• Name:

- Did you take Phys 131 and who was your instructor?
- How many semesters of physics before this course (high school or college)?
- How many semesters of calculus before this course (high school or college)?
- Preferred personal pronouns?

What are you made of and how do you know? 2

What are you made of and how do you know? 3

Dalton's Atomic Theory (1808)

- All matter consists of tiny particles.
- Atoms are indestructible and unchangeable.
- 3 Elements are characterized by the mass of their atoms.
- When elements react, their atoms combine in simple, whole-number ratios.

from A New System of Chemical Philosophy (1808) by John Dalton

What are you made of and how do you know? 4

Dalton's Atomic Theory (1808)

- All matter consists of tiny particles.
- 2 Atoms are indestructible and unchangeable.
- Elements are characterized by the mass of their atoms.
- When elements react, their atoms combine in simple, whole-number ratios.

Boltzmann's Kinetic Theory (1905)

- Matter consists of tiny particles.
- Use Newtonian physics to calculate ideal gas properties like the heat capacity/specific heat.
- Connects bulk properties to microscopic motion of atoms.

from A New System of Chemical Philosophy (1808) by John Dalton

Is this right?

gas is

N - number of particles k_B - Boltzmann constant N_A - Avogadro's number

 $V = \ell^3$

m - atomic mass v_{total} - atom's speed

 $P = \frac{1}{3} \frac{N}{V} m \overline{v_{total}^2}$

Use the ideal gas law ($PV = Nk_BT = nRT$) and the conservation of energy ($\Delta E_{int} = C_V \Delta T$) to calculate the specific heat of an ideal

Assume that a pure, ideal gas is made of tiny particles that bounce into each other and the walls of their cubic container of side ℓ . Show the average pressure P exerted by this

The Plan

Temperature and Heat

Temperature and Heat

Heat (Q) is thermal energy transferred from one place or body to another due to a difference in temperature. Thermal energy is the mechanical energy (kinetic and potential) associated with atomic motion in an object.

© 2006 Brooks/Cole - Thomson

Temperature and Heat

10

Heat (Q) is thermal energy transferred from one place or body to another due to a difference in temperature. Thermal energy is the mechanical energy (kinetic and potential) associated with atomic motion in an object.

© 2006 Brooks/Cole - Thomson

Calorimetry/Energy Conservation

Two ice cubes each with mass $m_l = 0.050 \ kg$ are taken from a freezer at $T_0 = 0^{\circ}$ C and dropped into a container holding $m_w = 1.0 \ kg$ of water at $T_1 = 25^{\circ}$ C. What will be the final temperature of the liquid? Assume the container absorbs no heat.

$$c_{ice} = 2090 \ J/kg - K$$

 $c_w = 4186 \ J/kg - K$
 $L_f = 3.33 \times 10^5 \ J/kg$

Calorimetry/Energy Conservation

Two ice cubes each with mass $m_I = 0.050 \ kg$ are taken from a freezer at $T_0 = 0^{\circ}$ C and dropped into a container holding $m_w = 1.0 \ kg$ of water at $T_1 = 25^{\circ}$ C. What will be the final temperature of the liquid? Assume the container absorbs no heat.

$$c_{ice} = 2090 \; J/kg - K \ c_w = 4186 \; J/kg - K \ L_f = 3.33 \times 10^5 \; J/kg$$

The Plan

Heat of Vaporization of Liquid Nitrogen Lab 14

Let 1.00 kg of liquid water at 100° C be converted to steam at 100° C. The water is contained in a cylinder with a movable piston of negligible mass that sits right on top of the water at the start. The volume changes from an initial value of $1.00 \times 10^{-3} m^3$ as a liquid to 1.671 m^3 as steam.

The latent heat of vaporization of water is $L_V = 2.26 \times 10^6 J/kg$ and atmospheric pressure is $P_{atm} = 1.01 \times 10^5 Pa$.

- How much work is done by this process?
- e How much heat must be added?
- What is the change in the water's internal energy?

The Mechanical Equivalent of Heat

The energy diagram for two atoms.

Ideal Gases

18

A weather balloon is loosely inflated to a volume $V_0 = 2.2 \ m^3$ with helium at a pressure of $P_0 = 1.0 \times 10^5 \ Pa$ and a temperature $T_0 = 20^{\circ}$ C. At an elevation of 20,000 ft the atmospheric pressure is down to $P_1 = 0.5 \times 10^5 \ Pa$ and the temperature is $T_1 = -48^{\circ}$ C. The bag can expand freely. What is the new volume of the bag? What is the gas mass?

Ideal Gases

19

A weather balloon is loosely inflated to a volume $V_0 = 2.2 \ m^3$ with helium at a pressure of $P_0 = 1.0 \times 10^5 \ Pa$ and a temperature $T_0 = 20^{\circ}$ C. At an

1 H Hydrogen 1.008	2							Nun	nher				13	14	15	16	17	2 He Helium 4.003
3 Li Lithium 6.941	4 Be Beryllium 9.012							Syn	n bol				5 B Boron 10.811	6 C Carbon 12.011	7 N Nitrogen 14.007	8 0 0xygen 15.999	9 F Fluorine 18.998	10 Ne Neon 20.180
11 Na Sodium 22.990	12 Mg Magnesturn 24,305	3	4	5	6	1	8	9	<u>c mass</u> 10		11	12	13 Al Aluminum 26.982	14 Si Silicon 28.086	15 P Phosphorus 30.974	16 S Sulfur 32.066	17 Cl Chlorine 35.453	18 Ar Argon 39.948
19 K Petassium 39.098	20 Ca Calcium 40.078	21 Sc Scandium 44,956	22 Ti Titanium 47,867	23 V Vanadium 50.942	24 Cr Chromium 51.996	25 Mn Nanganese 54.938	26 Fe Iron 55.845	27 Co Cabalit 58.933	28 Ni Nicke 58.69	ll G	29 Cu Copper 63.546	30 Zn Zinc 65.38	31 Ga Gallium 69.723	32 Ge Germanium 72.631	33 As Arsenic 14.922	34 See Selenium 78.971	35 Br Brorrine 79.904	36 Kr Krypton 83.798
37 Rb Rubidium 85.468	38 Sr Strentium 87.62	39 Y Yttrium 88.906	40 Zr Zirconium 91.224	41 Nb Niabium 92.906	42 Mo Nolybdenum 95.95	43 Tc Technetium 98.907	44 Ru Ruthenium 101.07	45 Rh Rhedium 102.906	46 Pd Palladii 106.4	 um 2	47 Ag Silver 107.868	48 Cd Cadmium 112,414	49 In Indium 114.818	50 Sn 118.711	51 Sb Antimony 121.760	52 Te Tellurium 127.6	53 lodine 126.904	54 Xe Xenon 131.293
55 Cs Cesium 132,905	56 Ba Barium 137.328	57-71 Lanthaneids	72 Hf Hafnium 178.49	73 Ta Tantalum 180.948	74 W Tungsten 183.84	75 Re Rhenium 186.207	76 Os Osmium 190.23	77 Ir Iridium 192.217	78 Pt Platinu 195.00	im 35	79 Au Gold 196.967	80 Hg Mercury 200.592	81 TI Thallium 204.383	82 Pb Lead 207.2	83 Bi Bismuth 208.980	84 Po Polecium [208.982]	85 At Astatine 209.987	86 Rn Radon 222.018
87 Fr Francium 223.020	88 Ra Radium 226.025	89-103 Actinoids	104 Rf Rutherfordium [261]	105 Db Dubnium [262]	106 Sg Seaborgium [266]	107 Bh ^{Bohrium} [264]	108 Hs Hassium [269]	109 Mt Meitnerium [278]	110 Ds Darmstad [281]	ltium Ro]	111 Rg entgenium (280)	112 Cn Copernicium (285)	113 Nh Nihonium [286]	114 Fl Flerovium [289]	115 Mc Moscovium [289]	116 Lv Livermorium [293]	117 Ts Tennessine [294]	118 Og Oganesson [294]
		5 L Lanth 138.	a C anum Cer 905 140	6 e 116 14	Pr N Normium Neod 0.908 144	10 6 10 P 110 P 110 P 110 P 110 P 110 P	m sthium Sa .913 1	62 Sm marium Ei 150.36 1	Eu Fu 51.964	64 Gd Gadoliniun 157.25	n Terbiu 158.92	6 m Dyspr 25 162	b Iy Iy Sium Hol 500 164	10 1 nium Ert .930 161	58 Fr T 1/259 16	59 Y 100000 Ytte 8.934 173	7 b L rbium Lute 1055 174	.U tium 1.967
		8 A Actin 227.	9 9 IC T 1000 1028 232	h l ium Preta 038 23	91 9 2 ctinium Ura 1,036 238	12 9 J N nium Nept 1029 237	13 17 17 17 17 17 17 17 17 17 17 17 17 17	94 Pu atorium Ar 44.064 2	95 Am nericium 143.061	96 Cm ^{Curium} 247.070	97 Bk Berkeli 247.03	um Califo 251	8 5 f 1 nium Einst .080 [2	inium Ferr 54] 251	nium Nend 1.095 25	Ad Nob 58.1 255	02 1 lo l elium Lawre 1.101 [2	03 . r :ncium 62]

© 2006 Brooks/Cole - Thomson

Ideal Gases

21

A steel tank contains $m_g = 0.30 \ kg$ of ammonia gas (NH₃) at an absolute pressure $P_0 = 1.35 \times 10^5 \ N/m^2$ and a temperature $T_0 = 77^\circ \ C$. What is the volume of the tank? At a later time the tank is checked. The temperature has fallen to $T_1 = 22^\circ \ C$ and the pressure has fallen to $P_1 = 8.7 \times 10^5 \ N/m^2$. How many kilograms of gas leaked out of the tank?

Absolute P	ressure vs. Svringe Volume		о С	al-1 co - <i>co</i> a	• • • • • • • • • •	N M K · · ·	C 14 14 110 15	0			_	
	Run #1	Kun #1										
	Absolute Pressure (kPa)	Syringe Volume (mL)		280								
1	102.7	20		260								
2	116.1	18										
3	127.4	16		240								
4	136.3	15		220								
5	146.3	14							Power A(x-x)*+P			
6	159.0	13		200					A(x - A)/ TU			
7	168.8	12					\mathbf{N}		Curve ht failed.			
8	180.0	11	(P)	180		\			1			
9	196.5	10	(k									
10			ans :	160				~				
11			10									
12			4	140					\sim			
13			8									
14			2	120						_		
15				100							~	
16				100								
17			_	80								
18												
19			_	60								
20												
21			_	40								
22			_									
23			_	20								
24			_	0								
25			_	4	6	0	10 12	1 1/	16	19	20	_
26						9	SVE	inge Volume (r	mL)	10	20	
27			Abcolu	to Description in	Curlosse Mahama							
28				tte Pressure vs.	syringe volume			0				

Jerry Gilfoyle

Jerry Gilfoyle

Atoms

Specific Heats of Ideal Gases (The Problem) 24

Assume that a pure, ideal gas is made of tiny particles that bounce into each other and the walls of their cubic container of side ℓ . Show the average pressure P exerted by this gas is

$$P = \frac{1}{3} \frac{N}{V} m \overline{v_{total}^2}$$

Use the ideal gas law ($PV = Nk_BT = nRT$) and the conservation of energy ($\Delta E_{int} = C_V \Delta T$) to calculate the specific heat of an ideal gas and show the following.

$$C_V = \frac{3}{2} N_A k_B$$

Is this right?

N - number of particles k_B - Boltzmann constant N_A - Avogadro's number $V = \ell^3$

m - atomic mass v_{total} - atom's speed

- The gas consists of a large number of small, mobile particles and their average separation is large.
- The particles obey Newton's Laws and the conservation laws, but their motion can be described statistically.
- Solution The particles' collisions are elastic on average.
- The inter-particle forces are small until they collide.
- The gas is pure.
- The gas is in thermal equilibrium with the container walls.

Trajectory of Brownian Motion

Jerry Gilfoyle

Atoms

The Pressure of an Ideal Gas - Impulse andMomentum Change28

The Pressure of an Ideal Gas - Impulse andMomentum Change29

Jerry Gilfoyle

Atoms

Instantaneous Force

Instantaneous versus Average Force

Instantaneous versus Average Force

An atom of mass m_h collides elastically head-on with a heavier, stationary, target atom of mass m_r . Both particles are free to move in space. The initial velocity of the projectile is \vec{v}_0 as shown below. What is the final velocity \vec{v}_1 of the projectile in terms of the masses, \vec{v}_0 , and any other constants? What happens to the final velocity \vec{v}_1 as the target mass m_r becomes very large? Ignore the effects of potential energy.

The Plan - Act. 2 of Kinetic Theory of Ideal Gases 38

A helium atom is moving straight up from the floor of the lab that is at room temperature T = 300 K. Miraculously, the atom never strikes another atom or molecule until it reaches the ceiling at a height h = 4.0 m above the floor. What is the helium atom's rms speed when it hits the ceiling? How much has its speed changed from the initial speed?

Assume that a pure, ideal gas is made of tiny particles that bounce into each other and the walls of their cubic container of side ℓ . Show the average pressure *P* exerted by this

gas is

$$P = \frac{1}{3} \frac{N}{V} m \overline{v_{total}^2}$$

Use the ideal gas law $(PV = Nk_BT = nRT)$ and the conservation of energy $(\Delta E_{int} = C_V \Delta T)$ to calculate the specific heat of an ideal gas and show the following.

$$C_V = \frac{3}{2}N_A k_B = \frac{3}{2}R$$

Is this right?

N - number of particles k_B - Boltzmann constant N_A - Avogadro's number

Atoms

- The gas consists of a large number of small, mobile particles and their average separation is large.
- The particles obey Newton's Laws and the conservation laws, but their motion can be described statistically.
- Solution The particles' collisions are elastic on average.
- The inter-particle forces are small until they collide.
- The gas is pure.
- The gas is in thermal equilibrium with the container walls.

The Plan - Activity 2 of Applying the Kinetic Theory42

The Plan - Activity 3 of Applying the Kinetic Theory43

The Plan - Activity 4 of Applying the Kinetic Theory44

The Results

Rotational Kinetic Energy

46

Classically

$$KE = \frac{1}{2}mv^2 = \frac{m^2v^2}{2m} = \frac{p^2}{2m}$$

For rotational motion

$$E_{rot} = rac{L^2}{2\mathcal{I}}$$

where L is angular momentum and

$$\mathcal{I}=\sum mr_i^2=\int r^2dm$$

Quantum mechanically

$$E_{rot}^{qm}=rac{\ell(\ell+1)\hbar^2}{2\mathcal{I}}$$

where ℓ is the angular momentum quantum number.

How much heat does it take to increase the temperature of n = 4.0 moles of H_2 gas by $\Delta T = 25$ K at room temperature $T = 25^{\circ}C$ if the gas is held at constant volume? Would the answer change if the gas were N_2 ? What about He?

Thermodynamic Information

Substance	$T_{\rm m}(^{\circ}{\rm C})$	$L_{\rm f}({\rm J/kg})$	$T_{\mathfrak{b}}(^{\circ}\mathrm{C})$	$L_{\rm v}$ (J/kg)
Nitrogen (N ₂)	-210	0.26×10^{5}	-196	1.99×10^{5}
Ethyl alcohol	-114	1.09×10^{5}	78	8.79×10^{5}
Mercury	-39	0.11×10^{5}	357	2.96×10^{5}
Water	0	3.33×10^{5}	100	22.6×10^{5}
Lead	328	$0.25 imes 10^5$	1750	8.58×10^{5}

TABLE 17.3 Melting/boiling temperatures and heats of transformation

TABLE 17.2 Specific heats and molar specific heats of solids and liquids

Substance	c (J/kg K)	C (J/mol K)
Solids		
Aluminum	900	24.3
Copper	385	24.4
Iron	449	25.1
Gold	129	25.4
Lead	128	26.5
Ice	2090	37.6
Liquids		
Ethyl alcohol	2400	110.4
Mercury	140	28.1
Water	4190	75.4