## Physics 132-03 Test 3

I pledge that I have neither given nor received unauthorized assistance during the completion of this work.

Name $\qquad$ Signature $\qquad$
Questions (5 for 8 pts. apiece) Answer in complete, well-written sentences WITHIN the spaces provided.

1. In the figure below a uniform magnetic field $\vec{B}$ causes an electron to follow the trajectory shown. What is the direction of $\vec{B}$. Explain.

2. The decay of atomic nuclei is often characterized by a quantity known as the half-life $\tau$. The half-life is the period of time for one-half of the original sample to disappear via radioactive decay. This statement can be expressed mathematically as $N_{n u c}(t=$ $\tau)=\frac{N_{0}}{2}$. Starting with this expression show the decay constant $\lambda$ and the half-life are related by the following equation.

$$
\tau=\frac{\ln 2}{\lambda}
$$

3. An electromagnetic plane wave is described by

$$
\begin{align*}
\vec{E} & =E_{M A X} \sin (k z-\omega t) \hat{x}  \tag{1}\\
\vec{B} & =B_{M A X} \sin (k z-\omega t) \hat{y} \tag{2}
\end{align*}
$$

and has a wavelength of $\lambda=8$ meters. All $(x, y, z)$ points in this activity are in meters. Draw a sketch of the wave on the axes below, at time $t=0$. Explain your reasoning.

4. Consider a laser beam shining on a circular hole. If a beam of light consisted of small, unseen particles that behaved as tiny billiard balls called corpuscles what would you see on a screen that is downstream from the circular hole? Now consider the same laser beam shining on a pair of narrow slits. What would you see on a screen downstream from the slits if light were made of corpuscles? Explain.
5. Does the spacing between bright spots in a double-slit interference pattern increase, decrease, or stay the same if the color of the light is switched from red ( $\lambda \approx 650 \mathrm{~nm}$ ) to blue $(\lambda \approx 450 n m)$ ? Explain.

Problems (3). Clearly show all reasoning for full credit. Use a separate sheet to show your work.

1. 15 pts. In a region of free space, the electric and magnetic fields from an electromagnetic wave at an instant of time are $\vec{E}=(80 \hat{i}+32 \hat{j}-64 \hat{k}) N / C$ and $\vec{B}=(0.20 \hat{i},+0.08 \hat{j}+0.29 \hat{k}) \times 10^{-6} T$. What is the magnitude of the Poynting vector for these fields?
2. 20 pts. The waves from a radio station can reach a home receiver by two paths. One is a straight-line path from transmitter to home, a distance of $L=$ 40 km . The second path is by reflection from the ionosphere (a layer of ionized air molecules high in the atmosphere). Assume this reflection takes place at a point midway between receiver and transmitter and that the wavelength broadcast by the radio station is $\lambda=1000 \mathrm{~m}$. The radio waves also undergo a change in phase equivalent to a shift of $\lambda / 2$ upon reflection. What is the minimum, nonzero height of the ionospheric layer that produces destructive interference between the direct and reflected beams. Ignore the curvature of the Earth.
3. 25 pts. A metal strip $\ell=6.50 \mathrm{~cm}$ long, $w=0.850 \mathrm{~cm}$ wide, and $t=0.076 \mathrm{~cm}$ thick moves with constant velocity $\vec{v}$ through a uniform magnetic field $B=1.20 \times 10^{-3} T$ directed perpendicular to the strip, as shown in below. This motion creates a uniform field $\vec{E}$ in the metal which exerts a force on the electrons in the metal. A potential difference $V=3.90 \times$ $10^{-6} V$ is measured between points $x$ and $y$ across the strip. What is the speed $v$ ? Where would the electrons in the metal tend to end up?


DO NOT WRITE BELOW THIS LINE.

## Physics 132-3 Equations

$$
\begin{aligned}
& \vec{F}=m \vec{a}=\frac{d \vec{p}}{d t} \quad a_{c}=\frac{v^{2}}{r} \quad W=\int \vec{F} \cdot d \vec{s} \quad K E=\frac{1}{2} m v^{2} \quad K E_{0}+P E_{0}=K E_{1}+P E_{1} \quad \vec{F}_{C}=k_{e} \frac{q_{1} q_{2}}{r^{2}} \hat{r} \\
& \vec{E} \equiv \frac{\vec{F}}{q_{0}} \quad \vec{E}=k_{e} \sum_{i} \frac{q_{i}}{r_{i}^{2}} \hat{r}_{i} \quad \vec{E}=\int \frac{k_{e} d q}{r^{2}} \hat{r} \quad V=k_{e} \sum_{n} \frac{q_{n}}{r_{n}} \quad V=k_{e} \int \frac{d q}{r} \quad V=\frac{P E}{q} \quad V=E d \\
& \vec{F}_{B}=q \vec{v} \times \vec{B} \quad\left|\vec{F}_{B}\right|=|q v B \sin \alpha| \quad\left|\vec{F}_{c}\right|=m \frac{v^{2}}{r} \\
& R=\frac{d N}{d t}=-\lambda N \quad N=N_{0} e^{-\lambda t} \quad t_{1 / 2}=\frac{\ln 2}{\lambda} \quad y=A \sin (k x-\omega t+\phi) \quad k \lambda=\omega T=2 \pi \\
& E=E_{m} \sin (k x-\omega t+\phi) \quad B=B_{m} \sin (k x-\omega t+\phi) \quad \sin \theta=\frac{y}{\sqrt{L^{2}+y^{2}}} \approx \frac{y}{L} \quad \sin \theta \approx \theta \\
& \vec{S}=\frac{1}{\mu_{0}} \vec{E} \times \vec{B} \quad E=c B \quad|\vec{S}|=I=\frac{E^{2}}{2 \mu_{0} c} \quad c=\frac{\lambda}{T} \\
& \delta=d \sin \theta=m \lambda \approx \frac{d y_{m}}{L}(m=0, \pm 1, \pm 2, \ldots) \quad \delta=a \sin \theta=m \lambda \approx \frac{a y_{m}}{L}(m= \pm 1, \pm 2, \ldots) \quad \phi=k \delta \\
& I=I_{m} \cos ^{2}\left(\frac{\pi d}{\lambda} \sin \theta\right) \quad I=I_{m}\left[\frac{\sin \left(\frac{\pi a}{\lambda} \sin \theta\right)}{\frac{\pi a}{\lambda} \sin \theta}\right]^{2} \quad I=I_{m} \cos ^{2}\left(\frac{\pi d}{\lambda} \sin \theta\right)\left[\frac{\sin \left(\frac{\pi a}{\lambda} \sin \theta\right)}{\frac{\pi a}{\lambda} \sin \theta}\right]^{2} \\
& x=\frac{a}{2} t^{2}+v_{0} t+x_{0} \quad v=a t+v_{0} \quad \sin A+\sin B=2 \sin \left(\frac{A+B}{2}\right) \cos \left(\frac{A-B}{2}\right)
\end{aligned}
$$

$\vec{A} \times \vec{B}=\left(A_{y} B_{z}-A_{z} B_{y}\right) \hat{i}-\left(A_{x} B_{z}-A_{z} B_{x}\right) \hat{j}+\left(A_{x} B_{y}-A_{y} B_{x}\right) \hat{k}=|\vec{A}||\vec{B}| \sin \alpha$ (right-hand-rule direction)
$\vec{A} \cdot \vec{B}=A_{x} B_{x}+A_{y} B_{y}+A_{z} B_{z}=|\vec{A}||\vec{B}| \cos \alpha \quad \ln (a b)=\ln a+\ln b \quad \ln \left(a^{b}\right)=b \ln a \quad e^{a b}=e^{a} e^{b}$

$$
\frac{d f(x)}{d x}=\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x} \quad \frac{d}{d x}(f(u))=\frac{d f}{d u} \frac{d u}{d x}
$$

$$
\begin{gathered}
\frac{d}{d x}\left(x^{n}\right)=n x^{n-1} \quad \frac{d e^{x}}{d x}=e^{x} \quad \frac{d}{d x}(\ln x)=\frac{1}{x} \quad \frac{d}{d x}(\cos a x)=-a \sin a x \quad \frac{d}{d x}(\sin a x)=a \cos a x \\
\langle x\rangle=\frac{1}{N} \sum_{i} x_{i} \quad \sigma=\sqrt{\frac{\sum_{i}\left(x_{i}-\langle x\rangle\right)^{2}}{N-1}} \quad A=4 \pi r^{2} \quad V=A h \quad V=\frac{4}{3} \pi r^{3} \\
\int_{a}^{b} f(x) d x=\lim _{\Delta x \rightarrow 0} \sum_{n=1}^{N} f(x) \Delta x \quad \int \frac{1}{x} d x=\ln x \quad \int x^{n} d x=\frac{x^{n+1}}{n+1} \quad \int e^{a x} d x=\frac{e^{a x}}{a} \\
\int \frac{x}{\sqrt{x^{2}+a^{2}}} d x=\sqrt{x^{2}+a^{2}} \quad \int \frac{x^{2}}{\sqrt{x^{2}+a^{2}}} d x=\frac{1}{2} x \sqrt{x^{2}+a^{2}}-\frac{1}{2} a^{2} \ln \left[x+\sqrt{x^{2}+a^{2}}\right] \\
\int \frac{x^{3}}{\sqrt{x^{2}+a^{2}}} d x=\frac{1}{3}\left(-2 a^{2}+x^{2}\right) \sqrt{x^{2}+a^{2}} \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x=\ln \left[x+\sqrt{x^{2}+a^{2}}\right]
\end{gathered}
$$

## Physics 132-3 Constants and Conversions

| Avogadro's number $\left(N_{A}\right)$ | $6.022 \times 10^{23}$ | Speed of light $(c)$ | $3 \times 10^{8} \mathrm{~m} / \mathrm{s}$ |
| :--- | :--- | :--- | :--- |
| $k_{B}$ | $1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}$ | proton/neutron mass | $1.67 \times 10^{-27} \mathrm{~kg}$ |
| 1 u | $1.67 \times 10^{-27} \mathrm{~kg}$ | $g$ | $9.8 \mathrm{~m} / \mathrm{s}^{2}$ |
| Gravitation constant | $6.67 \times 10^{-11} \mathrm{~N}-\mathrm{m}^{2} / \mathrm{kg}^{2}$ | Earth's radius | $6.37 \times 10^{6} \mathrm{~m}$ |
| Coulomb constant $\left(k_{e}\right)$ | $8.99 \times 10^{9} \frac{\mathrm{N-m}^{2}}{\mathrm{C}^{2}}$ | Electron mass | $9.11 \times 10^{-31} \mathrm{~kg}$ |
| Elementary charge $(e)$ | $1.60 \times 10^{-19} \mathrm{C}$ | Proton/Neutron mass | $1.67 \times 10^{-27} \mathrm{~kg}$ |
| Permittivity constant $\left(\epsilon_{0}\right)$ | $8.85 \times 10^{-12} \frac{\mathrm{~kg}^{2}}{\mathrm{N-m}}$ | 1.0 eV | $1.6 \times 10^{-19} \mathrm{~J}$ |
| 1 MeV | $10^{6} \mathrm{eV}$ | atomic mass unit $(u)$ | $1.66 \times 10^{-27} \mathrm{~kg}$ |
| Planck's constant $(h)$ | $6.63 \times 10^{-34} \mathrm{Js}$ | Planck's constant $(\mathrm{h})$ | $4.14 \times 10^{-15} \mathrm{eVs}$ |
| Permeability constant $\left(\mu_{0}\right)$ | $1.26 \times 10^{-6} \mathrm{Tm} / \mathrm{A}$ | Rydberg constant $\left(R_{H}\right)$ | $1.097 \times 10^{7} \mathrm{~m}$ |
| Becquerel $(B q)$ | $1 \mathrm{decay} / \mathrm{s}$ | Curie $(\mathrm{Ci})$ | $3.7 \times 10^{10} \mathrm{~Bq}$ |


| $\stackrel{\substack{\text { madoem } \\ \mathbf{H}}}{\substack{2}}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | （ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| （in | （ex |  |  |  |  |  |  |  |  |  |  |  |  | $\stackrel{\text { cantan }}{\substack{6}}$ | $\stackrel{\text { mimesen }}{N}$ | $\stackrel{\text { oxemen }}{\substack{\text { ond }}}$ | $\stackrel{\text { mamean }}{\text { name }}$ | $\begin{aligned} & \text { non } \\ & \mathrm{n}_{10} \end{aligned}$ |
| coma | ${ }^{\text {manesem }}$ |  |  |  |  |  |  |  |  |  |  |  | ammum |  |  | ， | and | ${ }^{18}$ |
| Na | Mg |  |  |  |  |  |  |  |  |  |  |  | Al | Si | P | S | Cl | Ar |
|  |  |  | ${ }^{\text {sanatum }}$ |  |  |  | 25 | ${ }_{26}^{100}$ | ${ }^{\text {abant }}$ | ${ }^{\text {natag }}$ | ${ }_{29}$ | 30 |  |  | ${ }_{\text {asema }}^{\text {aje }}$ | ${ }^{\text {sen }}$ | 35 |  |
| K | $\stackrel{\mathrm{Ca}}{ }$ |  | Sc | Ti | V | ${ }_{\mathrm{Cr}}^{24}$ | Mn | Fe | Co | Ni | Cu | Zn | Ga | Ge | As | Se | Br | Kr |
| （ikum | come |  |  |  | cin | ${ }_{42}$ |  | ${ }^{\text {colemam }}$ |  |  |  |  |  | ${ }^{\text {510 }}$ |  | $\substack { \text { Rest } \\ \begin{subarray}{c}{\text { chem }{ \text { Rest } \\ \begin{subarray} { c } { \text { chem } } } \\{\text { b2 }} \end{subarray}$ | ${ }_{\substack{\text { che } \\ 50}}^{\text {and }}$ | 边 |
| Rb | Sr |  | Y | Zr | Nb | Mo | Tc | Ru | Rh | Pd | Ag | Cd | In | Sn | Sb | Te | I | Xe |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 55 | ctic | 5770 | 71 | 72m | ${ }^{\text {banama }}$ | ${ }^{\text {unden }}$ | ${ }^{\text {nawim }}$ | ${ }^{\text {anmm }}$ | ${ }^{\text {＂umm }}$ | ${ }^{7}$ | ${ }^{\text {ama }}$ | ${ }^{\text {maxam }}$ | 81 | 年82 | ${ }^{83}$ | cos | ${ }^{\text {cheme }}$ | ${ }^{86}$ |
| Cs | Ba | ＊ | Lu | Hf | Ta | W | Re | Os | Ir | Pt | Au | Hg | TI | Pb | Bi | Po | At | Rn |
|  | ${ }_{\text {ancmim }}$ |  | 103 | 104 | 105 | 106 | 107 | ${ }^{\text {masiom }}$ | memen | undile | 111 | 隹 |  | － |  |  |  |  |
| Fr | Ra | ＊ | Lr | Rf | Db | Sg | Bh | ${ }_{\text {cean }}$ | Mt | Uun | Uuu | Uub |  | Uuq |  |  |  |  |


| ＊Lanthanide series |  | ${ }_{\text {cen }}^{\substack{\text { cumm } \\ \text { ce }}}$ | ${ }_{\text {Pr }}$ | ${ }^{\text {Na }}$ | Pm | Sm | ${ }_{\text {en }}$ | Gd | ${ }_{\text {Tb }}^{\text {andm }}$ | Dy | no | ${ }_{\text {Er }}^{\text {abum }}$ | ${ }_{\text {Tmam }}^{\text {¢mam }}$ | Yb |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ＊＊Actinide series |  |  |  | ${ }^{\text {and }}$ |  |  | ctick | ${ }^{6}$ |  | ${ }^{98}$ | 隹 | 100 | 101 | ${ }^{102}$ |
|  | Ac | Th | Pa | U | Np | Pu | Am | Cm | Bk | Cf | Es | Fm | Md | No |

The Periodic Chart．

