- Name:
- Did you take Phys 131 and who was your instructor?
- How many semesters of physics before this course (high school or college)?
- How many semesters of calculus before this course (high school or college)?
- Preferred personal pronouns?

What are you made of and how do you know? 2

What are you made of and how do you know? 3

Dalton's Atomic Theory (1808)

(1) All matter consists of tiny particles.
(2) Atoms are indestructible and unchangeable.
(3) Elements are characterized by the mass of their atoms.
(4) When elements react, their atoms combine in simple, whole-number ratios.

from A New System of Chemical Philosophy (1808) by John Dalton

What are you made of and how do you know?

Dalton's Atomic Theory (1808)

(1) All matter consists of tiny particles.
(2) Atoms are indestructible and unchangeable.
(3) Elements are characterized by the mass of their atoms.
(4) When elements react, their atoms combine in simple, whole-number ratios.

Boltzmann's Kinetic Theory (1905)
(1) Matter consists of tiny particles.
(2) Use Newtonian physics to calculate ideal gas properties like the heat capacity/specific heat.
(3) Connects bulk properties to microscopic motion of atoms.

from A New System of Chemical Philosophy (1808) by John Dalton

Specific Heats of Ideal Gases

Assume that a pure, ideal gas is made of tiny particles that bounce into each other and the walls of their cubic container of side ℓ. Show the average pressure P exerted by this gas is

$$
P=\frac{1}{3} \frac{N}{V} m \overline{v_{\text {total }}^{2}}
$$

Use the ideal gas law $\left(P V=N k_{B} T=\right.$ $n R T$) and the conservation of energy ($\Delta E_{\text {int }}=$ $C_{V} \Delta T$) to calculate the specific heat of an ideal gas and show the following.

$$
C_{V}=\frac{3}{2} N_{A} k_{B}
$$

Is this right?
N - number of particles $\quad V=\ell^{3}$
k_{B} - Boltzmann constant m - atomic mass
N_{A} - Avogadro's number $\quad v_{\text {total }}$ - atom's speed

The Plan

Temperature and Heat

Temperature and Heat

Temperature and Heat

Heat (Q) is thermal energy transferred from one place or body to another due to a difference in temperature. Thermal energy is the mechanical energy (kinetic and potential) associated with atomic motion in an object.

Temperature and Heat

10

Heat (Q) is thermal energy transferred from one place or body to another due to a difference in temperature. Thermal energy is the mechanical energy (kinetic and potential) associated with atomic motion in an object.

Calorimetry/Energy Conservation

Two ice cubes each with mass $m_{I}=0.050 \mathrm{~kg}$ are taken from a freezer at $T_{0}=0^{\circ} \mathrm{C}$ and dropped into a container holding $m_{w}=1.0 \mathrm{~kg}$ of water at $T_{1}=25^{\circ} \mathrm{C}$. What will be the final temperature of the liquid? Assume the container absorbs no heat.

$$
\begin{aligned}
& c_{\text {ice }}=2090 \mathrm{~J} / \mathrm{kg}-K \\
& c_{w}=4186 \mathrm{~J} / \mathrm{kg}-K \\
& L_{f}=3.33 \times 10^{5} \mathrm{~J} / \mathrm{kg}
\end{aligned}
$$

Calorimetry/Energy Conservation 12

Two ice cubes each with mass $m_{I}=0.050 \mathrm{~kg}$ are taken from a freezer at $T_{0}=0^{\circ} \mathrm{C}$ and dropped into a container holding $m_{w}=1.0 \mathrm{~kg}$ of water at $T_{1}=25^{\circ} \mathrm{C}$. What will be the final temperature of the liquid? Assume the container absorbs no heat.

$$
\begin{aligned}
& c_{i c e}=2090 \mathrm{~J} / \mathrm{kg}-K \\
& c_{w}=4186 \mathrm{~J} / \mathrm{kg}-K \\
& L_{f}=3.33 \times 10^{5} \mathrm{~J} / \mathrm{kg}
\end{aligned}
$$

The Plan

Heat of Vaporization of Liquid Nitrogen Lab 14

The First Law of Thermodynamics

Let 1.00 kg of liquid water at $100^{\circ} \mathrm{C}$ be converted to steam at $100^{\circ} \mathrm{C}$. The water is contained in a cylinder with a movable piston of negligible mass that sits right on top of the water at the start. The volume changes from an initial value of $1.00 \times 10^{-3} \mathrm{~m}^{3}$ as a liquid to $1.671 \mathrm{~m}^{3}$ as steam. The latent heat of vaporization of water is $L_{V}=2.26 \times 10^{6} \mathrm{~J} / \mathrm{kg}$ and atmospheric pressure is $P_{\mathrm{atm}}=1.01 \times 10^{5} \mathrm{~Pa}$.
(1) How much work is done Piston by this process?
(2) How much heat must be added?
(3) What is the change in the water's internal energy?

The Mechanical Equivalent of Heat

Joule's original apparatus

What Happens at the Phase Change? 17

The energy diagram for two atoms.

Ideal Gases

A weather balloon is loosely inflated to a volume $V_{0}=2.2 \mathrm{~m}^{3}$ with helium at a pressure of $P_{0}=1.0 \times 10^{5} \mathrm{~Pa}$ and a temperature $T_{0}=20^{\circ} \mathrm{C}$. At an elevation of $20,000 \mathrm{ft}$ the atmospheric pressure is down to $P_{1}=0.5 \times 10^{5} \mathrm{~Pa}$ and the temperature is $T_{1}=-48^{\circ} \mathrm{C}$. The bag can expand freely. What is the new volume of the bag? What is the gas mass?

Ideal Gases

A weather balloon is loosely inflated to a volume $V_{0}=2.2 \mathrm{~m}^{3}$ with helium at a pressure of $P_{0}=1.0 \times 10^{5} \mathrm{~Pa}$ and a temperature $T_{0}=20^{\circ} \mathrm{C}$. At an

$\underset{\substack{\text { mudpane } \\ \text { ander }}}{\mathbf{H}}$	2							$\substack{\text { Number } \\ \text { Symbol } \\ \text { Name } \\ \text { Atomic Mass }}$				13	14	15	16	11	$\stackrel{\substack{\text { Heiln } \\ \text { Hen } \\ 4003}}{ }$
	$\stackrel{4}{\substack { \text { Bex } \\ \begin{subarray}{c}{\text { Bevilut } \\ \text { g.012 }{ \text { Bex } \\ \begin{subarray} { c } { \text { Bevilut } \\ \text { g.012 } } }\end{subarray}}$												$\underset{\substack{\text { chand } \\ 122011}}{\substack{1}}$		$\begin{gathered} 8 \\ \substack{0 \\ \text { ongen } \\ 105393} \end{gathered}$		
$\begin{aligned} & 11 \\ & \mathrm{Na} \\ & \text { sation } \\ & \text { semp } \end{aligned}$		3	4	5	6	1	:	Atomic	Mass	11	12			$\begin{gathered} 15 \\ \stackrel{15}{P} \\ \text { Phasiblours } \\ 30974 \end{gathered}$	$\sum_{\substack{16 \\ \text { sintur } \\ 3.2060}}$		$\underset{\substack{\text { Ar } \\ \text { ars } \\ 3 \\ \hline 948}}{ }$
	$\begin{gathered} 20 \\ \text { Ca } \\ \text { caid } \\ \text { chioln } \\ 4010 \end{gathered}$	$\begin{gathered} 21 \\ \text { Sc } \\ \text { scatisu } \\ 44956 \end{gathered}$			$\begin{gathered} 24 \\ \substack{24 \\ \text { chrinum } \\ 51,19990} \end{gathered}$		$\begin{gathered} 26 \\ \text { Fe } \\ \text { fe } \\ \text { fibe } \end{gathered}$					$\begin{gathered} 31 \\ \text { Ga } \\ \text { Gain } \\ \text { gand } \\ 69723 \end{gathered}$			$\begin{gathered} 34 \\ \text { Se } \\ \substack{34 \\ \text { seimin } \\ \text { Remin }} \end{gathered}$	$\begin{aligned} & 35 \\ & \substack{30 \\ \text { Branien } \\ \text { pander }} \end{aligned}$	
	$\begin{gathered} 38 \\ \substack{38 \\ \text { Suxitin } \\ \text { sif2 }} \\ \hline \end{gathered}$	$\begin{gathered} 39 \\ y \\ \text { yuinu } \\ 88900 \end{gathered}$		$\begin{gathered} 41 \\ \begin{array}{c} \text { Nivbum } \\ \text { Nitaibe } \end{array} \end{gathered}$					$\begin{gathered} \text { Pd } \\ \text { Paldidu } \\ \text { Patat2 } \end{gathered}$		$\begin{gathered} \text { Cd. } \\ \substack{\text { Cadium } \\ \text { Cit1244 }} \end{gathered}$	$\begin{gathered} 49 \\ \text { ln } \\ \text { litum } \\ \text { litali } \end{gathered}$	$\begin{gathered} 50 \\ \text { Sn } \\ \text { Sn } \\ \text { Hininn } \end{gathered}$			$\begin{gathered} \hline 53 \\ 1 \\ \text { buin } \\ 120204 \end{gathered}$	
$\begin{gathered} 55 \\ \substack{\text { Cisim } \\ \text { che } \\ 132055} \end{gathered}$	$\begin{aligned} & 56 \\ & \begin{array}{c} 50 \\ \text { Ba } \\ \text { bain } \\ 131322 \end{array} \end{aligned}$	$\begin{gathered} 5-71 \\ \text { Lantumais } \end{gathered}$			$\stackrel{74}{\substack{\text { Thestan } \\ \text { Hese }}}$	$\begin{gathered} 15 \\ \substack{\text { Rep } \\ \text { Rifin } \\ \text { Rasivt }} \end{gathered}$	$\begin{gathered} \text { 76 } \\ \text { Os } \\ \text { Osimin } \\ \text { ispor } \end{gathered}$	$\substack{\begin{subarray}{c}{14 i u m \\ 132212} }} \\ {\hline 10} \end{subarray}$		$\begin{gathered} 79 \\ \substack{\text { Aud } \\ \text { coid } \\ 106565} \end{gathered}$	$\begin{gathered} 80 \\ \text { Hg } \\ \text { Hequ } \\ \text { notisy } \end{gathered}$		$\begin{aligned} & 822 \\ & \text { Pb } \\ & \text { Pax } \\ & 2012 \end{aligned}$	$\begin{gathered} 83 \\ \begin{array}{c} 8 \text { Bin } \\ \text { Binctur } \\ 202030 \end{array} \\ \hline \end{gathered}$		$\begin{gathered} 85 \\ \text { At } \\ \text { Astime } \\ 20930 \\ \hline \end{gathered}$	
		${ }^{89-103}$										$\begin{gathered} 113 \\ \text { Nh } \\ \text { Nithoun } \\ \text { netain } \end{gathered}$	$\begin{gathered} 114 \\ \text { Ff } \\ \text { fifxum } \\ \text { frean } \end{gathered}$				(in

	$\begin{gathered} 58 \\ \substack{58 \\ \text { cein } \\ \text { chand }} \\ \hline \end{gathered}$				Simite		$\begin{aligned} & \text { bid } \\ & 101515 \end{aligned}$		y_{0}					(10)
	$\begin{aligned} & 90 \\ & \hline \mathrm{Ih} \end{aligned}$													\%

Absolute Zero and Ideal Gases
 20

Ideal Gases

21

A steel tank contains $m_{g}=0.30 \mathrm{~kg}$ of ammonia gas $\left(\mathrm{NH}_{3}\right)$ at an absolute pressure $P_{0}=1.35 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}$ and a temperature $T_{0}=77^{\circ} \mathrm{C}$. What is the volume of the tank? At a later time the tank is checked. The temperature has fallen to $T_{1}=22^{\circ} \mathrm{C}$ and the pressure has fallen to $P_{1}=8.7 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}$. How many kilograms of gas leaked out of the tank?

Boyle's Law for Ideal Gases - 1

\# ρ Type here to search
氟 m ค

Boyle's Law for Ideal Gases - 2
 23

Page \#1 \times					
Curve Fit Editor					
Power $\left(\mathrm{A}\left(\mathrm{x}-\mathrm{x}_{0}\right)^{n}+\mathrm{B}\right) \quad$ \%					
Initial Guess Lock Current Value					
	0	\square		86	
	0	v		0.0	
	0	v		0.0	
	3	\square		0.020	
			MSE		
			MSE		

Curre fit was succe ssful.
Fiesct: Update fit Cansel

[^0]
Specific Heats of Ideal Gases (The Problem) 24

Assume that a pure, ideal gas is made of tiny particles that bounce into each other and the walls of their cubic container of side ℓ. Show the average pressure P exerted by this gas is

$$
P=\frac{1}{3} \frac{N}{V} m \overline{v_{\text {total }}^{2}}
$$

Use the ideal gas law $\left(P V=N k_{B} T=\right.$ $n R T$) and the conservation of energy ($\Delta E_{i n t}=$ $C_{V} \Delta T$) to calculate the specific heat of an ideal gas and show the following.

$$
C_{V}=\frac{3}{2} N_{A} k_{B}
$$

Is this right?
N - number of particles $\quad V=\ell^{3}$
k_{B} - Boltzmann constant m - atomic mass
N_{A} - Avogadro's number $\quad v_{\text {total }}$ - atom's speed

The Kinetic Model of Ideal Gases

(1) The gas consists of a large number of small, mobile particles and their average separation is large.
(2) The particles obey Newton's Laws and the conservation laws, but their motion can be described statistically.
(3) The particles' collisions are elastic on average.
(4) The inter-particle forces are small until they collide.
(6) The gas is pure.
(0) The gas is in thermal equilibrium with the container walls.

Trajectory of Brownian Motion

The Plan and the Data

The Pressure of an Ideal Gas - Impulse and Momentum Change

The Pressure of an Ideal Gas - Impulse and Momentum Change

Instantaneous Force 30

Instantaneous versus Average Force 31

Instantaneous versus Average Force

Instantaneous Force in the Gas

Instantaneous versus Average Force in the Gas 34

Instantaneous versus Average Force in the Gas 35

(1) Consider a tiny patch of the container.
(2) It's repeatedly hit by gas particles (blue).
(3) The average time separation is $\langle\Delta t\rangle$.

Instantaneous versus Average Force in the Gas 36

(1) Consider a tiny patch of the container.
(2) It's repeatedly hit by gas particles (blue).
(3) The average time separation is $\langle\Delta t\rangle$.
(4) Average force is red.
(3) Blue area $=$ Red area

Momentum Conservation and Hitting Walls 37

An atom of mass m_{h} collides elastically head-on with a heavier, stationary, target atom of mass m_{r}. Both particles are free to move in space. The initial velocity of the projectile is \vec{v}_{0} as shown below. What is the final velocity \vec{v}_{1} of the projectile in terms of the masses, \vec{v}_{0}, and any other constants? What happens to the final velocity \vec{v}_{1} as the target mass m_{r} becomes very large? Ignore the effects of potential energy.

m_{r}

The Plan - Act. 2 of Kinetic Theory of Ideal Gases 38

Is Potential Energy Important?

A helium atom is moving straight up from the floor of the lab that is at room temperature $T=300 \mathrm{~K}$. Miraculously, the atom never strikes another atom or molecule until it reaches the ceiling at a height $h=4.0 \mathrm{~m}$ above the floor. What is the helium atom's rms speed when it hits the ceiling? How much has its speed changed from the initial speed?

Specific Heats of Ideal Gases

Assume that a pure, ideal gas is made of tiny particles that bounce into each other and the walls of their cubic container of side ℓ. Show the average pressure P exerted by this gas is

$$
P=\frac{1}{3} \frac{N}{V} m \overline{v_{\text {total }}^{2}}
$$

Use the ideal gas law ($P V=N k_{B} T=$ $n R T$) and the conservation of energy $\left(\Delta E_{\text {int }}=C_{V} \Delta T\right)$ to calculate the specific heat of an ideal gas and show the following.

$$
C_{V}=\frac{3}{2} N_{A} k_{B}=\frac{3}{2} R
$$

Is this right?
N - number of particles $\quad V=\ell^{3}$
k_{B} - Boltzmann constant m - atomic mass
N_{A} - Avogadro's number $v_{\text {total }}$ - atom's spe

The Kinetic Model of Ideal Gases

(1) The gas consists of a large number of small, mobile particles and their average separation is large.
(2) The particles obey Newton's Laws and the conservation laws, but their motion can be described statistically.
(3) The particles' collisions are elastic on average.
(4) The inter-particle forces are small until they collide.
(6) The gas is pure.
(0) The gas is in thermal equilibrium with the container walls.

The Plan - Activity 2 of Applying the Kinetic Theory42

The Plan - Activity 3 of Applying the Kinetic Theory43

The Plan - Activity 4 of Applying the Kinetic Theory44

The Results

45

$$
\begin{gathered}
P=\frac{1}{3} \frac{N}{V} m \overline{v_{\text {total }}^{2}}=\frac{2}{3} \frac{N}{V}\left\langle E_{\text {kin }}\right\rangle \\
\left\langle E_{\text {kin }}\right\rangle=\frac{3}{2} N k_{B} T \\
C_{V}=\frac{3}{2} N_{A} k_{B}=\frac{3}{2} R
\end{gathered}
$$

Rotational Kinetic Energy

Classically

$$
K E=\frac{1}{2} m v^{2}=\frac{m^{2} v^{2}}{2 m}=\frac{p^{2}}{2 m}
$$

For rotational motion

$$
E_{\text {rot }}=\frac{L^{2}}{2 \mathcal{I}}
$$

where L is angular momentum and

$$
\mathcal{I}=\sum m r_{i}^{2}=\int r^{2} d m
$$

Quantum mechanically

$$
E_{r o t}^{q m}=\frac{\ell(\ell+1) \hbar^{2}}{2 \mathcal{I}}
$$

where ℓ is the angular momentum quantum number.

Hoop or thin cylindrical shell $I_{\mathrm{CM}}=M R^{2}$

Solid cylinder or disk
$I_{\mathrm{CM}}=\frac{1}{2} M R^{2}$

Long, thin rod with rotation axis through center $I_{\mathrm{CM}}=\frac{1}{12} M L^{2}$

Solid sphere
$I_{\mathrm{CM}}=\frac{2}{5} M R^{2}$

Long, thin rod with rotation axis through end $I=\frac{1}{3} M L^{2}$

Thin spherical
shell
$I_{\mathrm{CM}}=\frac{2}{3} M R^{2}$

A Hint of Quantum Mechanics

Applying Quantum Mechanics

48

How much heat does it take to increase the temperature of $n=4.0$ moles of H_{2} gas by $\Delta \mathrm{T}=25 \mathrm{~K}$ at room temperature $\mathrm{T}=25^{\circ} \mathrm{C}$ if the gas is held at constant volume? Would the answer change if the gas were N_{2} ? What about He?

Calorimetry Measurement

Thermodynamic Information

TABLE 17.3 Melting/boiling temperatures and heats of transformation

Substance	$\boldsymbol{T}_{\mathrm{m}}\left({ }^{\circ} \mathbf{C}\right)$	$\boldsymbol{L}_{\mathrm{f}}(\mathbf{J} / \mathbf{k g})$	$\boldsymbol{T}_{\mathrm{b}}\left({ }^{\circ} \mathbf{C}\right)$	$\boldsymbol{L}_{\mathrm{v}}(\mathbf{J} / \mathbf{k g})$
Nitrogen $\left(\mathrm{N}_{2}\right)$	-210	0.26×10^{5}	-196	1.99×10^{5}
Ethyl alcohol	-114	1.09×10^{5}	78	8.79×10^{5}
Mercury	-39	0.11×10^{5}	357	2.96×10^{5}
Water	0	3.33×10^{5}	100	22.6×10^{5}
Lead	328	0.25×10^{5}	1750	8.58×10^{5}

TABLE 17.2 Specific heats and molar specific heats of solids and liquids
Substance $\quad c(\mathrm{~J} / \mathrm{kg} \mathrm{K}) \quad C(\mathrm{~J} / \mathrm{mol} \mathrm{K})$

Solids

Aluminum	900	24.3
Copper	385	24.4

Iron $449 \quad 25.1$

Gold	129	25.4

Lead $128 \quad 26.5$

Ice	2090	37.6

Liquids

Ethyl alcohol	2400	110.4
Mercury	140	28.1
Water	4190	75.4

[^0]: - $\bigcirc \quad \checkmark \quad$ 位

