Physics 132-2 Test 2

I pledge that I have neither given nor received unauthorized assistance during the completion of this work.

Name \qquad Signature \qquad
Questions (5 for 8 pts. apiece) Answer in complete, well-written sentences WITHIN the spaces provided.

1. The first graph below shows the electric potential $V(x)$ along the x axis. For this graph of $V(x)$ draw a qualitative graph of the electric field $\vec{E}(x)$. Explain your reasoning.

2. The plot shows the entropy for two Einstein solids alone (S_{A} and S_{B}) and in contact $\left(S_{A B}\right)$ as a function of E_{A}, the energy in Solid A. If the energy E_{A} of solid A increases what happens to $d S_{A} / d q_{A}$ in your plot? Do the temperature and $d S_{A} / d q_{A}$ change in the same way or in a different way as E_{A} increases? Explain.

3. Consider the electric dipole shown below. Both of the charges have the same magnitude. The positive charge is red, the negative blue. Draw equipotential lines around each of the charges and indicate the sign of the electric potential. Draw representative equipotentials that cover the available range. Explain your reasoning.

4. Consider the current \mathcal{I} shown below. In what direction does the magnetic field point due to this current? Explain your reasoning.

5. The figure shows the path of an electron in a region of uniform magnetic field. The path consists of two straight sections, each between a pair of uniformly charged plates, and two half-circles. Which plate is at the higher positive electric potential in the top pair of plates and the bottom pair?

Problems (3). Clearly show all reasoning for full credit. Use a separate sheet to show your work.

1. 15 pts. Three point charges are arranged as shown in the figure. (a) What is the vector electric field \vec{E} the charges q_{1} and q_{2} together create at the origin? (b) What is the vector force on the q_{3} charge?

DO NOT WRITE BELOW THIS LINE.

Problems (3). Clearly show all reasoning for full credit. Use a separate sheet to show your work.
2. 20 pts. A singly-charged positive ion has a mass $m=6.4 \times 10^{-26} \mathrm{~kg}$. After being accelerated from rest through an electric potential difference $V=$ $1000 V$, the ion enters a magnetic field of $|\vec{B}|=2.0 \mathrm{~T}$ along a direction perpendicular to the direction of the field. Starting from Newton's Second Law $(\vec{F}=m \vec{a})$, what is the radius r of the path of the ion in the field?
3. 25 pts. As shown in the figure two parallel plates each with a plate area of $A=8.5 \mathrm{~cm}^{2}$ and a separation of $d_{0}=3.0 \mathrm{~mm}$ between the plates, are charged by a $V=6.0 V$ battery. They are then disconnected from the battery and pulled apart (without discharge) to a separation of $d_{1}=8.0 \mathrm{~mm}$. Neglecting fringe effects of the field near the edges, (a) what is the initial electric field between the plates, (b) the final field after they are pulled apart, and (c) the charge on each plate?

DO NOT WRITE BELOW THIS LINE.

Physics 132-02 Equations Test 2

$$
\begin{gathered}
E_{\text {atom }}=\left(n_{x}+n_{y}+n_{z}+\frac{3}{2}\right) \hbar \omega_{0} \quad E=\sum_{i=1}^{3 N} n_{i} \epsilon=q \hbar \omega_{0} \quad \Omega(N, q)=\frac{(q+3 N-1)!}{q!(3 N-1)!} \\
S=k_{B} \ln \Omega \quad \frac{1}{T}=\frac{d S}{d E} \quad q=\frac{E}{\hbar \omega_{0}} \quad C=\frac{1}{n} \frac{d E}{d T} \quad E=3 N k_{B} T \\
\vec{F}_{G}=-G \frac{m_{1} m_{2}}{r_{12}^{2}} \hat{r} \quad \vec{F}_{C}=k_{e} \frac{q_{1} q_{2}}{r_{12}^{2}} \hat{r} \quad \vec{E} \equiv \frac{\vec{F}}{q_{0}} \quad \vec{E}=k_{e} \sum_{i} \frac{q_{i}}{r_{i}^{2}} \hat{r}_{i} \quad \vec{E}=k_{e} \int \frac{d q}{r^{2}} \hat{r} \quad k_{e}=\frac{1}{4 \pi \epsilon_{0}} \\
\vec{E}_{\text {dipole }}=k_{e} \frac{q(2 a)}{\left(x^{2}+a^{2}\right)^{3 / 2}} \hat{j} \quad \vec{E}_{\text {ring }}=k_{e} \frac{q x}{\left(x^{2}+R^{2}\right)^{3 / 2}} \hat{i} \quad \vec{E}_{p l a n e}=2 \pi k_{e} \eta \hat{k}=\frac{\eta}{2 \epsilon_{0}} \hat{k} \\
\vec{E}_{d i s k}=2 \pi k_{e} \eta\left[1-\frac{z}{\sqrt{z^{2}+R^{2}}}\right] \hat{k}=\frac{\eta}{2 \epsilon_{0}}\left[1-\frac{z}{\sqrt{z^{2}+R^{2}}}\right] \hat{k} \\
W \equiv \int \vec{F} \cdot d \vec{s} \quad \Delta V \equiv \frac{\Delta P E}{q_{0}}=-\int_{A}^{B} \vec{E} \cdot d \vec{s} \quad V=k_{e} \frac{q}{r} \quad V=k_{e} \sum_{i} \frac{q_{i}}{r_{i}} \\
V=k_{e} \int \frac{d q}{r} \quad V=E d \quad I=\frac{d Q}{d t} \quad Q=\int I d t \quad V=I R \quad P=I V \quad R_{\text {equiv }}=\sum R_{i}
\end{gathered}
$$

The algebraic sum of the potential changes $\quad I=n e v_{d} A$ across all the elements of a closed loop is zero.

$$
\begin{gathered}
\vec{F}_{B}=q \vec{v} \times \vec{B} \quad\left|\vec{F}_{B}\right|=|q v B \sin \alpha| \quad \vec{B}=k_{m} \int \frac{I d \vec{s} \times \hat{r}}{r^{2}} \quad k_{m}=\frac{\mu_{0}}{4 \pi} \quad \vec{B}_{\text {ring }}=\frac{\mu_{o} I R^{2}}{2} \frac{1}{\left(x^{2}+R^{2}\right)^{3 / 2}} \hat{i} \\
K E_{0}+P E_{0}=K E_{1}+P E_{1} \quad K E=\frac{1}{2} m v^{2} \quad P E=q V \\
\vec{F}=m \vec{a} \quad\left|\vec{F}_{c e n t}\right|=m \frac{v^{2}}{r} \quad x=\frac{a}{2} t^{2}+v_{0} t+x_{0} \quad v=a t+v_{0} \\
\frac{d x^{n}}{d x}=n x^{n-1} \quad \frac{d f(u)}{d x}=\frac{d f}{d u} \frac{d u}{d x} \quad \frac{d}{d x} f(x) \cdot g(x)=f \frac{d g}{d x}+g \frac{d f}{d x} \\
\langle x\rangle=\frac{1}{N} \sum_{i} x_{i} \quad \sigma=\sqrt{\frac{\sum_{i}\left(x_{i}-\langle x\rangle\right)^{2}}{N-1}} \quad A=4 \pi r^{2} \quad V=A h \quad V=\frac{4}{3} \pi r^{3} \\
\vec{A} \times \vec{B}=\left(A_{y} B_{z}-A_{z} B_{y}\right) \hat{i}-\left(A_{x} B_{z}-A_{z} B_{x}\right) \hat{j}+\left(A_{x} B_{y}-A_{y} B_{x}\right) \hat{k}
\end{gathered}
$$

$$
\begin{gathered}
\frac{d f(x)}{d x}=\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x} \quad \int_{a}^{b} f(x) d x=\lim _{\Delta x \rightarrow 0} \sum_{n=1}^{N} f(x) \Delta x \quad \frac{d \ln x}{d x}=\frac{1}{x} \\
\int \frac{1}{x} d x=\ln x \quad \int x^{n} d x=\frac{x^{n+1}}{n+1} \quad \int e^{a x} d x=\frac{e^{a x}}{a} \quad \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x=\ln \left[x+\sqrt{x^{2}+a^{2}}\right] \\
\int \frac{x}{\sqrt{x^{2}+a^{2}}} d x=\sqrt{x^{2}+a^{2}} \int \frac{x^{2}}{\sqrt{x^{2}+a^{2}}} d x=\frac{1}{2} x \sqrt{x^{2}+a^{2}}-\frac{1}{2} a^{2} \ln \left[x+\sqrt{x^{2}+a^{2}}\right] \\
\int \frac{x^{3}}{\sqrt{x^{2}+a^{2}}} d x=\frac{1}{3}\left(-2 a^{2}+x^{2}\right) \sqrt{x^{2}+a^{2}}
\end{gathered}
$$

Physics 132-3 Constants

$T_{\text {boiling }}\left(\mathrm{N}_{2}\right)$	77 K	$T_{\text {freezing }}\left(\mathrm{N}_{2}\right)$	63 K
$T_{\text {boiling }}$ (water)	373 K or $100^{\circ} \mathrm{C}$	$T_{\text {freezing }}$ (water)	$273 \mathrm{~K} \mathrm{or} 0^{\circ} \mathrm{C}$
$L_{v}($ water $)$	$2.26 \times 10^{6} \mathrm{~J} / \mathrm{kg}$	L_{f} (water)	$3.33 \times 10^{5} \mathrm{~J} / \mathrm{kg}$
$L_{v}\left(\mathrm{~N}_{2}\right)$	$2.01 \times 10^{5} \mathrm{~J} / \mathrm{kg}$	c (copper)	$3.87 \times 10^{2} \mathrm{~J} / \mathrm{kg}-{ }^{\circ} \mathrm{C}$
c (water)	$4.19 \times 10^{3} \mathrm{~J} / \mathrm{kg}-\mathrm{K}$	c (steam)	$0.69 \mathrm{~J} / \mathrm{kg}-\mathrm{K}$
c (iron)	$4.5 \times 10^{2} \mathrm{~J} / \mathrm{kg}-\mathrm{k}$	c (aluminum)	$9.0 \times 10^{2} \mathrm{~J} / \mathrm{kg}-\mathrm{K}$
ρ (water)	$1.0 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$	$P_{\text {atm }}$	$1.01 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}$
R	$8.31 \mathrm{~J} / \mathrm{K}-\mathrm{mole}^{2}$	g	$9.8 \mathrm{~m} / \mathrm{s}^{2}$
$0 K$	$-273^{\circ} \mathrm{C}$	Speed of light (c)	$3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}$
proton/neutron mass	$1.67 \times 10^{-27} \mathrm{~kg}$	k_{B}	$1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}$
Gravitation constant	$6.67 \times 10^{-11} \mathrm{~N}-\mathrm{m}^{2} / \mathrm{kg}^{2}$	1.0 eV	$1.6 \times 10^{-19} \mathrm{~J}$
e electronic charge	$1.6 \times 10^{-19} \mathrm{C}$	Electron mass	$9.11 \times 10^{-31} \mathrm{~kg}$
Permittivity constant $\left(\epsilon_{0}\right)$	$8.85 \times 10^{-12} \frac{\mathrm{~kg}^{2}}{\mathrm{N-m}}$	1 u	$1.67 \times 10^{-27} \mathrm{~kg}$
Permeability constant $\left(\mu_{0}\right)$	$4 \pi \times 10^{-7} \mathrm{Tm} / \mathrm{A}$	Earth-Sun distance	$1.5 \times 10^{11} \mathrm{~m}$
$k_{e}=1 / 4 \pi \epsilon_{0}$	$8.99 \times 10^{9} \mathrm{~N}-\mathrm{m}^{2} / \mathrm{C}^{2}$	Earth's mass	$5.97 \times 10^{24} \mathrm{~kg}$
$k_{m}=\mu_{o} / 4 \pi$	Earth's radius	$6.37 \times 10^{6} \mathrm{~m}$	

$\begin{array}{\|c} \substack{\text { madoges } \\ \mathbf{1} \\ \mathbf{H}} \end{array}$																		$\begin{aligned} & \substack{\text { nilum } \\ \text { ne } \\ \mathrm{He}} \end{aligned}$
,	${ }^{\text {bempum }}$												${ }_{5}^{\text {amo }}$	${ }_{6}^{\text {antom }}$	Hasm	${ }_{8}^{\text {puxsen }}$	${ }^{\text {wame }}$	10
Li	Be												B	C	N	0	F	Ne
Soll														silmen	${ }_{\substack{\text { chemen } \\ 15}}^{\text {chans }}$	${ }^{\text {sumber }}$	17	${ }^{\text {ajomen }}$
Na	Mg												Al	Si	P	S	Cl	Ar
			${ }^{\text {sanamum }}$	${ }^{\text {manumm }}$	${ }^{\text {anamum }}$	${ }^{\text {ancomum }}$	manemes	${ }_{26}^{100}$	${ }^{\text {cobat }}$	${ }^{\text {notect }}$		${ }_{\text {zne }}^{\substack{\text { ne } \\ 30}}$	cos	32	33	34	35	36
K	Ca		Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
㐋			9,															
${ }^{\text {dram }}$	38		${ }^{39}$	${ }^{40}$	41	42	43	${ }^{44}$	${ }^{4}$	46	47	${ }^{4}$	${ }^{49}$	50	51	52	${ }^{53}$	${ }^{5}$
Rb	Sr		Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	1	Xe
cosm		57.70			${ }^{\substack{\text { chanem } \\ \text { tuam }}}$	74	${ }^{\text {chemm }}$	come	仿		-	80		82	${ }^{83}$	${ }^{4}$	85	86
Cs	Ba	*	Lu	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
${ }^{87}$	${ }^{88}$	89-102	103	Rf	dos	${ }^{10}$	-107	108	109	110	mind	$1{ }^{\text {n }}$		${ }^{\text {momand }} 14$				
Fr	Ra	*	Lr	Rf	Db	Sg	Bh	Hs	Mt	Uun	Uuu	Uub		Uuq				

*Lanthanide series	$\begin{array}{\|l\|} \hline \text { anamaum } \\ \text { La } \\ \mathrm{La} \end{array}$	Ce	$\stackrel{5}{59}^{59}$	No^{60}	Pm	Sm	Eu	Gd^{64}	Tb	Dy	Ho	Er	Tm	Yb
**Actinide series				$\begin{gathered} \substack{14,42 \\ \text { undm } \\ 92 \\ \hline} \end{gathered}$	$\begin{gathered} \substack { \text { nits } \\ \begin{subarray}{c}{\text { nefum } \\ 93 \\ \mathrm{Nb}{ \text { nits } \\ \begin{subarray} { c } { \text { nefum } \\ 9 3 \\ \mathrm { Nb } } } \\ {\hline} \end{gathered}$	$\begin{aligned} & 94 \\ & \mathrm{Pu} \end{aligned}$				Cf	Es	Fm	Md	+102
	Ac		Pa	U	Np	P			Bk		Es	Fm	${ }_{\text {c }}^{1289}$	No

The Periodic Chart.

