Physics 132-1 Final Exam

I pledge that I have neither given nor received unauthorized assistance during the completion of this work.

Signature \qquad
Questions (10 for 4 pts. apiece) Answer in complete, well-written sentences WITHIN the spaces provided.

1. Consider the figure which shows several curves related to the energy of the particle. What restrictions are there on the energy E of a classical particle based on the figure? Explain.

2. The figure shows the complete level diagram for some atom. What are the chances of this atom emitting a photon of energy $E_{1}=0.5 \mathrm{eV}$ versus a photon of energy $E_{2}=0.9 \mathrm{eV}$? Explain.

3. When we measured the latent heat of vaporization of liquid nitrogen we used a resistor immersed in the liquid as the heat source. We took some data with the current in the resistor turned off. Why?
4. In our study of the kinetic theory of ideal gases we found that

$$
F_{x}=\frac{m v_{x}^{2}}{l}
$$

where m is the mass and v_{x} is the horizontal component of the velocity of a gas particle. We have assumed from the beginning that we have a cubical box of edge length l. Show that the pressure on the wall perpendicular to the x axis caused by the force F_{x} due to one molecule is described by the following expression.

$$
P=\frac{m v_{x}^{2}}{l^{3}} .
$$

Clearly show all steps for full credit.
5. The figure shows the output of the StatMech program consisting of a window showing the graph of probabilities relative to the most probable state for each microstate for two solids A and B in contact. The horizontal axis is the fraction of the energy in solid A divided by the total energy. How wide is the distribution of microstates? How would you expect this width to change as the number of particles increased? Explain your reasoning.

6. Recall the electroscope. How did you charge the electroscope by induction?
7. Recall our study of the electric potential of a point charge and an electric dipole. Both produced potentials that decreased with increasing r the distance from the charges. Which one decreased more quickly with r when you were far from the charges? Explain your result.
8. Consider the simulation below of electromagnetic waves from two point sources. Label areas on the figure where waves from the two sources combine to cancel each other out (destructive interference) and areas where their amplitudes add (constructive interference). If these were visible light waves, where would you see bright light? Explain. In what direction does the Poynting vector point?

9. The figure shows the path of an electron in a region of uniform magnetic field. The path consists of two straight sections, each between a pair of uniformly charged plates, and two half-circles. Which plate is at the higher electric potential in (a) the top pair of plates and (b) the bottom pair? (c) What is the direction of the magnetic field? Explain your reasoning.

10. The radioactive nucleus ${ }_{88}^{226} \mathrm{Ra}$ has a half-life of about $1.6 \times 10^{3} \mathrm{yr}$. If the Solar System is about 5 billion $\left(10^{9}\right)$ years old, how can there be any of these nuclei left?

Problems (6). Clearly show all reasoning for full credit. Use a separate sheet to show your work.

1. 10 pts. What are the energy and wavelength of a photon emitted when a hydrogen atom undergoes a transition from the $n=4$ state to the $n=3$ state?
2. 10 pts. A Russian Arktica satellite that monitors polar weather follows an elliptical orbit around the Earth at an altitude of $h=300 \mathrm{~km}$ above the surface of the Earth (radius $r_{E}=6.67 \times 10^{6} \mathrm{~m}$) at a velocity

$$
\vec{v}=4.1 \times 10^{3} \mathrm{~m} / \mathrm{s} \hat{r}+7.5 \times 10^{3} \mathrm{~m} / \mathrm{s} \hat{\theta}
$$

What is the angular momentum? What is the total energy? The satellite mass is $m_{s}=600 \mathrm{~kg}$.
3. 10 pts. A room of volume V_{0} contains air having equivalent molar mass M (in $\mathrm{g} / \mathrm{mol}$). If the temperature of the room is raised from T_{1} to T_{2}, what mass of air will leave the room? Assume that the air pressure in the room is maintained at P_{0} and get your answer in terms of P_{0}, V_{0}, the temperatures, and any other necessary constants.
4. 10 pts. Imagine that the entropy of a certain substance as a function of N and E is given by the formula $S=N k_{b} \ln E$. How is the thermal energy of this substance is related to its temperature?
5. 10 pts. Four identical point charges $(q=10.0 \mu C)$ are located on the corners of a rectangle as shown in the figure. The dimensions of the rectangle are $L=60.0 \mathrm{~cm}$ and $W=15.0 \mathrm{~cm}$. Calculate the magnitude and direction of the resultant electric force exerted on the charge at the lower left corner by the other three charges.

6. 10 pts. In the figure two isotropic point sources of light $\left(S_{1}\right.$ and $\left.S_{2}\right)$ are separated by distance $\Delta y=2.70 \mu \mathrm{~m}$ along the y axis and emit light in phase at wavelength $\lambda=900 \mathrm{~nm}$ and with the same amplitude. A light sensor is located at point P at x_{P} on the x axis. The distance x_{p} is not necessarily much larger than the separation Δy of the sources. What is the greatest value of x_{P} at which the detected light is a minimum due to destructive interference?

Physics 132-1 Constants

Avogadro's number $\left(N_{A}\right)$	6.022×10^{23}	Speed of light (c)	$3 \times 10^{8} \mathrm{~m} / \mathrm{s}$
Boltzmann constant $\left(k_{B}\right)$	$1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}$	proton/neutron mass	$1.67 \times 10^{-27} \mathrm{~kg}$
atomic mass unit (u)	$1.66 \times 10^{-27} \mathrm{~kg}$	g	$9.8 \mathrm{~m} / \mathrm{s}^{2}$
Gravitation constant (G)	$6.67 \times 10^{-11} \mathrm{~N}-\mathrm{m}^{2} / \mathrm{kg}^{2}$	Earth's radius	$6.37 \times 10^{6} \mathrm{~m}$
Coulomb constant $\left(k_{e}\right)$	$8.99 \times 10^{9} \frac{\mathrm{N-m}^{2}}{\mathrm{C}^{2}}$	Earth's mass	$5.98 \times 10^{24} \mathrm{~kg}$
Electron mass	$9.11 \times 10^{-31} \mathrm{~kg}$	Earth-Sun distance	$1.5 \times 10^{11} \mathrm{~m}$
Elementary charge (e)	$1.60 \times 10^{-19} \mathrm{C}$	Proton/Neutron mass	$1.67 \times 10^{-27} \mathrm{~kg}$
Permittivity constant $\left(\epsilon_{0}\right)$	$8.85 \times 10^{-12} \frac{\mathrm{~kg}^{2}}{N-\mathrm{m}^{2}}$	1.0 eV	atomic mass unit (u)
MeV	$10^{6} \mathrm{eV}$	Planck's constant (h)	$1.6 \times 10^{-19} \mathrm{~J}$
Planck's constant (h)	$6.626 \times 10^{-34} \mathrm{~J}-\mathrm{s}$	$4.14 \times 10^{-15} \mathrm{eV}-\mathrm{s}$	
Planck's constant $2(\hbar=h / 2 \pi)$	$1.0546 \times 10^{-34} \mathrm{~J}-\mathrm{s}$	Gas constant R	$8.315 \mathrm{~J} / \mathrm{K}-\mathrm{mol}$
Planck's constant $2(\hbar=h / 2 \pi)$	$6.58 \times 10^{-16} \mathrm{~J} / \mathrm{K}-m o l e$	Permittivity constant $\left(\epsilon_{0}\right)$	$8.85 \times 10^{-12} \frac{\mathrm{~kg}^{2}}{\mathrm{N-m}}$

Physics 132-1 Equation Sheet, Final

$$
\begin{gathered}
\vec{F}=m \vec{a}=\frac{d \vec{p}}{d t} \quad a_{c}=\frac{v^{2}}{r} \quad \vec{F}_{c}=-m \frac{v^{2}}{r} \hat{r} \quad K E=\frac{1}{2} m v^{2} \quad M E_{0}=M E_{1}=K E_{1}+P E_{1} \quad \vec{p}=m \vec{v} \quad \vec{p}_{0}=\vec{p}_{1} \\
x=\frac{a}{2} t^{2}+v_{0} t+x_{0} \quad v=a t+v_{0} \quad Q=C \Delta T=c m \Delta T=n C_{v} \Delta T \quad Q_{f, v}=m L_{f, v} \\
\Delta E_{\text {int }}=Q+W \quad W=\int \vec{F} \cdot d \vec{s} \rightarrow P \Delta V \quad\langle\vec{F}\rangle=\frac{\Delta \vec{p}}{\Delta t} \quad P=\frac{|\vec{F}|}{A} \quad P V=N k_{B} T=n R T \\
\vec{I}=\int \vec{F} d t=\langle\vec{F}\rangle \Delta t=\Delta \vec{p} \quad\langle K E\rangle=\left\langle E_{k i n}\right\rangle=\frac{1}{2} m \overline{v^{2}} \quad\left\langle E_{k i n}\right\rangle=\frac{3}{2} k_{B} T=\frac{1}{2} m v_{r m s}^{2} \quad E_{\text {int }}=N\left\langle E_{k i n}\right\rangle=\frac{3}{2} N k_{B} T
\end{gathered}
$$

$$
\begin{gathered}
v_{r m s}=\sqrt{\left\langle v^{2}\right\rangle} \quad C_{V}=\frac{f}{2} N_{A} k_{B} \quad E_{f}=\frac{k_{B} T}{2} \quad E_{\text {int }}=\frac{f}{2} N k_{B} T \quad f \equiv \text { number of degrees of freedom } \\
E_{\text {atom }}=\left(n_{x}+n_{y}+n_{z}+\frac{3}{2}\right) \epsilon_{i} \quad E=\sum_{i=1}^{3 N} n_{i} \epsilon_{i}=q \epsilon_{i} \quad \Omega(N, q)=\frac{(q+3 N-1)!}{q!(3 N-1)!} \quad S=k_{B} \ln \Omega \\
\frac{1}{T}=\frac{d S}{d E} \quad q=\frac{E}{\hbar \omega_{0}} \quad C=\frac{1}{n} \frac{d E}{d T} \quad E=3 N k_{B} T \\
\vec{F}_{G}=-G \frac{m_{1} m_{2}}{r^{2}} \hat{r} \quad \vec{F}_{C}=k_{e} \frac{q_{1} q_{2}}{r^{2}} \hat{r} \quad \vec{E} \equiv \frac{\vec{F}}{q_{0}} \quad \vec{E}=k_{e} \sum_{i} \frac{q_{i}}{r_{i}^{2}} \hat{r}_{i} \quad \vec{E}=k_{e} \int \frac{d q}{r^{2}} \hat{r} \quad \vec{E}_{\text {dipole }}=k_{e} \frac{q(2 a)}{\left(x^{2}+a^{2}\right)^{3 / 2}} \hat{j} \\
\vec{E}_{\text {ring }}=k_{e} \frac{q x}{\left(x^{2}+R^{2}\right)^{3 / 2}} \hat{i} \quad \vec{E}_{p l a n e}=2 \pi k_{e} \eta \hat{k}=\frac{\eta}{2 \epsilon_{0}} \hat{k} \quad \Delta V \equiv \frac{\Delta P E}{q_{0}}=-\int_{A}^{B} \vec{E} \cdot d \vec{s} \quad V=k_{e} \frac{q}{r} \quad P E=q V \\
V=k_{e} \sum_{n} \frac{q_{n}}{r_{n}} \quad V=k_{e} \int \frac{d q}{r} \quad V=E d \quad I \equiv \frac{d Q}{d t} \quad V=I R \quad P=I V \quad R_{e q u i v}=\sum R_{i}
\end{gathered}
$$

$\begin{aligned} & \text { The algebraic sum of the potential changes } \\ & \text { across all the elements of a closed loop is zero. }\end{aligned} \quad I=n e v_{d} A \quad \vec{F}_{B}=q \vec{v} \times \vec{B} \quad\left|\vec{F}_{B}\right|=|q v B \sin \theta|$

$$
\begin{aligned}
& \frac{d N}{d t}=-\lambda t \quad N=N_{0} e^{-\lambda t} \quad t_{1 / 2}=\frac{\ln 2}{\lambda} \quad y=A \sin (k x-\omega t+\phi) \quad k \lambda=2 \pi=\omega T \quad \frac{\lambda}{T}=c \quad f=\frac{1}{T} \\
& E=E_{m} \sin (k x-\omega t) \quad B=B_{m} \sin (k x-\omega t) \quad \vec{S}=\frac{1}{\mu_{0}} \vec{E} \times \vec{B} \quad|\vec{S}|=I=\frac{E^{2}}{2 \mu_{0} c} \quad \frac{E_{m}}{B_{m}}=c \\
& I=I_{m} \cos ^{2}\left(\frac{\pi d}{\lambda} \sin \theta\right) \quad I=I_{m}\left[\frac{\sin \left(\frac{\pi a}{\lambda} \sin \theta\right)}{\frac{\pi a}{\lambda} \sin \theta}\right]^{2} \quad I=I_{m} \cos ^{2}\left(\frac{\pi d}{\lambda} \sin \theta\right)\left[\frac{\sin \left(\frac{\pi a}{\lambda} \sin \theta\right)}{\frac{\pi a}{\lambda} \sin \theta}\right]^{2} \\
& \delta=d \sin \theta=m \lambda \quad \delta=a \sin \theta=m \lambda \quad \phi=k \delta \quad \sin \theta_{R}=\frac{\lambda}{a} \quad \sin A+\sin B=2 \sin \left(\frac{A+B}{2}\right) \cos \left(\frac{A-B}{2}\right) \\
& L=I \omega=m v_{t} r \quad I=\sum m_{i} r_{i}^{2} \quad I=I_{c m}+m R^{2} \quad L_{0}=L_{1} \quad E=\frac{1}{2} m v_{r}^{2}+\frac{L^{2}}{m r^{2}}-k_{e} \frac{e^{2}}{r} \\
& \frac{1}{\lambda}=R_{H}\left(\frac{1}{n_{f}^{2}}-\frac{1}{n_{i}^{2}}\right) \quad E_{n}=-\frac{13.6 \mathrm{eV}}{n^{2}} \quad E=h f=h \frac{c}{\lambda} \quad-\frac{\hbar^{2}}{2 m}\left(\frac{d^{2}}{d r^{2}}\right) \Psi(r)+\frac{L^{2}}{2 m r^{2}} \Psi(r)+V \Psi(r)=E \Psi(r) \\
& \frac{d f(x)}{d x}=\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x} \quad \frac{d x^{n}}{d x}=n x^{n-1} \quad \frac{d e^{x}}{d x}=e^{x} \quad \frac{d f(u)}{d x}=\frac{d f}{d u} \frac{d u}{d x} \\
& \frac{d}{d x} f(x) \cdot g(x)=f \frac{d g}{d x}+g \frac{d f}{d x} \quad \frac{d \ln x}{d x}=\frac{1}{x} \quad \frac{d}{d x} \cos a x=-a \sin a x \quad \frac{d}{d x} \sin a x=a \cos a x \\
& \int_{a}^{b} f(x) d x=\lim _{\Delta x \rightarrow 0} \sum_{n=1}^{N} f(x) \Delta x \quad \int x^{n} d x=\frac{x^{n+1}}{n+1} \quad \int \sin ^{2}(a x) d x=\frac{x}{2}-\frac{\sin (a x)}{4 a} \\
& \int e^{x} d x=e^{x} \quad \int \frac{1}{x} d x=\ln x \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x=\ln \left[x+\sqrt{x^{2}+a^{2}}\right] \quad \int \frac{x}{\sqrt{x^{2}+a^{2}}} d x=\sqrt{x^{2}+a^{2}}
\end{aligned}
$$

$$
\begin{gathered}
\int \frac{x^{2}}{\sqrt{x^{2}+a^{2}}} d x=\frac{1}{2} x \sqrt{x^{2}+a^{2}}-\frac{1}{2} a^{2} \ln \left[x+\sqrt{x^{2}+a^{2}}\right] \quad \int \frac{x^{3}}{\sqrt{x^{2}+a^{2}}} d x=\frac{1}{3}\left(-2 a^{2}+x^{2}\right) \sqrt{x^{2}+a^{2}} \\
\langle x\rangle=\frac{1}{N} \sum_{i} x_{i} \quad \sigma=\sqrt{\frac{\sum_{i}\left(x_{i}-\langle x\rangle\right)^{2}}{N-1}} \quad N=\frac{b-a}{\Delta x} \quad A=4 \pi r^{2} \quad V=A h \quad V=\frac{4}{3} \pi r^{3} \\
\vec{A} \cdot \vec{B}=A B \cos \theta \quad|\vec{A} \times \vec{B}|=|A B \sin \theta|
\end{gathered}
$$

TABLE 10.2

Moments of Inertia of Homogeneous Rigid Objects With Different Geometries

Rectangular plate

$$
I_{\mathrm{CM}}=\frac{1}{12} M\left(a^{2}+b^{2}\right)
$$

Solid cylinder or disk
$I_{\mathrm{CM}}=\frac{1}{2} M R^{2}$

© 2006 Brooks/Cole - Thomson

Solid sphere
$I_{\mathrm{CM}}=\frac{2}{5} M R^{2}$

Long thin rod with rotation axis through end
$I=\frac{1}{3} M L^{2}$

Thin spherical shell $I_{\mathrm{CM}}=\frac{2}{3} M R^{2}$

The Periodic Chart.

