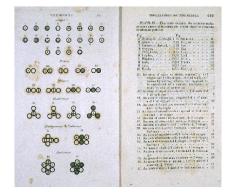
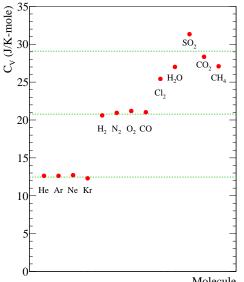

• Name:


- Did you take Phys 131 and who was your instructor?
- How many semesters of physics before this course (high school or college)?
- How many semesters of calculus before this course (high school or college)?
- Preferred personal pronouns?

The Nature of Matter and How We Know It


Dalton's Atomic Theory (1808)

- All matter consists of tiny particles.
- Atoms are indestructible and unchangeable.
- Elements are characterized by the mass of their atoms.
- When elements react, their atoms combine in simple, whole-number ratios.

from A New System of Chemical Philosophy (1808) by John Dalton

Specific Heats of Gases

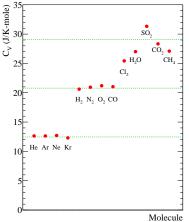
- Boltzmann's kinetic theory laid the groundwork the atomic theory.
- Connects bulk properties to microscopic motion of atoms.
- Calculated gas specific heats from fundamental concepts.

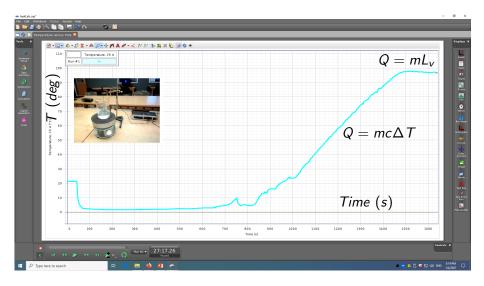
Molecule

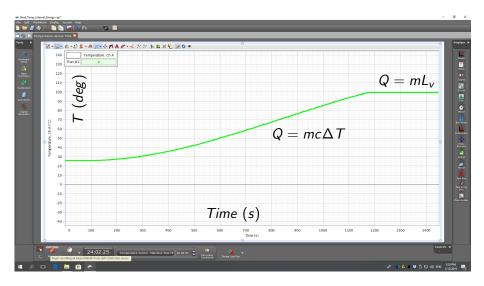
```
Jerry Gilfoyle
```

Assume that a pure, ideal gas is made of tiny particles that bounce into each other and the walls of their cubic container of side ℓ . Show the average pressure P exerted by this gas is

$$P = \frac{1}{3} \frac{N}{V} m \overline{v_{total}^2}$$

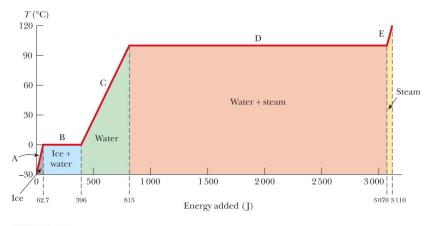

Use the ideal gas law ($PV = Nk_BT = nRT$) and the conservation of energy ($\Delta E_{int} = C_V \Delta T$) to calculate the specific heat of an ideal gas and show the following.


$$C_V = \frac{3}{2} N_A k_B$$

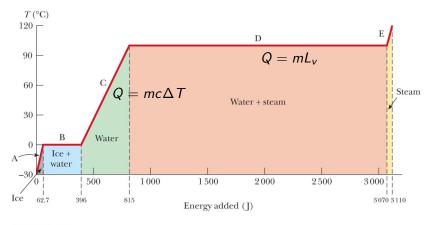

Is this right?

N - number of particles k_B - Boltzmann constant N_A - Avogadro's number $V = \ell^3$

m - atomic mass v_{total} - atom's speed



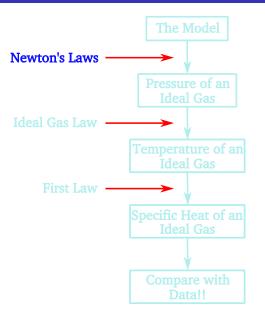
Temperature and Heat


Heat (Q) is thermal energy transferred from one place or body to another due to a difference in temperature. Thermal energy is the mechanical energy (kinetic and potential) associated with atomic motion in an object.

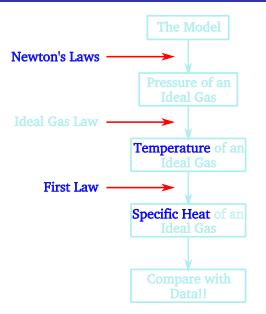
© 2006 Brooks/Cole - Thomson

Temperature and Heat

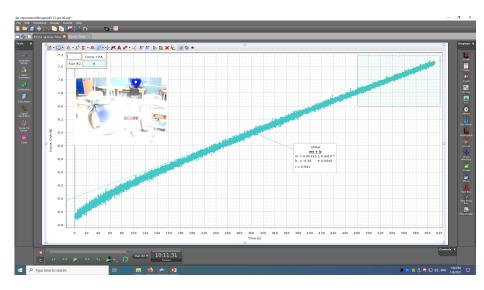
Heat (Q) is thermal energy transferred from one place or body to another due to a difference in temperature. Thermal energy is the mechanical energy (kinetic and potential) associated with atomic motion in an object.

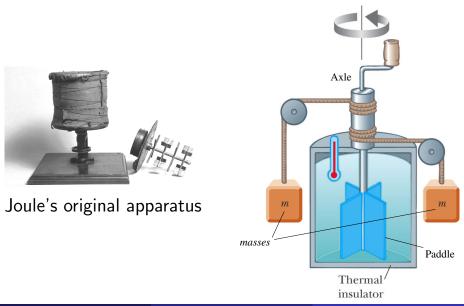

© 2006 Brooks/Cole - Thomson

Two ice cubes each with mass $m_l = 0.050 \ kg$ are taken from a freezer at $T_0 = 0^{\circ}$ C and dropped into a container holding $m_w = 1.0 \ kg$ of water at $T_1 = 25^{\circ}$ C. What will be the final temperature of the liquid? Assume the container absorbs no heat.

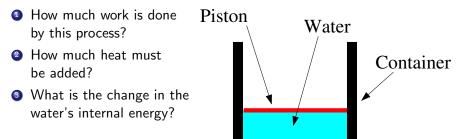


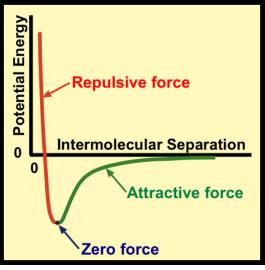
$$\begin{array}{l} c_{ice} = 2090 \ J/kg - K \\ c_w = 4186 \ J/kg - K \\ L_f = 3.33 \times 10^5 \ J/kg \end{array}$$


The Plan


The Plan

Heat of Vaporization of Liquid Nitrogen Lab




The Mechanical Equivalent of Heat

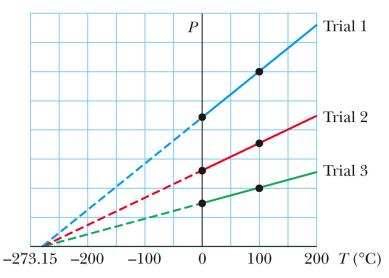
The First Law of Thermodynamics

Let 1.00 kg of liquid water at 100° C be converted to steam at 100° C. The water is contained in a cylinder with a movable piston of negligible mass that sits right on top of the water at the start. The volume changes from an initial value of $1.00 \times 10^{-3} m^3$ as a liquid to 1.671 m^3 as steam. The latent heat of vaporization of water is $L_V = 2.26 \times 10^6 J/kg$ and atmospheric pressure is $P_{atm} = 1.01 \times 10^5 Pa$.

The energy diagram for two molecules.

Ideal Gases

A weather balloon is loosely inflated to a volume $V_0 = 2.2 \ m^3$ with helium at a pressure of $P_0 = 1.0 \times 10^5 \ Pa$ and a temperature $T_0 = 20^{\circ}$ C. At an elevation of 20,000 ft the atmospheric pressure is down to $P_1 = 0.5 \times 10^5 \ Pa$ and the temperature is $T_1 = -48^{\circ}$ C. The bag can expand freely. What is the new volume of the bag? What is the gas mass?



Ideal Gases

A weather balloon is loosely inflated to a volume $V_0 = 2.2 \ m^3$ with helium at a pressure of $P_0 = 1.0 \times 10^5 \ Pa$ and a temperature $T_0 = 20^{\circ}$ C. At an

0	حبيما	tion	<u>t ^</u>	$n \alpha$	<u>)U ++</u>	Symbol Name Atomic Mass 12 14 15 16 17 18 10												
	1 H Hydrogen 1.008	2							Num	her			13	14	15	16	17	Helium
	3 Li Lithium 6.941	4 Be Berytlium 9.012							Sym Nam	bol			B Boron 10.811	C Carbon 12.011	Nitrogen 14.007	O Oxygen 15.999	9 F Fluorine 18.998	Ne
	11 Na ^{Sedium} 22.990	12 Mg Magnessum 24.305	All Sine Peedarus									Sulfur 32.066	Cl Chlorine 35.453	Ar Argon 39.948				
	19 K Potassium 39.098	20 Ca Calcium 40.078	21 Sc Scandium 44.956	22 Ti Titanium 47.867	23 V Vanadium 50.942	Cr Chromium 51.996	Mn Manganese 54.938	Fe Iron 55.845	Co Cobalt 58.933	Ni Nickel 58,693	Cu Copper 63.546	Zn Zinc 65.38	Ga Gallium 69.723	Ge Germanium 72.631	As Arsenic 74.922	Selenium 78.971	Br Bromine 79.904	Kr Krypton 83.798
	37 Rb Rubidium 85.468	38 Sr Strentium 87.62	39 Y Yttrium 88.906	40 Zr Zircenium 91.224	41 Nb Niabium 92.906	42 Mo Nolybdenum 95.95	43 Tc Technetium 98.907	44 Ru Ruthenium 101.07	45 Rh Rhedium 102,906	46 Pd Palladium 106.42	47 Ag Sihter 107.868	48 Cd Cadmium 112,414	49 İn Indium 114.818	50 Sn ^{Tin} 118.711	51 Sb Antimony 121.760	52 Te Tellurium 127.6	53 lodine 126.904	54 Xe Xenon 131.293
	55 Cs Cesium 132.905	56 Ba Barium 137.328	57-71 Lanthaneids	72 Hf Hafnium 178,49	73 Ta Tantalum 180.948	74 W Tungsten 183.84	75 Re Rhenium 186.207	76 Os Osmium 190.23	77 Ir 192.217	78 Pt Platinum 195,085	79 Au Gold 196.967	80 Hg Mercury 200.592	81 TI Thallium 204.383	82 Pb Lead 207.2	83 Bi Bismuth 208.980	84 Po Pelenium [208.962]	85 At Astatine 209.987	86 Rn Radon 222.018
	87 Fr Francium 223.020	88 Ra Radium 226.025	89-103 Actinoids	104 Rf Rutherfordium [261]	105 Db Dubnium [262]	106 Sg Seaborgium [266]	107 Bh Bohrium [264]	108 Hs Hassium [269]	109 Mt Meitnerium [278]	110 Ds Darmstadtium [281]	111 Rg Roentgenium [280]	112 Cn Copernicium [285]	113 Nh Nihonium [286]	114 Fl Flerovium [289]	115 Mc Moscovium [289]	116 Lv Livermorium [293]	117 Ts Tennessine [294]	118 Og Oganesson [294]
1			5	7 5	0	9 6	0 6	1 6	2 6	3 6	4 6	5 6	6 6	7 6	8 6	9 7	0 7	1

57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
Lanthanum	Cerium	Praseodymium	Neodymium	Promethium	Samarium	Europium	Gadolinium	Terbium	Dysprosium	Holmium	Erbium	Thulium	Ytterbium	Lutetium
138.905	140.116	140.908	144.243	144.913	150.36	151.964	157.25	158.925	162.500	164.930	167.259	168.934	173.055	174.967
89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
Actinium	Thorium	Protactinium	Uranium	Neptunium	Platonium	Americium	Curium	Berkelium	Californium	Einsteinium	Fermium	Mendelevium	Nobelium	Lawrencium
227.028	232.038	231.036	238,029	237.048	244.064	243.061	247.070	247.070	251.080	[254]	257.095	258.1	259.101	[262]

© 2006 Brooks/Cole - Thomson

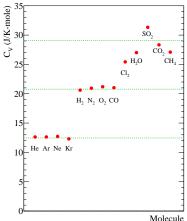
Ideal Gases

A steel tank contains $m_g = 0.30 \ kg$ of ammonia gas (NH₃) at an absolute pressure $P_0 = 1.35 \times 10^5 \ N/m^2$ and a temperature $T_0 = 77^\circ \ C$. What is the volume of the tank? At a later time the tank is checked. The temperature has fallen to $T_1 = 22^\circ \ C$ and the pressure has fallen to $P_1 = 8.7 \times 10^5 \ N/m^2$. How many kilograms of gas leaked out of the tank?

Specific Heats of Ideal Gases (The Problem)

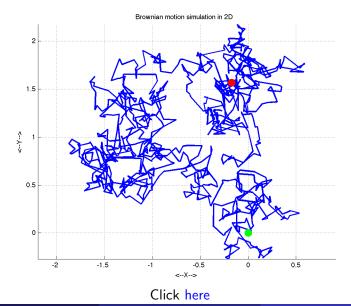
Assume that a pure, ideal gas is made of tiny particles that bounce into each other and the walls of their cubic container of side ℓ . Show the average pressure P exerted by this gas is

$$P = \frac{1}{3} \frac{N}{V} m \overline{v_{total}^2}$$

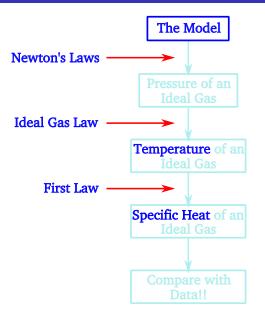

Use the ideal gas law ($PV = Nk_BT = nRT$) and the conservation of energy ($\Delta E_{int} = C_V \Delta T$) to calculate the specific heat of an ideal gas and show the following.

$$C_V = \frac{3}{2} N_A k_B$$

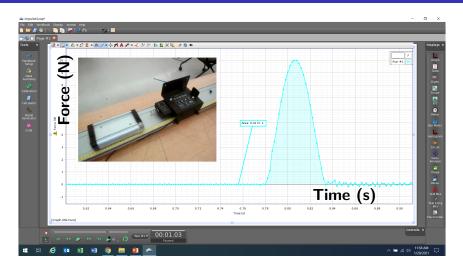
Is this right?


N - number of particles k_B - Boltzmann constant N_A - Avogadro's number $V = \ell^3$

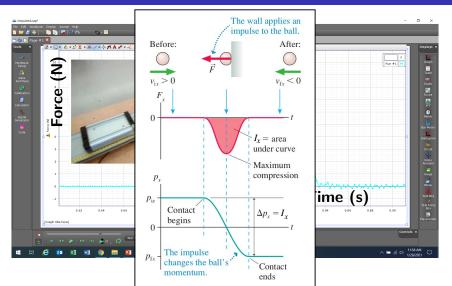
m - atomic mass v_{total} - atom's speed


- The gas consists of a large number of small, mobile particles and their average separation is large.
- The particles obey Newton's Laws and the conservation laws, but their motion can be described statistically.
- Solution The particles' collisions are elastic on average.
- The inter-particle forces are small until they collide.
- The gas is pure.
- The gas is in thermal equilibrium with the container walls.

Trajectory of Brownian Motion

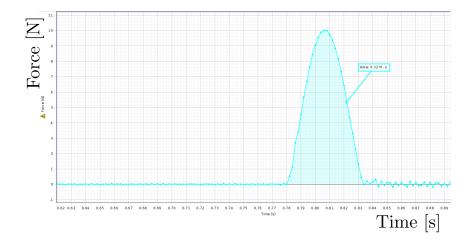

Atoms

The Plan

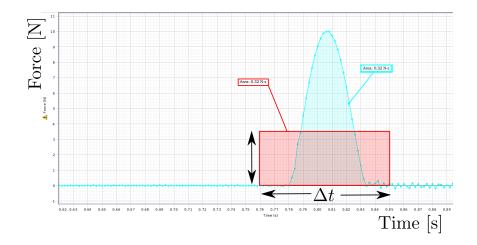


The Pressure of an Ideal Gas - Impulse and Momentum Change

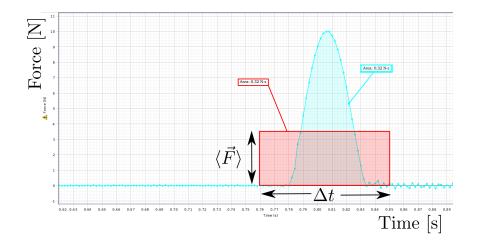
The Pressure of an Ideal Gas - Impulse and Momentum Change

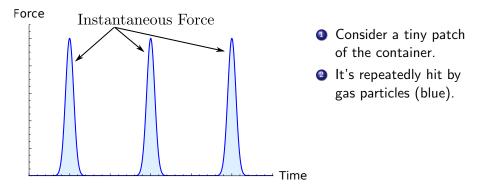


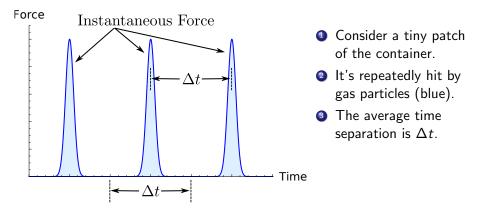
Jerry Gilfoyle

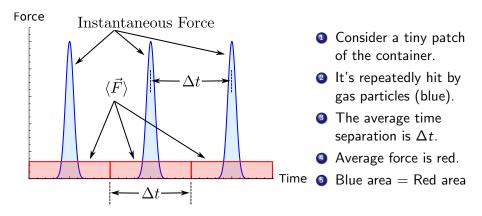

Atoms

25 / 46

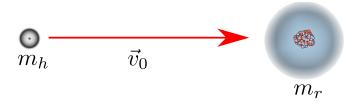

Instantaneous Force

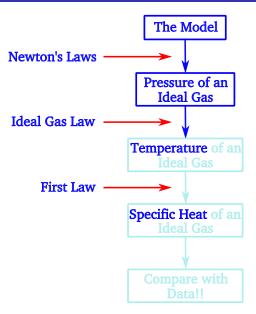



Instantaneous versus Average Force



Instantaneous versus Average Force



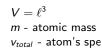


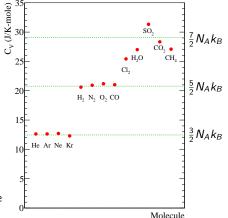
An atom of mass m_h collides elastically head-on with a heavier, stationary, target atom of mass m_r . Both particles are free to move in space. The initial velocity of the projectile is \vec{v}_0 as shown below. What is the final velocity \vec{v}_1 of the projectile in terms of the masses, \vec{v}_0 , and any other constants? What happens to the final velocity \vec{v}_1 as the target mass m_r becomes very large? Ignore the effects of potential energy.

The Plan - Act. 2 of Kinetic Theory of Ideal Gases 35

A helium atom is moving straight up from the floor of the lab that is at room temperature T = 300 K. Miraculously, the atom never strikes another atom or molecule until it reaches the ceiling at a height h = 4.0 m above the floor. What is the helium atom's rms speed when it hits the ceiling? How much has its speed changed from the initial speed?

$$P = \frac{1}{3} \frac{N}{V} m \overline{v_{total}^2}$$

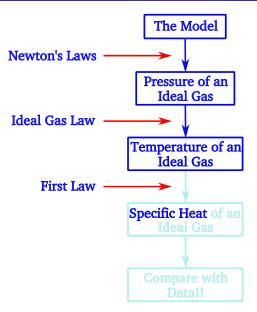

Specific Heats of Ideal Gases

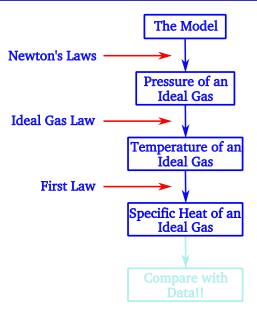

Use the ideal gas law $(PV = Nk_BT = nRT)$ and the conservation of energy $(\Delta E_{int} = C_V \Delta T)$ to calculate the specific heat of an ideal gas and show the following.

$$C_V = \frac{3}{2}N_A k_B = \frac{3}{2}R$$

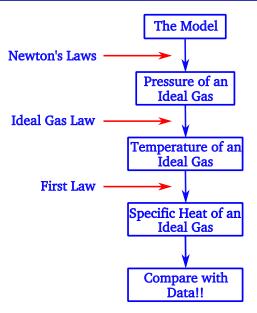
Is this right?

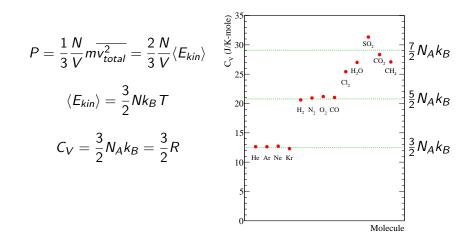
N - number of particles k_B - Boltzmann constant N_A - Avogadro's number N_A




- The gas consists of a large number of small, mobile particles and their average separation is large.
- The particles obey Newton's Laws and the conservation laws, but their motion can be described statistically.
- Solution The particles' collisions are elastic on average.
- The inter-particle forces are small until they collide.
- The gas is pure.
- The gas is in thermal equilibrium with the container walls.

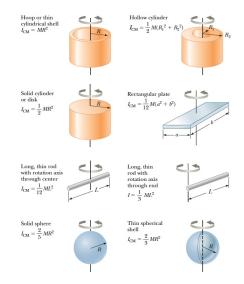
38


The Plan - Activity 2 of Applying the Kinetic Theory 39


The Plan - Activity 3 of Applying the Kinetic Theory40

The Plan - Activity 4 of Applying the Kinetic Theory41

The Results


Rotational Kinetic Energy

Classically

$$E_{rot} = \frac{L^2}{2I}$$

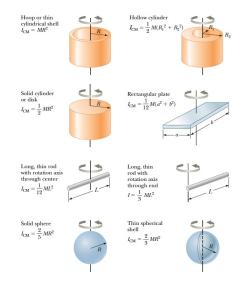
where

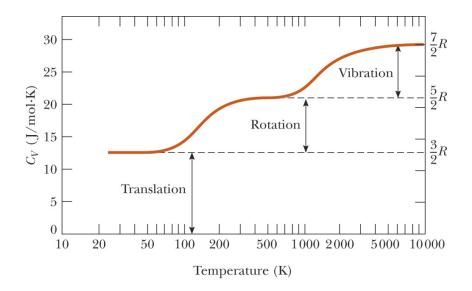
$$I=\sum mr_i^2=\int r^2dm$$

Rotational Kinetic Energy

Classically

$$E_{rot} = \frac{L^2}{2I}$$

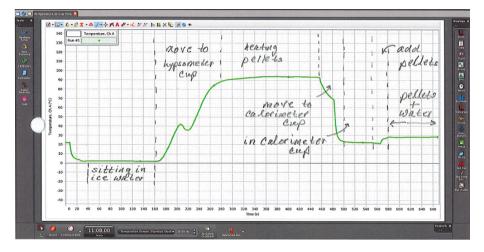

where


$$I=\sum mr_i^2=\int r^2dm$$

Quantum mechanically

$$E_{rot}^{qm} = l(l+1)\frac{\hbar^2}{2l}$$

where *l* is the angular momentum quantum number.



© 2006 Brooks/Cole - Thomson

How much heat does it take to increase the temperature of n = 4.0 moles of H_2 gas by $\Delta T = 25$ K at room temperature $T = 25^{\circ}C$ if the gas is held at constant volume? Would the answer change if the gas were N_2 ? What about He?

Go to the website

https://www.pasco.com/downloads/capstone

and select the free trial for your platform (Windows or Mac). The installer will be downloaded to your machine.

- **2** Launch the installer you just downloaded.
- Accept defaults.
- On first launch, enter the license key listed below. 19F5C-S10o2-4o0m0-ppip3-40gr8-ece1h
- The capstone files for each lab will be linked to the lab schedule on the course website at the following location.

https://facultystaff.richmond.edu/~ggilfoyl/genphys.html

Substance	$T_{\rm m}(^{\circ}{\rm C})$	$L_{\rm f}({\rm J/kg})$	$T_{\rm b}(^{\circ}{\rm C})$	$L_{\rm v}$ (J/kg)
Nitrogen (N ₂)	-210	0.26×10^{5}	-196	1.99×10^{5}
Ethyl alcohol	-114	1.09×10^{5}	78	8.79×10^{5}
Mercury	-39	0.11×10^{5}	357	2.96×10^{5}
Water	0	3.33×10^{5}	100	22.6×10^{5}
Lead	328	0.25×10^5	1750	8.58×10^{5}

TABLE 17.3 Melting/boiling temperatures and heats of transformation

TABLE 17.2 Specific heats and molar specific heats of solids and liquids

Substance	c (J/kg K)	C (J/mol K)
Solids		
Aluminum	900	24.3
Copper	385	24.4
Iron	449	25.1
Gold	129	25.4
Lead	128	26.5
Ice	2090	37.6
Liquids		
Ethyl alcohol	2400	110.4
Mercury	140	28.1
Water	4190	75.4