Physics 132-01 Test 3

I pledge that I have neither given nor received unauthorized assistance during the completion of this work.

Name \qquad Signature \qquad
Questions (5 for 8 pts. apiece) Answer in complete, well-written sentences WITHIN the spaces provided.

1. The three laboratories measuring the age of the Shroud of Turin obtained the following results. Are the results of the three laboratories consistent? Be quantitative in your answer.

Laboratory	Age (years)
Arizona	662 ± 40 yrs
Oxford	800 ± 40 yrs
Zurich	731 ± 40 yrs

2. Consider the simulation of outward-moving, spherical, electromagnetic waves shown in the figure. The green and red colors indicate the electric field - green areas are positive (\vec{E} toward you) and red areas are negative (\vec{E} away from you). The electric field is always perpendicular to the plane of the paper. Note the arrow defining a point on one of the waves moving down the center of the figure. In what direction does the magnetic field point in the red regions along the arrow? Explain your reasoning.

3. In the lab where you measured the hydrogen Balmer lines you measured the angular position of the direct beam θ_{0} which passed straight through the diffraction grating. Why?
4. The intensity $I_{\text {diff }}$ for the diffraction of a single slit can actually be written in closed form as

$$
I_{\mathrm{diff}}=I_{\max }\left(\frac{\sin \left(\frac{\pi a}{\lambda} \sin \theta\right)}{\frac{\pi a}{\lambda} \sin \theta}\right)^{2}
$$

where a is the width of the single slit, θ is the angular position of the phototransistor relative to the incident beam, and $I_{\max }$ is the maximum intensity at the center of the diffraction pattern. What is the value of the argument of the sine function at the maxima of the diffraction pattern? Explain.
5. The figure shows the activities of three radioactive samples versus time. Rank the samples according to the size of their decay constants (biggest first). Explain your reasoning?

Problems (3). Clearly show all reasoning for full credit. Use a separate sheet to show your work.

1. 18 pts. The allowed energies of a simple atom are $0.00 \mathrm{eV}, 2.00 \mathrm{eV}$, and 5.00 eV.
2. Draw the atoms energy-level diagram at least roughly to scale. Label each level with the energy and the quantum number.
3. Draw arrows to show all the transitions in absorption and emission spectra.
4. What is the wavelength λ of the lowest energy emission transition?
5. 18 pts. A sample contains radioactive atoms of two types, A and B. Initially at $t_{0}=0$ there are four times as many A atoms as there are B atoms so $N_{A 0}=4 N_{B 0}$. At a time $t_{1}=2 \mathrm{hrs}$ later, the numbers of the two atoms are equal $N_{A}=N_{B}$. The decay constant of A is $\lambda=1.4 \mathrm{hr}^{-1}$. What is the decay constant of atom B?
6. 24 pts. A spy satellite, commercial or otherwise, like the IKONOS satellite consists of a large-diameter concave mirror forming an image on a digital sensor. It was an astronomical telescope looking down instead of up. The IKONOS telescope had an aperture of size $a=0.70 \mathrm{~m}$ and orbited the Earth at an altitude of $L=681 \mathrm{~km}$. Could the camera be used to read a license plate on Earth? The range of visible light is $\lambda=400-700 \times 10^{-9} \mathrm{~m}$. Show your reasoning.

Physics 132-1 Constants and Conversions

Avogadro's number $\left(N_{A}\right)$	6.022×10^{23}	Speed of light (c)	$3 \times 10^{8} \mathrm{~m} / \mathrm{s}$
k_{B}	$1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}$	proton/neutron mass	$1.67 \times 10^{-27} \mathrm{~kg}$
1 u	$1.67 \times 10^{-27} \mathrm{~kg}$	g	$9.8 \mathrm{~m} / \mathrm{s}^{2}$
Gravitation constant	$6.67 \times 10^{-11} \mathrm{~N}-\mathrm{m}^{2} / \mathrm{kg}^{2}$	Earth's radius	$6.37 \times 10^{6} \mathrm{~m}$
Coulomb constant $\left(k_{e}\right)$	$8.99 \times 10^{9} \frac{\mathrm{N-m}^{2}}{\mathrm{C}^{2}}$	Electron mass	$9.11 \times 10^{-31} \mathrm{~kg}$
Elementary charge (e)	$1.60 \times 10^{-19} \mathrm{C}$	Proton/Neutron mass	$1.67 \times 10^{-27} \mathrm{~kg}$
Permittivity constant $\left(\epsilon_{0}\right)$	$8.85 \times 10^{-12} \frac{\mathrm{~kg}^{2}}{\mathrm{N-m}}$	1.0 eV	$1.6 \times 10^{-19} \mathrm{~J}$
1 MeV	$10^{6} \mathrm{eV}$	atomic mass unit (u)	$1.66 \times 10^{-27} \mathrm{~kg}$
Planck's constant (h)	$6.63 \times 10^{-34} \mathrm{Js}$	Planck's constant (h)	$4.14 \times 10^{-15} \mathrm{eVs}$
Permeability constant $\left(\mu_{0}\right)$	$1.26 \times 10^{-6} \mathrm{Tm} / \mathrm{A}$	Rydberg constant $\left(R_{H}\right)$	$1.097 \times 10^{7} \mathrm{~m}^{-1}$

Physics 132-1 Equations

$$
\begin{aligned}
& \vec{F}=m \vec{a}=\frac{d \vec{p}}{d t} \quad a_{c}=\frac{v^{2}}{r} \quad W=\int \vec{F} \cdot d \vec{s} \quad K E=\frac{1}{2} m v^{2} \quad K E_{0}+P E_{0}=K E_{1}+P E_{1} \\
& \vec{F}_{C}=k_{e} \frac{q_{1} q_{2}}{r^{2}} \hat{r} \quad \vec{E} \equiv \frac{\vec{F}}{q_{0}} \quad \vec{E}=k_{e} \sum_{i} \frac{q_{i}}{r_{i}^{2}} \hat{r}_{i} \quad \vec{E}=\int \frac{k_{e} d q}{r^{2}} \hat{r} \quad V=k_{e} \sum_{n} \frac{q_{n}}{r_{n}} \quad V=k_{e} \int \frac{d q}{r} \quad P E=q V \\
& \frac{d N}{d t}=-\lambda N \quad N=N_{0} e^{-\lambda t} \quad t_{1 / 2}=\frac{\ln 2}{\lambda} \quad y=A \sin (k x-\omega t) \quad k \lambda=2 \pi \quad \omega T=2 \pi \\
& E=E_{m} \sin (k x-\omega t+\phi) \quad B=B_{m} \sin (k x-\omega t+\phi) \quad \vec{S}=\frac{1}{\mu_{0}} \vec{E} \times \vec{B} \quad E=c B \quad|\vec{S}|=I=\frac{E^{2}}{2 \mu_{0} c} \\
& I=4 I_{0} \cos ^{2}\left(\frac{\pi d}{\lambda} \sin \theta\right) \quad I=I_{m}\left[\frac{\sin \left(\frac{\pi a}{\lambda} \sin \theta\right)}{\frac{\pi a}{\lambda} \sin \theta}\right]^{2} \quad I=I_{m} \cos ^{2}\left(\frac{\pi d}{\lambda} \sin \theta\right)\left[\frac{\sin \left(\frac{\pi a}{\lambda} \sin \theta\right)}{\frac{\pi a}{\lambda} \sin \theta}\right]^{2} \\
& \delta=d \sin \theta=m \lambda(m=0, \pm 1, \pm 2, \ldots) \quad \delta=a \sin \theta=m \lambda(m= \pm 1, \pm 2, \ldots) \quad \phi=k \delta \\
& \frac{1}{\lambda}=R_{H}\left(\frac{1}{n_{f}^{2}}-\frac{1}{n_{i}^{2}}\right) \quad E_{n}=-\frac{13.6 \mathrm{eV}}{n^{2}} \quad E=h f=\frac{h c}{\lambda} \quad p=\frac{h}{\lambda} \quad \vec{p}=m \vec{v} \quad \vec{p}_{0}=\vec{p}_{1} \\
& \theta=\frac{s}{r} \quad \omega=\frac{v_{\perp}}{r}=\frac{d \theta}{d t} \quad L=I \omega=m v_{T} r \quad I=\sum_{i} m_{i} r_{i}^{2} \quad I_{i} \omega_{0}=I_{f} \omega_{1} \quad K E_{r o t}=\frac{1}{2} I \omega^{2} \\
& \vec{F}=m \vec{a} \quad x=\frac{a}{2} t^{2}+v_{0} t+x_{0} \quad v=a t+v_{0} \\
& \frac{d}{d x}\left(x^{n}\right)=n x^{n-1} \quad \frac{d}{d x}(f(u))=\frac{d f}{d u} \frac{d u}{d x} \quad \int x^{n} d x=\frac{x^{n+1}}{n+1} \quad \int \frac{1}{x} d x=\ln x \\
& \frac{d e^{x}}{d x}=e^{x} \quad \frac{d}{d x}(\ln x)=\frac{1}{x} \quad \frac{d}{d x}(\cos a x)=-a \sin a x \quad \frac{d}{d x}(\sin a x)=a \cos a x \\
& \langle x\rangle=\frac{1}{N} \sum_{i} x_{i} \quad \sigma=\sqrt{\frac{\sum_{i}\left(x_{i}-\langle x\rangle\right)^{2}}{N-1}} \quad A=4 \pi r^{2} \quad V=A h \quad V=\frac{4}{3} \pi r^{3}
\end{aligned}
$$

