Physics 132-01 Test 3

I pledge that I have neither given nor received unauthorized assistance during the completion of this work.

Name \qquad Signature \qquad
Questions (5 for 8 pts. apiece) Answer in complete, well-written sentences WITHIN the spaces provided.

1. Consider the measurements of the impact of paper on three types of radiation in the table below. Which type of radiation is most penetrating? Why?

Shielding Measurements			
		Paper	
Source	0	1	2
gamma	1580	1601	1635
beta	460	442	345
alpha	30	33	37

2. The figure below shows the decay scheme we used to measure the time dependence of radioactive decay. The arrows indicate two different transitions. Which one did we use and why?

3. In a magnetic field do the lines of force ever cross? Explain.
4. In our study of double-slit interference we used a red laser to create an interference pattern like the one shown below. How would that pattern change if we used white light instead? Explain.

5. The figure below shows the bright fringes that lie within the central diffraction envelope in two, double-slit diffraction experiments using the same wavelength of light λ. Is the slit width a in experiment B greater than, less than, or the same as in experiment A ? Is the slit separation d in experiment B greater than, less than, or the same as in experiment A ? Explain.

Problems (3). Clearly show all reasoning for full credit. Use a separate sheet to show your work.

1. 16 pts. When a high-power laser is used in the Earth's atmosphere, the electric field can ionize the air, turning it into a conducting plasma that reflects the laser light. In dry air at $0^{\circ} \mathrm{C}$ and 1 atm , electric breakdown occurs for fields with amplitudes above about $E_{m}=3.0 \mathrm{MV} / \mathrm{m}$. What laser beam intensity will produce such a field? At this maximum intensity, what power can be delivered in a cylindrical beam of diameter $d=$ 8.0 mm ?
2. 20 pts. In an experiment on the transport of nutrients in the root structure of a plant, two radioactive nuclides X and Y are used. Initially 3.50 times more nuclei of type X are present than of type Y. Just three days later there are 4.20 times more nuclei of type X than of type Y. Isotope X has a half-life of $t_{X}=1.60 \mathrm{~d}$. What is the half-life t_{Y} of isotope Y ?

DO NOT WRITE BELOW THIS LINE.
3. 24 pts. Light of wavelength $\lambda=600 \mathrm{~nm}$ passes though two slits separated by a distance $d=0.20 \mathrm{~mm}$ and is observed on a screen $L=1.0 \mathrm{~m}$ behind the slits. A very thin piece of glass is then placed in one slit. Light travels slower in glass than in air so the wave passing through the glass is delayed by a time $\Delta t=5.0 \times 10^{-16} s$ in comparison to the wave going through the other slit. What fraction of the period of the light wave is this delay? The glass causes the interference fringe pattern on the screen to shift sideways. Which way does the central maximum move (toward or away from the slit with the glass) and by how far?

Physics 132-1 Constants and Conversions

Avogadro's number $\left(N_{A}\right)$	6.022×10^{23}	Speed of light (c)	$3 \times 10^{8} \mathrm{~m} / \mathrm{s}$
k_{B}	$1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}$	proton/neutron mass	$1.67 \times 10^{-27} \mathrm{~kg}$
1 u	$1.67 \times 10^{-27} \mathrm{~kg}$	g	$9.8 \mathrm{~m} / \mathrm{s}^{2}$
Gravitation constant	$6.67 \times 10^{-11} \mathrm{~N}-\mathrm{m}^{2} / \mathrm{kg}^{2}$	Earth's radius	$6.37 \times 10^{6} \mathrm{~m}$
Coulomb constant $\left(k_{e}\right)$	$8.99 \times 10^{9} \frac{\mathrm{N-m}^{2}}{\mathrm{C}^{2}}$	Electron mass	$9.11 \times 10^{-31} \mathrm{~kg}$
Elementary charge (e)	$1.60 \times 10^{-19} \mathrm{C}$	Proton/Neutron mass	$1.67 \times 10^{-27} \mathrm{~kg}$
Permittivity constant $\left(\epsilon_{0}\right)$	$8.85 \times 10^{-12} \frac{\mathrm{~kg}^{2}}{\mathrm{N-m}}$	1.0 eV	$1.6 \times 10^{-19} \mathrm{~J}$
1 MeV	$10^{6} \mathrm{eV}$	atomic mass unit (u)	$1.66 \times 10^{-27} \mathrm{~kg}$
Planck's constant (h)	$6.63 \times 10^{-34} \mathrm{Js}$	Planck's constant (h)	$4.14 \times 10^{-15} \mathrm{eV} \mathrm{s}$
Permeability constant $\left(\mu_{0}\right)$	$1.26 \times 10^{-6} \mathrm{Tm} / \mathrm{A}$	Rydberg constant $\left(R_{H}\right)$	$1.097 \times 10^{7} \mathrm{~m} \mathrm{~m}^{-1}$

Physics 132-1 Equations

$$
\begin{aligned}
& \vec{F}=m \vec{a}=\frac{d \vec{p}}{d t} \quad a_{c}=\frac{v^{2}}{r} \quad W=\int \vec{F} \cdot d \vec{s} \quad K E=\frac{1}{2} m v^{2} \quad K E_{0}+P E_{0}=K E_{1}+P E_{1} \\
& \vec{F}_{C}=k_{e} \frac{q_{1} q_{2}}{r^{2}} \hat{r} \quad \vec{E} \equiv \frac{\vec{F}}{q_{0}} \quad \vec{E}=k_{e} \sum_{i} \frac{q_{i}}{r_{i}^{2}} \hat{r}_{i} \quad \vec{E}=\int \frac{k_{e} d q}{r^{2}} \hat{r} \quad V=k_{e} \sum_{n} \frac{q_{n}}{r_{n}} \quad V=k_{e} \int \frac{d q}{r} \quad P E=q V \\
& \vec{F}_{B}=q \vec{v} \times \vec{B} \quad\left|\vec{F}_{B}\right|=|q v B \sin \theta| \quad\left|\vec{F}_{c}\right|=m \frac{v^{2}}{r} \\
& \frac{d N}{d t}=-\lambda N \quad N=N_{0} e^{-\lambda t} \quad t_{1 / 2}=\frac{\ln 2}{\lambda} \quad y=A \sin (k x-\omega t) \quad k \lambda=2 \pi \quad \omega T=2 \pi \\
& E=E_{m} \sin (k x-\omega t+\phi) \quad B=B_{m} \sin (k x-\omega t+\phi) \quad E=E_{m} \sin (k r-\omega t+\phi) \\
& \vec{S}=\frac{1}{\mu_{0}} \vec{E} \times \vec{B} \quad E=c B \quad|\vec{S}|=I=\frac{E^{2}}{2 \mu_{0} c} \quad c=\frac{\lambda}{T} \\
& I=I_{m} \cos ^{2}\left(\frac{\pi d}{\lambda} \sin \theta\right) \quad I=I_{m}\left[\frac{\sin \left(\frac{\pi a}{\lambda} \sin \theta\right)}{\frac{\pi a}{\lambda} \sin \theta}\right]^{2} \quad I=I_{m} \cos ^{2}\left(\frac{\pi d}{\lambda} \sin \theta\right)\left[\frac{\sin \left(\frac{\pi a}{\lambda} \sin \theta\right)}{\frac{\pi a}{\lambda} \sin \theta}\right]^{2} \\
& \delta=d \sin \theta=m \lambda(m=0, \pm 1, \pm 2, \ldots) \quad \delta=a \sin \theta=m \lambda(m= \pm 1, \pm 2, \ldots) \quad \phi=k \delta \\
& \vec{F}=m \vec{a} \quad x=\frac{a}{2} t^{2}+v_{0} t+x_{0} \quad v=a t+v_{0} \quad \sin A+\sin B=2 \sin \left(\frac{A+B}{2}\right) \cos \left(\frac{A-B}{2}\right) \\
& \frac{d}{d x}(f(u))=\frac{d f}{d u} \frac{d u}{d x} \quad \int x^{n} d x=\frac{x^{n+1}}{n+1} \quad \int \frac{1}{x} d x=\ln x \quad \vec{A} \cdot \vec{B}=A B \cos \theta \quad|\vec{A} \times \vec{B}|=|A B \sin \theta| \\
& \frac{d}{d x}\left(x^{n}\right)=n x^{n-1} \quad \frac{d e^{x}}{d x}=e^{x} \quad \frac{d}{d x}(\ln x)=\frac{1}{x} \quad \frac{d}{d x}(\cos a x)=-a \sin a x \quad \frac{d}{d x}(\sin a x)=a \cos a x \\
& \langle x\rangle=\frac{1}{N} \sum_{i} x_{i} \quad \sigma=\sqrt{\frac{\sum_{i}\left(x_{i}-\langle x\rangle\right)^{2}}{N-1}} \quad A=4 \pi r^{2} \quad V=A h \quad V=\frac{4}{3} \pi r^{3}
\end{aligned}
$$

