Assume that a pure, ideal gas is made of tiny particles that bounce into each other and the walls of their cubic container of side ℓ . Show the average pressure P exerted by this gas is - -

$$P = \frac{1}{3} \frac{N}{V} m v_{total}^{2}$$
Use the ideal gas law ($PV = Nk_BT = nRT$) and the conservation of energy ($\Delta E_{int} = C_V \Delta T$) to calculate the specific heat of an ideal gas and show the following.

$$C_V = \frac{3}{2} N_A k_B = \frac{3}{2} R$$
Is this right?
 $N -$ number of particles $V = \ell^3$
 $k_B -$ Boltzmann constant $m -$ atomic mass
 $N_A -$ Avogadro's number $V_{total} -$ atom's speed

Ν

The Results

Rotational Kinetic Energy

$$E_{rot} = rac{\mathcal{L}^2}{2\mathcal{I}}$$

where

$$\mathcal{I}=\sum mr_i^2=\int r^2dm$$

Jerry Gilfoyle

Rotational Kinetic Energy

Classically

$$E_{rot} = rac{\mathcal{L}^2}{2\mathcal{I}}$$

where

$$\mathcal{I} = \sum mr_i^2 = \int r^2 dm$$

Quantum mechanically

$$E_{rot}^{qm} = \ell(\ell+1)rac{\hbar^2}{2\mathcal{I}}$$

where *I* is the angular momentum quantum number.

- The gas consists of a large number of small, mobile particles and their average separation is large.
- The particles obey Newton's Laws and the conservation laws, but their motion can be described statistically.
- Solutions are elastic.
- The inter-particle forces are small until they collide.
- The gas is pure.
- The gas is in thermal equilibrium with the container walls.

Solid	Molar Specific Heat (J/K-mole)	Our Results (J/K-mole)
Lead	26.4	22 ± 6
Zinc	25.4	36 ± 14
Aluminum	26.4	24 ± 5
Copper	24.5	23 ± 5
Tin	27.0	52 ± 15
Gold	25.4	
Silver	25.4	
Iron	25.0	

Solid	Molar Specific Heat	Our Results	3R	
	(J/K-mole)	(J/K-mole)	(J/K-mole)	
Lead	26.4	22 ± 6	24.9434	
Zinc	25.4	36 ± 14	24.9434	
Aluminum	26.4	24 ± 5	24.9434	
Copper	24.5	23 ± 5	24.9434	
Tin	27.0	52 ± 15	24.9434	
Gold	25.4		24.9434	
Silver	25.4		24.9434	
Iron	25.0		24.9434	

The Einstein Solid

The Einstein Solid

The Einstein Solid

The Plan

An Einstein solid is made of N, three-dimensional harmonic oscillators containing q quanta of energy.

- What is the multiplicity of a single Einstein solid?
- What is the multiplicity of two Einstein solids in thermal contact?
- How would you determine the most likely microstate of the system?
- How is entropy related to temperature?

Solid	Molar Specific Heat (J/K-mole)	Our Results (J/K-mole)		
Lead	26.4 ± 0.7	22 ± 6		
Zinc	25.4 ± 0.6	36 ± 14		
Aluminum	26.4 ± 0.2	24 ± 3		
Copper	24.5 ± 0.6	23 ± 5		
Tin	27.0 ± 0.6	52 ± 15		
Gold	25.4 ± 0.6			
Silver	25.4 ± 0.6			
Iron	25.0 ± 0.6			

- I How is the energy related to temperature?
- What is the molar specific heat of an elemental solid?

Rolling Dice

Total	Combinations	No. of combos
2	1-1	1
3	1-2,2-1	2
4	1-3,2-2,3-1	3
5	1-4,2-3,3-2,4-1	4
6	1-5,2-4,3-3,4-2,5-1	5
7	1-6,2-5,3-4,4-3,5-2,6-1	6
8	2-6,3-5,4-4,5-3,6,2	5
9	3-6,4-5,5-4,6-3	4
10	4-6,5-5,6-4	3
11	5-6,6-5	2
12	6-6	1

Total	Combinations	No. of combos
2	1-1	1
3	1-2,2-1 micros	$_{\rm tates}$ 2
macr	ostate 1-3,2-2,3-1 /	3
5	1-4,2-3,3-2,4-1	4
6	1-5,2-4,3-3,4-2,5-1	5
7	1-6,2-5,3-4,4-3,5-2,6-1	6
8	2-6,3-5,4-4,5-3,6,2	5
9	3-6,4-5,5-4,6-3	4
10	4-6,5-5,6-4	3
11	5-6,6-5	2
12	6-6	1

Throwing Dice

Jerry Gilfoyle

Einstein Solid

16 / 36

An Einstein solid is made of N, three-dimensional harmonic oscillators containing q quanta of energy as shown below.

• What is the energy of a single oscillator? of N oscillators?

Microstates for $N_A = 2$, $q_A = 2$

<i>n</i> ₁	<i>n</i> ₂	<i>n</i> 3	<i>n</i> 4	<i>n</i> 5	<i>n</i> 6		<i>n</i> ₁	L	1 n ₂	1 n ₂ n ₃	l n ₂ n ₃ n ₄	l n ₂ n ₃ n ₄ n ₅
						1						
						1						
									_			

Jerry Gilfoyle

Microstates for $N_A = 2$, $q_A = 2$

21

Summary So Far

$$E_{int} = (n_x + n_y + n_z)\hbar\omega = \sum_{i=1}^{3N} n_i\hbar\omega$$
 for N atoms

multiplicity (Ω)	number of microstates
macrostate	configuration of a solid defined by bulk proper-
	ties like N and E/U .
microstate	one of the configurations of quanta consistent
	with the macrostate.

$$\Omega(N_A, q_A) = \frac{(q_A + 3N_A - 1)!}{q_A!(3N_A - 1)!}$$

$$\Omega_{AB}=\Omega_A\Omega_B$$

where Ω_{AB} - multiplicity of combined state $\Omega_{A,B}$ - individual multiplicities.

Summary So Far

The Plan

Multiplicity and Number of Quanta

Logarithmic Properties				
Product Rule	$\log_a(xy) = \log_a x + \log_a y$			
Quotient Rule	$\log_a\left(\frac{x}{y}\right) = \log_a x - \log_a y$			
Power Rule	$\log_a x^p = p \log_a x$			
Change of Base Rule	$\log_{a} x = \frac{\log_{b} x}{\log_{b} a}$			
Equality Rule	If $\log_a x = \log_a y$ then $x = y$			

Entropy of Two Einstein Solids

28

Entropy of Two Einstein Solids in Energy Terms 29

Jerry Gilfoyle

The Plan

Slopes

Jerry Gilfoyle

The Plan

Solid	Measured Molar Specific Heat (J/K-mole)	Our Results (J/K-mole)	Our Calculation (J/K-mole)
Lead	26.4 ± 0.7	22 ± 8	24.9
Zinc	25.4 ± 0.6	$36\pm~14$	24.9
Aluminum	26.4 ± 0.2	24 ± 3	24.9
Copper	24.5 ± 0.6	23 ± 5	24.9
Tin	27.0 ± 0.6	$52\pm~15$	24.9
Gold	25.4 ± 0.6		24.9
Silver	25.4 ± 0.6		24.9
Iron	25.0 ± 0.6		24.9

Displacement From Equilibrium

34

Quantum Oscillator

Go to the website

https://www.pasco.com/downloads/capstone

and select the free trial for your platform (Windows or Mac). The installer will be downloaded to your machine.

- 2 Launch the installer you just downloaded.
- Accept defaults.
- On first launch, enter the license key listed below. 19F5C-S10o2-4o0m0-ppip3-40gr8-ece1h
- The capstone files for each lab will be linked to the lab schedule on the course website at the following location.

https://facultystaff.richmond.edu/~ggilfoyl/genphys.html

Installing statmech.exe

- Go to: http://www.physics.pomona.edu/sixideas/old/sicpr.html
- Scroll down to the section entitled "For Use With Unit T:".
- Scroll down to the paragraph that starts with "statmech 2.7".
- Scroll down to "Download for:" and right click on "Windows" or "Mac OSX" and save it to your Desktop.
- On your desktop double click on the folder entitled "statmech.exe.zip". You should see a list of the contents of the folder.
- Olick the "Extract All" button and then choose the Desktop (it it's not already set) to place the files.
- Ouble click on "statmech.exe" and you will now see the contents of the folder with the application.
- Ouble click on "statmech.exe". You will get a GUI like the one shown here.
- You're off.

🛃 StatMech		-		\times
File Edit Options	GraphType Help			
A Atoms: 1	Total U: 6 Gaph Max Rows: 200 Graph	Ca	lculate	

- Go to: http://www.physics.pomona.edu/sixideas/old/sicpr.html
- Scroll down to the section entitled "For Use With Unit T:".
- Scroll down to the paragraph that starts with "Equilib 2.1".
- Scroll down to "Download for:" and right click on "Windows" and save it to your Desktop.
- Double click on the folder entitled "Equil.exe.zip". You should see a list of the contents of the folder.
- Ouble click on "Equilib.exe". You should get a GUI telling you the application may depend on other compressed files in the folder. Click the "Extract All" button and then choose the Desktop to place the files.
- Ouble click on "Equilib.exe" and you will now see the contents of the folder with the application.
- **(3)** Double click on *"Equilib.exe"*. You will get a GUI worrying about the publisher.
- Olick "Run" and you're off.