Physics 132-03 Test 2

I pledge that I have neither given nor received unauthorized assistance during the completion of this work.

Name \qquad Signature \qquad
Questions (6 for 7 pts. apiece) Answer in complete, well-written sentences WITHIN the spaces provided.

1. Starting with the expression for the entropy $S=k_{B} \log \Omega$ and the chain rule calculate $d S / d E=f(T)$ where T is the temperature in terms of the multiplicity Ω. Clearly show your reasoning.
2. Consider the following procedure using an electroscope.
(a) Charge up the rubber rod by rubbing it with wool.
(b) Touch it to the ball of the electroscope.
(c) Charge up the rubber rod some more, by rubbing it again with wool.
(d) Bring it close to the ball of the electroscope, without touching it.

What do you think will happen when you do the last step? (Will the foil move up, down, or neither?) Explain.
3. Consider the figure below of three charges (red is positive, blue is negative) and their equipotential lines. Draw a representative set of field lines including directions for each of the charges. What reasoning did you apply to draw the field lines?

Questions continued. Answer in complete, well-written sentences WITHIN the spaces provided.
4. You found in the simulation lab on the dipole charge distribution that the electric field of the dipole obeyed a power law $|\vec{E}|=A r^{n}$ where $n<-2$. Compare and explain this observation with the field of a point charge where $n=-2$.
5. Consider the circuit shown in the figure. The two open circles represent instruments to measure the properties of the circuit. What instruments will measure electric current or electric potential? Where should they be placed in the circuit to work properly? Explain your reasoning.

6. Recall the lab where you used an oscilloscope to study the impact of a magnetic field on a beam of electrons. With no magnets or anything else turned on you now notice the beam spot which should be at the center of the scope is deflected to the right. Maybe it's broken, but there may be unknown external magnetic or electrical fields causing the deflection. You have nothing to create an additional electric or magnetic field. What could you do with the scope to determine if it is broken, in an electric field, or in a magnetic field? Explain. You cannot remove the oscilloscope from the room. Hint: A drawing might help.

Problems (3). Clearly show all reasoning for full credit. Use a separate sheet for your work.

1. 15 pts. A cosmic-ray proton in interstellar space has an energy $E=8.0 \mathrm{MeV}$ and executes a circular orbit having a radius r equal to that of Mercury's orbit around the Sun $\left(5.80 \times 10^{10} \mathrm{~m}\right)$. Starting from Newton's Law describing the proton's orbit and the magnetic force law, what is the magnetic field in that region of space?
2. 18 pts. A newly-created material has a multiplicity

$$
\Omega=\beta N E^{4}
$$

where N is the number of atoms in the solid, E is the total internal energy in the solid, and β is a constant. How is the energy E of the material related to the temperature T ? What is the molar specific heat? Does this result make sense? Explain.
3. 25 pts. A thin rod of length L sits along the x axis as shown in the figure. Its left end is at the origin. The rod has a uniform charge density λ. Starting from the electric potential of a point particle, what is the electric potential at P located a distance h above the midpoint of the rod in terms of λ, h, L, and any other necessary constants?

Physics 132-03 Equations Test 2

$$
\begin{gathered}
E_{\text {atom }}=\left(n_{x}+n_{y}+n_{z}+\frac{3}{2}\right) \hbar \omega_{0} \quad E=\sum_{i=1}^{3 N} n_{i} \epsilon=q \hbar \omega_{0} \quad \Omega(N, q)=\frac{(q+3 N-1)!}{q!(3 N-1)!} \\
S=k_{B} \ln \Omega \quad \frac{1}{T}=\frac{d S}{d E} \quad q=\frac{E}{\hbar \omega_{0}} \quad C=\frac{1}{n} \frac{d E}{d T} \quad E=3 N k_{B} T \\
\vec{F}_{G}=-G \frac{m_{1} m_{2}}{r_{12}^{2}} \hat{r} \quad \vec{F}_{C}=k_{e} \frac{q_{1} q_{2}}{r_{12}^{2}} \hat{r} \quad \vec{E} \equiv \frac{\vec{F}}{q_{0}} \quad \vec{E}=k_{e} \sum_{i} \frac{q_{i}}{r_{i}^{2}} \hat{r}_{i} \quad \vec{E}=k_{e} \int \frac{d q}{r^{2}} \hat{r} \quad k_{e}=\frac{1}{4 \pi \epsilon_{0}} \\
\vec{E}_{d i p o l e}=k_{e} \frac{q(2 a)}{\left(x^{2}+a^{2}\right)^{3 / 2}} \hat{j} \quad \vec{E}_{\text {ring }}=k_{e} \frac{q x}{\left(x^{2}+R^{2}\right)^{3 / 2}} \hat{i} \quad \vec{E}_{p l a n e}=2 \pi k_{e} \eta \hat{k}=\frac{\eta}{2 \epsilon_{0}} \hat{k} \\
\vec{E}_{d i s k}=2 \pi k_{e} \eta\left[1-\frac{z}{\sqrt{z^{2}+R^{2}}}\right] \hat{k}=\frac{\eta}{2 \epsilon_{0}}\left[1-\frac{z}{\sqrt{z^{2}+R^{2}}}\right] \hat{k} \\
W \equiv \int \vec{F} \cdot d \vec{s} \quad \Delta V \equiv \frac{\Delta P E}{q_{0}}=-\int_{A}^{B} \vec{E} \cdot d \vec{s} \quad V=k_{e} \frac{q}{r} \quad V=k_{e} \sum_{i} \frac{q_{i}}{r_{i}} \\
V=k_{e} \int \frac{d q}{r} \quad V=E d \quad I=\frac{d Q}{d t} \quad Q=\int I d t \quad V=I R \quad P=I V \quad R_{\text {equiv }}=\sum R_{i}
\end{gathered}
$$

The algebraic sum of the potential changes $\quad I=n e v_{d} A$ across all the elements of a closed loop is zero.

$$
\begin{gathered}
\vec{F}_{B}=q \vec{v} \times \vec{B} \quad\left|\vec{F}_{B}\right|=|q v B \sin \alpha| \quad \vec{B}=k_{m} \int \frac{I d \vec{s} \times \hat{r}}{r^{2}} \quad k_{m}=\frac{\mu_{0}}{4 \pi} \quad \vec{B}_{r i n g}=\frac{\mu_{o} I R^{2}}{2} \frac{1}{\left(x^{2}+R^{2}\right)^{3 / 2}} \hat{i} \\
K E_{0}+P E_{0}=K E_{1}+P E_{1} \quad K E=\frac{1}{2} m v^{2} \quad P E=q V \\
\vec{F}=m \vec{a} \quad\left|\vec{F}_{c e n t}\right|=m \frac{v^{2}}{r} \quad x=\frac{a}{2} t^{2}+v_{0} t+x_{0} \quad v=a t+v_{0} \\
\frac{d x^{n}}{d x}=n x^{n-1} \quad \frac{d f(u)}{d x}=\frac{d f}{d u} \frac{d u}{d x} \quad \frac{d}{d x} f(x) \cdot g(x)=f \frac{d g}{d x}+g \frac{d f}{d x} \\
\langle x\rangle=\frac{1}{N} \sum_{i} x_{i} \quad \sigma=\sqrt{\frac{\sum_{i}\left(x_{i}-\langle x\rangle\right)^{2}}{N-1}} \quad A=4 \pi r^{2} \quad V=A h \quad V=\frac{4}{3} \pi r^{3} \\
\frac{d f(x)}{d x}=\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x} \int_{a}^{b} f(x) d x=\lim _{\Delta x \rightarrow 0} \sum_{n=1}^{N} f(x) \Delta x \quad \frac{d \ln x}{d x}=\frac{1}{x} \\
\int \frac{1}{x} d x=\ln x \\
\int x^{n} d x=\frac{x^{n+1}}{n+1} \quad \int e^{a x} d x=\frac{e^{a x}}{a} \quad \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x=\ln \left[x+\sqrt{x^{2}+a^{2}}\right] \\
\int \frac{x}{\sqrt{x^{2}+a^{2}}} d x=\sqrt{x^{2}+a^{2}} \int \frac{x^{2}}{\sqrt{x^{2}+a^{2}}} d x=\frac{1}{2} x \sqrt{x^{2}+a^{2}}-\frac{1}{2} a^{2} \ln \left[x+\sqrt{x^{2}+a^{2}}\right] \\
\\
\int \frac{x^{3}}{\sqrt{x^{2}+a^{2}}} d x=\frac{1}{3}\left(-2 a^{2}+x^{2}\right) \sqrt{x^{2}+a^{2}}
\end{gathered}
$$

Physics 132-3 Constants

k_{B}	$1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}$	proton/neutron mass	$1.67 \times 10^{-27} \mathrm{~kg}$
1 u	$1.67 \times 10^{-27} \mathrm{~kg}$	g	$9.8 \mathrm{~m} / \mathrm{s}^{2}$
Gravitation constant	$6.67 \times 10^{-11} \mathrm{~N}-\mathrm{m}^{2} / \mathrm{kg}^{2}$	Earth's radius	$6.37 \times 10^{6} \mathrm{~m}$
Coulomb constant $\left(k_{e}\right)$	$8.99 \times 10^{9} \frac{\mathrm{N-m}^{2}}{\mathrm{C}^{2}}$	Earth's mass	$5.97 \times 10^{24} \mathrm{~kg}$
Magnet constant $\left(k_{m}\right)$	$10^{-7} \mathrm{Tm} / \mathrm{A}$	Earth-Sun distance	$1.5 \times 10^{11} \mathrm{~m}$
Elementary charge (e)	$1.60 \times 10^{-19} \mathrm{C}$	Electron mass	$9.11 \times 10^{-31} \mathrm{~kg}$
Permittivity constant $\left(\epsilon_{0}\right)$	$8.85 \times 10^{-12} \frac{\mathrm{~kg}^{2}}{\mathrm{N-m}}$	1.0 eV	$1.6 \times 10^{-19} \mathrm{~J}$
Permeability constant $\left(\mu_{0}\right)$	$4 \pi \times 10^{-7} \mathrm{Tm} / \mathrm{A}$	1 MeV	$10^{6} \mathrm{eV}$

*Lanthanide series			$\begin{array}{\|l\|l} \\ \mathrm{Pan} \\ \mathrm{Pr} \end{array}$	Nd	$\begin{aligned} & \mathrm{Pm} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { sin } \\ & \text { Sm } \end{aligned}$	$\begin{aligned} & \substack{\text { anem } \\ \text { Eus }} \end{aligned}$			$\begin{aligned} & \text { and } \\ & \text { Dy } \end{aligned}$		$\begin{gathered} \substack{\text { bemim } \\ E r} \end{gathered}$	Tm	Yb
**Actinide series			$\begin{gathered} \substack{\text { no } \\ \mathrm{Pa} \\ \mathrm{~Pa} \\ \hline} \end{gathered}$								${ }^{99}$	Fm	Md	No

The Periodic Chart.

