Physics 132-3 Test 1

I pledge that I have neither given nor received unauthorized assistance during the completion of this work.

Signature _____

Questions (6 for 7 pts. apiece) Answer in complete, well-written sentences WITHIN the spaces provided.

- 1. In the measurement of the heat of vaporization of liquid nitrogen L_V you subtracted the average of the absolute values of the two slopes when power was off from the absolute value of the slope when power was on. Why?
- 2. The table below shows pressure P and temperature T data for a gas. Describe how you would extract absolute zero from these data.

T [deg]	$P [10^5 N/m^2]$
37.39	1.05
50.09	1.09
61.35	1.12
74.25	1.16
85.44	1.2
98.14	1.24

3. Recall your one-particle 'gas' of mass m bouncing around in a cube of side ℓ . If the x-component of the particle velocity is v_x , what is the x-component of the average force $\langle F_x \rangle$ exerted by the 'gas' on one of the sides of the cube in terms of the parameters listed here? Start from the definition of $\langle F_x \rangle$ in terms of the change in momentum and show all steps.

DO NOT WRITE BELOW THIS LINE.

4. The kinetic theory model of an ideal gas requires that $PV = 2N\langle E_{kin} \rangle/3$. We have determined experimentally the ideal gas law $PV = Nk_BT$. Starting from these two results what can we say about the average kinetic energy per molecule for an ideal gas?

5. The table below has the results of a calculation of the multiplicities of an Einstein solid with $N_A = 20$, $N_B = 30$, and q = 14. What is the probability P_1 there are no energy quanta in solid B? What is the ratio of this probability to the most probable macrostate P_{max} ? Is this result related to the notion of irreversibility? Explain.

U (A)	U(B)	Omega (A)	Omega (B)	Omega (AB)	of states
0	14	1	6.881e+16	6.881e+16	0.00114*
1	13	60	9.353e+15	5.612e+17	0.00930*
2	12	1,830	1.192e+15	2.181e+18	0.03614*
3	11	37,820	1.416e+14	5.356e+18	0.08874*
4	10	595,665	1.558e+13	9.280e+18	0.15374*
5	9	7,624,512	1.574e+12	1.200e+19	0.19877*
6	8	82,598,880	1.445e+11	1.194e+19	0.19776*
7	7	778,789,440	1.192e+10	9.283e+18	0.15378*
8	6	6.522e+9	869,107,785	5.669e+18	0.09391*
9	5	4.928e+10	54,891,018	2.705e+18	0.04481*
10	4	3.400e+11	2,919,735	9.928e+17	0.01645*
11	3	2.164e+12	125,580	2.717e+17	0.00450*
12	2	1.280e+13	4,095	5.243e+16	0.00087*
13	1	7.091e+13	90	6.382e+15	0.00011*
14	0	3.697e+14	1	3.697e+14	6.13e-6
		Total number	of microstates:	6.036e+19	

I

6. The two gases shown in the figure are in thermal equilibrium with each other and well insulated from the environment. The helium has a molecular mass $m_{He} = 4 \ u$. The argon has molecular mass $m_{Ar} = 40 \ u$. Does the helium have more thermal energy, less thermal energy, or the same amount of thermal energy as the argon? Explain. (Hint: An equation or two might be helpful.)

He	Ar
$N_{He} = 0.2N_A$	$N_{Ar} = 0.5 N_A$
•	

Problems (3). Clearly show all reasoning for full credit. Use a separate sheet to show your work.

- 1. 10 pts. Consider a system consisting of a pair of Einstein solids in thermal contact. Suppose it is initially in a macropartition with multiplicity $\Omega_1 = 4.0 \times 10^{207}$. The adjacent macrostate closer to the equilibrium macrostate has multiplicity $\Omega_2 = 8.0 \times 10^{1034}$. If we look at the system later, how likely is it to have moved to the second macropartition Ω_2 than to have stayed with the first Ω_1 ?
- 2. 20 pts. A rigid tank having a volume of $V_t = 0.1 \ m^3$ contains helium gas at a pressure $P_t = 94 \ atm$. How many balloons can be inflated by opening the valve at the top of the tank? Each filled balloon is a sphere with radius $r_b = 0.12 \ m$ at an absolute pressure of $P_b = 1.2 \ atm$. The gas is at the same temperature throughout.
- 3. 28 pts. Suppose an ideal diatomic gas with n = 4 moles and molecular rotation but no vibration is heated so $\Delta T = 60$ K under constant pressure P. The gas is in a cylinder with a movable piston held down by air pressure. The specific heat here C_P is different because the pressure is constant and the volume can change. We studied the specific heat under constant volume C_V in lab. The relationship between the two is $C_P = C_V + N_A k_B$. (a) How much heat Q was added to the gas? (b) How much did the internal energy of the gas ΔE_{int} change? (c) How much work W was done by the gas? (d) How much did the translational kinetic energy of the gas increase? Clearly show your reasoning for full credit.

Physics 132-1 Constants

$T_{boiling}$ (N ₂)	77 K	$T_{freezing}$ (N ₂)	63 K
$T_{boiling}$ (water)	373 K or 100°C	$T_{freezing}$ (water)	273 $K~{\rm or}~0^{\circ}{\rm C}$
$L_v(\text{water})$	$2.26\times 10^6~J/kg$	L_f (water)	$3.33 \times 10^5 \ J/kg$
$L_v(N_2)$	$2.01\times 10^5~J/kg$	c (copper)	$3.87\times 10^2~J/kg-^{\circ}{\rm C}$
c (water)	$4.19\times 10^3 \ J/kg-K$	c (steam)	0.69 J/kg - K
c (iron)	$4.5 \times 10^2 \ J/kg - k$	c (aluminum)	$9.0 \times 10^2 J/kg - K$
ρ (water)	$1.0 \times 10^3 kg/m^3$	P_{atm}	$1.01\times 10^5~N/m^2$
k_B	$1.38\times 10^{-23}~J/K$	proton/neutron mass	$1.67\times 10^{-27}~kg$
R	8.31J/K - mole	g	9.8 m/s^2
0 K	-273° C	1 u	$1.67\times 10^{-27}~kg$
Gravitation constant	$6.67 \times 10^{-11} N - m^2/kg^2$	Earth's radius	$6.37 \times 10^6 m$
e electronic charge	$1.6\times 10^{-19}~C$	$k_e = 1/4\pi\epsilon_0$	$8.99 \times 10^9 N - m^2/C^2$

Physics 132-1 Equations

$$\vec{F} = m\vec{a} = \frac{d\vec{p}}{dt} \qquad KE = \frac{1}{2}mv^2 \qquad ME_0 = ME_1 \qquad \vec{p} = m\vec{v} \qquad \vec{p}_0 = \vec{p}_1$$
$$Q = C\Delta T = cm\Delta T = nC_v\Delta T \qquad Q_{f,v} = mL_{f,v}$$

$$\Delta E_{int} = Q + W \qquad W = \text{force} \times \text{distance} = \int \vec{F} \cdot d\vec{s} \to P \Delta V \qquad \vec{F} = m\vec{a} = \frac{d\vec{p}}{dt} \qquad \langle \vec{F} \rangle = \frac{\Delta \vec{p}}{\Delta t}$$
$$\vec{I} = \int \vec{F} dt = \langle \vec{F} \rangle \Delta t = \Delta \vec{p} \qquad P = \frac{|\vec{F}|}{A} \qquad PV = Nk_BT = nRT$$
$$\langle KE \rangle = \langle E_{kin} \rangle = \frac{1}{2}m\overline{v^2} \qquad \langle E_{kin} \rangle = \frac{3}{2}k_BT \qquad E_{int} = N\langle E_{kin} \rangle = \frac{3}{2}Nk_BT$$
$$v_{rms} = \sqrt{\overline{v^2}} \qquad C_V = \frac{f}{2}N_Ak_B \qquad E_f = \frac{k_BT}{2} \qquad E_{int} = \frac{f}{2}Nk_BT$$
$$f \equiv \text{number of degrees of freedom}$$

$$E_{atom} = (n_x + n_y + n_z + \frac{3}{2})\hbar\omega_0 \qquad E = \sum_{i=1}^{3N} n_i\epsilon = q\hbar\omega_0 \qquad \Omega(N,q) = \frac{(q+3N-1)!}{q!(3N-1)!}$$
$$S = k_B \ln\Omega \qquad \frac{1}{T} = \frac{dS}{dE} \qquad q = \frac{E}{\hbar\omega_0} \qquad C = \frac{1}{n}\frac{dE}{dT} \qquad E = 3Nk_BT$$
$$\langle x \rangle = \frac{1}{N}\sum_i x_i \qquad \sigma = \sqrt{\frac{\sum_i (x_i - \langle x \rangle)^2}{N-1}}$$

$$A = 4\pi r^2 \qquad V = Ah \qquad V = \frac{4}{3}\pi r^3 \qquad \frac{d}{dx}x^n = nx^{n-1} \qquad \frac{d}{dx}(u \cdot v) = u\frac{dv}{dx} + v\frac{du}{dx} \qquad \frac{d}{dx}\ln x = \frac{1}{x}$$

$$\frac{df(x)}{dx} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x} \quad \int_a^b f(x) dx = \lim_{\Delta x \to 0} \sum_{n=1}^N f(x) \Delta x \quad \frac{d}{dy} f(x) = \frac{df}{dx} \frac{dx}{dy}$$