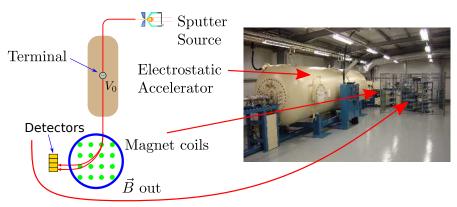
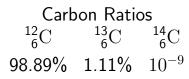
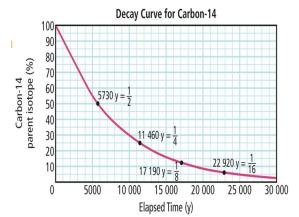


Mass Spectrometry

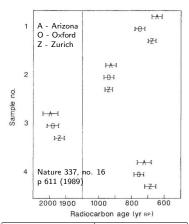



- Mass Spectrometry
- Radiocarbon Dating.



- Supposed burial garment of Christ.
- Linen cloth $\approx 14' \times 14'$ with two faint images of the front and back of a 5'7'' man bearing markings corresponding to thorn marks, lacerations (from flogging), bruises, and blood stains.
- First emerged in 1354 carried by Sir Geoffroi de Charny seigneur de Lirey, a knight.
- Public exhibitions started in 1389 (and charged an entrance fee).
- Moved to the royal chapel of the Cathedral of San Giovanni Battista in Turin, Sicily in 1578.
- Original exhibitions were sanctioned by the pope as a 'representation' of the true Shroud.
- Since then no pope has challenged its authenticity.
- Dating the Shroud
 - Images look like photographic negatives.
 - Tests begun in the early 1970's were inconclusive.
 - The church only permitted small amounts of the Shroud to be dated.
 - In 1989 the Shroud was dated using radiocarbon methods.

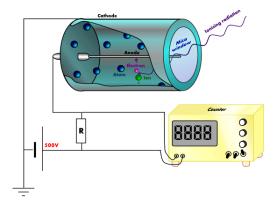
A Mass Spectrometer

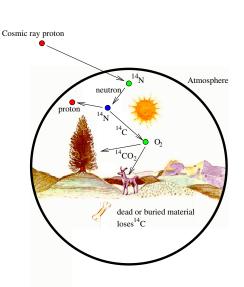


The radioactive isotope ¹⁴C decays via

$$^{14}\mathrm{C} \rightarrow ^{14}\mathrm{N} + \beta^- + \overline{\nu}$$

where β^- is an electron and $\overline{\nu}$ is a particle called the neutrino. The ratio $R=^{14}{\rm C}/^{12}{\rm C}$ was measured in 1989 to determine the age of the shroud. The results are shown here. The shroud is sample 1. The other samples are controls. Ages are in years BP (before 1950). Note the break in the age scale.


How old is the shroud? The typical uncertainty in these measurements is about 40 years. Are the results of the three labs consistent?


Laboratory	R
Arizona	1.20×10^{-12}
Oxford	1.18×10^{-12}
Zurich	1.19×10^{-12}

A freshly prepared sample of a radioactive isotope has an activity of $R_0=3.7\times 10^8~{\rm decays/s}$. After a time $\Delta t=4~hr$ the activity has dropped to $R_1=3.0\times 10^8~{\rm decays/s}$. What is the decay constant?

A Geiger-Muller tube (or GM tube) is the sensing element of a Geiger counter instrument that can detect a single particle of ionizing radiation. It is a type of gaseous ionization detector with an operating voltage in the Geiger plateau.

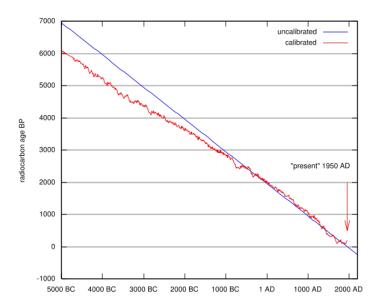
Radiocarbon Dating

Carbon Ratios

$$^{12}_{6}$$
C $^{13}_{6}$ C $^{14}_{6}$ C 98.89% 1.11% $^{10^{-9}}$

Reaction Chain

$$^{14}_{7}{
m N} + ^{1}_{1}{
m H}
ightarrow ^{14}_{8}{
m O} + ^{1}_{0}{
m n}$$

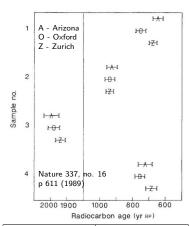

$$^{14}_{8}\mathrm{O} \rightarrow ^{14}_{7}\mathrm{N} + e^+ + \overline{\nu}$$

$$^{14}_{7}\text{N} + ^{1}_{0}\text{n} \rightarrow ^{14}_{6}\text{C} + ^{1}_{1}\text{H}$$

$$^{14}_{7}\mathrm{N} \rightarrow ^{14}_{6}\mathrm{C} + e^+ + \overline{\nu}$$

Radiocarbon Calibration Curve

The figure below shows the decay scheme for $^{238}\mathrm{U}$ which can be approximated as $^{238}\mathrm{U} \to ^{206}\mathrm{Pb} + \mathrm{other}$ decay products where the half-life is determined by that first step. Why? A rock is found containing $m_U = 0.0042~kg$ of $^{238}\mathrm{U}$ and $m_{Pb} = 0.0024~kg$ of $^{206}\mathrm{Pb}$. Assume the rock contained no lead at all when it was formed so all the lead present is from the decay of uranium. What is the age of the rock? What does this say about the age of the Earth?

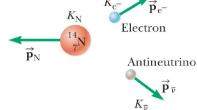

$$\begin{array}{c}
238 \text{ U} \xrightarrow{\alpha} & 234 \text{ Th} \xrightarrow{\beta} & 234 \text{ Pa} \xrightarrow{\beta} & 234 \text{ U} \xrightarrow{\alpha} & 230 \text{ Th} \xrightarrow{\alpha} \\
92 \text{ U} \xrightarrow{\alpha} & 230 \text{ Th} & 230 \text{ T$$

The radioactive isotope ¹⁴C decays via

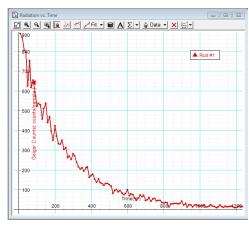
$$^{14}\mathrm{C} \rightarrow ^{14}\mathrm{N} + \beta^- + \overline{\nu}$$

where β^- is an electron and $\overline{\nu}$ is a particle called the neutrino. The ratio $R=^{14}{\rm C}/^{12}{\rm C}$ was measured in 1989 to determine the age of the shroud. The results are shown here. The shroud is sample 1. The other samples are controls. Ages are in years BP (before 1950). Note the break in the age scale.

How old is the shroud? The typical uncertainty in these measurements is about 40 years. Are the results of the three labs consistent?



Laboratory	R
Arizona	1.20×10^{-12}
Oxford	1.18×10^{-12}
Zurich	1.19×10^{-12}


Before decay

$$\begin{array}{c}
 14 \\
 6
\end{array}
\qquad
\begin{array}{c}
 K_{\rm C} = 0 \\
 \vec{\mathbf{p}}_{\rm C} = 0
\end{array}$$

After decay

 $^{14}\mathrm{C}$ decay

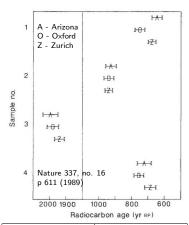
 $^{137}\mathrm{Ba}$ decay

hydrogen	-					-		-	100									hellum
1																		2
H 1,0079																		He
Ithium 3	beryllium 4												boron 5	carbon 6	nitrogen 7	oxygen 8	fuorine 9	neon 10
Li	Be												B	Č	Ń	Ô	Ě	Ne
6,941	9.0122												10,811	12.011	14.007	15,999	18,998	20,180
sodium 11	magnesium 12												aluminium 13	sticon 14	phosphorus 15	sulfur 16	chilorine 17	argon 18
Na	Mg												AI	Si	Р	S	CI	Ar
22.990	24.305												26,962	28.086	30,974	32,065	35,453	39,948
potassium 19	calcium 20		scandium 21	titanium 22	vanadium 23	etromium 24	manganese 25	iron 26	cobalt 27	nickel 28	copper 29	zinc 30	gallium 31	germanium 32	arsenic 33	setenium 34	bromine 35	krypton 36
ĸ	Ca		Sc	Τi	V	Cr	Mn	Fe	Co	Ñi	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.098	40.078		44.966	47.867	50.942	51.996	54.938	55.845	58.933	58.693	63,546	65.39	69.723	72.61	74.922	78.96	79.904	83.80
rutidium 37	strontum 38		yttrium 39	zirconium 40	niobium 41	molybdenum 42	technetium 43	ruthenium 44	thodium 45	palladium 46	sther 47	cadmium 48	indium 49	50	antimony 51	tellurium 52	fodine 53	senon 54
Rb	Sr		Ÿ	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Δa	Cd	ln	Sn	Sb	Te	ΙÏ	Xe
85.468	87.62		88.906	91.224	92,906	95.94	1981	101.07	102.91	106.42	Ag	11241	114.82	118.71	121.76	127.60	126.90	131.29
caesium 55	barium 56	57-70	lutetum 71	hafnium 72	tantalum 73	tungsten 74	rhenium 75	osmium 76	iridium 77	platinum 78	90kd 79	mercury 80	thallium 81	lead 82	bismuth 83	polonium 84	astatine 85	radon 86
Cs	Ba	*	Lu	Hf	Ta	W	Re	Os	Îr	Pt	Au	Hg	ΤÏ	Pb	Bi	Po	At	Rn
132.91	137.33	^	174.97	178,49	180.95	183,84	186.21	190,23	192,22	195.08	196,97	200.59	204,38	207.2	208,98	1209	12101	12221
francium 87	radium 88	89-102	lawrendum 103	rutherfordium 104	dubnium 105	seaborgium 106	tohrium 107	hassium 108	meitnerium 109	ununnitum 110	unurunium 111	ununbium 112		uninquadum 114		1000	,	
1223		* *				-Sg								ouq				
Fr	Ra	* *	Lr	Rf	Db	Sg	Bh	Hs	Mt	Uun	Uuu	Uub		Uuq				

^{* *} Actinide series

	[227]	232.04	231.04	238.03	[237]	[244]	[243]	[247]	[247]	[251]	[252]	[257]	[258]	[259]
	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No
	89	90	91	92	93	94	95	96	97	98	99	100	101	102
	actinium	thorium	protactinium	uranium	neptunium	plutonium	americium	curium	berkelium	californium	einsteinium	fermium	mendelestum	nobelium
	138.91	140.12	140.91	144.24	11451	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04
, ,	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb
es	57	58	praseodymium 59	neodymlum 60	promethium 61	62	europium 63	gadolinium 64	65	dysprosium 66	67	68	thulium 69	ytterbium 70

Video is here.


^{*}Lanthanide series

The radioactive isotope ¹⁴C decays via

$$^{14}\mathrm{C} \rightarrow ^{14}\mathrm{N} + \beta^- + \overline{\nu}$$

where β^- is an electron and $\overline{\nu}$ is a particle called the neutrino. The ratio $R=^{14}{\rm C}/^{12}{\rm C}$ was measured in 1989 to determine the age of the shroud. The results are shown here. The shroud is sample 1. The other samples are controls. Ages are in years BP (before 1950). Note the break in the age scale.

How old is the shroud? The typical uncertainty in these measurements is about 40 years. Are the results of the three labs consistent?

Laboratory	R
Arizona	1.20×10^{-12}
Oxford	1.18×10^{-12}
Zurich	1.19×10^{-12}