## Physics 132-01 Test 2

I pledge that I have neither given nor received unauthorized assistance during the completion of this work.

Name $\qquad$ Signature $\qquad$
Questions (5 for 8 pts. apiece) Answer in complete, well-written sentences WITHIN the spaces provided.

1. The figure below shows a region of uniform electric field $E_{0}$. If a positively charged particle $+q$ moves along the path shown with the dashed line, is the change in potential energy of the system positive, negative, or zero? Explain.

2. The figure below shows either the field lines or equipotentials for an electric dipole. Are they field lines or equipotentials? Whatever you answered in the previous question draw the other type of curve. Explain your reasoning for how you draw those curves.

3. The magnitude of the magnetic force on a charged particle in a uniform magnetic field is $\left|\vec{F}_{B}\right|=q v B$ and it moves in a circle. What is the magnitude of the centripetal force $\left|\vec{F}_{c}\right|$ in terms of $v, r$ (the radius of the circular motion) and $m$ (the particle mass)? Equate the expressions for the magnitudes of $\left|\vec{F}_{B}\right|$ and $\left|\vec{F}_{c}\right|$. Solve for the mass $m$ in terms of the radius $r$ of the particles path, $|q|, v$, and $B$.

Questions continued. Answer in complete, well-written sentences WITHIN the spaces provided.
4. Referring to the figure, the magnitude of the electric field $d \vec{E}$ due to just a single bit of charge $d Q$ on the ring is

$$
|d \vec{E}|=k_{e} \frac{d Q}{r^{2}}
$$

where $k_{e}$ is a constant and $r$ is the distance from $d Q$ to a point on the axis as shown. What is $d E_{x}$ in terms of $x, a$, and any other known constants?

5. Rank the potential energies of the three systems of particles shown in the figure from largest to smallest. Include equalities if appropriate. Explain your reasoning.


Problems (3). Clearly show all reasoning for full credit. Use a separate sheet to show your work.

1. 15 pts. Four $1.50-\mathrm{V}$ AA batteries in series are used to power a transistor radio. If the batteries can move a charge of $Q=240 C$, how long will they last if the radio has a resistance of $R=150 \Omega$ ?

DO NOT WRITE ON THIS PAGE BELOW THE LINE.
2. 20 pts. A beam of particles of charge $q$ and mass $m$ is accelerated across a potential difference $V_{0}$ and emerges with kinetic energy $K E$ after passing through a thin-foil 'window' at the end of an accelerator tube. There is a metal plate a distance $d$ from the window and perpendicular to the beam direction. See the figure below. What is the minimum magnetic field $\vec{B}$ needed to deflect the beam and prevent it from hitting the plate? How should $\vec{B}$ be oriented? If you measured this magnetic field $B$, then what would be the mass of the beam particles? Get your answers in terms of $V_{0}, d, q, B, m$ and any other necessary constants.

3. 25 pts. Surgeons use the following device to check on blood flow during an operation. Two electrodes A and B are in contact with the outer surface of an artery, which has an interior diameter $d=3.0 \mathrm{~mm}$. When a magnetic field of magnitude $B_{0}=0.04 T$ is applied as shown, a voltage $V_{0}=1.60 \times 10^{-4} V$ is measured. Some of the blood constituents are positively charged and are deflected to one side of the vessel by the $B$ field creating an electric field $E_{0}$ in the artery. Assume the electric field/force in the artery is constant and in equilibrium with the magnetic force. How are the voltage and the electric field related? What is the speed of the blood? Is electrode A negative as shown? Explain.


## Physics 132-01 Equation Sheet Test 2

$$
\begin{gathered}
\vec{F}_{G}=-G \frac{m_{1} m_{2}}{r_{12}^{2}} \hat{r} \quad \vec{F}_{C}=k_{e} \frac{q_{1} q_{2}}{r_{12}^{2}} \hat{r} \quad \vec{E} \equiv \frac{\vec{F}}{q_{0}} \quad \vec{E}=k_{e} \sum_{i} \frac{q_{i}}{r_{i}^{2}} \hat{r}_{i} \quad \vec{E}=k_{e} \int \frac{d q}{r^{2}} \hat{r} \quad k_{e}=\frac{1}{4 \pi \epsilon_{0}} \\
\vec{E}_{\text {dipole }}=k_{e} \frac{q(2 a)}{\left(x^{2}+a^{2}\right)^{3 / 2}} \hat{j} \quad \vec{E}_{\text {ring }}=k_{e} \frac{q x}{\left(x^{2}+R^{2}\right)^{3 / 2}} \hat{i} \quad \vec{E}_{\text {plane }}=2 \pi k_{e} \eta \hat{k}=\frac{\eta}{2 \epsilon_{0}} \hat{k} \\
\vec{E}_{d i s k}=2 \pi k_{e} \eta\left[1-\frac{z}{\sqrt{z^{2}+R^{2}}}\right] \hat{k}=\frac{\eta}{2 \epsilon_{0}}\left[1-\frac{z}{\sqrt{z^{2}+R^{2}}}\right] \hat{k} \\
W \equiv \int \vec{F} \cdot d \vec{s} \quad \Delta V \equiv \frac{\Delta P E}{q_{0}}=-\int_{A}^{B} \vec{E} \cdot d \vec{s} \quad V=k_{e} \frac{q}{r} \quad V=k_{e} \sum_{i} \frac{q_{i}}{r_{i}} \\
V=k_{e} \int \frac{d q}{r} \quad V=E d \quad I=\frac{d Q}{d t} \quad Q=\int I d t \quad V=I R \quad P=I V \quad R_{\text {equiv }}=\sum R_{i}
\end{gathered}
$$

The algebraic sum of the potential changes across all the elements of a closed loop is zero.

$$
\begin{gathered}
I=n e v_{d} A \quad \vec{F}_{B}=q \vec{v} \times \vec{B} \quad\left|\vec{F}_{B}\right|=|q v B \sin \theta| \quad\left|\vec{F}_{c}\right|=m \frac{v^{2}}{r} \\
K E_{0}+P E_{0}=K E_{1}+P E_{1} \quad K E=\frac{1}{2} m v^{2} \quad P E=q V \\
\vec{F}=m \vec{a} \quad x=\frac{a}{2} t^{2}+v_{0} t+x_{0} \quad v=a t+v_{0} \\
\frac{d x^{n}}{d x}=n x^{n-1} \quad \frac{d f(u)}{d x}=\frac{d f}{d u} \frac{d u}{d x} \quad \frac{d}{d x} f(x) \cdot g(x)=f \frac{d g}{d x}+g \frac{d f}{d x} \\
\langle x\rangle=\frac{1}{N} \sum_{i} x_{i} \quad \sigma=\sqrt{\frac{\sum_{i}\left(x_{i}-\langle x\rangle\right)^{2}}{N-1}} \quad A=4 \pi r^{2} \quad V=A h \quad V=\frac{4}{3} \pi r^{3} \\
\frac{d f(x)}{d x}=\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x} \quad \int_{a}^{b} f(x) d x=\lim _{\Delta x \rightarrow 0} \sum_{n=1}^{N} f(x) \Delta x \quad \frac{d f(y)}{d x}=\frac{d f(y)}{d y} \frac{d y}{d x} \\
\int \frac{1}{x} d x=\ln x \quad \int x^{n} d x=\frac{x^{n+1}}{n+1} \quad \int e^{a x} d x=\frac{e^{a x}}{a}
\end{gathered}
$$

Physics 132-1 Constants

| $k_{B}$ | $1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}$ | proton/neutron mass | $1.67 \times 10^{-27} \mathrm{~kg}$ |
| :--- | :--- | :--- | :--- |
| 1 u | $1.67 \times 10^{-27} \mathrm{~kg}$ | g | $9.8 \mathrm{~m} / \mathrm{s}^{2}$ |
| Gravitation constant | $6.67 \times 10^{-11} \mathrm{~N}-\mathrm{m}^{2} / \mathrm{kg}^{2}$ | Earth's radius | $6.37 \times 10^{6} \mathrm{~m}$ |
| Coulomb constant $\left(k_{e}\right)$ | $8.99 \times 10^{9} \frac{\mathrm{N-m}^{2}}{\mathrm{C}^{2}}$ | Earth's mass | $5.97 \times 10^{24} \mathrm{~kg}$ |
| Elementary charge $(e)$ | $1.60 \times 10^{-19} \mathrm{C}$ | Electron mass | $9.11 \times 10^{-31} \mathrm{~kg}$ |
| Permittivity constant $\left(\epsilon_{0}\right)$ | $8.85 \times 10^{-12} \frac{\mathrm{~kg}^{2}}{\mathrm{N-m}^{2}}$ | 1.0 eV | $1.6 \times 10^{-19} \mathrm{~J}$ |
| Permeability constant $(\mu)$ | $4 \pi \times 10^{-7} \mathrm{Tm} / \mathrm{A}$ | 1 MeV | $10^{6} \mathrm{eV}$ |



| *Lanthanide series | $\begin{aligned} & \text { ansial } \\ & \mathrm{La} \end{aligned}$ | $\begin{array}{\|l\|l\|} \hline \text { cision } \\ \mathrm{Ce} \end{array}$ | Pr | $\mathrm{Nd}^{\text {dem }}$ |  |  |  | $\begin{aligned} & \text { and } \\ & G d \end{aligned}$ |  | $\begin{aligned} & \text { and } \\ & \text { Dy } \end{aligned}$ |  | Er | $\begin{aligned} & \substack{\text { moin } \\ \text { Tm }} \end{aligned}$ | Yb |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| **Actinide series | $\begin{aligned} & \substack{\text { ancion } \\ \text { en }} \end{aligned}$ | $\begin{aligned} & \substack{\text { an } \\ \text { To }} \end{aligned}$ | $\mathrm{Pa}$ |  |  | $\begin{gathered} \\ \mathrm{Pa} \\ \mathrm{an} \end{gathered}$ |  | $\begin{aligned} & \substack{306 \\ C m} \end{aligned}$ | $\begin{gathered} \\ \mathrm{Bk} \end{gathered}$ | $\begin{aligned} & \text { andicem } \\ & \mathrm{Cf} \end{aligned}$ | Es | Fm | Md | -102 |

The Periodic Chart.

