Physics 132-3 Final Exam

I pledge that I have neither given nor received unauthorized assistance during the completion of this work.

Name \qquad Signature \qquad
Questions (10 for 4 pts. apiece) Answer in complete, well-written sentences WITHIN the spaces provided.

1. The energy levels of hydrogen can be described by the equation

$$
E_{n}=-\frac{13.6 \mathrm{eV}}{n^{2}}
$$

where n is called the principal quantum number. How did you use this equation to compare with your measurements of the wavelengths of emission lines from hydrogen for the lab entitled 'The Optical Spectrum of Hydrogen'.
2. What is the difference between diffraction and interference? Explain.
3. The plots below show data from measurements of the voltage drop across two electrical devices (a and b) as a function of the electric current. Which device is ohmic, i.e. follows Ohm's Law. Explain.

DO NOT WRITE BELOW THIS LINE.
4. Consider the mathematical steps shown below in the calculation of the electric potential at a fixed point along the axis of a charged ring. Is the final step legal? Why or why not?

$$
V=k \int \frac{d q}{r}=k \int \frac{d q}{\sqrt{x^{2}+a^{2}}}=\frac{k}{\sqrt{x^{2}+a^{2}}} \int d q
$$

5. One day in class we did a demonstration where I dropped a metal cylinder down an aluminum tube. The cylinder fell through the tube at a normal rate. I then surreptitiously switched to a high-magnetic-field, cylindrical magnet of the same size and appearance. When I dropped that cylinder down the tube it fell very, very slowly. Why? Explain. This is an example of Lenz's Law.
6. How does a mass spectrometer work?
7. Will ${ }^{14} \mathrm{C}$ dating work on anything? Explain.
8. Nobel-prize-winning physicist Richard Feynman once said 'the most powerful assumption of all, which leads one on and on in an attempt to understand life, it is that all things are made of atoms, and that everything that living things do can be understood in terms of the jigglings and wigglings of atoms.' Using things you learned from this course, how would you convince someone in the existence of atoms?
9. Where do electric fields come from? Cite evidence. Explain.
10. Consider two, air-filled balloons that are connected by a straight tube with a closed valve as shown in the figure. If the valve is now opened what will happen to the sizes of each balloon and the air in them? Explain. Hint: The elastic force of the balloon is stronger when the curvature of the balloon is large (i.e when the radius is smaller).

Problems (6). Clearly show all reasoning for full credit. Use a separate sheet to show your work.

1. 8 pts. Two hydrogen atoms collide head-on. The collision brings both atoms to a halt. Immediately after the collision, both atoms emit a 104.5 nm photon. What was the speed of each atom just before the collision? Why did both atoms come to a halt? The figure shows the hydrogen atom energy levels with the first few states labeled.

2. 10 pts. A spy satellite, military, commercial or otherwise, like the KH-11 satellite shown here (based on the Hubble Space Telescope) consists of a large-diameter concave mirror forming an image on a digital sensor. It is an astronomical telescope looking down instead of up. The KH-11 telescope may have an aperture of size $a=0.70 \mathrm{~m}$ and orbited the Earth at an altitude of $L=681 \mathrm{~km}$. Could the camera be used to read a license plate on Earth? The range of visible light is $\lambda=400-700 \times 10^{-9} \mathrm{~m}$. Show your reasoning.

SIDE VIEW

3. 10 pts. A newly-created material has a multiplicity

$$
\Omega=\alpha N E^{5 / 2}
$$

where N is the number of atoms in the solid, E is the total internal energy in the solid, and α is a constant. How is the energy E of the material related to the temperature T ? What is the molar specific heat? Does this result make sense? Explain.
4. 10 pts. After the sudden release of radioactivity from the Chernobyl nuclear reactor accident in 1986, the radioactivity of milk in Poland rose to 1500 $\mathrm{Bq} /$ liter due to iodine- 131 present in the grass eaten by dairy cattle ($1 \mathrm{~Bq}=1$ Becquerel $=1$ decay $/ \mathrm{s}$). Radioactive iodine, with half-life $t_{I}=8.04$ days, is particularly hazardous because the thyroid gland concentrates iodine. The Chernobyl accident caused a measurable increase in thyroid cancers among children in Belarus. For comparison, find the activity of milk due to potassium. Assume that one liter of milk contains a mass $m_{K}=2.5 \mathrm{~g}$ of potassium, of which a fraction $f=0.0117 \%$ is the isotope ${ }^{40} \mathrm{~K}$ with half-life $t_{K}=1.28 \times 10^{9} \mathrm{yr}$.
5. 10 pts. A rod of length L (see figure) lies along the y axis with its bottom end at the origin. It has a nonuniform charge density $\lambda=\beta y$, where β is a positive constant. (a) What are the units of β ? (b) What is the electric potential at the point P located at $\vec{r}=$ $a \hat{i}+b \hat{j}$? Give your answer in terms of λ, β, L, a, b, and any other necessary constants.

6. 12 pts. At the North Magnetic Pole the Earth's magnetic field is vertical and has a strength $|\vec{B}|=6.2 \times 10^{-5} T$. Suppose this field is created by the flow of electrons in the equatorial region of the iron-rich core of the Earth. The radius of the Earth's iron core is $r_{c}=3.6 \times 10^{6} \mathrm{~m}$. The radius of the Earth is $r_{E}=6.37 \times 10^{6} \mathrm{~m}$. How large a current flowing around the equatorial region of the core would be needed to create a field of this strength at the North Magnetic Pole? In what direction does the current flow? Remember the north end of a compass points toward the Arctic.

Physics 132-3 Constants and Conversions

Avogadro's number $\left(N_{A}\right)$	6.022×10^{23}	Speed of light (c)	$3 \times 10^{8} \mathrm{~m} / \mathrm{s}$
Boltzmann constant $\left(k_{B}\right)$	$1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}$	proton/neutron mass	$1.67 \times 10^{-27} \mathrm{~kg}$
atomic mass unit (u)	$1.66 \times 10^{-27} \mathrm{~kg}$	g	$9.8 \mathrm{~m} / \mathrm{s}^{2}$
Gravitation constant (G)	$6.67 \times 10^{-11} \mathrm{~N}-\mathrm{m}^{2} / \mathrm{kg}^{2}$	Earth's radius	$6.37 \times 10^{6} \mathrm{~m}$
Coulomb constant $\left(k_{e}\right)$	$8.99 \times 10^{9} \frac{\mathrm{N-m}^{2}}{\mathrm{C}^{2}}$	Earth's mass	$5.98 \times 10^{24} \mathrm{~kg}$
Electron mass	$9.11 \times 10^{-31} \mathrm{~kg}$	Earth-Sun distance	$1.5 \times 10^{11} \mathrm{~m}$
Elementary charge (e)	$1.60 \times 10^{-19} \mathrm{C}$	Proton/Neutron mass	$1.67 \times 10^{-27} \mathrm{~kg}$
Permittivity constant $\left(\epsilon_{0}\right)$	$8.85 \times 10^{-12} \frac{\mathrm{~kg}^{2}}{\mathrm{N-m}}$	1.0 eV	$1.6 \times 10^{-19} \mathrm{~J}$
1 MeV	$10^{6} \mathrm{eV}$	atomic mass unit (u)	$1.66 \times 10^{-27} \mathrm{~kg}$
Planck's constant (h)	$6.626 \times 10^{-34} \mathrm{~J}-\mathrm{s}$	Planck's constant (h)	$4.14 \times 10^{-15} \mathrm{eV}-\mathrm{s}$
Planck's constant $2(\hbar=h / 2 \pi)$	$1.0546 \times 10^{-34} \mathrm{~J}-\mathrm{s}$	Gas constant R	$8.315 \mathrm{~J} / \mathrm{K}-\mathrm{mol}$
Planck's constant $2(\hbar=h / 2 \pi)$	$6.58 \times 10^{-16} \mathrm{~J} / \mathrm{K}-\mathrm{mole}$	Rydberg constant (R)	$1.097 \times 10^{7} \mathrm{~m} \mathrm{~m}^{-1}$
Permittivity constant $\left(\epsilon_{0}\right)$	$8.85 \times 10^{-12} \frac{\mathrm{~kg}^{2}}{\mathrm{N-m}}$	Absolute Zero	$-273.2^{\circ} \mathrm{C}$
Permeability constant $\left(\mu_{0}\right)$	$1.26 \times 10^{-6} \mathrm{~T}-\mathrm{m} / \mathrm{A}$	Becquerel $(B q)$	$1 \mathrm{decay} / \mathrm{s}$

Physics 132-3 Equation Sheet, Final

$$
\begin{aligned}
& \vec{F}=m \vec{a}=\frac{d \vec{p}}{d t} \quad a_{c}=\frac{v^{2}}{r} \quad \vec{F}_{c}=-m \frac{v^{2}}{r} \hat{r} \quad K E=\frac{1}{2} m v^{2} \quad M E_{0}=M E_{1}=K E_{1}+P E_{1} \quad \vec{p}=m \vec{v} \quad \vec{p}_{0}=\vec{p}_{1} \\
& P=\frac{d E}{d t} \quad x=\frac{a}{2} t^{2}+v_{0} t+x_{0} \quad v=a t+v_{0} \quad Q=C \Delta T=c m \Delta T=n C_{v} \Delta T \quad Q_{f, v}=m L_{f, v} \\
& \Delta E_{\text {int }}=Q+W \quad W=\int \vec{F} \cdot d \vec{s} \rightarrow P \Delta V \quad\langle\vec{F}\rangle=\frac{\Delta \vec{p}}{\Delta t} \quad P=\frac{|\vec{F}|}{A} \quad P V=N k_{B} T=n R T \\
& \vec{I}=\int \vec{F} d t=\langle\vec{F}\rangle \Delta t=\Delta \vec{p} \quad\langle K E\rangle=\left\langle E_{k i n}\right\rangle=\frac{1}{2} m \overline{v^{2}} \quad\left\langle E_{k i n}\right\rangle=\frac{3}{2} k_{B} T=\frac{1}{2} m v_{r m s}^{2} \quad E_{\text {int }}=N\left\langle E_{k i n}\right\rangle=\frac{3}{2} N k_{B} T \\
& v_{r m s}=\sqrt{\left\langle v^{2}\right\rangle} \quad C_{V}=\frac{f}{2} N_{A} k_{B} \quad E_{f}=\frac{k_{B} T}{2} \quad E_{\text {int }}=\frac{f}{2} N k_{B} T \quad f \equiv \text { number of degrees of freedom } \\
& E_{\text {atom }}=\left(n_{x}+n_{y}+n_{z}+\frac{3}{2}\right) \epsilon_{i} \quad E=\sum_{i=1}^{3 N} n_{i} \epsilon_{i}=q \epsilon_{i} \quad \Omega(N, q)=\frac{(q+3 N-1)!}{q!(3 N-1)!} \quad S=k_{B} \ln \Omega \\
& \frac{1}{T}=\frac{d S}{d E} \quad q=\frac{E}{\hbar \omega_{0}} \quad C=\frac{1}{n} \frac{d E}{d T} \quad E=3 N k_{B} T \\
& \vec{F}_{G}=-G \frac{m_{1} m_{2}}{r^{2}} \hat{r} \quad \vec{F}_{C}=k_{e} \frac{q_{1} q_{2}}{r^{2}} \hat{r} \quad \vec{E} \equiv \frac{\vec{F}}{q_{0}} \quad \vec{E}=k_{e} \sum_{i} \frac{q_{i}}{r_{i}^{2}} \hat{r}_{i} \quad \vec{E}=k_{e} \int \frac{d q}{r^{2}} \hat{r} \quad \vec{E}_{\text {dipole }}=-k_{e} \frac{q(2 a)}{\left(x^{2}+a^{2}\right)^{3 / 2}} \hat{j} \\
& \vec{E}_{\text {ring }}=k_{e} \frac{q x}{\left(x^{2}+R^{2}\right)^{3 / 2}} \hat{i} \quad \vec{E}_{\text {plane }}=2 \pi k_{e} \eta \hat{k}=\frac{\eta}{2 \epsilon_{0}} \hat{k} \quad \Delta V \equiv \frac{\Delta P E}{q_{0}}=-\int_{A}^{B} \vec{E} \cdot d \vec{s} \quad V=k_{e} \frac{q}{r} \quad P E=q V
\end{aligned}
$$

$$
V=k_{e} \sum_{n} \frac{q_{n}}{r_{n}} \quad V=k_{e} \int \frac{d q}{r} \quad V=E d \quad I \equiv \frac{d Q}{d t} \quad V=I R \quad P=I V \quad R_{\text {equiv }}=\sum R_{i} \quad I=n e v_{d} A
$$

The algebraic sum of the potential changes across all the elements of a closed loop is zero.

$$
\begin{aligned}
& \vec{F}_{B}=q \vec{v} \times \vec{B} \quad\left|\vec{F}_{B}\right|=|q v B \sin \alpha| \quad \vec{B}=k_{m} \int \frac{I d \vec{s} \times \hat{r}}{r^{2}} \quad k_{m}=\frac{\mu_{0}}{4 \pi} \quad \vec{B}_{r i n g}=\frac{\mu_{o} I R^{2}}{2} \frac{1}{\left(x^{2}+R^{2}\right)^{3 / 2}} \hat{i} \\
& \frac{d N}{d t}=-\lambda N \quad N=N_{0} e^{-\lambda t} \quad t_{1 / 2}=\frac{\ln 2}{\lambda} \quad y=A \sin (k x-\omega t+\phi) \quad k \lambda=2 \pi=\omega T \quad \frac{\lambda}{T}=c \quad f=\frac{1}{T} \\
& E=E_{m} \sin (k x-\omega t) \quad B=B_{m} \sin (k x-\omega t) \quad \vec{S}=\frac{1}{\mu_{0}} \vec{E} \times \vec{B} \quad|\vec{S}|=I=\frac{E^{2}}{2 \mu_{0} c} \quad \frac{E_{m}}{B_{m}}=c \\
& I=I_{m} \cos ^{2}\left(\frac{\pi d}{\lambda} \sin \theta\right) \quad I=I_{m}\left[\frac{\sin \left(\frac{\pi a}{\lambda} \sin \theta\right)}{\frac{\pi a}{\lambda} \sin \theta}\right]^{2} \quad I=I_{m} \cos ^{2}\left(\frac{\pi d}{\lambda} \sin \theta\right)\left[\frac{\sin \left(\frac{\pi a}{\lambda} \sin \theta\right)}{\frac{\pi a}{\lambda} \sin \theta}\right]^{2} \\
& \delta=d \sin \theta=m \lambda \quad \delta=a \sin \theta=m \lambda \quad \phi=k \delta \quad \sin \theta_{R}=\frac{\lambda}{a} \quad \sin A+\sin B=2 \sin \left(\frac{A+B}{2}\right) \cos \left(\frac{A-B}{2}\right) \\
& \sin \theta \approx \theta \quad \sin \theta \approx \frac{y}{L} \quad L=I \omega=m v_{t} r \quad L_{0}=L_{1} \quad E=\frac{1}{2} m\left(v_{r}^{2}+v_{t}^{2}\right)-k_{e} \frac{e^{2}}{r}=\frac{1}{2} m v_{r}^{2}+\frac{L^{2}}{m r^{2}}-k_{e} \frac{e^{2}}{r} \\
& \frac{1}{\lambda}=R_{H}\left(\frac{1}{n_{f}^{2}}-\frac{1}{n_{i}^{2}}\right) \quad E_{n}=-\frac{13.6 e \mathrm{eV}}{n^{2}} \quad E=h f=h \frac{c}{\lambda} \\
& \frac{d f(x)}{d x}=\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x} \quad \frac{d x^{n}}{d x}=n x^{n-1} \quad \frac{d e^{x}}{d x}=e^{x} \quad \frac{d f(u)}{d x}=\frac{d f}{d u} \frac{d u}{d x} \\
& \frac{d}{d x} f(x) \cdot g(x)=f \frac{d g}{d x}+g \frac{d f}{d x} \quad \frac{d \ln x}{d x}=\frac{1}{x} \quad \frac{d}{d x} \cos a x=-a \sin a x \quad \frac{d}{d x} \sin a x=a \cos a x \\
& \int_{a}^{b} f(x) d x=\lim _{\Delta x \rightarrow 0} \sum_{n=1}^{N} f(x) \Delta x \quad \int x^{n} d x=\frac{x^{n+1}}{n+1} \quad \int \sin ^{2}(a x) d x=\frac{x}{2}-\frac{\sin (a x)}{4 a} \quad \int e^{x} d x=e^{x} \\
& \int \frac{1}{x} d x=\ln x \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x=\ln \left[x+\sqrt{x^{2}+a^{2}}\right] \quad \int \frac{x}{\sqrt{x^{2}+a^{2}}} d x=\sqrt{x^{2}+a^{2}} \quad \int \frac{1}{x^{2}+a^{2}}=\frac{1}{a} \tan ^{-1} \frac{x}{a} \\
& \int \frac{x^{2}}{\sqrt{x^{2}+a^{2}}} d x=\frac{1}{2} x \sqrt{x^{2}+a^{2}}-\frac{1}{2} a^{2} \ln \left[x+\sqrt{x^{2}+a^{2}}\right] \quad \int \frac{x^{3}}{\sqrt{x^{2}+a^{2}}} d x=\frac{1}{3}\left(-2 a^{2}+x^{2}\right) \sqrt{x^{2}+a^{2}} \\
& \int \frac{1}{\left(x^{2}+a^{2}\right)^{3 / 2}} d x=\frac{x}{a^{2} \sqrt{x^{2}+a^{2}}} \int \frac{x}{\left(x^{2}+a^{2}\right)^{3 / 2}} d x=\frac{-1}{\sqrt{x^{2}+a^{2}}} \quad A=4 \pi r^{2} \quad V=A h \quad V=\frac{4}{3} \pi r^{3} \\
& \langle x\rangle=\frac{1}{N} \sum_{i} x_{i} \quad \sigma=\sqrt{\frac{\sum_{i}\left(x_{i}-\langle x\rangle\right)^{2}}{N-1}} \quad \vec{A} \cdot \vec{B}=A B \cos \theta=A_{x} B_{x}+A_{y} B_{y}+A_{z} B_{z}
\end{aligned}
$$

$\vec{A} \times \vec{B}=\left(A_{y} B_{z}-A_{z} B_{y}\right) \hat{i}-\left(A_{x} B_{z}-A_{z} B_{x}\right) \hat{j}+\left(A_{x} B_{y}-A_{y} B_{x}\right) \hat{k}=|\vec{A}||\vec{B}| \sin \alpha$ (right-hand-rule direction)

The Periodic Chart.

