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Macrostates and
CORE Microstates

Chapter Overview

Section T24: The Einstein Model of a Solid

In this chapter, we will explore the roots of irreversibility with the help of a simple model
of a solid. We can model a monatomic solid by imagining that each of its atoms oscillates
independently around its equilibrium position in the solid lattice, Mathematically, we can
treat an atom’s oscillation in three dimensions as three independent one-dimensional oscil-
lations, one along each coordinate axis. Since the atoms are identical and the coordinate
axes equivalent, we can model an N-atom solid as being 3N identical but independent one-
dimensional quantum oscillators. We call a solid that is adequately described by this simple
model an Einstein solid.

According to unit Q, a one-dimensional quantum oscillator has evenly spaced quan-
tized energy levels separated by € = fz(kx/m)" ?, where k, is the effective spring constant of
the interactions holding an atom to its equilibrium position, m is the atom’s mass, and h
is Planck’s constant /1 divided by 2. If we define our zero of energy so that the oscillator’s
ground state corresponds to zero energy, then the energy of any one of our 3N oscillators
is simply an integer multiple of €. An Einstein solid’s total thermal energy is therefore

The thermal energy of an 3w X
Einstein solid U= g&‘n; where e=nh \/; (T2.5)

* Purpose: This equation specifies the total thermal energy U of an Einstein solid
whose N atoms we model as 3N identical but independent quantum oscillators, where
ny, My, N3, ... are a set of nonnegative integers (three per atom), € is the fixed differ-
ence between each oscillator’s energy levels, i = hi/2n, h is Planck’s constant, &, is
the effective spring constant of the interactions holding an atom in place, and m is
the mass of one of the solid’s atoms.

* Limitations: The Einstein model works well for monatomic solids at temperatures
above 100 K or so (the exact limit depends on the solid).

Section T2.2: Distinguishing Macrostates and Microstates

The core of Boltzmann’s solution to the problem of irreversibility is the distinction between
macrostates and microstates. We describe a system’s macrostate by listing its variable mac-
roscopic properties: for an Einstein solid, stating the solid’s thermal energy U and its number
of atoms N is sufficient to specify its macrostate. We describe a system’s microstate by
specifying the quantum state of every molecule in the system: for an Einstein solid, this
amounts to specifying »; for i = 1 to 3N. In principle, we can calculate a system’s macroscopic
properties (and thus its macrostate) if we know its microstate. In general, there are an
immense number of microstates corresponding to any given macrostate; for example, we can
distribute energy in many different ways among an Einstein solid’s atoms without affecting
its macroscopic total energy U.
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Section T2.3: Counting Microstates

The advantage of starting with the Einstein solid is that we can count the microstates in a
given macrostate relatively easily (at least compared to many other physical systems). The
multiplicity 2 of a macrostate with energy U and number of atoms N is simply the number
of different ways we can add 3N integer multiples of £ to get U. The general formula (see
problem T2D.3) turns out to be

_(g+3N-1)!
A g'3N - 1)! ()
o+ Purpose: This equation specifies the multiplicity £2 of any macrostate of an g Table T2 Table of
Einstein solid, where N is the number of atoms in the solid, U is its total energy, possible macropartitions
g = U/e is the number of units of energy to be distributed among the atoms, and for Ny =Ny =1, U = 6¢e
n! or n factorial = 1.2.3---(n — 1)-n.
+ Limitations: This equation applies only to an Einstein solid. Us/e Ugfe R4 s S$s
0 6 1 28 28
1 5 321 63
Section T2.4: Two Einstein Solids in Thermal Contact 2 4 6 15 90
Imagine now that we bring two Einstein solids A and B into thermal contact but isolate 3 3 10 10 100
them from everything else (so that the combined system’s total energy is fixed). We describe 4 2 15 6 90
a macropartition of the combined system (a certain macroscopic partitioning of the sys- 5 1 21 3 63
tem’s fixed total energy) by specifying the macrostate of each solid. A macropartition table E 0 28 1 78
lists all the combined system’s macropartitions and their multiplicities. Table T2.1 is a . S~
macropartition table for the case where Ny = Nz = 1 and the combined system’s total energy Total microstates = 462
is U= Uy + Uy = 6&. ' ®

Note that the combined system’s multiplicity £,z in a given macropartition is the prod-
uct of the multiplicities of each subsystem, because for each one of the £2, possible micro-
states for solid A, there are £y possible microstates for solid B consistent with the
macropartition.

Section T2.5: The Fundamental Assumption

The fundamental assumption of statistical mechanics is that all of a system’s accessible
microstates are equally likely in the long run. This means that as the solids randomly exchange
energy, a macropartition embracing many microstates is more probable than one embracing
only a few. Thus, we are likely to see the Uy = Uy = 3€ macropartition in table T2.1 about
100/28 = 3.6 times more often than either the Uy = 0 or Uy = 0 macropartitions.

Section T2.6: Using StatMech

Creating tables by hand for systems having more than a handful of atoms and/or energy
units becomes very tedious, but a computer can do the necessary calculations rapidly and
accurately. The web application StatMech (at http://www.physics.pomona.edu/
sixideas/resources.html) constructs such tables for larger systems.

Section T2.7: The Emergence of Irreversibility

When we use StatMech to create tables for larger Einstein-solid systems (involving thousands
of atoms), we see that (1) the number of microstates becomes extremely (almost incomprehen-
sibly) huge, but (2) the vast majority are in an increasingly narrow range around the most
probable macropartition. This implies that purely random energy transfers in a sufficiently large
system (1) will cause its macropartition to march inexorably toward the most probable (equilib-
rium) macropartition, and (2) upon arrival the system will subsequently visit in macropartitions
within only an infinitesimal region near the most probable macropartition. The number of micro-
states in macropartitions far from the equilibrium macropartitions are so incredibly much smaller
that moving away from equilibrium is impossible in any practical sense. This is why a heat
transfer is irreversible.
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Figure T21

We can model the interactions
between atoms in a crystalline
monatomic substance as springs.

i

\  m

Figure T2.2

In Einstein’s model, we treat each
atom as independent, as if its
springs were connected to the
rigid walls of its “cell.”

Chapter T2  Macrostates and Microstates

T24 The Einstein Model of a Solid

In this chapter, we begin exploring Boltzmann's solution to the puzzle of irrevers-
ibility. We will be able to understand this solution most easily with the help of a
very simple model of a monatomic solid.

In 1907, Albert Einstein published a paper that proposed a simple but rea-
sonably accurate model for predicting the thermal behavior of monatomic crys-
talline solids (such as crystals of pure carbon, iron, or gold). Atoms in such a
solid are held in nearly fixed positions in the crystal lattice by complicated
interatomic electromagnetic interactions. However, as long as the atoms remain
close to their equilibrium positions (where their interaction potential energy
functions are minimum), we saw in chapter C9 that we can approximate the
potential energy function for almost any interaction by that for a spring, so we
can (as a first approximation) model all the interatomic interactions as if they
were springs (see figure T2.1).

Even in such a model, the atoms can affect each other in complicated ways,
so Einstein proposed a further simplification: assume that each atom oscillates
independently about its equilibrium position, behaving as if it were connected by
springs to the rigid walls of its individual “cell” in the crystal lattice instead of
being interconnected with the surrounding atoms (see figure T2.2). So in this
model, we assume that each atom’s potential energy when it is a distance r from
its equilibrium position is %ker (where £, is the effective spring constant of the
interactions that hold the atom in place) independent of both the direction of r
and the positions of neighboring atoms. The model also assumes that each atom
is identical, meaning that the spring constant k, is the same for all atoms. Einstein



T21 The Einstein Model of a Solid

was able to show (as we will see) that this simplistic model nonetheless accurately
describes the thermal behavior of monatomic solids over a wide temperature
range.

Now, in both Newtonian and quantum mechanics, we can treat a parti-
cle oscillating in three dimensions as if it were three independent one-dimensional
oscillators. For example, the total Newtonian energy of a three-dimensional
oscillator is

E=1m|7|? + 1,7 = im? 4+ vE 4+ v + 1k,(3 + 3 + 20
= (%mv% + %ks,\'z) + (%mv§ + %ksyz) -+ (%mvg + %k:zz) (T2.1)

where m is the atom’s mass. Note how we can group the terms in the energy
equation into three pairs, each pair of which would be the energy associated
with a one-dimensional oscillation along one of the coordinate axes, without
any reference to what is happening in the other coordinate directions. One can
also show from this equation (see problem T2D.5) that the atom’s motion
along each coordinate axis is exactly as if the atom were oscillating in one
dimension along that axis alone. (This is a special property of the spring
potential energy function: most other potential energy functions cannot be
pulled apart in this way.)

According to quantum mechanics (see chapter Q10), the energy associated
with each of these separate one-dimensional oscillations is guantized, so that the
atom’s total vibrational energy is given by

E = ho(n, +3) + ho(, +3) + ho(, +3) (T2.2)

where @ = (k,/m)"/?is the angular frequency of the equivalent Newtonian oscilla-
tor and 1 = h/2x, where h is Planck’s constant. The quantities n,, ny, and n_ here
are independent, nonnegative integers (0, 1, 2, 3, and so on) that specify each
oscillator’s energy level. Each of the three terms here is the same as the expression
for the energy of a one-dimensional quantum harmonic oscillator. See unit Q for
a justification of this: for our purposes at the present it is enough simply to know
that this is true.
We can rewrite this equation as

E= ifm}(n,- +hH= is(n,. +13) (T2.3)
i=1 i=1

where € = ho = f:(ks/m)u 2 is the energy difference between adjacent levels of
each one-dimensional oscillator and 1y, 1, and n; are just a different way of label-
ing the integers n,, ny, and n,. We can then find the solid’s total energy by summing
this over all atoms (three terms per atom):

3N ) N Wy N 3
En= Z&‘(u,—+§) = Ee‘n,-+ EEE: ZEM,—+§NE (T2.4)

i=1 i=1 i=1 i=1

The constant 3Ne term in this equation is called the solid’s zero-point
energy. The solid will have this energy even at absolute zero (which is the tem-
perature where all atoms are in their lowest possible energy state, by definition)
and it cannot be affected by the solid’s interaction with its surroundings: it is a
built-in aspect of the solid’s internal energy. We define a system’s thermal energy
U to be that part of the system’s internal energy that changes when the system’s
temperature changes due to its interactions with other objects (assuming that the
system’s phase, chemical composition, and nuclear composition remain fixed).
So, this zero-point energy (along with the internal energies of all the atoms) is
not part of the solid’s thermal energy U. We can therefore write the solid’s ther-
mal energy as
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The thermal energy of an Einstein
solid

Definition of macrostate

Definition of microstate
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N 7
U= ) en; where €=h ﬁ (T2.5)
i=1
* Purpose: This equation specifies the total thermal energy U of an Einstein
solid whose N atoms we model as 3N identical but independent quantum
oscillators, where ny, n,, ns, ... are a set of nonnegative integers (three
per atom), € is the fixed difference between each oscillator’s energy levels,
h = h/2m, h is Planck’s constant, k, is the effective spring constant of the
interactions holding an atom in place, and m is the mass of one of the solid’s
atoms.
* Limitations: The Einstein model works well for monatomic solids at tem-
peratures above 100 K or so (the exact limit depends on the solid).

Note that because & o (k,/m)'/% it increases as the strength of the interatomic
forces increases, and decreases as the mass of each of the atoms increases.

The basic point of equation T2.5 is that we will model a crystalline solid
containing N identical atoms as if it contained 3N identical independent quantum
harmonic oscillators, each of which can store an integer number n; of energy units €.
We will call any solid accurately described by this model an Einstein solid.

2.2 Distinguishing Macrostates and Microstates

The core step in understanding Boltzmann’s solution to the problem of irrevers-
ibility is to understand the crucial distinction between the macrostate and the
microstate of a thermodynamic system.

A system’s macrostate is that system’s thermodynamic state as characterized
by its macroscopically measurable and potentially variable properties. These are
properties of the system as a whole that might in principle change as the system
interacts thermally with its surroundings. These properties include the system’s
total thermal energy U, its temperature 7, its volume V, the number of particles N
that it contains, its mass M, and so on.

We can completely describe a system’s macrostate by specifying some min-
imal set of macroscopic properties that suffice to calculate all its other macro-
scopic properties. For example, a monatomic solid’s thermal energy U is connected
to its temperature 7" and the number of particles N (see equation T1.5), so if we
specify U and N, we can in principle calculate 7. The solid’s mass M = mN,
where m is the mass of an atom. As the atom’s mass does not depend on the
system’s external circumstances, it does not count as a variable property, so
knowing N determines M. Under normal circumstances, a solid’s density is also
pretty much fixed, so knowing N also determines the solid’s volume V. We see,
therefore, that knowing U and N pretty much fixes a solid’s macrostate under
normal circumstances. On the other hand, the density of a gas (or a solid under
extreme pressure) might vary dramatically, so we might have to add another
macroscopic variable (for example, the system’s volume V) to completely describe
such a system’s macrostate,

A system’s microstate, on the other hand, is characterized by describing the
quantum state of each individual molecule in the system at a given time. In the case
of an Einstein solid, this means specifying the quantum state of (that is, the value
of n for) each of the system’s 3N independent oscillators. Note that while this idea
is conceptually straightforward, even the tiniest speck of solid contains so many
atoms that describing the speck’s microstate would be impossible in practice, but
we can at least imagine doing it.



T2.3 Counting Microstates

Note that if we know a system’s microstate, we know its macroscopic proper-
ties as well. If we know the value of n for every oscillator in an Einstein solid,
then we implicitly know N and can calculate U using equation T2.5, so we know
what we need to specify the solid’s macrostate.

Now, the most important thing to understand about microstates and macro-
states is that a system in a given, well-specified macrostate could be in any one of
a huge number of different microstates that we are unable to distinguish by mac-
roscopic measurements. For example, suppose that we describe an Einstein solid’s
macrostate by stating values for U and N. There are many possible microstates that
nonetheless add up to the same total U (each simply corresponds to a different way
of distributing that total energy among 3N oscillators). For any complex system,
there are an immense number of possible microstates consistent with any given
macrostate.

Perhaps the following analogy will make these ideas more vivid. Consider
your bedroom. It has two fundamental “macrostates” that a person (say, your par-
ent) can rapidly discern without much detailed examination: “clean” or “messy.”
Describing your room’s microstate, on the other hand, would involve meticulous
documentation of the exact position and orientation of every object in the room.
Now, a fairly large number of arrangements of objects in your room might qualify
the room as being “clean” (for example, there are a number of possible ways to
neatly arrange your socks in the dresser drawer). There are vastly more possibilities
for object arrangements that your parent would consider messy (just imagine the
number of ways you could distribute your socks on the floor!). Either way, though,
there are many microstates in a macrostate.

T2.3 Counting Microstates

Why begin our journey with the Einstein solid? The answer is that we can much
more easily calculate the number of microstates corresponding to each macro-
state of an Einstein solid than for any other reasonably realistic thermodynamic
model. This in turn makes it comparatively easier to determine what statistical
physics predicts about this model. Models of other complex systems behave in
qualitatively similar ways, so what we learn from this model applies at least
qualitatively fo other systems as well. We will also use this model to develop
tools that help us handle more complex models.

As we saw in the last section, we can describe an Einstein solid’s macrostate
by specifying its thermal energy U and its number of atoms N. To describe the
solid’s microstate, we must specify an integer value »; for each of the solid’s 3N
independent oscillators. In general, there will be many microstates (that is, many
distinct sets of values for all 3N integers n;) that have the same total U. We call
the number of possible microstates that correspond to the same given macrostate
that macrostate’s multiplicity €. In the case of an Einstein solid, where the mac-
rostate is specified by U and N,

(U, N) = the multiplicity of the macrostate specified by U and N
= the number of N-atom microstates having total energy U (T2.6)

How can we determine (U, N) for given values of U and N? The beauty of
the Einstein solid model is that this is not a conceptually difficult problem. Accord-
ing to equation T2.5, the total energy in an Einstein solid is an integer multiple of
the basic energy unit €. Think of each energy unit as a marble, and each of the
solid’s 3N oscillators as a bin into which we can put marbles. When we specify
the solid’s total energy U, we are essentially specifying the total number of “mar-
bles” ¢ = U/e that we must distribute. Counting the microstates for this U, then,
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Examples of counting
microstates for small U, N

The multiplicity of an Einstein
solid’s macrostate
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is the same as counting how many different ways we can sort ¢ marbles into
3N bins.

In a solid of macroscopic size, 3N will be on the order of magnitude of 10%,
but let’s start small. Suppose our Einstein solid consists of a single atom, that is,
three independent oscillators. (Of course, a single atom will have no laitice in
which it can oscillate, but let us just pretend that this makes sense. We'll work up
to larger numbers of atoms shortly.) We can describe the microstate of this system
by specifying energy-level integers for each of the three oscillators (that is, how
many marbles each of these three bins contains). Let us write these numbers as a
triplet of digits; for example, the triplet 032 specifies the microstate in which the
first oscillator has 0 units of energy, the second has 3 units, and the third has
2 units. The total energy contained in the system in this case is U = 5¢&. Other
possible microstates corresponding to this macrostate are 320, 230, 302, 203, 023,
113, 311, 131, 041, 014, and so on.

So let us start counting microstates for various different macrostates of this
one-atom Einstein solid. First, suppose the solid’s total energy has its lowest pos-
sible value U = 0. Only one microstate (000) is compatible with this total energy,
so this macrostate’s multiplicity is Q(U, N) = Q(0, 1) = 1.

Now suppose the solid’s total energy is U = e (that is, the solid contains
exactly 1 unit of energy). The microstates compatible with this total energy are
100, 010, and 001, for a total of three. This macrostate’s multiplicity is thus
£2(1g, 1) = 3. If the solid’s total energy is U = 2¢, then the possible microstates
are 002, 020, 200, 110, 101, 011, so this macrostate’s multiplicity is £2(2¢, 1) = 6.
In a similar fashion, one can show that 2(3e, 1) = 10, 2(4e, 1) = 15, 2(5¢, 1) = 21,
and Q(6¢g, 1) = 28.

Exercise T2XA

Verify that (3¢, 1) = 10 by writing down all possible microstate triplets consistent
with this macrostate and counting them.

An Einstein solid with two atoms (six independent oscillators) and zero total
energy has one microstate 000000, so £2(0, 2) = L. If the solid’s total energy is
U = g, then the possible microstates are 000001, 000010, 000100, 001000, 010000,
and 100000, so £(le, 2) = 6. When U = 2¢, the possible microstates are 000002,
(00020, 000200, 002000, 020000, and 200000, 000011, 000101, 001001, 010001,
100001, 000110, 001010, 001100, 010010, 010100, 011000, 100010, 100100,
101000, and 110000, so £2(2¢, 2) = 21. In a similar fashion, one can show that
03¢, 2) = 56, 2(4e, 2) = 126, and so on.

Counting microstates this way gets pretty tedious after a while. However, one can
prove generally that if ¢ = U/¢ is the total number of energy units to be distributed
among 3N oscillators, then

(g +3N—1)!

U= N D

(T2.7)

* Purpose: This equation specifies the multiplicity £2 of any macrostate of an
Einstein solid, where N is the number of atoms in the solid, U/ is its total
energy, ¢ = U/e is the number of units of energy to be distributed among
the atoms, and n! or n factorial = 1-2-3--(n — 1)-n.

» Limitations: This equation applies only to an Einstein solid.
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(Problem T2D.3 shows how to derive this formula.) So, for example,

9(45 2)=(4+6_1)!:£= 9'8‘7'6'5'4‘3‘2'1
' 416 - 1) 4150 @4.3-2-1)5-4-3-2-1)

9.-8:-7:6
=207 2 =0:7.2="12 T2.
4.3.2-1 - : L)

Exercise T2X.2

(a) Check that equation T2.7 yields the same results for £2(0, 1), 2(g, 1), 2(2¢, 1), and
£2(2¢, 2) that we found earlier by direct counting. (b) Use equation T2.7 to verify
that 2(6¢, 1) = 28. (¢) If an Einstein solid has three atoms, what is the multiplic-
ity of the macrostate where it has 8 units of energy?

T2.4 Two Einstein Solids in Thermal Contact

Suppose now we bring two Einstein solids A and B, one with N, atoms (3N,
oscillators) and one with Ny atoms (3N oscillators), into thermal contact, so that
microscopic interactions between atoms on the surfaces in contact can allow
energy to flow between the solids. How will these solids behave macroscopically
after being brought into contact?

The values of Ny and U, specify solid A’s macrostate, and Nz and Up
specify solid B’s macrostate. If we suppose that Ny and Ny are fixed, then just
Uy and Uy sufficiently specify the solids’ macrostates. If the combined system
of the two solids is thermally isolated, its total energy U = U, + Uy is fixed
(by conservation of energy); but at least in principle, the energies Uy and Uy of
the two solids could have any values consistent with that total. For example, if
the combined system’s total energy is U = 6¢, then possible pairs of values for
Uy and Up include Uy = 0 and Uy = 6¢, or Uy = 2€ and Up = 4¢, or Uy = 5¢
and Uy = €, and so on.

Let’ call a given pair of macrostates for solids A and B that are consistent with
a fixed value of U = Uy + Up a macropartition of the combined system for
that U. For example, the pair of macrostates where Uy = 2€ and U = 4€ is one
possible macropartition of the combined system for U = 6e.

Different macropartitions of the combined system of two solids therefore
amount to different ways that the energy can be macroscopically divided (or “par-
titioned”) between the solids. There is a real distinction to be made here between
a macropartition and a microstate of the combined system. A microstate of the
combined system specifies exactly how much energy each individual oscillator in
both solids has. A macropartition, on the other hand, only specifies the macro-
scopic total energies Uy and Upg that the two macroscopic solids have, something
we can measure macroscopically. In other words, we describe a macropartition of
a combined system of two subsystems by describing the macrostate of each
sibsystem.

Now, suppose that in a certain macropartition, solid A has energy U, and
multiplicity £2,, and solid B has energy Uy and multiplicity £2;. What is the mac-
ropartitition’s multiplicity? Well, for each of the £2, microstates that solid A might
be in, solid B could be in any of its £2; microstates, so the total number of micro-
states consistent with this particular partitioning of the energy between solids A
and B must be the product of these multiplicities:

QAB = QA‘QB (T2.9)

The macropartition of a pair of
objects in thermal contact

A macropartition’s multiplicity
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A macropartition table for
Einstein solids in contact

| Table T21  Table of
possible macropartitions
for Ny =Ny =1, U = 6e

Un/e Upfe 24 R L
0 6 1 28 28
1 5 3 21 63
2 4 6 15 90
3 3 10 10 100
4 2 15 6 90
5 1 21 3 63
6 0 28 1 28

Total microstates = 462

5}

The fundamental assumption
of statistical mechanics
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A specific example may make this clearer. Suppose that we bring two one-
atom Einstein solids into thermal contact, and suppose that their total combined
energy is U = 6¢. Let’s construct a table that lists in successive lines all the pos-
sible macropartitions for the combined system. On each line, we specify the mac-
ropartition by stating the two solids’ energies Uy and Uy in units of &, the
multiplicities £2, and 2 of their respective macrostates, and the macropartition’s
multiplicity 2,5 = £2,82p. Table T2.1 shows such a macropartition table.

To see why Q.5 = 2,82, consider, for example, the macropartition where
U, = Uy = 3&. The possible microstates of solid A are (in our previous notation)
300, 030, 003, 210, 201, 021, 120, 102, 012, and 111, and the possible microstates
of system B are the same. The possible microstates of the combined system are as
follows (the triplets on the left and right specify the microstates of solids A and B,
respectively): 300-300, 300-030, 300-003, 300-210, 300-201, 300-021, 300-120,
300-102, 300-012, 300-111, 030-300, 030-030, 030-003, 030-210, and so on, for
a total of 10 x 10 = 100 distinct microstates.

Exercise T2X.3

Prepare an analogous table for the case where Ny = Ny = |1 and U = 8¢e. (Use
equation T2.7 to calculate the multiplicities you can’t get from table T2.1.)

2.5 The Fundamental Assumption

In a real solid, the atoms can (and do) exchange energy through random micro-
scopic processes. So to get the Einstein model to fit reality, we must assume that
adjacent atoms do interact enough to exchange energy, but not so strongly that the
energy-level structure of each quantum oscillator is significantly affected. Energy
will also shift randomly back and forth across the boundary between the solids due
to interactions between atoms on the surfaces in contact,

Therefore, as time passes, a combined system of two Einstein solids will ran-
domly shift between different microstates consistent with the constraint that the total
energy has some fixed value /. This means that under some circumstances, the
macropartition of the combined system might fluctuate as the system randomly sam-
ples microstates in different macropartitions. For example, in the situation considered
in table T2.1, the combined system in microstate 012-300 (one of the microstates
corresponding to the macropartition where U, = Up = 3€) might evolve to 013-200
(one of the microstates corresponding to macropartition Uy = 4g, Uy = 2€) by trans-
ferring 1 unit of energy across the boundary. In time, this system will sample each
of the 462 possible microstates, and thus each of the possible macropartitions.

Now comes the big question: Can we say something about which macroparti-
tions we are most likely to see if we peek at the system at various times? We can
indeed, if we are willing to accept a simple and plausible assumption:

An isolated system’s accessible microstates are all equally likely in the
long run.

(Accessible in this context means “consistent with the value of the total internal
energy of the system in question.”) We call this statement the fundamental
assumption of statistical mechanics.

This disarmingly simple postulate provides the foundation for understanding
irreversible processes, as we will shortly see. Note that even though this assumption
is simple and plausible, its ultimate justification is that it does correctly predict the
behavior of macroscopic systems.



