Physics 132-04 Final Exam

I pledge that I have neither given nor received unauthorized assistance during the completion of this work.

Signature \qquad
Questions (10 for 4 pts. apiece) Answer in complete, well-written sentences WITHIN the spaces provided.

1. Recall the laboratory where you solved the Schroedinger equation. What requirement or postulate forces us to choose particular energy states? Why?
2. Consider the plot below of the effective potential for a macroscopic particle (blue curve) and its line of constant energy (red curve). What happens at the intersection of the energy 'curve' and the effective potential curve?

3. Recall the laboratory where you started with a mixture of ice and water in a beaker and heated it it to boiling. What is the relationship between the temperature and the added heat while the ice is melting?
4. Consider an ideal gas in a rigid container that has a fixed volume. How is the molar specific heat defined in terms of the heat added Q and the temperature change ΔT ? If the gas is heated by an amount Q, then how much work is done against the fixed container? Explain.
5. Consider two Einstein solids A and B that are in thermal contact and in an initial macrostate defined by N_{A}, q_{A}, N_{B}, and q_{B} where N refers to the number of atoms and q refers to the number of quanta in each solid. The initial, total multiplicity is Ω_{1}. One quanta is moved from solid B to solid A and the new, total multiplicity is $\Omega_{2}<\Omega_{1}$. Is it more likely for this change to occur or for the system to remain in its initial state? Explain.
6. Recall the calculation of the electric potential due to a charged ring of radius a on the axis x of the ring as shown in the figure. Is the following step legal? Why or why not?

$$
k_{e} \int \frac{d q}{\sqrt{x^{2}+a^{2}}}=\frac{k_{e}}{\sqrt{x^{2}+a^{2}}} \int d q
$$

DO NOT WRITE BELOW THIS LINE.
7. In the mass spectrometer the electron 'falls' across a potential difference created by the accelerating voltage to gain a velocity v before it enters the magnetic field region. Assuming the electron starts from rest, what is the relationship between the accelerating voltage V and the kinetic energy K when it leaves the accelerating region and enters the magnetic field? Justify your answer in words or with equations.
8. Is light a particle or a wave? What is your evidence?
9. Consider the anomalous magnetic moment of the electron. The measured value is

$$
a_{e}=0.00115965218073(28)
$$

where the number in parentheses is the uncertainty on the last two digits. The theoretical value (calculated using quantum mechanics) is

$$
a_{t}=0.00115965218113(86)
$$

where again the number in parentheses is the uncertainty on the last two digits. Do experiment and theory agree? Be quantitative in your answer.
10. Two rooms A and B of equal volume are connected by an open passageway and are maintained at two, different temperatures T_{A} and T_{B} and $T_{A}>T_{B}$. Which room has more air molecules? Explain.

Problems (6). Clearly show all reasoning for full credit. Use a separate sheet to show your work.

1. 8 pts. A room of volume V_{0} contains air having equivalent molar mass M_{m} (in $g /$ mole). If the temperature of the room is raised from T_{1} to T_{2}, what mass of air m_{a} will leave the room? Assume the air pressure is always P_{0}.
2. 8 pts. A newly-created material has a multiplicity

$$
\Omega=\alpha N E
$$

where N is the number of atoms in the solid, E is the total, internal energy in the solid, and α is a constant of proportionality.

1. How does the temperature of the new material depend on the internal energy?
2. What is the molar heat capacity for this solid?
3. Could this material really exist? Why or why not?
4. 8 pts. Three point charges are arranged as shown in the figure. What is the vector electric field that q_{2} and q_{3} create together at the origin? What is the force on q_{1} ? Use the $\hat{i}, \hat{j}, \hat{k}$ notation to express your vectors.

DO NOT WRITE BELOW THIS LINE.

4. 12 pts. A photon with a wavelength λ is absorbed by an electron (mass m_{e}) confined to a box with infinitely high walls. As a result, the electron moves from the $n=1$ state to the $n=4$ state. What is the length of the box in terms of λ and any other constants? What is the chance the electron in the $n=4$ final state will be found in the left-hand half of the box? The wave function and energies of the electron in the box are

$$
\begin{array}{rlrl}
\psi(x)= & \sqrt{\frac{2}{L}} \sin \left(\frac{n \pi x}{L}\right) & & 0<x<a \\
= & 0 & & x \leq 0 \text { and } x \geq L \\
& E_{n}=\frac{n^{2} \pi^{2} \hbar^{2}}{2 m_{e} L^{2}} &
\end{array}
$$

5. 12 pts . A radar for tracking aircraft must deliver an average intensity of $I_{1}=$ $6 \mathrm{~J} / \mathrm{s}-\mathrm{m}^{2}$ on a distant aircraft to detect it. It operates at a frequency $f=1.2 \times 10^{10} \mathrm{~s}^{-1}$ from circular radar antenna of radius $r_{a}=1 \mathrm{~m}$ and emits a power $P_{0}=10^{5} \mathrm{~J} / \mathrm{s}$. From a wave perspective, the antenna acts as a circular aperture. What is the range of the radar system?

DO NOT WRITE BELOW THIS LINE.

6. $\quad 12$ pts. In some magnetic spectrometers a device called a velocity selector is used so the beam particles are all moving at the same velocity when they enter the magnetic field. It consists of crossed electric and magnetic fields as shown in the figure where the electric field is $\vec{E}=-E_{0} \hat{j}$ and the magnetic field goes into the plane of the paper $\vec{B}=-B_{0} \hat{k}$. Consider a particle of charge q_{1} and mass m_{1} that goes through the acceleration phase of the mass spectrometer with a voltage drop V_{0}. What is the kinetic energy K_{1} of the particle when it emerges in terms of V_{0} and q_{1} ? For a magnetic field of magnitude B_{0} what is value of the electric field magnitude E_{0} where the charged particle will pass through the velocity selector without a change in direction (i.e. straight through)? Will a second particle that goes through the acceleration phase with the same charge q_{1}, but a different mass m_{2} also go through undeviated?

Physics 132-4 Constants

Avogadro's number $\left(N_{A}\right)$	6.022×10^{23}	Speed of light (c)	$3 \times 10^{8} \mathrm{~m} / \mathrm{s}$
k_{B}	$1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}$	proton/neutron mass	$1.67 \times 10^{-27} \mathrm{~kg}$
$1 u$	$1.67 \times 10^{-27} \mathrm{~kg}$	g	$9.8 \mathrm{~m} / \mathrm{s}^{2}$
Gravitation constant	$6.67 \times 10^{-11} \mathrm{~N}-\mathrm{m}^{2} / \mathrm{kg}^{2}$	Earth's radius	$6.37 \times 10^{6} \mathrm{~m}$
Coulomb constant $\left(k_{e}\right)$	$8.99 \times 10^{9} \frac{\mathrm{N-m}^{2}}{\mathrm{C}^{2}}$	Electron mass	$9.11 \times 10^{-31} \mathrm{~kg}$
Elementary charge (e)	$1.60 \times 10^{-19} \mathrm{C}$	Proton/Neutron mass	$1.67 \times 10^{-27} \mathrm{~kg}$
Permittivity constant $\left(\epsilon_{0}\right)$	$8.85 \times 10^{-12} \frac{\mathrm{~kg}^{2}}{\mathrm{N-m}}$	1.0 eV	atomic mass unit (u)
1 MeV	$10^{6} \mathrm{eV}$	Permittivity constant $\left(\epsilon_{0}\right)$	$8.85 \times 10^{-12} \frac{\mathrm{~kg}}{\mathrm{Ng}}$
Planck's constant (h)	$6.626 \times 10^{-34} \mathrm{~J}-\mathrm{s}$	R	$8.31 \mathrm{~J} / \mathrm{K}-\mathrm{mole}^{2}$

Physics 132-4 Equation Sheet, Final

$$
\begin{gathered}
\vec{F}=m \vec{a}=\frac{d \vec{p}}{d t} \quad a_{c}=\frac{v^{2}}{r} \quad K E=\frac{1}{2} m v^{2} \quad M E_{0}=M E_{1}=K E_{1}+P E_{1} \quad \vec{p}=m \vec{v} \quad \vec{p}_{0}=\vec{p}_{1} \\
x=\frac{a}{2} t^{2}+v_{0} t+x_{0} \quad v=a t+v_{0} \quad Q=C \Delta T=c m \Delta T=n C_{v} \Delta T \quad Q_{f, v}=m L_{f, v}
\end{gathered}
$$

$$
\begin{aligned}
& \Delta E_{\text {int }}=Q+W \quad W=\int \vec{F} \cdot d \vec{s} \rightarrow P \Delta V \quad\langle\vec{F}\rangle=\frac{\Delta \vec{p}}{\Delta t} \quad P=\frac{|\vec{F}|}{A} \quad P V=N k_{B} T=n R T \\
& \vec{I}=\int \vec{F} d t=\langle\vec{F}\rangle \Delta t=\Delta \vec{p} \quad\langle K E\rangle=\left\langle E_{k i n}\right\rangle=\frac{1}{2} m \overline{v^{2}} \quad\left\langle E_{k i n}\right\rangle=\frac{3}{2} k_{B} T \quad E_{\text {int }}=N\left\langle E_{k i n}\right\rangle=\frac{3}{2} N k_{B} T
\end{aligned}
$$

$$
v_{r m s}=\sqrt{\left\langle v^{2}\right\rangle} \quad C_{V}=\frac{f}{2} N_{A} k_{B} \quad E_{f}=\frac{k_{B} T}{2} \quad E_{\text {int }}=\frac{f}{2} N k_{B} T \quad f \equiv \text { number of degrees of freedom }
$$

$$
E_{\text {atom }}=\left(n_{x}+n_{y}+n_{z}+\frac{3}{2}\right) \epsilon_{i} \quad E=\sum_{i=1}^{3 N} n_{i} \epsilon_{i}=q \epsilon_{i} \quad \Omega(N, q)=\frac{(q+3 N-1)!}{q!(3 N-1)!}
$$

$$
S=k_{B} \ln \Omega \quad \frac{1}{T}=\frac{d S}{d E} \quad q=\frac{E}{\hbar \omega_{0}} \quad C=\frac{1}{n} \frac{d E}{d T} \quad E=3 N k_{B} T
$$

$$
\vec{F}_{C}=k_{e} \frac{q_{1} q_{2}}{r^{2}} \hat{r} \quad \vec{E} \equiv \frac{\vec{F}}{q_{0}} \quad \vec{E}=k_{e} \sum_{i} \frac{q_{i}}{r_{i}^{2}} \hat{r}_{i} \quad \vec{E}=k_{e} \int \frac{d q}{r^{2}} \hat{r}
$$

$$
\vec{E}_{\text {plate }}=2 \pi k_{e} \sigma \hat{k} \quad \vec{E}_{\text {ring }}=k_{e} \frac{q z}{\left(z^{2}+R^{2}\right)^{3 / 2}} \hat{k} \quad \Delta V \equiv \frac{\Delta P E}{q_{0}}=-\int_{A}^{B} \vec{E} \cdot d \vec{s} \quad V=k_{e} \frac{q}{r} \quad P E=q V
$$

$$
V=k_{e} \sum_{n} \frac{q_{n}}{r_{n}} \quad V=k_{e} \int \frac{d q}{r} \quad V=E d \quad E_{x}=-\frac{\partial V}{\partial x} \quad E_{y}=-\frac{\partial V}{\partial y} \quad E_{z}=-\frac{\partial V}{\partial z}
$$

$$
I \equiv \frac{d Q}{d t} \quad V=I R \quad P=I V \quad R_{\text {equiv }}=\sum R_{i} \quad \frac{1}{R_{\text {equiv }}}=\sum \frac{1}{R_{i}}
$$

The algebraic sum of the potential The sum of the currents entering a changes across all the elements of a junction is equal to the sum of the closed loop is zero. currents leaving the junction.

$$
I=n e v_{d} A \quad v_{d}=\frac{e E \tau}{m_{e}} \quad \tau=\frac{l_{\text {avg }}}{v_{\text {avg }}} \quad l_{\text {avg }}=\frac{1}{\sqrt[3]{n}} \quad\langle E\rangle=\frac{1}{2} m v_{r m s}^{2}=\frac{3}{2} k_{B} T
$$

$$
\begin{aligned}
& \vec{F}_{B}=q \vec{v} \times \vec{B} \quad\left|\vec{F}_{B}\right|=|q v B \sin \theta| \quad \vec{F}_{c}=-m \frac{v^{2}}{r} \hat{r} \quad \frac{d N}{d t}=-\lambda t \quad N=N_{0} e^{-\lambda t} \quad t_{1 / 2}=\frac{\ln 2}{\lambda} \\
& y=A \cos (k x-\omega t) \quad k \lambda=2 \pi=\omega T \quad \frac{\lambda}{T}=c \quad f=\frac{1}{T} \\
& E=E_{m} \sin (k x-\omega t) \quad B=B_{m} \sin (k x-\omega t) \quad \vec{S}=\frac{1}{\mu_{0}} \vec{E} \times \vec{B} \quad|\vec{S}|=I=\frac{E^{2}}{\mu_{0} c} \quad \frac{E_{m}}{B_{m}}=c \\
& I=4 I_{0} \cos ^{2}\left(\frac{\pi d}{\lambda} \sin \theta\right) \quad I=I_{m}\left[\frac{\sin \left(\frac{\pi a}{\lambda} \sin \theta\right)}{\frac{\pi a}{\lambda} \sin \theta}\right]^{2} \quad I=I_{m} \cos ^{2}\left(\frac{\pi d}{\lambda} \sin \theta\right)\left[\frac{\sin \left(\frac{\pi a}{\lambda} \sin \theta\right)}{\frac{\pi a}{\lambda} \sin \theta}\right]^{2} \\
& \delta=d \sin \theta=m \lambda \quad \delta=a \sin \theta=m \lambda \quad \phi=k \delta \quad \sin \theta_{R}=\frac{\lambda}{a} \\
& L=I \omega=m v_{t} r \quad I \sum m_{i} r_{i}^{2} \quad I=I_{c m}+m R^{2} \quad L_{0}=L_{1} \quad E=\frac{1}{2} m v_{r}^{2}+\frac{L^{2}}{m r^{2}}-k_{e} \frac{e^{2}}{r} \\
& \frac{1}{\lambda}=R_{H}\left(\frac{1}{n_{f}^{2}}-\frac{1}{n_{i}^{2}}\right) \quad E_{n}=-\frac{13.6 \mathrm{eV}}{n^{2}} \quad E=h f=h \frac{c}{\lambda} \\
& -\frac{\hbar^{2}}{2 m}\left(\frac{d^{2}}{d r^{2}}\right) \Psi(r)+\frac{L^{2}}{2 m r^{2}} \Psi(r)+V \Psi(r)=E \Psi(r) \\
& \frac{d f(x)}{d x}=\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x} \quad \frac{d x^{n}}{d x}=n x^{n-1} \quad \frac{d e^{x}}{d x}=e^{x} \quad \frac{d f(u)}{d x}=\frac{d f}{d u} \frac{d u}{d x} \\
& \frac{d}{d x} f(x) \cdot g(x)=f \frac{d g}{d x}+g \frac{d f}{d x} \quad \frac{d \ln x}{d x}=\frac{1}{x} \quad \frac{d}{d x} \cos a x=-a \sin a x \quad \frac{d}{d x} \sin a x=a \cos a x \\
& \int_{a}^{b} f(x) d x=\lim _{\Delta x \rightarrow 0} \sum_{n=1}^{N} f(x) \Delta x \quad \int x^{n} d x=\frac{x^{n+1}}{n+1} \quad \int \sin ^{2}(a x) d x=\frac{x}{2}-\frac{\sin (a x)}{4 a} \\
& \int e^{x} d x=e^{x} \quad \int \frac{1}{x} d x=\ln x \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x=\ln \left[x+\sqrt{x^{2}+a^{2}}\right] \quad \int \frac{x}{\sqrt{x^{2}+a^{2}}} d x=\sqrt{x^{2}+a^{2}} \\
& \int \frac{x^{2}}{\sqrt{x^{2}+a^{2}}} d x=\frac{1}{2} x \sqrt{x^{2}+a^{2}}-\frac{1}{2} a^{2} \ln \left[x+\sqrt{x^{2}+a^{2}}\right] \quad \int \frac{x^{3}}{\sqrt{x^{2}+a^{2}}} d x=\frac{1}{3}\left(-2 a^{2}+x^{2}\right) \sqrt{x^{2}+a^{2}} \\
& \langle x\rangle=\frac{1}{N} \sum_{i} x_{i} \quad \sigma=\sqrt{\frac{\sum_{i}\left(x_{i}-\langle x\rangle\right)^{2}}{N-1}} \quad N=\frac{b-a}{\Delta x} \quad A=4 \pi r^{2} \quad V=A h \quad V=\frac{4}{3} \pi r^{3}
\end{aligned}
$$

TABLE 10.2 Moments of Inertia of Homogeneous Rigid Objects With Different Geometries

© 2006 Brooks/Cole - Thomson

Long thin rod with rotation axis through end $I=\frac{1}{3} M L^{2}$

Thin spherical shell
$I_{\mathrm{CM}}=\frac{2}{3} M R^{2}$

$\stackrel{\substack{\text { modosen } \\ \mathbf{H} \\ \hline}}{ }$																		-
	${ }^{\text {bancuim }}$												${ }_{\text {come }}^{\text {am }}$	${ }_{6}$	${ }_{7}$	${ }_{8}$	$\xrightarrow{\text { ander }}$	${ }^{10}$
Li	Be												B	C	N	0	F	Ne
coil	comile																	\%
Na	Mg												AI	Si	P	$\stackrel{16}{S}^{16}$	Cl	Ar
																semum		nown
K 19	${ }^{20} \mathrm{Ca}$		Sc	${ }^{22}$	${ }^{23}$	$\begin{gathered} 24 \\ \mathrm{Cr} \end{gathered}$	$\begin{aligned} & 25 \\ & \mathrm{Mn} \end{aligned}$	$\begin{aligned} & \text { an } \\ & \text { Fe } \end{aligned}$	$\begin{aligned} & 27 \\ & \mathrm{Co} \\ & \hline \end{aligned}$	$\begin{aligned} & { }^{28} \\ & \mathrm{Ni} \end{aligned}$	$\begin{aligned} & 29 \\ & \mathrm{Cu} \end{aligned}$	$\begin{aligned} & \frac{10}{30} \\ & \mathbf{Z 0} \end{aligned}$	$\begin{array}{r} 31 \\ \text { Ga } \end{array}$	${ }^{32}$	As	${ }^{34}$	${ }^{35}$	${ }^{36} \mathrm{Kr}$
			${ }_{4}$	${ }_{47887}$											As	${ }_{78,5}$	Br	${ }_{83}{ }_{80}$
	-		${ }^{\text {numum }}$	${ }^{\text {zicainm }}$	${ }^{\text {maumm }}$	${ }_{4}$	${ }^{\substack{\text { comatum } \\ 4}}$	${ }_{4}$	${ }^{4}$	46	${ }^{\text {sum }} 4$	${ }^{48}$	${ }_{4}$	${ }^{\text {tin }}$	510	${ }^{\text {kentum }}$	${ }_{\text {che }}$	
Rb	Sr		Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
			(ent							Ale								
55	${ }^{56}$	57.70	71	72	${ }^{73}$	${ }^{74}$	${ }^{75}$	${ }^{76}$	77	${ }^{78}$	${ }_{79}$	${ }^{10}$	${ }^{81}$	${ }^{82}$	83	${ }_{84}$	${ }^{85}$	${ }_{86}$
Cs	Ba	*	Lu	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
${ }^{\text {raxmm }}$	${ }^{\text {and }}$		103	${ }^{104}$		${ }^{106}$	107	1108	109	undio	nemm	mind						
Fr	Ra	* *	Lr	Rf	Db	Sg	Bh	Hs	Mt	Uun	Uuu	Uub		Uuq				

*Lanthanide series				$\begin{aligned} & \text { noxamian } \\ & \mathrm{Nd} \end{aligned}$	Pm		$\begin{aligned} & \text { eugiom } \\ & \text { Eu } \\ & \text { Eu } \end{aligned}$	$\begin{gathered} \substack{\text { gaxanum } \\ \text { Gd } \\ \text { Gd }} \end{gathered}$	$\begin{aligned} & \text { \|andm } \\ & \text { Tb } \end{aligned}$		$\begin{aligned} & \text { manm } \\ & \text { Ho } \end{aligned}$	${ }_{\text {andum }}^{\text {ent }}$	${ }_{\text {Tm }}^{\substack{\text { mumm } \\ 69}}$	Yb
**Actinide series		Th									$\begin{aligned} & \text { ansinion } \\ & \text { Es } \end{aligned}$	Fm	$\left\lvert\, \begin{aligned} & \text { an } \\ & 101 \\ & M 1 \end{aligned}\right.$	No

