Physics 132-03 Test 3

I pledge that I have neither given nor received unauthorized assistance during the completion of this work.

Name \qquad Signature \qquad
Questions (5 for 8 pts. apiece) Answer in complete, well-written sentences WITHIN the spaces provided.

1. In the table below a nuclear decay is shown in the first column. In most cases the original nucleus (often referred to as the parent) produces two smaller particles. Only one of the daughter nuclei is listed. In the adjacent column list the missing nucleus. Explain your reasoning.

Decay	Unknown
${ }^{212} \mathrm{Bi} \rightarrow{ }^{4} \mathrm{He}+?$	
${ }^{204} \mathrm{~Pb} \rightarrow \gamma+?$	

2. The expression for the electron mass from the lab entitled Weighing an Electron is $m_{e}=e B^{2} r^{2} /(2 V)$. The radius measurement is $r=3.45 \pm 0.21 \mathrm{~cm}$ and the rest of the expression is $e B^{2} /(2 V)=7.40 \times 10^{-28} \mathrm{~kg} / \mathrm{m}^{2}$. What is the uncertainty on the electron mass δm_{e} due to the uncertainty in the radius r ? Show your reasoning.
3. Suppose the motion of two charges can be described as an oscillating dipole so the dipole moment as a function of time looks like the figure. Assume the dipole is aligned with the z-axis. What do you expect the electric field to look like as a function of time at some arbitrary distance r away from the source in the $x-y$ plane? What is the direction of the \vec{E} field? Make a sketch on the plot and label your curve. Explain your reasoning.

4. The figure shows the electric and magnetic fields of an electromagnetic wave at a particular moment. In what direction is the wave traveling? Explain your reasoning.

5. Sound has wavelengths in the range $\lambda=17-17000 \mathrm{~mm}$ audible to human ears. Light has wavelengths in the range $\lambda=4000-7000 \mathrm{~nm}$ that we can see. Why can you hear around corners, but you can't see around corners? Explain.

Problems (3). Clearly show all reasoning for full credit. Use a separate sheet to show your work.

1. 18 pts. The radioactive decay of radon ${ }^{222} \mathrm{Rn} \rightarrow{ }^{4} \mathrm{He}+{ }^{218} \mathrm{Po}$ has a decay constant of $\lambda=0.1812 d^{-1}$. (a) What is its half-life $\left(t_{1 / 2}\right)$? (b) What fraction f will remain after 10 days?
2. 20 pts. Two radio antennas separated by a distance $d=20 \mathrm{~m}$ as shown in the figure simultaneously broadcast identical signals at the same wavelength $\lambda=5 \mathrm{~m}$. A radio in a car traveling due north a perpendicular distance $L=600 \mathrm{~m}$ away from the sources receives the signals. If the car is at the position $y_{i}=300 \mathrm{~m}$ of the second maximum, how much farther must the car travel to encounter the next minimum in reception?

DO NOT WRITE BELOW THIS LINE.
3. 22 pts. Two extremely narrow parallel slits separated by a distance $d=$ 0.850 mm are illuminated by $\lambda=600-n m$ light The viewing screen is $L=2.80 \mathrm{~m}$ away from the slits. (a) What is the phase difference between the two interfering waves on a screen at a point $y=2.50 \mathrm{~mm}$ from the central bright fringe? (b) What is the ratio of the intensity at this point to the intensity at the center of a bright fringe? Assume diffraction effects are negligible so the intensity distribution is purely due to two-slit interference from point sources.

Physics 132-3 Equations

$$
\begin{aligned}
& \vec{F}=m \vec{a}=\frac{d \vec{p}}{d t} \quad a_{c}=\frac{v^{2}}{r} \quad W=\int \vec{F} \cdot d \vec{s} \quad K E=\frac{1}{2} m v^{2} \quad K E_{0}+P E_{0}=K E_{1}+P E_{1} \\
& \vec{F}_{C}=k_{e} \frac{q_{1} q_{2}}{r^{2}} \hat{r} \quad \vec{E} \equiv \frac{\vec{F}}{q_{0}} \quad \vec{E}=k_{e} \sum_{i} \frac{q_{i}}{r_{i}^{2}} \hat{r}_{i} \quad \vec{E}=\int \frac{k_{e} d q}{r^{2}} \hat{r} \quad V=k_{e} \sum_{n} \frac{q_{n}}{r_{n}} \quad V=k_{e} \int \frac{d q}{r} \quad P E=q V \\
& \vec{F}_{B}=q \vec{v} \times \vec{B} \quad\left|\vec{F}_{B}\right|=|q v B \sin \theta| \quad\left|\vec{F}_{c}\right|=m \frac{v^{2}}{r} \\
& R=\frac{d N}{d t}=-\lambda N \quad N=N_{0} e^{-\lambda t} \quad t_{1 / 2}=\frac{\ln 2}{\lambda} \quad y=A \sin (k x-\omega t+\phi) \quad k \lambda=\omega T=2 \pi \\
& E=E_{m} \sin (k x-\omega t+\phi) \quad B=B_{m} \sin (k x-\omega t+\phi) \quad \sin \theta=\frac{y}{\sqrt{L^{2}+y^{2}}} \approx \frac{y}{L} \quad \sin \theta \approx \theta \\
& \vec{S}=\frac{1}{\mu_{0}} \vec{E} \times \vec{B} \quad E=c B \quad|\vec{S}|=I=\frac{E^{2}}{2 \mu_{0} c} \quad c=\frac{\lambda}{T} \\
& \delta=d \sin \theta=m \lambda(m=0, \pm 1, \pm 2, \ldots) \quad \delta=a \sin \theta=m \lambda(m= \pm 1, \pm 2, \ldots) \quad \phi=k \delta \\
& I=I_{m} \cos ^{2}\left(\frac{\pi d}{\lambda} \sin \theta\right) \quad I=I_{m}\left[\frac{\sin \left(\frac{\pi a}{\lambda} \sin \theta\right)}{\frac{\pi a}{\lambda} \sin \theta}\right]^{2} \quad I=I_{m} \cos ^{2}\left(\frac{\pi d}{\lambda} \sin \theta\right)\left[\frac{\sin \left(\frac{\pi a}{\lambda} \sin \theta\right)}{\frac{\pi a}{\lambda} \sin \theta}\right]^{2} \\
& \vec{F}=m \vec{a} \quad x=\frac{a}{2} t^{2}+v_{0} t+x_{0} \quad v=a t+v_{0} \quad \sin A+\sin B=2 \sin \left(\frac{A+B}{2}\right) \cos \left(\frac{A-B}{2}\right)
\end{aligned}
$$

$$
\begin{gathered}
\frac{d}{d x}(f(u))=\frac{d f}{d u} \frac{d u}{d x} \quad \int x^{n} d x=\frac{x^{n+1}}{n+1} \quad \int \frac{1}{x} d x=\ln x \quad \vec{A} \cdot \vec{B}=A B \cos \theta \quad|\vec{A} \times \vec{B}|=|A B \sin \theta| \\
\frac{d}{d x}\left(x^{n}\right)=n x^{n-1} \quad \frac{d e^{x}}{d x}=e^{x} \quad \frac{d}{d x}(\ln x)=\frac{1}{x} \quad \frac{d}{d x}(\cos a x)=-a \sin a x \quad \frac{d}{d x}(\sin a x)=a \cos a x \\
\langle x\rangle=\frac{1}{N} \sum_{i} x_{i} \quad \sigma=\sqrt{\frac{\sum_{i}\left(x_{i}-\langle x\rangle\right)^{2}}{N-1}} \quad A=4 \pi r^{2} \quad V=A h \quad V=\frac{4}{3} \pi r^{3} \\
\frac{d f(x)}{d x}=\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x} \int_{a}^{b} f(x) d x=\lim _{\Delta x \rightarrow 0} \sum_{n=1}^{N} f(x) \Delta x \\
\int \frac{1}{x} d x=\ln x \\
\int x^{n} d x=\frac{x^{n+1}}{n+1} e^{a x} d x=\frac{e^{a x}}{a} \quad \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x=\ln \left[x+\sqrt{x^{2}+a^{2}}\right] \\
\int \frac{x^{2}}{\sqrt{x^{2}+a^{2}}} d x=\sqrt{x^{2}+a^{2}} \quad \int \frac{x^{2}}{\sqrt{x^{2}+a^{2}}} d x=\frac{1}{2} x \sqrt{x^{2}+a^{2}}-\frac{1}{2} a^{2} \ln \left[x+\sqrt{x^{2}+a^{2}}\right] \\
\int \frac{x^{3}}{\sqrt{x^{2}+a^{2}}} d x=\frac{1}{3}\left(-2 a^{2}+x^{2}\right) \sqrt{x^{2}+a^{2}} \\
\int
\end{gathered}
$$

Physics 132-3 Constants and Conversions

Avogadro's number $\left(N_{A}\right)$	6.022×10^{23}	Speed of light (c)	$3 \times 10^{8} \mathrm{~m} / \mathrm{s}$
k_{B}	$1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}$	proton/neutron mass	$1.67 \times 10^{-27} \mathrm{~kg}$
1 u	$1.67 \times 10^{-27} \mathrm{~kg}$	g	$9.8 \mathrm{~m} / \mathrm{s}^{2}$
Gravitation constant	$6.67 \times 10^{-11} \mathrm{~N}-\mathrm{m}^{2} / \mathrm{kg}^{2}$	Earth's radius	$6.37 \times 10^{6} \mathrm{~m}$
Coulomb constant $\left(k_{e}\right)$	$8.99 \times 10^{9} \frac{\mathrm{N-m}^{2} \mathrm{C}^{2}}{}$	Electron mass	$9.11 \times 10^{-31} \mathrm{~kg}$
Elementary charge (e)	$1.60 \times 10^{-19} \mathrm{C}$	Proton/Neutron mass	$1.67 \times 10^{-27} \mathrm{~kg}$
Permittivity constant $\left(\epsilon_{0}\right)$	$8.85 \times 10^{-12} \frac{\mathrm{~kg}^{2}}{\mathrm{N-m}}$	1.0 eV	atomic mass unit (u)
1 MeV	$10^{6} \mathrm{eV}$	$1.66 \times 10^{-27} \mathrm{~kg}$	
Planck's constant (h)	$6.63 \times 10^{-34} \mathrm{Js}$	Planck's constant (h)	$4.14 \times 10^{-15} \mathrm{eVs}$
Permeability constant $\left(\mu_{0}\right)$	$1.26 \times 10^{-6} \mathrm{Tm} / \mathrm{A}$	Rydberg constant $\left(R_{H}\right)$	$1.097 \times 10^{7} \mathrm{~m}$
Becquerel $(B q)$	$1 \mathrm{decay} / \mathrm{s}$	Curie (Ci)	$3.7 \times 10^{10} \mathrm{~Bq}$

