad \frac{de^x}{dx} = e^x \quad \frac{d}{dx}(\ln x) = \frac{1}{x} \quad \frac{d}{dx}(\cos ax) = -a\sin ax \quad \frac{d}{dx}(\sin ax) = a\cos ax$$

$$\langle x \rangle = \frac{1}{N} \sum_{i} x_{i} \quad \sigma = \sqrt{\frac{\sum_{i} (x_{i} - \langle x \rangle)^{2}}{N - 1}} \quad A = 4\pi r^{2} \quad V = Ah \quad V = \frac{4}{3}\pi r^{3}$$

$$\int_{a}^{b} f(x)dx = \lim_{\Delta x \to 0} \sum_{n=1}^{N} f(x)\Delta x \quad \int \frac{1}{x}dx = \ln x \quad \int x^{n}dx = \frac{x^{n+1}}{n+1} \quad \int e^{ax}dx = \frac{e^{ax}}{a}$$

$$\int \frac{x}{\sqrt{x^2 + a^2}} dx = \sqrt{x^2 + a^2} \quad \int \frac{x^2}{\sqrt{x^2 + a^2}} dx = \frac{1}{2}x\sqrt{x^2 + a^2} - \frac{1}{2}a^2 \ln\left[x + \sqrt{x^2 + a^2}\right]$$

$$\int \frac{x^3}{\sqrt{x^2 + a^2}} dx = \frac{1}{3}(-2a^2 + x^2)\sqrt{x^2 + a^2} \int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln\left[x + \sqrt{x^2 + a^2}\right]$$

Physics 132-3 Constants and Conversions

Avogadro's number (N_A)	6.022×10^{23}	Speed of light (c)	$3 \times 10^8 \ m/s$
k_B	$1.38 \times 10^{-23} \ J/K$	proton/neutron mass	$1.67 \times 10^{-27} \ kg$
1 u	$1.67\times 10^{-27}~kg$	g	9.8 m/s^2
Gravitation constant	$6.67\times 10^{-11}~N-m^2/kg^2$	Earth's radius	$6.37 imes 10^6 \ m$
Coulomb constant (k_e)	$8.99 \times 10^9 \frac{N-m^2}{C^2}$	Electron mass	$9.11\times 10^{-31}~kg$
Elementary charge (e)	$1.60 \times 10^{-19} C$	Proton/Neutron mass	$1.67\times 10^{-27}~kg$
Permittivity constant (ϵ_0)	$8.85 \times 10^{-12} \frac{kg^2}{N-m^2}$	1.0 eV	$1.6\times 10^{-19}~J$
$1 { m MeV}$	$10^6 \ eV$	atomic mass unit (u)	$1.66 \times 10^{-27} \ kg$
Planck's constant (h)	$6.63\times 10^{-34}~Js$	Planck's constant (h)	$4.14\times 10^{-15}~eVs$
Permeability constant (μ_0)	$1.26\times 10^{-6}~Tm/A$	Rydberg constant (R_H)	$1.097 \times 10^7 \ m^{-1}$
Becquerel (Bq)	$1 \ decay/s$	Curie (Ci)	$3.7 \times 10^{10} Bq$

hydrogen 1					1	e	1.71	2	15	101	6.5.		6.5%	105	6.75		6.5	^{helium} 2 He
1,0079																		4.0026
lithium	beryllium											[boron	carbon	nitrogen	oxygen	fluorine	neon
3	4												5	6	7	8	9	10
Li	Be												В	С	N	Ο	F	Ne
6.941	9.0122												10.811	12.011	14.007	15.999	18.998	20.180
sodium 11	magnesium 12												aluminium 13	silicon 14	phosphorus 15	sulfur 16	chlorine 17	argon 18
																2/20		
Na	Mg												AI	Si	P	S	CI	Ar
22.990	24.305			Marinham		a lan a sa fa ana		1 minute		at start at		and the last	26.982	28.086	30.974	32.065 selenium	35.453	39.948
potassium 19	calcium 20		scandium 21	titanium 22	vanadium 23	chromium 24	manganese 25	iron 26	cobalt 27	nickel 28	copper 29	zinc 30	gallium 31	germanium 32	arsenic 33	selenium 34	bromine 35	krypton 36
K	Ca		Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.098	40.078		44.956	47.867	50.942	51,996	54.938	55.845	58.933	58.693	63.546	65.39	69,723	72.61	74.922	78.96	79.904	83.80
rubidium	strontium																	
			yttrium	zirconium	niobium	molybdenum	technetium	ruthenium	rhodium	palladium	silver	cadmium	indium	tin	antimony	tellurium	iodine	xenon
37	38		39	40	41	42	43	44	45	46	47	48	49	50	antimony 51	tellurium 52	lodine 53	xenon 54
Rb											47				antimony	tellurium		xenon
Rb 85.468	38 Sr 87.62		39 Y 88.906	40 Zr 91.224	41 Nb 92.906	42 Mo 95.94	43 Tc	44 Ru 101.07	45 Rh 102.91	46 Pd 106.42	47 Ag 107.87	48 Cd 112.41	49 In 114.82	50 Sn 118.71	antimony 51 Sb 121.76	tellurium 52 Te 127.60	53 126.90	xenon 54 Xe 131.29
Rb 85.468 caesium	38 Sr 87.62 barium	57 70	39 Y 88.906 lutetium	40 Zr 91.224 hafnium	41 Nb 92.906 tantalum	42 Mo 95.94 tungsten	43 TC [98] rhenium	44 Ru 101.07 osmium	45 Rh 102.91 iridium	46 Pd 106.42 platinum	47 Ag 107.87 gold	48 Cd 112.41 mercury	49 In 114.82 thallium	50 Sn 118.71 lead	sntimony 51 Sb 121.76 bismuth	tellurium 52 Te 127.60 polonium	53 126.90 astatine	54 54 Xe 131.29 radon
Rb 85.468 caesium 55	38 Sr 87.62 barium 56	57-70	39 Y 88.906 Iutetium 71	40 Zr 91.224 hafnium 72	41 Nb 92,906 tantalum 73	42 Mo 95.94 tungsten 74	43 TC [98] rhenium 75	44 Ru 101.07 osmium 76	45 Rh 102.91 iridium 77	46 Pd 106.42 platinum 78	47 Ag 107.87 gold 79	48 Cd 112.41 mercury 80	49 In 114.82	50 Sn 118.71 lead 82	antimony 51 Sb 121.76 bismuth 83	tellurium 52 Te 127.60 polonium 84	53 126.90 astatine 85	xenon 54 Xe 131.29 radon 86
Rb 85.468 caesium	38 Sr 87.62 barium	57-70 ★	39 Y 88.906 lutetium	40 Zr 91.224 hafnium	41 Nb 92.906 tantalum	42 Mo 95.94 tungsten	43 TC [98] rhenium	44 Ru 101.07 osmium	45 Rh 102.91 iridium	46 Pd 106.42 platinum	47 Ag 107.87 gold	48 Cd 112.41 mercury 80	49 In 114.82 thallium	50 Sn 118.71 lead	sntimony 51 Sb 121.76 bismuth	tellurium 52 Te 127.60 polonium	53 126.90 astatine	54 54 Xe 131.29 radon
Rb 85.468 caesium 55 Cs 132.91	38 Sr 87.62 barium 56 Ba 137.33		39 Y 88.906 Iutetium 71 Lu 174.97	40 Zr 91.224 hafnium 72 Hf 178.49	41 Nb 92.906 tantalum 73 Ta 180.95	42 Mo 95.94 tungsten 74 W 183.84	43 Tc [98] rhenium 75 Re 186.21	44 Ru 101.07 osmium 76 OS 190.23	45 Rh 102.91 iridium 77 Ir 192.22	46 Pd 106.42 platinum 78 Pt 195.08	47 Ag 107.87 gold 79 Au 196.97	48 Cd 112.41 mercury 80 Hg 200.59	49 In 114.82 thallium	50 Sn 118.71 lead 82 Pb 207.2	antimony 51 Sb 121.76 bismuth 83	tellurium 52 Te 127.60 polonium 84	53 126.90 astatine 85	xenon 54 Xe 131.29 radon 86
Rb 85.468 caesium 55 CS 132.91 francium	38 Sr 87.62 barium 56 Ba		39 Y 88.906 Iutetium 71 Lu 174.97 Iawrencium	40 Zr 91.224 hafnium 72 Hf 178.49 rutherfordium	41 Nb 92.906 tantalum 73 Ta 180.95 dubnium	42 Mo 95.94 tungsten 74 W 183.84 seaborgium	43 Tc (98) rhenium 75 Re 186.21 bohrium	44 Ru 101.07 osmium 76 OS 190.23 hassium	45 Rh 102.91 iridium 77 Ir 192.22 meitnerium	46 Pd 106.42 platinum 78 Pt 195.08 ununnilium	47 Ag 107.87 gold 79 Au 196.97 unununium	48 Cd 112.41 mercury 80 Hg 200.59 ununbium	49 In 114.82 thallium 81 TI	50 Sn 118.71 lead 82 Pb	antimony 51 Sb 121.76 bismuth 83 Bi	tellurium 52 Te 127.60 polonium 84 PO	53 126.90 astatine 85 At	54 Xe 131.29 radon 86 Rn
Rb 85.468 caesilum 55 CS 132.91 francium 87	38 Sr 87.62 barium 56 Ba 137.33 radium 88	★ 89-102	39 Y 88.906 Iutelium 71 Lu 174.97 Iawrencium 103	40 Zr 91.224 hafnium 72 Hf 178.49 rutherfordium 104	41 Nb 92.906 tantalum 73 Ta 180.95 dubnium 105	42 Mo 95.94 tungsten 74 W 183.84 seaborgium 106	43 Tc 198 rhenium 75 Re 186.21 bohrium 107	44 Ru 101.07 osmlum 76 OS 190.23 hassium 108	45 Rh 102.91 Irdium 77 Ir 192.22 meitnerium 109	46 Pd 106.42 platinum 78 Pt 195.08 ununnilium 110	47 Ag 107.87 gold 79 Au 196.97 unununium 111	48 Cd 112.41 mercury 80 Hg 200.59 ununbium 112	49 In 114.82 thallium 81 TI	50 Sn 118.71 lead 82 Pb 207.2 ununquadum 114	antimony 51 Sb 121.76 bismuth 83 Bi	tellurium 52 Te 127.60 polonium 84 PO	53 126.90 astatine 85 At	54 Xe 131.29 radon 86 Rn
Rb 85.468 caesium 55 CS 132.91 francium	38 Sr 87.62 barium 56 Ba 137.33 radium	*	39 Y 88.906 Iutetium 71 Lu 174.97 Iawrencium	40 Zr 91.224 hafnium 72 Hf 178.49 rutherfordium	41 Nb 92.906 tantalum 73 Ta 180.95 dubnium	42 Mo 95.94 tungsten 74 W 183.84 seaborgium	43 Tc (98) rhenium 75 Re 186.21 bohrium	44 Ru 101.07 osmium 76 OS 190.23 hassium	45 Rh 102.91 iridium 77 Ir 192.22 meitnerium	46 Pd 106.42 platinum 78 Pt 195.08 ununnilium 110	47 Ag 107.87 gold 79 Au 196.97 unununium	48 Cd 112.41 mercury 80 Hg 200.59 ununbium 112	49 In 114.82 thallium 81 TI	50 Sn 118.71 lead 82 Pb 207.2 ununguadium	antimony 51 Sb 121.76 bismuth 83 Bi	tellurium 52 Te 127.60 polonium 84 PO	53 126.90 astatine 85 At	54 Xe 131.29 radon 86 Rn

*Lanthanide series	lanthanum 57	cerium 58	praseodymium 59	neodymium 60	promethium 61	samarium 62	europium 63	gadolinium 64	terbium 65	dysprosium 66	holmium 67	erbium 68	thulium 69	ytterbium 70
Lanthanide Series	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb
	138.91	140.12	140.91	144.24	[145]	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04
	actinium	thorium	protactinium	uranium	neptunium	plutonium	americium	curium	berkelium	californium	einsteinium	fermium	mendelevium	nobelium
* * Actinide series	89	90	91	92	93	94	95	96	97	98	99	100	101	102
Actinide series	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No
	[227]	232.04	231.04	238.03	[237]	[244]	[243]	[247]	[247]	[251]	[252]	[257]	[258]	[259]

The Periodic Chart.