Physics 132-1 Final Exam

I pledge that I have neither given nor received unauthorized assistance during the completion of this work.

Signature \qquad
Questions (10 for 4 pts. apiece) Answer in complete, well-written sentences WITHIN the spaces provided.

1. Recall the lab entitled A Theory for the Hydrogen Atom. Describe the motion of a quantum particle such as an electron in the hydrogen atom potential. What restrictions, if any, are there on the energy E of a quantum particle?
2. When you solve the Schrödinger equation you determine the wave function of the electron bound to the proton to form hydrogen. What happened to the wave function as the energy of the solution you found increased?
3. A piece of ice at T_{0} is tossed into water in a calorimeter cup at room temperature T_{1} and melts completely. The calorimeter cup is thermally isolated from its surroundings so no heat escapes. Suppose you knew all the masses (ice $\left(m_{i}\right)$, water $\left.\left(m_{w}\right), \operatorname{cup}\left(m_{c}\right)\right)$ at the start, specific heats (ice $\left(c_{i}\right)$, water $\left.\left(c_{w}\right), \operatorname{cup}\left(c_{c}\right)\right)$, and latent heats (ice $\left(L_{f_{i}}\right.$, $\left.L_{v i}\right)$, water $\left(L_{f_{w}}, L_{v w}\right), \operatorname{cup}\left(L_{f_{c}}, L_{v_{c}}\right)$,) What is the equation you would start from and solve in order to calculate the final temperature of the system? Make sure you clearly label each item in your answer.
4. Recall our investigation of the kinetic theory of ideal gases. If the collisions of the atoms or molecules with the wall perpendicular to the x direction are elastic, show that the force exerted on that wall for each collision is $F_{x}=2 m v_{x} / \Delta t_{x}$ where m is the mass of the particles and Δt_{x} is the mean interval between collisions with the wall. (Hint: Think of the form of Newtons second law in which force is defined in terms of the change in momentum per unit time so that $F=\Delta p / \Delta t$ where p refers to momentum not pressure.)
5. Recall the laboratory entitled Einstein Solid. When the system is in a macrostate far from the most probable one, what is the most likely thing to happen as energy or heat flows around the system? Explain.
6. Recall measuring the equipotential lines around a point charge near a conducting plate. If the potential at a point is zero, must the electric field be zero as well? Explain.
7. The figure below shows the relationship between \vec{F}_{B}, \vec{v}, and \vec{B}. How is the magnitude of the cross product $\vec{v} \times \vec{B}$ related to the magnitude of v, B, and θ the angle between \vec{v} and \vec{B} ? Describe the trajectory of the charged particle. Explain.

8. In lab you took data on the pattern of light created when you passed laser light through two slits of width a seperated by a distance d (see the figure). You then extracted and plotted the angular positions of the peaks (intensity versus angle). You used the positions of the minima in that second plot to determine which quantity a or d ? Explain.

9. Suppose it was shown that the cosmic-ray intensity striking the Earth was much greater 10,000 years ago. How would this difference affect currently accepted values of radiocarbon-dated artifacts? Explain.
10. How can the motion of a moving, charged particle be used to distinguish between a magnetic field and an electric field? Don't assume you know the direction of either field.

Problems (6). Clearly show all reasoning for full credit. Use a separate sheet to show your work.

1. 10 pts. A beam of electrons is incident upon a gas of hydrogen atoms. What minimum speed v_{0} must the electrons have to cause the emission of the $\lambda=656 \mathrm{~nm}$ light from the $3 \rightarrow 2$ transition of hydrogen?
2. 10 pts. A star with the mass $\left(M=2.0 \times 10^{30} \mathrm{~kg}\right)$ and size $\left(R=7.0 \times 10^{8} \mathrm{~m}\right)$ of our sun rotates once every $T_{0}=30$ days. After undergoing gravitational collapse after its nuclear fuel is expended, the star collapses and forms a pulsar that is observed by astronomers to emit radio pulses every $T_{1}=0.10 \mathrm{~s}$. What is the speed of a point on the equator of the pulsar?
3. 10 pts. A certain macropartition of two Einstein solids has an entropy of $S_{1}=$ $305.2 k_{B}$. The next macropartition closer to the most probable one has an entropy of $S_{2}=335.5 k_{B}$. If the system is initially in the first macropartition and we check it again later, how many times more likely is it to have moved to the other than to have stayed in the first?
4. 10 pts. A typical nuclear reactor generates $P_{0}=1000 M W$ of electrical energy where P_{0} is power (energy/time) and $1 M W=10^{6} \mathrm{~J} / \mathrm{s}$. In doing so, it produces $P_{1}=2000 \mathrm{MW}$ of waste heat that must be removed from the reactor to keep it from melting down. Many reactors are sited next to large bodies of water so that they can use the water for cooling. Consider a reactor where the intake water is at $T_{0}=18^{\circ} \mathrm{C}$. State regulations limit the temperature of the output water to $T_{1}=26^{\circ} \mathrm{C}$ so as not to harm aquatic organisms. How many liters of cooling water have to be pumped through the reactor each minute? The specific heat of water is $c_{w}=4190 \mathrm{~J} / \mathrm{kg} \mathrm{K}$. The latent heat of vaporization of water is $L_{v}=22.6 \times 10^{5} \mathrm{~J} / \mathrm{kg}$. the latent heat of fusion of water is $L_{f}=3.33 \times 10^{5} \mathrm{~J} / \mathrm{kg}$.
5. 10 pts. Three point charges are arranged as shown in the figure. What is the vector electric field that q_{2} and q_{3} create together at the origin? What is the force on q_{1} ? Use the $\hat{i}, \hat{j}, \hat{k}$ notation to express your vectors.

6. 10 pts. The waves from a radio station can reach a home receiver by two paths shown in the figure. One is a direct, straight-line path from transmitter to home, a distance $L_{1}=30 \times 10^{3} \mathrm{~m}$. The second is by reflection from the ionosphere (a layer of ionized air molecules high in the atmosphere). Assume this reflection takes place at the midpoint between the transmitter and the receiver, the wavelength broadcast by the radio station is $\lambda=350 \mathrm{~m}$, and there is no phase change when the radio waves are reflected. What is the minimum height of the ionosphere that could produce destructive interference between the direct and the reflected beams? Neglect the height of the towers in the figure.

Physics 132-1 Constants

Avogadro's number $\left(N_{A}\right)$	6.022×10^{23}	Speed of light (c)	$3 \times 10^{8} \mathrm{~m} / \mathrm{s}$
k_{B}	$1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}$	proton/neutron mass	$1.67 \times 10^{-27} \mathrm{~kg}$
$1 u$	$1.67 \times 10^{-27} \mathrm{~kg}$	g	$9.8 \mathrm{~m} / \mathrm{s}^{2}$
Gravitation constant	$6.67 \times 10^{-11} \mathrm{~N}-\mathrm{m}^{2} / \mathrm{kg}^{2}$	Earth's radius	$6.37 \times 10^{6} \mathrm{~m}$
Coulomb constant $\left(k_{e}\right)$	$8.99 \times 10^{9} \frac{\mathrm{N-m}^{2}}{\mathrm{C}^{2}}$	Electron mass	$9.11 \times 10^{-31} \mathrm{~kg}$
Elementary charge (e)	$1.60 \times 10^{-19} \mathrm{C}$	Proton/Neutron mass	$1.67 \times 10^{-27} \mathrm{~kg}$
Permittivity constant $\left(\epsilon_{0}\right)$	$8.85 \times 10^{-12} \frac{\mathrm{~kg}^{2}}{\mathrm{N-m}}$	1.0 eV	$1.6 \times 10^{-19} \mathrm{~J}$
1 MeV	$10^{6} \mathrm{eV}$	atomic mass unit (u)	$1.66 \times 10^{-27} \mathrm{~kg}$
Planck's constant (h)	$6.626 \times 10^{-34} \mathrm{~J}-\mathrm{s}$	Planck's constant (h)	$4.14 \times 10^{-15} \mathrm{eV}-\mathrm{s}$
Planck's constant $2(\hbar=h / 2 \pi)$	$1.0546 \times 10^{-34} \mathrm{~J}-s$	R	$6.58 \times 10^{-16} \mathrm{~J} / \mathrm{K}-\mathrm{mole}$
atomic mass unit (u)	$1.66 \times 10^{-27} \mathrm{~kg}$	Permittivity constant $\left(\epsilon_{0}\right)$	$8.85 \times 10^{-12} \frac{\mathrm{~kg}^{2}}{\mathrm{N-m}}$

Physics 132-1 Equation Sheet, Final

$$
\begin{aligned}
& \vec{F}=m \vec{a}=\frac{d \vec{p}}{d t} \quad a_{c}=\frac{v^{2}}{r} \quad \vec{F}_{c}=-m \frac{v^{2}}{r} \hat{r} \quad K E=\frac{1}{2} m v^{2} \quad M E_{0}=M E_{1}=K E_{1}+P E_{1} \quad \vec{p}=m \vec{v} \quad \vec{p}_{0}=\vec{p}_{1} \\
& x=\frac{a}{2} t^{2}+v_{0} t+x_{0} \quad v=a t+v_{0} \quad Q=C \Delta T=c m \Delta T=n C_{v} \Delta T \quad Q_{f, v}=m L_{f, v} \\
& \Delta E_{\text {int }}=Q+W \quad W=\int \vec{F} \cdot d \vec{s} \rightarrow P \Delta V \quad\langle\vec{F}\rangle=\frac{\Delta \vec{p}}{\Delta t} \quad P=\frac{|\vec{F}|}{A} \quad P V=N k_{B} T=n R T \\
& \vec{I}=\int \vec{F} d t=\langle\vec{F}\rangle \Delta t=\Delta \vec{p} \quad\langle K E\rangle=\left\langle E_{k i n}\right\rangle=\frac{1}{2} m \overline{v^{2}} \quad\left\langle E_{k i n}\right\rangle=\frac{3}{2} k_{B} T=\frac{1}{2} m v_{r m s}^{2} \quad E_{\text {int }}=N\left\langle E_{k i n}\right\rangle=\frac{3}{2} N k_{B} T \\
& v_{r m s}=\sqrt{\left\langle v^{2}\right\rangle} \quad C_{V}=\frac{f}{2} N_{A} k_{B} \quad E_{f}=\frac{k_{B} T}{2} \quad E_{i n t}=\frac{f}{2} N k_{B} T \quad f \equiv \text { number of degrees of freedom } \\
& E_{\text {atom }}=\left(n_{x}+n_{y}+n_{z}+\frac{3}{2}\right) \epsilon_{i} \quad E=\sum_{i=1}^{3 N} n_{i} \epsilon_{i}=q \epsilon_{i} \quad \Omega(N, q)=\frac{(q+3 N-1)!}{q!(3 N-1)!} \quad S=k_{B} \ln \Omega \\
& \frac{1}{T}=\frac{d S}{d E} \quad q=\frac{E}{\hbar \omega_{0}} \quad C=\frac{1}{n} \frac{d E}{d T} \quad E=3 N k_{B} T \\
& \vec{F}_{G}=-G \frac{m_{1} m_{2}}{r^{2}} \hat{r} \quad \vec{F}_{C}=k_{e} \frac{q_{1} q_{2}}{r^{2}} \hat{r} \quad \vec{E} \equiv \frac{\vec{F}}{q_{0}} \quad \vec{E}=k_{e} \sum_{i} \frac{q_{i}}{r_{i}^{2}} \hat{r}_{i} \quad \vec{E}=k_{e} \int \frac{d q}{r^{2}} \hat{r} \quad \vec{E}_{\text {dipole }}=k_{e} \frac{q(2 a)}{\left(x^{2}+a^{2}\right)^{3 / 2}} \hat{j} \\
& \vec{E}_{\text {ring }}=k_{e} \frac{q x}{\left(x^{2}+R^{2}\right)^{3 / 2}} \hat{i} \quad \vec{E}_{\text {plane }}=2 \pi k_{e} \eta \hat{k}=\frac{\eta}{2 \epsilon_{0}} \hat{k} \quad \Delta V \equiv \frac{\Delta P E}{q_{0}}=-\int_{A}^{B} \vec{E} \cdot d \vec{s} \quad V=k_{e} \frac{q}{r} \quad P E=q V \\
& V=k_{e} \sum_{n} \frac{q_{n}}{r_{n}} \quad V=k_{e} \int \frac{d q}{r} \quad V=E d \quad I \equiv \frac{d Q}{d t} \quad V=I R \quad P=I V \quad R_{\text {equiv }}=\sum R_{i}
\end{aligned}
$$

$\begin{aligned} & \text { The algebraic sum of the potential changes } \\ & \text { across all the elements of a closed loop is zero. }\end{aligned} \quad I=n e v_{d} A \quad \vec{F}_{B}=q \vec{v} \times \vec{B} \quad\left|\vec{F}_{B}\right|=|q v B \sin \theta|$

$$
\begin{gathered}
\frac{d N}{d t}=-\lambda t \quad N=N_{0} e^{-\lambda t} \quad t_{1 / 2}=\frac{\ln 2}{\lambda} \quad y=A \sin (k x-\omega t+\phi) \quad k \lambda=2 \pi=\omega T \quad \frac{\lambda}{T}=c \quad f=\frac{1}{T} \\
E=E_{m} \sin (k x-\omega t) \quad B=B_{m} \sin (k x-\omega t) \quad \vec{S}=\frac{1}{\mu_{0}} \vec{E} \times \vec{B} \quad|\vec{S}|=I=\frac{E^{2}}{\mu_{0} c} \quad \frac{E_{m}}{B_{m}}=c \\
I=4 I_{0} \cos ^{2}\left(\frac{\pi d}{\lambda} \sin \theta\right) \quad I=I_{m}\left[\frac{\sin \left(\frac{\pi a}{\lambda} \sin \theta\right)}{\frac{\pi a}{\lambda} \sin \theta}\right]^{2} \quad I=I_{m} \cos ^{2}\left(\frac{\pi d}{\lambda} \sin \theta\right)\left[\frac{\sin \left(\frac{\pi a}{\lambda} \sin \theta\right)}{\frac{\pi a}{\lambda} \sin \theta}\right]^{2} \\
\delta=d \sin \theta=m \lambda \quad \delta=a \sin \theta=m \lambda \quad \phi=k \delta \quad \sin \theta_{R}=\frac{\lambda}{a} \\
L=I \omega=m v_{t} r \quad I=\sum m_{i} r_{i}^{2} \quad I=I_{c m}+m R^{2} \quad L_{0}=L_{1} \quad E=\frac{1}{2} m v_{r}^{2}+\frac{L^{2}}{m r^{2}}-k_{e} \frac{e^{2}}{r}
\end{gathered}
$$

$$
\begin{gathered}
\frac{1}{\lambda}=R_{H}\left(\frac{1}{n_{f}^{2}}-\frac{1}{n_{i}^{2}}\right) \quad E_{n}=-\frac{13.6 e V}{n^{2}} \quad E=h f=h \frac{c}{\lambda} \quad-\frac{\hbar^{2}}{2 m}\left(\frac{d^{2}}{d r^{2}}\right) \Psi(r)+\frac{L^{2}}{2 m r^{2}} \Psi(r)+V \Psi(r)=E \Psi(r) \\
\frac{d f(x)}{d x}=\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x} \quad \frac{d x^{n}}{d x}=n x^{n-1} \quad \frac{d e^{x}}{d x}=e^{x} \quad \frac{d f(u)}{d x}=\frac{d f}{d u} \frac{d u}{d x} \\
\frac{d}{d x} f(x) \cdot g(x)=f \frac{d g}{d x}+g \frac{d f}{d x} \quad \frac{d \ln x}{d x}=\frac{1}{x} \quad \frac{d}{d x} \cos a x=-a \sin a x \quad \frac{d}{d x} \sin a x=a \cos a x \\
\int_{a}^{b} f(x) d x=\lim _{\Delta x \rightarrow 0} \sum_{n=1}^{N} f(x) \Delta x \quad \int x^{n} d x=\frac{x^{n+1}}{n+1} \quad \int \sin ^{2}(a x) d x=\frac{x}{2}-\frac{\sin (a x)}{4 a} \\
\int e^{x} d x=e^{x} \quad \int \frac{1}{x} d x=\ln x \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x=\ln \left[x+\sqrt{x^{2}+a^{2}}\right] \quad \int \frac{x}{\sqrt{x^{2}+a^{2}}} d x=\sqrt{x^{2}+a^{2}} \\
\int \frac{x^{2}}{\sqrt{x^{2}+a^{2}}} d x=\frac{1}{2} x \sqrt{x^{2}+a^{2}}-\frac{1}{2} a^{2} \ln \left[x+\sqrt{x^{2}+a^{2}}\right] \quad \int \frac{x^{3}}{\sqrt{x^{2}+a^{2}}} d x=\frac{1}{3}\left(-2 a^{2}+x^{2}\right) \sqrt{x^{2}+a^{2}} \\
\langle x\rangle=\frac{1}{N} \sum_{i} x_{i} \quad \sigma=\sqrt{\frac{\sum_{i}\left(x_{i}-\langle x\rangle\right)^{2}}{N-1}} \quad N=\frac{b-a}{\Delta x} \quad A=4 \pi r^{2} \quad V=A h \quad V=\frac{4}{3} \pi r^{3}
\end{gathered}
$$

*Lanthanide series	$\left[\begin{array}{l} \text { ans } \\ \mathrm{La} \\ \mathrm{La} \end{array}\right.$		$\begin{aligned} & \text { Paver } \\ & \mathrm{Pr} \end{aligned}$	$\begin{aligned} & \\ & \mathrm{Na} \text { an } \end{aligned}$	Pm	$\begin{aligned} & \text { an } \\ & \mathrm{Sm} \end{aligned}$	$\begin{aligned} & \text { and } \\ & \text { Eum } \end{aligned}$	$\left[\begin{array}{c} \text { cad } \\ G d \end{array}\right.$		$\begin{aligned} & \text { andim } \\ & \text { Dy } \end{aligned}$	$\begin{aligned} & \left\lvert\, \begin{array}{l} \text { nemition } \\ \text { Ho } \end{array}\right. \end{aligned}$		$\begin{aligned} & \substack{\text { cosio } \\ \mathrm{Tm} \\ \hline} \end{aligned}$	Yb
**Actinide series		$\begin{aligned} & \text { ain } \\ & \text { Th } \end{aligned}$	$\begin{gathered} 90 \\ \mathrm{~Pa} \end{gathered}$	$\begin{array}{\|c} \substack{320 \\ \hline 32} \end{array}$		$\begin{aligned} & \text { ane } \\ & \mathrm{Pu} \end{aligned}$				Cf^{20}	Es	Fm	Md	No

TABLE 10.2 Moments of Inertia of Homogeneous Rigid Objects With Different Geometries

Rectangular plate

$$
I_{\mathrm{CM}}=\frac{1}{12} M\left(a^{2}+b^{2}\right)
$$

Hollow cylinder

Solid cylinder
or disk
$I_{\mathrm{CM}}=\frac{1}{2} M R^{2}$

© 2006 Brooks/Cole - Thomson

Long thin rod with rotation axis through end

$$
I=\frac{1}{3} M L^{2}
$$

Thin spherical shell
$I_{\mathrm{CM}}=\frac{2}{3} M R^{2}$

Solid sphere
$I_{\mathrm{CM}}=\frac{2}{5} M R^{2}$

