What is the Energy of an Electron?

The Coulomb force binds an electron and a proton into a hydrogen atom with a force that is mathematically identical to the gravitational force that binds the planets in our Solar System, the Moon to the Earth, *etc.* What is the energy E_e of an electron?

• The Organizing Principle.

$$ME_{0} = ME_{1}$$

$$KE_{0} + PE_{0} = ME_{1} + PE_{1}$$

$$\frac{1}{2}mv_{0}^{2} + PE_{0} = \frac{1}{2}mv_{1}^{2} + PE_{1}$$

• The Forces

$$\vec{F}_{grav} = -rac{Gm_1m_2}{r_{12}^2}\hat{r}_{12}$$
 $\vec{F}_{coul} = rac{k_eq_1q_2}{r_{12}^2}\hat{r}_{12}$

The simulation is here.

Atomic Spectroscopy - 1

Light from a hydrogen spectrum tube is incident on a diffraction grating in a spectrometer. A narrow, red line appears at $\theta_1 = 20.50^{\circ}$. The grating has a line density of 13,400 lines/inch. What is the wavelength of the light? What is the energy of the photons?

The Diffraction Grating

An electron beam strikes a gas of hydrogen atoms.

- What is the minimum speed the electrons must have to cause the emission of $\lambda = 656 \text{ nm}$ light from the 3 \rightarrow 2 transition of hydrogen?
- What is the electric potential difference the electrons must fall through to be accelerated to this speed?

What is the Energy of an Electron?

The Coulomb force binds an electron and a proton into a hydrogen atom with a force that is mathematically identical to the gravitational force that binds the planets in our Solar System, the Moon to the Earth, *etc.* What is the energy E_e of an electron?

11

12

• The Organizing Principle.

$$ME_{0} = ME_{1}$$

$$KE_{0} + PE_{0} = ME_{1} + PE_{1}$$

$$\frac{1}{2}mv_{0}^{2} + PE_{0} = \frac{1}{2}mv_{1}^{2} + PE_{1}$$

• The Forces

$$\vec{F}_{grav} = -\frac{Gm_1m_2}{r_{12}^2}\hat{r}_{12}$$
 $\vec{F}_{coul} = \frac{k_eq_1q_2}{r_{12}^2}\hat{r}_{12}$

The simulation is here.

The Kinetic Energy in Polar Coordinates - 1 14

The Kinetic Energy in Polar Coordinates - 1 15

Orbits

A Russian Artica satellite that monitors polar weather follows an elliptical orbit around the Earth at an altitude of $h = 300 \ km$ above the surface (radius $r_s = 6.67 \times 10^6 \ m$). At one point in its orbit its velocity is measured to be

$$\vec{v} = 4.1 \times 10^3 \ m/s \ \hat{r} + 7.5 \times 10^3 \ m/s \ \hat{ heta}$$

What is the angular momentum? What is the total energy? What is the distance of closest approach to the Earth? The satellite mass is $m_s = 600 \ kg$.

$$\begin{array}{l} R_{earth} = 6.37 \times 10^6 \ m \\ m_{earth} = 5.97 \times 10^{24} \ kg \\ G = 6.673 \times 10^{-11} \ Nm^2/kg^2 \end{array}$$

